1
|
Chen P, Zhang Y, Bordeau BM, Balthasar JP. Assessment of the Effects of Single-Domain Anti-Idiotypic Distribution Enhancers on the Disposition of Trastuzumab and on the Efficacy of a PE24-Trastuzumab Immunotoxin. Cancers (Basel) 2025; 17:1468. [PMID: 40361392 PMCID: PMC12071152 DOI: 10.3390/cancers17091468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Revised: 04/16/2025] [Accepted: 04/18/2025] [Indexed: 05/15/2025] Open
Abstract
BACKGROUND/OBJECTIVES Antibody-based therapies often exhibit limited distribution within solid tumors due to the "binding-site barrier" (BSB). Our group has developed and validated the use of anti-idiotypic distribution enhancers (AIDEs), which transiently block antibody binding, improving intra-tumoral distribution and efficacy. This study evaluated 1HE and LG1, model anti-trastuzumab AIDEs, in combination with trastuzumab-PE24, a highly potent immunotoxin. METHODS The effects of 1HE on the whole-body disposition of radiolabeled trastuzumab were assessed in NCI-N87 tumor-bearing mice. Mechanistic pharmacokinetic/pharmacodynamic (PK/PD) modeling was employed to explore how AIDE binding kinetics influence antibody intra-tumoral distribution and immunotoxin potency. Trastuzumab-PE24 was developed by site-specific conjugation, enabled by self-splicing split intein, with cytotoxicity tested on various cell lines in vitro. The impact of 1HE and LG1 coadministration on trastuzumab-PE24 efficacy was evaluated in NCI-N87 xenograft-bearing mice. RESULTS 1HE coadministration decreased trastuzumab tumor maximum concentration, reducing tumor terminal slope by 8% and overall tumor exposure by 2.6%, without negatively affecting selectivity. Modeling predicted the optimal AIDE dissociation rate constant for trastuzumab-PE24 to be between 0.015 and 0.3 h-1. The coadministration of trastuzumab-PE24 with 1HE and LG1 improved anti-tumor efficacy and extended median survival to 60 days (p = 0.0002). CONCLUSIONS AIDE coadministration led to minimal negative impacts on overall tumor exposure, consistent with model simulations. AIDE coadministration improved the efficacy of trastuzumab-PE24 in NCI-N87 xenografts. Modeling further predicted that repeated AIDE administration with trastuzumab-PE24 could induce complete tumor regression. These findings highlight the advantages of the AIDE strategy, particularly when coadministered with highly potent immunotoxins.
Collapse
Affiliation(s)
| | | | | | - Joseph P. Balthasar
- Department of Pharmaceutical Sciences, University at Buffalo, Buffalo, NY 14214, USA; (P.C.); (Y.Z.); (B.M.B.)
| |
Collapse
|
2
|
Nguyen MQ, Kim DH, Shim HJ, Ta HKK, Vu TL, Nguyen TKO, Lim JC, Choe H. Novel Anti-Mesothelin Nanobodies and Recombinant Immunotoxins with Pseudomonas Exotoxin Catalytic Domain for Cancer Therapeutics. Mol Cells 2023; 46:764-777. [PMID: 38052492 PMCID: PMC10701305 DOI: 10.14348/molcells.2023.0155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/10/2023] [Accepted: 10/17/2023] [Indexed: 12/07/2023] Open
Abstract
Recombinant immunotoxins (RITs) are fusion proteins consisting of a targeting domain linked to a toxin, offering a highly specific therapeutic strategy for cancer treatment. In this study, we engineered and characterized RITs aimed at mesothelin, a cell surface glycoprotein overexpressed in various malignancies. Through an extensive screening of a large nanobody library, four mesothelin-specific nanobodies were selected and genetically fused to a truncated Pseudomonas exotoxin (PE24B). Various optimizations, including the incorporation of furin cleavage sites, maltose-binding protein tags, and tobacco etch virus protease cleavage sites, were implemented to improve protein expression, solubility, and purification. The RITs were successfully overexpressed in Escherichia coli, achieving high solubility and purity post-purification. In vitro cytotoxicity assays on gastric carcinoma cell lines NCI-N87 and AGS revealed that Meso(Nb2)-PE24B demonstrated the highest cytotoxic efficacy, warranting further characterization. This RIT also displayed selective binding to human and monkey mesothelins but not to mouse mesothelin. The competitive binding assays between different RIT constructs revealed significant alterations in IC50 values, emphasizing the importance of nanobody specificity. Finally, a modification in the endoplasmic reticulum retention signal at the C-terminus further augmented its cytotoxic activity. Our findings offer valuable insights into the design and optimization of RITs, showcasing the potential of Meso(Nb2)-PE24B as a promising therapeutic candidate for targeted cancer treatment.
Collapse
Affiliation(s)
- Minh Quan Nguyen
- Department of Physiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Korea
| | | | | | - Huynh Kim Khanh Ta
- Department of Physiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Korea
| | - Thi Luong Vu
- Department of Physiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Korea
| | - Thi Kieu Oanh Nguyen
- Department of Physiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Korea
| | | | - Han Choe
- Department of Physiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Korea
| |
Collapse
|
3
|
Khirehgesh MR, Sharifi J, Akbari B, Mansouri K, Safari F, Soleymani B, Yari K. Design and construction a novel humanized biparatopic nanobody-based immunotoxin against epidermal growth factor receptor (EGFR). J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
4
|
Dashtiahangar M, Rahbarnia L, Farajnia S, Salmaninejad A, Shabgah AG, Ghasemali S. Anti-cancer Immunotoxins, Challenges, and Approaches. Curr Pharm Des 2021; 27:932-941. [PMID: 33023437 DOI: 10.2174/1381612826666201006155346] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 08/07/2020] [Indexed: 11/22/2022]
Abstract
The development of recombinant immunotoxins (RITs) as a novel therapeutic strategy has made a revolution in the treatment of cancer. RITs result from the fusion of antibodies to toxin proteins for targeting and eliminating cancerous cells by inhibiting protein synthesis. Despite indisputable outcomes of RITs regarding inhibition of multiple cancer types, high immunogenicity has been known as the main obstacle in the clinical use of RITs. Various strategies have been proposed to overcome these limitations, including immunosuppressive therapy, humanization of the antibody fragment moiety, generation of immunotoxins originated from endogenous human cytotoxic enzymes, and modification of the toxin moiety to escape the immune system. This paper is devoted to review recent advances in the design of immunotoxins with lower immunogenicity.
Collapse
Affiliation(s)
- Maryam Dashtiahangar
- Department of Biology, Faculty of Sciences, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Leila Rahbarnia
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Safar Farajnia
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Arezoo Gowhari Shabgah
- Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Samaneh Ghasemali
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
5
|
Mazor R, Pastan I. Immunogenicity of Immunotoxins Containing Pseudomonas Exotoxin A: Causes, Consequences, and Mitigation. Front Immunol 2020; 11:1261. [PMID: 32695104 PMCID: PMC7333791 DOI: 10.3389/fimmu.2020.01261] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 05/18/2020] [Indexed: 12/20/2022] Open
Abstract
Immunotoxins are cytolytic fusion proteins developed for cancer therapy, composed of an antibody fragment that binds to a cancer cell and a protein toxin fragment that kills the cell. Pseudomonas exotoxin A (PE) is a potent toxin that is used for the killing moiety in many immunotoxins. Moxetumomab Pasudotox (Lumoxiti) contains an anti-CD22 Fv and a 38 kDa portion of PE. Lumoxiti was discovered in the Laboratory of Molecular Biology at the U.S. National Cancer Institute and co-developed with Medimmune/AstraZeneca to treat hairy cell leukemia. In 2018 Lumoxiti was approved by the US Food and Drug Administration for the treatment of drug-resistant Hairy Cell Leukemia. Due to the bacterial origin of the killing moiety, immunotoxins containing PE are highly immunogenic in patients with normal immune systems, but less immunogenic in patients with hematologic malignancies, whose immune systems are often compromised. LMB-100 is a de-immunized variant of the toxin with a humanized antibody that targets mesothelin and a PE toxin that was rationally designed for diminished reactivity with antibodies and B cell receptors. It is now being evaluated in clinical trials for the treatment of mesothelioma and pancreatic cancer and is showing somewhat diminished immunogenicity compared to its un modified parental counterpart. Here we review the immunogenicity of the original and de-immunized PE immunotoxins in mice and patients, the development of anti-drug antibodies (ADAs), their impact on drug availability and their effect on clinical efficacy. Efforts to mitigate the immunogenicity of immunotoxins and its impact on immunogenicity will be described including rational design to identify, remove, or suppress B cell or T cell epitopes, and combination of immunotoxins with immune modulating drugs.
Collapse
Affiliation(s)
- Ronit Mazor
- Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States
| | - Ira Pastan
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
6
|
Fleming BD, Urban DJ, Hall M, Longerich T, Greten T, Pastan I, Ho M. Engineered Anti-GPC3 Immunotoxin, HN3-ABD-T20, Produces Regression in Mouse Liver Cancer Xenografts Through Prolonged Serum Retention. Hepatology 2020; 71:1696-1711. [PMID: 31520528 PMCID: PMC7069773 DOI: 10.1002/hep.30949] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 09/08/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND AIMS Treatment of hepatocellular carcinomas using our glypican-3 (GPC3)-targeting human nanobody (HN3) immunotoxins causes potent tumor regression by blocking protein synthesis and down-regulating the Wnt signaling pathway. However, immunogenicity and a short serum half-life may limit the ability of immunotoxins to transition to the clinic. APPROACH AND RESULTS To address these concerns, we engineered HN3-based immunotoxins to contain various deimmunized Pseudomonas exotoxin (PE) domains. This included HN3-T20, which was modified to remove T-cell epitopes and contains a PE domain II truncation. We compared them to our previously reported B-cell deimmunized immunotoxin (HN3-mPE24) and our original HN3-immunotoxin with a wild-type PE domain (HN3-PE38). All of our immunotoxins displayed high affinity to human GPC3, with HN3-T20 having a KD value of 7.4 nM. HN3-T20 retained 73% enzymatic activity when compared with the wild-type immunotoxin in an adenosine diphosphate-ribosylation assay. Interestingly, a real-time cell growth inhibition assay demonstrated that a single dose of HN3-T20 at 62.5 ng/mL (1.6 nM) was capable of inhibiting nearly all cell proliferation during the 10-day experiment. To enhance HN3-T20's serum retention, we tested the effect of adding a streptococcal albumin-binding domain (ABD) and a llama single-domain antibody fragment specific for mouse and human serum albumin. For the detection of immunotoxin in mouse serum, we developed a highly sensitive enzyme-linked immunosorbent assay and found that HN3-ABD-T20 had a 45-fold higher serum half-life than HN3-T20 (326 minutes vs. 7.3 minutes); consequently, addition of an ABD resulted in HN3-ABD-T20-mediated tumor regression at 1 mg/kg. CONCLUSION These data indicate that ABD-containing deimmunized HN3-T20 immunotoxins are high-potency therapeutics ready to be evaluated in clinical trials for the treatment of liver cancer.
Collapse
Affiliation(s)
- Bryan D. Fleming
- Laboratory of Molecular Biology, National Cancer Institute, Bethesda, Maryland, 20892
| | - Daniel J. Urban
- Chemical Genomics Center, National Center for Advancing Translational Sciences, Rockville, Maryland, 20850
| | - Matthew Hall
- Chemical Genomics Center, National Center for Advancing Translational Sciences, Rockville, Maryland, 20850
| | - Thomas Longerich
- Institute of Pathology, University Hospital, Heidelberg, Germany, 69120
| | - Tim Greten
- Thoracic and Gastrointestinal Oncology Branch, National Cancer Institute, Bethesda, Maryland, 20892
| | - Ira Pastan
- Laboratory of Molecular Biology, National Cancer Institute, Bethesda, Maryland, 20892
| | - Mitchell Ho
- Laboratory of Molecular Biology, National Cancer Institute, Bethesda, Maryland, 20892
| |
Collapse
|
7
|
Kaplan G, Mazor R, Lee F, Jang Y, Leshem Y, Pastan I. Improving the In Vivo Efficacy of an Anti-Tac (CD25) Immunotoxin by Pseudomonas Exotoxin A Domain II Engineering. Mol Cancer Ther 2018; 17:1486-1493. [PMID: 29695631 PMCID: PMC6030476 DOI: 10.1158/1535-7163.mct-17-1041] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 01/12/2018] [Accepted: 04/16/2018] [Indexed: 12/15/2022]
Abstract
Tac (CD25) is expressed on multiple hematologic malignancies and is a target for cancer therapies. LMB-2 is an extremely active anti-Tac recombinant immunotoxin composed of an Fv that binds to Tac and a 38-kDa fragment of Pseudomonas exotoxin A (PE38). Although LMB-2 has shown high cytotoxicity toward Tac-expressing cancer cells in clinical trials, its efficacy was hampered by the formation of anti-drug antibodies against the immunogenic bacterial toxin and by dose-limiting off-target toxicity. To reduce toxin immunogenicity and nonspecific toxicity, we introduced six point mutations into domain III that were previously shown to reduce T-cell immunogenicity and deleted domain II from the toxin, leaving only the 11aa furin cleavage site, which is required for cytotoxic activity. Although this strategy has been successfully implemented for mesothelin and CD22-targeting immunotoxins, we found that removal of domain II significantly lowered the cytotoxic activity of anti-Tac immunotoxins. To restore cytotoxic activity in the absence of PE domain II, we implemented a combined rational design and screening approach to isolate highly active domain II-deleted toxin variants. The domain II-deleted variant with the highest activity contained an engineered disulfide-bridged furin cleavage site designed to mimic its native conformation within domain II. We found that this approach restored 5-fold of the cytotoxic activity and dramatically improved the MTD. Both of these improvements led to significantly increased antitumor efficacy in vivo We conclude that the next-generation anti-Tac immunotoxin is an improved candidate for targeting Tac-expressing malignancies. Mol Cancer Ther; 17(7); 1486-93. ©2018 AACR.
Collapse
Affiliation(s)
- Gilad Kaplan
- Laboratory of Molecular Biology, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Ronit Mazor
- Laboratory of Molecular Biology, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Fred Lee
- Laboratory of Molecular Biology, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Youjin Jang
- Laboratory of Molecular Biology, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Yasmin Leshem
- Laboratory of Molecular Biology, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Ira Pastan
- Laboratory of Molecular Biology, Center for Cancer Research, NCI, NIH, Bethesda, Maryland.
| |
Collapse
|
8
|
Mazor R, King EM, Pastan I. Strategies to Reduce the Immunogenicity of Recombinant Immunotoxins. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 188:1736-1743. [PMID: 29870741 DOI: 10.1016/j.ajpath.2018.04.016] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 03/19/2018] [Accepted: 04/06/2018] [Indexed: 12/23/2022]
Abstract
Recombinant immunotoxins (RITs) are genetically engineered proteins being developed to treat cancer. They are composed of an Fv that targets a cancer antigen and a fragment of a bacterial toxin that kills tumor cells. Because the toxin is a foreign protein, it is immunogenic. The clinical success of RITs in patients with a normal immune system is limited by their immunogenicity. In this review, we discuss our progress in therapeutic protein deimmunization and the balancing act between immunogenicity and therapeutic potency. One approach is to prevent the activation of B cells by mapping and elimination of B-cell epitopes. A second approach is to prevent helper T-cell activation by interfering with major histocompatibility complex II presentation or T-cell recognition. Immunizing mice with RITs that were deimmunized by elimination of the murine B- or T-cell epitopes showed that both approaches are effective. Another approach to control immunogenicity is to modify the host immune system. Nanoparticles containing synthetic vaccine particles encapsulating rapamycin can induce immune tolerance and prevent anti-drug antibody formation. This treatment restores RIT anti-tumor activity that is otherwise neutralized because of immunogenicity.
Collapse
Affiliation(s)
- Ronit Mazor
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Emily M King
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Ira Pastan
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland.
| |
Collapse
|
9
|
Muir E, Raza M, Ellis C, Burnside E, Love F, Heller S, Elliot M, Daniell E, Dasgupta D, Alves N, Day P, Fawcett J, Keynes R. Trafficking and processing of bacterial proteins by mammalian cells: Insights from chondroitinase ABC. PLoS One 2017; 12:e0186759. [PMID: 29121057 PMCID: PMC5679598 DOI: 10.1371/journal.pone.0186759] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 10/06/2017] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND There is very little reported in the literature about the relationship between modifications of bacterial proteins and their secretion by mammalian cells that synthesize them. We previously reported that the secretion of the bacterial enzyme Chondroitinase ABC by mammalian cells requires the strategic removal of at least three N-glycosylation sites. The aim of this study was to determine if it is possible to enhance the efficacy of the enzyme as a treatment for spinal cord injury by increasing the quantity of enzyme secreted or by altering its cellular location. METHODOLOGY/PRINCIPAL FINDINGS To determine if the efficiency of enzyme secretion could be further increased, cells were transfected with constructs encoding the gene for chondroitinase ABC modified for expression by mammalian cells; these contained additional modifications of strategic N-glycosylation sites or alternative signal sequences to direct secretion of the enzyme from the cells. We show that while removal of certain specific N-glycosylation sites enhances enzyme secretion, N-glycosylation of at least two other sites, N-856 and N-773, is essential for both production and secretion of active enzyme. Furthermore, we find that the signal sequence directing secretion also influences the quantity of enzyme secreted, and that this varies widely amongst the cell types tested. Last, we find that replacing the 3'UTR on the cDNA encoding Chondroitinase ABC with that of β-actin is sufficient to target the enzyme to the neuronal growth cone when transfected into neurons. This also enhances neurite outgrowth on an inhibitory substrate. CONCLUSION/SIGNIFICANCE Some intracellular trafficking pathways are adversely affected by cryptic signals present in the bacterial gene sequence, whilst unexpectedly others are required for efficient secretion of the enzyme. Furthermore, targeting chondroitinase to the neuronal growth cone promotes its ability to increase neurite outgrowth on an inhibitory substrate. These findings are timely in view of the renewed prospects for gene therapy, and of direct relevance to strategies aimed at expressing foreign proteins in mammalian cells, in particular bacterial proteins.
Collapse
Affiliation(s)
- Elizabeth Muir
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
- * E-mail:
| | - Mansoor Raza
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Clare Ellis
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Emily Burnside
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Fiona Love
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Simon Heller
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Matthew Elliot
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Esther Daniell
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Debayan Dasgupta
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Nuno Alves
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
- John Van Geest Centre for Brain Repair, University of Cambridge, Forvie Site, Cambridge, United Kingdom
| | - Priscilla Day
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - James Fawcett
- John Van Geest Centre for Brain Repair, University of Cambridge, Forvie Site, Cambridge, United Kingdom
| | - Roger Keynes
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
10
|
Kaplan G, Lee F, Onda M, Kolyvas E, Bhardwaj G, Baker D, Pastan I. Protection of the Furin Cleavage Site in Low-Toxicity Immunotoxins Based on Pseudomonas Exotoxin A. Toxins (Basel) 2016; 8:E217. [PMID: 27463727 PMCID: PMC4999843 DOI: 10.3390/toxins8080217] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 06/13/2016] [Accepted: 06/29/2016] [Indexed: 12/13/2022] Open
Abstract
Recombinant immunotoxins (RITs) are fusions of an Fv-based targeting moiety and a toxin. Pseudomonas exotoxin A (PE) has been used to make several immunotoxins that have been evaluated in clinical trials. Immunogenicity of the bacterial toxin and off-target toxicity have limited the efficacy of these immunotoxins. To address these issues, we have previously made RITs in which the Fv is connected to domain III (PE24) by a furin cleavage site (FCS), thereby removing unneeded sequences of domain II. However, the PE24 containing RITs do not contain the naturally occurring disulfide bond around the furin cleavage sequence, because it was removed when domain II was deleted. This could potentially allow PE24 containing immunotoxins to be cleaved and inactivated before internalization by cell surface furin or other proteases in the blood stream or tumor microenvironment. Here, we describe five new RITs in which a disulfide bond is engineered to protect the FCS. The most active of these, SS1-Fab-DS3-PE24, shows a longer serum half-life than an RIT without the disulfide bond and has the same anti-tumor activity, despite being less cytotoxic in vitro. These results have significance for the production of de-immunized, low toxicity, PE24-based immunotoxins with a longer serum half-life.
Collapse
Affiliation(s)
- Gilad Kaplan
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Fred Lee
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Masanori Onda
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Emily Kolyvas
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Gaurav Bhardwaj
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA.
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA.
| | - David Baker
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA.
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA.
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA.
| | - Ira Pastan
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
11
|
Guo R, Cao L, Guo W, Liu H, Xu H, Fang Q, Hong Z. HER2-targeted immunotoxins with low nonspecific toxicity and immunogenicity. Biochem Biophys Res Commun 2016; 475:93-9. [PMID: 27178207 DOI: 10.1016/j.bbrc.2016.05.044] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 05/09/2016] [Indexed: 01/31/2023]
Abstract
Immunotoxins have efficient anti-tumor activity due to their extreme potency. However, dose-limiting off-target toxicity and immunogenicity are the critical barriers for these immunotoxins to be used in a clinical setting. In this study, we designed a Pseudomonas exotoxin A (PE)-based human epidermal growth factor receptor-2 (HER2)-specific immunotoxin HER2-PE25-X7 by deleting most of domain II and introducing seven point mutations into domain III of the PE38 toxin. The anti-cancer activity, off-target toxicity and immunogenicity of this immunotoxin were carefully evaluated in vitro and in vivo. This new construct maintained the therapeutic potency of the original PE38-based immunotoxin HER2-PE38, with a greatly reduced off-target toxicity and immunogenicity. To compare with HER2-PE38, which resulted in the death of most of the mice after a single dose of 1.0 mg/kg, the new construct was completely tolerated at a dose of 10 mg/kg by the mice and almost completely depleted the tumor after treatment with five doses of 5 mg/kg of the immunotoxin. This work demonstrates a potentially attractive therapeutic modality for HER2-specific cancer treatment.
Collapse
Affiliation(s)
- Rui Guo
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, 300071, PR China
| | - Li Cao
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, 300071, PR China
| | - Wenjun Guo
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, 300071, PR China
| | - Hui Liu
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, 300071, PR China
| | - Hua Xu
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, 300071, PR China
| | - Qi Fang
- Quzhou People's Hospital, Quzhou, Zhejiang, 324000, PR China.
| | - Zhangyong Hong
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, 300071, PR China.
| |
Collapse
|
12
|
Abstract
Recombinant immunotoxins (RITs) are chimeric proteins designed to treat cancer. They are made up of an Fv or Fab that targets an antigen on a cancer cell fused to a 38-kDa portion of Pseudomonas exotoxin A (PE38). Because PE38 is a bacterial protein, it is highly immunogenic in patients with solid tumors that have normal immune systems, but much less immunogenic in patients with hematologic malignancies where the immune system is suppressed. RITs have shown efficacy in refractory hairy cell leukemia and in some children with acute lymphoblastic leukemia, but have been much less effective in solid tumors, because neutralizing antibodies develop and prevent additional treatment cycles. In this paper we will (i) review data from clinical trials describing the immunogenicity of PE38 in different patient populations; (ii) review results from clinical trials using different immunosuppressive drugs; and (iii) describe our efforts to make new less-immunogenic RITs by identifying and removing T- and B-cell epitopes to hide the RIT from the immune system.
Collapse
Affiliation(s)
- Ronit Mazor
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Masanori Onda
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ira Pastan
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
13
|
Geoghegan EM, Zhang H, Desai PJ, Biragyn A, Markham RB. Antiviral activity of a single-domain antibody immunotoxin binding to glycoprotein D of herpes simplex virus 2. Antimicrob Agents Chemother 2015; 59:527-35. [PMID: 25385102 PMCID: PMC4291438 DOI: 10.1128/aac.03818-14] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 10/31/2014] [Indexed: 01/30/2023] Open
Abstract
Despite years of research dedicated to preventing the sexual transmission of herpes simplex virus 2 (HSV-2), there is still no protective vaccine or microbicide against one of the most common sexually transmitted infections in the world. Using a phage display library constructed from a llama immunized with recombinant HSV-2 glycoprotein D, we identified a single-domain antibody VHH, R33, which binds to the viral surface glycoprotein D. Although R33 does not demonstrate any HSV-2 neutralization activity in vitro, when expressed with the cytotoxic domain of exotoxin A, the resulting immunotoxin (R33ExoA) specifically and potently kills HSV-2-infected cells, with a 50% neutralizing dilution (IC50) of 6.7 nM. We propose that R33ExoA could be used clinically to prevent transmission of HSV-2 through killing of virus-producing epithelial cells during virus reactivation. R33 could also potentially be used to deliver other cytotoxic effectors to HSV-2-infected cells.
Collapse
Affiliation(s)
- Eileen M Geoghegan
- The W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Hong Zhang
- The W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Prashant J Desai
- Viral Oncology Program, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Johns Hopkins University, Baltimore, Maryland, USA
| | - Arya Biragyn
- Immunoregulation Section, Laboratory of Molecular Biology and Immunology, National Institute on Aging, Baltimore, Maryland, USA
| | - Richard B Markham
- The W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
14
|
Bera TK, Onda M, Kreitman RJ, Pastan I. An improved recombinant Fab-immunotoxin targeting CD22 expressing malignancies. Leuk Res 2014; 38:1224-9. [PMID: 25127689 DOI: 10.1016/j.leukres.2014.06.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 05/20/2014] [Accepted: 06/28/2014] [Indexed: 12/20/2022]
Abstract
Moxetumomab pasudotox (HA22) is a recombinant immunotoxin, now in clinical trials, that combines an anti-CD22-Fv with a 38-kDa fragment of Pseudomonas exotoxin A. To produce a less immunogenic molecule without reducing the half-life in circulation, we constructed LMB11 combining an anti-CD22 Fab with a less immunogenic version of PE38. We found that LMB11 retains full activity toward CD22-expressing cells. In mice, the half-life of LMB11 is 29 min and the antitumor activity of LMB11 is better than that of HA22. Because it can be safely given at much higher doses, LMB11 produced complete tumor remissions in 7/7 mice.
Collapse
Affiliation(s)
- Tapan K Bera
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 37 Convent Drive, Room 5106, Bethesda, MD 20892-4264, USA
| | - Masanori Onda
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 37 Convent Drive, Room 5106, Bethesda, MD 20892-4264, USA
| | - Robert J Kreitman
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 37 Convent Drive, Room 5106, Bethesda, MD 20892-4264, USA
| | - Ira Pastan
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 37 Convent Drive, Room 5106, Bethesda, MD 20892-4264, USA.
| |
Collapse
|
15
|
Human Cytolytic Fusion Proteins: Modified Versions of Human Granzyme B and Angiogenin Have the Potential to Replace Bacterial Toxins in Targeted Therapies against CD64+ Diseases. Antibodies (Basel) 2014. [DOI: 10.3390/antib3010092] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
16
|
Mattoo AR, Pastan I, FitzGerald D. Combination treatments with the PKC inhibitor, enzastaurin, enhance the cytotoxicity of the anti-mesothelin immunotoxin, SS1P. PLoS One 2013; 8:e75576. [PMID: 24130723 PMCID: PMC3794001 DOI: 10.1371/journal.pone.0075576] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Accepted: 08/14/2013] [Indexed: 01/07/2023] Open
Abstract
Activated protein kinase C (PKC) contributes to tumor survival and proliferation, provoking the development of inhibitory agents as potential cancer therapeutics. Immunotoxins are antibody-based recombinant proteins that employ antibody fragments for cancer targeting and bacterial toxins as the cytotoxic agent. Pseudomonas exotoxin-based immunotoxins act via the ADP-ribosylation of EF2 leading to the enzymatic inhibition of protein synthesis. Combining PKC inhibitors with the immunotoxin SS1P, targeted to surface mesothelin, was undertaken to explore possible therapeutic strategies. Enzastaurin but not two other PKC inhibitors combined with SS1P to produce synergistic cell death via apoptosis. Mechanistic insights of the synergistic killing centered on the complete loss of the prosurvival Bcl2 protein, Mcl-1, the loss of AKT and the activation of caspase 3/7. Synergy was most evident when cells exhibited resistance to the immunotoxin alone. Further, because PKC inhibition by itself was not sufficient to enhance SS1P action, enzastaurin must target other kinases that are involved in the immunotoxin pathway.
Collapse
Affiliation(s)
- Abid R. Mattoo
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Ira Pastan
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - David FitzGerald
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
17
|
Improving the Therapeutic Potential of Human Granzyme B for Targeted Cancer Therapy. Antibodies (Basel) 2013. [DOI: 10.3390/antib2010019] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
|
18
|
Mazor R, Vassall AN, Eberle JA, Beers R, Weldon JE, Venzon DJ, Tsang KY, Benhar I, Pastan I. Identification and elimination of an immunodominant T-cell epitope in recombinant immunotoxins based on Pseudomonas exotoxin A. Proc Natl Acad Sci U S A 2012; 109:E3597-603. [PMID: 23213206 PMCID: PMC3529021 DOI: 10.1073/pnas.1218138109] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Recombinant immunotoxins (RITs) are chimeric proteins that are being developed for cancer treatment. We have produced RITs that contain PE38, a portion of the bacterial protein Pseudomonas exotoxin A. Because the toxin is bacterial, it often induces neutralizing antibodies, which limit the number of treatment cycles and the effectiveness of the therapy. Because T cells are essential for antibody responses to proteins, we adopted an assay to map the CD4(+) T-cell epitopes in PE38. We incubated peripheral blood mononuclear cells with an immunotoxin to stimulate T-cell expansion, followed by exposure to overlapping peptide fragments of PE38 and an IL-2 ELISpot assay to measure responses. Our observation of T-cell responses in 50 of 50 individuals correlates with the frequency of antibody formation in patients with normal immune systems. We found a single, highly immunodominant epitope in 46% (23/50) of the donors. The immunodominant epitope is DRB1-restricted and was observed in subjects with different HLA alleles, indicating promiscuity. We identified two amino acids that, when deleted or mutated to alanine, eliminated the immunodominant epitope, and we used this information to construct mutant RITs that are highly cytotoxic and do not stimulate T-cell responses in many donors.
Collapse
Affiliation(s)
- Ronit Mazor
- Laboratory of Molecular Biology
- Department of Molecular Microbiology and Biotechnology, The George S. Wise Faculty of Life Sciences, Tel-Aviv University, Ramat Aviv 69978, Israel
| | | | | | | | | | - David J. Venzon
- Biostatistics and Data Management Section, Center for Cancer Research, and
| | - Kwong Y. Tsang
- Laboratory of Tumor Immunology and Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892; and
| | - Itai Benhar
- Department of Molecular Microbiology and Biotechnology, The George S. Wise Faculty of Life Sciences, Tel-Aviv University, Ramat Aviv 69978, Israel
| | | |
Collapse
|
19
|
Weldon JE, Xiang L, Zhang J, Beers R, Walker DA, Onda M, Hassan R, Pastan I. A recombinant immunotoxin against the tumor-associated antigen mesothelin reengineered for high activity, low off-target toxicity, and reduced antigenicity. Mol Cancer Ther 2012; 12:48-57. [PMID: 23136186 DOI: 10.1158/1535-7163.mct-12-0336] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
SS1P is a recombinant immunotoxin (RIT) engineered for the targeted elimination of malignant cells that express the tumor-associated antigen mesothelin. It is composed of an antimesothelin antibody variable fragment (Fv) linked to a cytotoxic fragment of Pseudomonas exotoxin A (PE) that includes domains II and III of native PE. The clinical use of SS1P is limited by its propensity to induce neutralizing antibodies and to cause a dose-limiting capillary leak syndrome (CLS) in patients. In this article, we describe a reengineered SS1P with improved properties that overcome these deficits. The redesign of SS1P consists of (i) removing the bulk of PE domain II (residues 251-273 and 284-394 of native PE), leaving only an 11-residue furin cleavage site, (ii) adding a Gly-Gly-Ser peptide linker after the furin cleavage site, and (iii) replacing eight highly solvent-exposed residues in the catalytic domain of PE. The new molecule, SS1-LR/GGS/8M, has cytotoxic activity comparable with SS1P on several mesothelin-expressing cell lines and remarkably improved activity on primary cells from patients with mesothelioma. In a mouse xenograft tumor model, high doses of SS1-LR/GGS/8M elicit antitumor activity superior to the activity of SS1P at its maximum-tolerated dose. In addition, SS1-LR/GGS/8M has greatly decreased ability to cause CLS in a rat model and reduced antigenicity or reactivity with antibodies to the sera of patients previously treated with SS1P.
Collapse
Affiliation(s)
- John E Weldon
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
The selective cell surface expression of receptor tyrosine kinase-like orphan receptor 1 (ROR1) in chronic lymphocytic leukemia (CLL) and mantle cell lymphoma (MCL) has made ROR1 a novel and promising target for therapeutic monoclonal antibodies (mAbs). Four mouse mAbs generated by hybridoma technology exhibited specific binding to human ROR1. Epitope mapping studies showed that two mAbs (2A2 and 2D11) recognized N-terminal epitopes in the extracellular region of ROR1 and the other two (1A1 and 1A7) recognized C-terminal epitopes. A ROR1- immunotoxin (BT-1) consisting of truncated Pseudomonas exotoxin A (PE38) and the VH and VL fragments of 2A2-IgG was made recombinantly. Both 2A2-IgG and BT-1 showed dose-dependent and selective binding to primary CLL and MCL cells and MCL cell lines. Kinetic analyses revealed 0.12-nM (2A2-IgG) to 65-nM (BT-1) avidity/affinity to hROR1, depicting bivalent and monovalent interactions, respectively. After binding to cell surface ROR1, 2A2-IgG and BT-1 were partially internalized by primary CLL cells and MCL cell lines, and BT-1 induced profound apoptosis of ROR1-expressing MCL cell lines in vitro (EC 50 = 16 pM-16 nM), but did not affect ROR1-negative cell lines. Our data suggest that ROR1-immunotoxins such as BT-1 could serve as targeted therapeutic agents for ROR1-expressing B cell malignancies and other cancers.
Collapse
Affiliation(s)
- Sivasubramanian Baskar
- Experimental Transplantation and Immunology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA.
| | | | | | | | | |
Collapse
|
21
|
Liu W, Onda M, Kim C, Xiang L, Weldon JE, Lee B, Pastan I. A recombinant immunotoxin engineered for increased stability by adding a disulfide bond has decreased immunogenicity. Protein Eng Des Sel 2012; 25:1-6. [PMID: 22101015 PMCID: PMC3276307 DOI: 10.1093/protein/gzr053] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Revised: 10/06/2011] [Accepted: 10/13/2011] [Indexed: 11/14/2022] Open
Abstract
Recombinant immunotoxins (RITs) are anti-cancer agents that combine the Fv of an antibody against cancer cells with a protein toxin from bacteria or plants. Since RITs contain a non-human protein, immunogenicity can be an obstacle in their development. In this study, we have explored the hypothesis that increasing stability can reduce the immunogenicity of a RIT using HA22-LR, which is composed of an anti-CD22 Fv fused to domain III of Pseudomonas exotoxin A. We introduced a disulfide bond into domain III by identifying and mutating two structurally adjacent residues to cysteines at sites suggested by computer modeling. This RIT, HA22-LR-DB, displays a remarkable increase in thermal stability and an enhanced resistance to trypsin degradation. In addition, HA22-LR-DB retains cytotoxic and anti-tumor activity, while exhibiting significantly lower immunogenicity in mice. This study demonstrates that it is possible to design mutations in a protein molecule that will increase the stability of the protein and thereby reduce its immunogenicity.
Collapse
Affiliation(s)
- Wenhai Liu
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 37 Convent Drive, Bethesda, MD 20892-4264, USA
| | - Masanori Onda
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 37 Convent Drive, Bethesda, MD 20892-4264, USA
| | - Changhoon Kim
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 37 Convent Drive, Bethesda, MD 20892-4264, USA
- Present address: Bioinformatics & Molecular Design Research Center, Yonsei University, 262 Seongsanno, Seodaemun-gu, Seoul 120-749, Korea
| | - Laiman Xiang
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 37 Convent Drive, Bethesda, MD 20892-4264, USA
| | - John E. Weldon
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 37 Convent Drive, Bethesda, MD 20892-4264, USA
| | - Byungkook Lee
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 37 Convent Drive, Bethesda, MD 20892-4264, USA
| | - Ira Pastan
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 37 Convent Drive, Bethesda, MD 20892-4264, USA
| |
Collapse
|
22
|
Weldon JE, Pastan I. A guide to taming a toxin--recombinant immunotoxins constructed from Pseudomonas exotoxin A for the treatment of cancer. FEBS J 2011; 278:4683-700. [PMID: 21585657 PMCID: PMC3179548 DOI: 10.1111/j.1742-4658.2011.08182.x] [Citation(s) in RCA: 181] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Pseudomonas exotoxin A (PE) is a highly toxic protein secreted by the opportunistic pathogen Pseudomonas aeruginosa. The modular structure and corresponding mechanism of action of PE make it amenable to extensive modifications that can redirect its potent cytotoxicity from disease to a therapeutic function. In combination with a variety of artificial targeting elements, such as receptor ligands and antibody fragments, PE becomes a selective agent for the elimination of specific cell populations. This review summarizes our current understanding of PE, its intoxication pathway, and the ongoing efforts to convert this toxin into a treatment for cancer.
Collapse
Affiliation(s)
- John E Weldon
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-4264, USA
| | | |
Collapse
|
23
|
Ackerman ME, Lai JI, Pastan I, Wittrup KD. Exploiting bias in a non-immune human antibody library to predict antigenicity. Protein Eng Des Sel 2011; 24:845-53. [PMID: 21908549 DOI: 10.1093/protein/gzr046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Non-immune human antibody fragment libraries have generated antigen-binding proteins useful as prospective research, imaging, diagnostic and therapeutic agents. However, because the generation of such libraries relies on cloning antibody sequences from the circulating immune repertoire rather than truly naïve, germline sequences, their composition may reflect the deletion of autoreactive sequences, making them less suited for isolating binding clones to human antigens, but perhaps useful in applications where an in vitro handle on representative circulating antibody diversity is desired. Here we demonstrate that a large non-immune human scFv library is relatively depleted of sequences capable of recognizing human antigens as compared with orthologs antigens. Additionally, because this non-naïve, non-immune library may capture a representative section of antibody diversity, we explore its possible utility in conducting early pre-screens to predict the antigenicity of prospective therapeutics and find a correlation between the clinical immunogenicity of a small panel of protein therapeutics with their propensity for interacting with the library.
Collapse
|
24
|
Fuenmayor J, Montaño RF. Novel antibody-based proteins for cancer immunotherapy. Cancers (Basel) 2011; 3:3370-93. [PMID: 24212958 PMCID: PMC3759200 DOI: 10.3390/cancers3033370] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Revised: 08/12/2011] [Accepted: 08/15/2011] [Indexed: 11/30/2022] Open
Abstract
The relative success of monoclonal antibodies in cancer immunotherapy and the vast manipulation potential of recombinant antibody technology have encouraged the development of novel antibody-based antitumor proteins. Many insightful reagents have been produced, mainly guided by studies on the mechanisms of action associated with complete and durable remissions, results from experimental animal models, and our current knowledge of the human immune system. Strikingly, only a small percent of these new reagents has demonstrated clinical value. Tumor burden, immune evasion, physiological resemblance, and cell plasticity are among the challenges that cancer therapy faces, and a number of antibody-based proteins are already available to deal with many of them. Some of these novel reagents have been shown to specifically increase apoptosis/cell death of tumor cells, recruit and activate immune effectors, and reveal synergistic effects not previously envisioned. In this review, we look into different approaches that have been followed during the past few years to produce these biologics and analyze their relative success, mainly in terms of their clinical performance. The use of antibody-based antitumor proteins, in combination with standard or novel therapies, is showing significant improvements in objective responses, suggesting that these reagents will become important components of the antineoplastic protocols of the future.
Collapse
Affiliation(s)
- Jaheli Fuenmayor
- Laboratorio de Patología Celular y Molecular, Centro de Medicina Experimental, Instituto Venezolano de Investigaciones Científicas. Caracas, 1020-A, Venezuela.
| | | |
Collapse
|
25
|
Mossoba ME, Onda M, Taylor J, Massey PR, Treadwell S, Sharon E, Hassan R, Pastan I, Fowler DH. Pentostatin plus cyclophosphamide safely and effectively prevents immunotoxin immunogenicity in murine hosts. Clin Cancer Res 2011; 17:3697-705. [PMID: 21521777 PMCID: PMC3107891 DOI: 10.1158/1078-0432.ccr-11-0493] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE The success of immunotoxin therapy of cancer is limited by host production of neutralizing antibodies, which are directed toward the Pseudomonas exotoxin A (PE) component. In this proof-of-principle study using a well-established murine model, we hypothesized that a newly developed immune depletion regimen consisting of pentostatin plus cyclophosphamide would abrogate anti-immunotoxin reactivity. EXPERIMENTAL DESIGN BALB/c hosts were injected weekly with recombinant immunotoxin (RIT) SS1P, which is an antimesothelin Fv antibody fragment genetically fused to a 38 kDa portion of PE, and has been evaluated in clinical trials. Experimental cohorts received induction chemotherapy consisting of pentostatin (P) plus cyclophosphamide (C) prior to initial RIT exposure; some cohorts received further maintenance PC therapy of varying intensity just prior to each weekly RIT challenge. Cohorts were monitored for T, B, myeloid cell depletion, and for total anti-SS1P antibody (Ab) formation. RESULTS Controls uniformly developed anti-SS1P Ab after the third RIT exposure. Induction PC therapy reduced the frequency of hosts with anti-SS1P Ab. Abrogation of antibody generation was improved by maintenance PC therapy: nearly 100% of recipients of intensive PC maintenance were free of anti-SS1P Ab after 9 weekly RIT doses. The most effective PC regimen yielded the greatest degree of host B-cell depletion, moderate T-cell depletion, and minimal myeloid cell depletion. CONCLUSIONS Induction and maintenance PC chemotherapy safely prevented anti-immunotoxin antibody formation with uniform efficacy. These data suggest that immunotoxin therapy might be used in combination with pentostatin plus cyclophosphamide chemotherapy to improve the targeted therapy of cancer.
Collapse
Affiliation(s)
- Miriam E. Mossoba
- Center for Cancer Research, National Institutes of Health, Experimental Transplantation and Immunology Branch, Bethesda, MD 20892
| | - Masanori Onda
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Justin Taylor
- Center for Cancer Research, National Institutes of Health, Experimental Transplantation and Immunology Branch, Bethesda, MD 20892
| | - Paul R. Massey
- Center for Cancer Research, National Institutes of Health, Experimental Transplantation and Immunology Branch, Bethesda, MD 20892
| | - Shirin Treadwell
- Center for Cancer Research, National Institutes of Health, Experimental Transplantation and Immunology Branch, Bethesda, MD 20892
| | - Elad Sharon
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Raffit Hassan
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Ira Pastan
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Daniel H. Fowler
- Center for Cancer Research, National Institutes of Health, Experimental Transplantation and Immunology Branch, Bethesda, MD 20892
| |
Collapse
|
26
|
Pastan I, Onda M, Weldon J, Fitzgerald D, Kreitman R. Immunotoxins with decreased immunogenicity and improved activity. Leuk Lymphoma 2011; 52 Suppl 2:87-90. [PMID: 21504287 PMCID: PMC7435130 DOI: 10.3109/10428194.2011.573039] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Recombinant immunotoxins, containing an Fv fragment and a bacterial toxin, frequently elicit neutralizing antibodies, nearly always against the toxin. Moxetumomab pasudotox (previously called CAT-8015 or HA22) contains an anti-CD22 Fv fused to PE38, a truncated form of Pseudomonas exotoxin, containing amino acids 253-364 and 381-613. One avenue to reducing immunogenicity is to identify B- and T-cell epitopes and remove them while retaining toxin activity. To determine B-cell epitopes on PE38, 60 monoclonal antibodies against PE38 were tested in a pairwise manner, and seven major epitope groups with 13 subgroups were identified. The locations of many of these epitopes were identified by mutating large surface-exposed residues to alanine. A mutant of moxetumomab pasudotox containing eight epitope-eliminating mutations (HA22-8X) was prepared, and greatly reduced immunogenicity in mice. In parallel, two large sections of PE38 containing lysosomal protease cleavage sites were removed, leaving only amino acids 274-284 and 394-613 of the toxin. The resulting molecule, HA22-LR, retained cytotoxicity toward CD22+ cell lines, killed primary chronic lymphocytic leukemia cells more potently than moxetumomab pasudotox, was much less toxic to mice, and had significantly improved antitumor activity toward murine xenografts. The immunogenicity and activity of recombinant immunotoxins may be optimized by combinations of these approaches.
Collapse
Affiliation(s)
- Ira Pastan
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
27
|
Onda M, Beers R, Xiang L, Lee B, Weldon JE, Kreitman RJ, Pastan I. Recombinant immunotoxin against B-cell malignancies with no immunogenicity in mice by removal of B-cell epitopes. Proc Natl Acad Sci U S A 2011; 108:5742-7. [PMID: 21436054 PMCID: PMC3078343 DOI: 10.1073/pnas.1102746108] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Many nonhuman proteins have useful pharmacological activities, but are infrequently effective in humans because of their high immunogenicity. A recombinant immunotoxin (HA22, CAT8015, moxetumomab pasudotox) composed of an anti-CD22 antibody variable fragment fused to PE38, a 38-kDa portion of Pseudomonas exotoxin A, has produced many complete remissions in drug-resistant hairy-cell leukemia when several cycles of the agent can be given, but has much less activity when antibodies develop. We have pursued a strategy to deimmunize recombinant immunotoxins by identifying and removing B-cell epitopes. We previously reported that we could eliminate most B-cell epitopes using a combination of point mutations and deletions. Here we show the location and amino acid composition of all of the B-cell epitopes in the remaining 25-kDa portion of Pseudomonas exotoxin. Using this information, we eliminated these epitopes to produce an immunotoxin (HA22-LR-8M) that is fully cytotoxic against malignant B-cell lines, has high cytotoxic activity against cells directly isolated from patients with chronic lymphocytic leukemia, and has excellent antitumor activity in mice. HA22-LR-8M does not induce antibody formation in mice when given repeatedly by intravenous injection and does not induce a secondary antibody response when given to mice previously exposed to HA22. HA22-LR-8M also has greatly reduced antigenicity when exposed to sera from patients who have produced antibodies to HA22. The properties of HA22-LR-8M make it an excellent candidate for further clinical development.
Collapse
MESH Headings
- ADP Ribose Transferases/genetics
- ADP Ribose Transferases/metabolism
- Amino Acid Sequence
- Animals
- Antibodies, Monoclonal
- Bacterial Toxins/genetics
- Bacterial Toxins/metabolism
- Cell Line, Tumor
- Enzyme-Linked Immunosorbent Assay
- Epitopes, B-Lymphocyte/genetics
- Exotoxins/genetics
- Exotoxins/metabolism
- Immunization, Passive/methods
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Mice
- Mice, Inbred BALB C
- Models, Molecular
- Molecular Sequence Data
- Mutagenesis
- Protein Engineering/methods
- Recombinant Fusion Proteins/biosynthesis
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/immunology
- Recombinant Fusion Proteins/therapeutic use
- Statistics, Nonparametric
- Virulence Factors/genetics
- Virulence Factors/metabolism
- Pseudomonas aeruginosa Exotoxin A
Collapse
Affiliation(s)
- Masanori Onda
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-4264
| | - Richard Beers
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-4264
| | - Laiman Xiang
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-4264
| | - Byungkook Lee
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-4264
| | - John E. Weldon
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-4264
| | - Robert J. Kreitman
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-4264
| | - Ira Pastan
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-4264
| |
Collapse
|
28
|
Lorberboum-Galski H. Human toxin-based recombinant immunotoxins/chimeric proteins as a drug delivery system for targeted treatment of human diseases. Expert Opin Drug Deliv 2011; 8:605-21. [PMID: 21453191 DOI: 10.1517/17425247.2011.566269] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION The development of specific immunosuppressive reagents remains the major goal in the treatment of human diseases. One such approach is the use of recombinant immunotoxins/chimeric proteins, composed of targeting and killing moieties, fused at the cDNA level. Most of these 'magic bullets' use bacterial or plant toxins to induce cell death. These toxins are extremely potent, but they also cause severe toxicity and systemic side effects that limit the maximal doses given to patients. Moreover, being of non-human origin, they are highly immunogenic, and the resulting neutralizing antibody production impairs their efficacy. AREAS COVERED This review describes recombinant immunotoxins/chimeric proteins composed of the classical delivering, cell-targeting molecules, fused to highly cytotoxic human proteins capable of generating an intense apoptotic response within the target cell. This review focuses on the new 'Human Killing Moieties' of these targeted proteins and describes recent progress in the development of these promising molecules. EXPERT OPINION Human toxin-based immunotoxins/chimeric proteins for the targeted delivery of drugs are still in their early stages of development. However, they are certain to advance in the very near future to become an extra weapon in the everlasting war against human diseases, mainly cancer.
Collapse
Affiliation(s)
- Haya Lorberboum-Galski
- The Hebrew University, Institute for Medical Research - Israel-Canada, Department of Biochemistry and Molecular Biology, Faculty of Medicine, Jerusalem 91120, Israel.
| |
Collapse
|
29
|
Li YM, Hall WA. Targeted toxins in brain tumor therapy. Toxins (Basel) 2010; 2:2645-62. [PMID: 22069569 PMCID: PMC3153175 DOI: 10.3390/toxins2112645] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Revised: 10/20/2010] [Accepted: 10/27/2010] [Indexed: 11/30/2022] Open
Abstract
Targeted toxins, also known as immunotoxins or cytotoxins, are recombinant molecules that specifically bind to cell surface receptors that are overexpressed in cancer and the toxin component kills the cell. These recombinant proteins consist of a specific antibody or ligand coupled to a protein toxin. The targeted toxins bind to a surface antigen or receptor overexpressed in tumors, such as the epidermal growth factor receptor or interleukin-13 receptor. The toxin part of the molecule in all clinically used toxins is modified from bacterial or plant toxins, fused to an antibody or carrier ligand. Targeted toxins are very effective against cancer cells resistant to radiation and chemotherapy. They are far more potent than any known chemotherapy drug. Targeted toxins have shown an acceptable profile of toxicity and safety in early clinical studies and have demonstrated evidence of a tumor response. Currently, clinical trials with some targeted toxins are complete and the final results are pending. This review summarizes the characteristics of targeted toxins and the key findings of the important clinical studies with targeted toxins in malignant brain tumor patients. Obstacles to successful treatment of malignant brain tumors include poor penetration into tumor masses, the immune response to the toxin component and cancer heterogeneity. Strategies to overcome these limitations are being pursued in the current generation of targeted toxins.
Collapse
Affiliation(s)
- Yan Michael Li
- Department of Neurosurgery, State University of New York Upstate Medical University, Syracuse, New York 13210, NY, USA.
| | | |
Collapse
|