1
|
Link EK, Tscherne A, Sutter G, Smith ER, Gurwith M, Chen RT, Volz A. A Brighton collaboration standardized template with key considerations for a benefit/risk assessment for a viral vector vaccine based on a non-replicating modified vaccinia virus Ankara viral vector. Vaccine 2025; 43:126521. [PMID: 39612556 DOI: 10.1016/j.vaccine.2024.126521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 11/05/2024] [Indexed: 12/01/2024]
Abstract
The Brighton Collaboration Benefit-Risk Assessment of VAccines by TechnolOgy (BRAVATO) was formed to evaluate the safety and other key features of new platform technology vaccines. This manuscript provides an overview of Modified Vaccinia virus Ankara (MVA)-vectored vaccines and reviews molecular and biological key features of this platform. In particular, this review aims to provide fundamental information about the promising candidate vaccine MVA-MERS-S which has been evaluated successfully in different preclinical animal models and has undergone clinical testing including a phase Ib study involving more than 170 participants. Infectious diseases continue to be a major cause of human death worldwide. In this context, emerging zoonotic infectious diseases pose a particular challenge for public health systems. In the last two decades, three different respiratory coronaviruses, including the Middle East respiratory syndrome Coronavirus (MERS-CoV) have emerged. For many years, safe and efficacious vaccines have been a major tool to combat infectious diseases. Here, we report on a promising candidate vaccine (MVA-MERS-S) against MERS-CoV based on MVA. Upon application, MVA-MERS-S has been well tolerated and immunogenic, inducing both, cellular and humoral immune responses in different animal models and humans. We demonstrate that the MVA vector platform, with the example of MVA-MERS-S, is a viable and effective tool for producing safe, immunogenic, and efficient vaccines against emerging infectious diseases.
Collapse
Affiliation(s)
- Ellen K Link
- Ludwig-Maximilians-University Munich (LMU Munich), Department of Veterinary Sciences, Division of Virology, Oberschleißheim, Germany
| | - Alina Tscherne
- Ludwig-Maximilians-University Munich (LMU Munich), Department of Veterinary Sciences, Division of Virology, Oberschleißheim, Germany
| | - Gerd Sutter
- Ludwig-Maximilians-University Munich (LMU Munich), Department of Veterinary Sciences, Division of Virology, Oberschleißheim, Germany
| | - Emily R Smith
- Brighton Collaboration, A Program of the Task Force for Global Health, Decatur, GA, USA.
| | - Marc Gurwith
- Brighton Collaboration, A Program of the Task Force for Global Health, Decatur, GA, USA
| | - Robert T Chen
- Brighton Collaboration, A Program of the Task Force for Global Health, Decatur, GA, USA
| | - Asisa Volz
- University of Veterinary Medicine Hannover, Institute of Virology, Hannover, Germany
| |
Collapse
|
2
|
Malla R, Srilatha M, Farran B, Nagaraju GP. mRNA vaccines and their delivery strategies: A journey from infectious diseases to cancer. Mol Ther 2024; 32:13-31. [PMID: 37919901 PMCID: PMC10787123 DOI: 10.1016/j.ymthe.2023.10.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 10/31/2023] [Accepted: 10/31/2023] [Indexed: 11/04/2023] Open
Abstract
mRNA vaccines have evolved as promising cancer therapies. These vaccines can encode tumor-allied antigens, thus enabling personalized treatment approaches. They can also target cancer-specific mutations and overcome immune evasion mechanisms. They manipulate the body's cellular functions to produce antigens, elicit immune responses, and suppress tumors by overcoming limitations associated with specific histocompatibility leukocyte antigen molecules. However, successfully delivering mRNA into target cells destroys a crucial challenge. Viral and nonviral vectors (lipid nanoparticles and cationic liposomes) have shown great capacity in protecting mRNA from deterioration and assisting in cellular uptake. Cell-penetrating peptides, hydrogels, polymer-based nanoparticles, and dendrimers have been investigated to increase the delivery efficacy and immunogenicity of mRNA. This comprehensive review explores the landscape of mRNA vaccines and their delivery platforms for cancer, addressing design considerations, diverse delivery strategies, and recent advancements. Overall, this review contributes to the progress of mRNA vaccines as an innovative strategy for effective cancer treatment.
Collapse
Affiliation(s)
- RamaRao Malla
- Cancer Biology Lab, Department of Biochemistry and Bioinformatics, GITAM School of Science, GITAM (Deemed to be University), Visakhapatnam 530045, AP, India
| | - Mundla Srilatha
- Department of Biotechnology, Sri Venkateswara University, Tirupati 517502, AP, India
| | - Batoul Farran
- Department of Oncology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Ganji Purnachandra Nagaraju
- Department of Hematology and Oncology, Heersink School of Medicine, University of Alabama, Birmingham, AL 35233, USA.
| |
Collapse
|
3
|
Vardeu A, Davis C, McDonald I, Stahlberg G, Thapa B, Piotrowska K, Marshall MA, Evans T, Wheeler V, Sebastian S, Anderson K. Intravenous administration of viral vectors expressing prostate cancer antigens enhances the magnitude and functionality of CD8+ T cell responses. J Immunother Cancer 2022; 10:jitc-2022-005398. [PMID: 36323434 PMCID: PMC9639133 DOI: 10.1136/jitc-2022-005398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/26/2022] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND The use of immunotherapeutic vaccination in prostate cancer is a promising approach that likely requires the induction of functional, cytotoxic T cells . The experimental approach described here uses a well-studied adenovirus-poxvirus heterologous prime-boost regimen, in which the vectors encode a combination of prostate cancer antigens, with the booster dose delivered by either the intravenous or intramuscular (IM) route. This prime-boost regimen was investigated for antigen-specific CD8+ T cell induction. METHODS The coding sequences for four antigens expressed in prostate cancer, 5T4, PSA, PAP, and STEAP1, were inserted into replication-incompetent chimpanzee adenovirus Oxford 1 (ChAdOx1) and into replication-deficient modified vaccinia Ankara (MVA). In four strains of mice, ChAdOx1 prime was delivered intramuscularly, with an MVA boost delivered by either IM or intravenous routes. Immune responses were measured in splenocytes using ELISpot, multiparameter flow cytometry, and a targeted in vivo killing assay. RESULTS The prime-boost regimen was highly immunogenic, with intravenous administration of the boost resulting in a sixfold increase in the magnitude of antigen-specific T cells induced and increased in vivo killing relative to the intramuscular boosting route. Prostate-specific antigen (PSA)-specific responses were dominant in all mouse strains studied (C57BL/6, BALBc, CD-1 and HLA-A2 transgenic). CONCLUSION This quadrivalent immunotherapeutic approach using four antigens expressed in prostate cancer induced high magnitude, functional CD8+ T cells in murine models. The data suggest that comparing the intravenous versus intramuscular boosting routes is worthy of investigation in humans.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Thomas Evans
- Chief Scientific Officer, Vaccitech Limited, Oxford, UK
| | | | | | | |
Collapse
|
4
|
Orlova OV, Glazkova DV, Bogoslovskaya EV, Shipulin GA, Yudin SM. Development of Modified Vaccinia Virus Ankara-Based Vaccines: Advantages and Applications. Vaccines (Basel) 2022; 10:vaccines10091516. [PMID: 36146594 PMCID: PMC9503770 DOI: 10.3390/vaccines10091516] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 11/16/2022] Open
Abstract
Modified vaccinia virus Ankara (MVA) is a promising viral vector for vaccine development. MVA is well studied and has been widely used for vaccination against smallpox in Germany. This review describes the history of the origin of the virus and its properties as a vaccine, including a high safety profile. In recent years, MVA has found its place as a vector for the creation of vaccines against various diseases. To date, a large number of vaccine candidates based on the MVA vector have already been developed, many of which have been tested in preclinical and clinical studies. We discuss data on the immunogenicity and efficacy of some of these vaccines.
Collapse
|
5
|
Abstract
With the spotlight on cancer immunotherapy and the expanding use of immune checkpoint inhibitors, strategies to improve the response rate and duration of current cancer immunotherapeutics are highly sought. In that sense, investigators around the globe have been putting spurs on the development of effective cancer vaccines in humans after decades of efforts that led to limited clinical success. In more than three decades of research in pursuit of targeted and personalized immunotherapy, several platforms have been incorporated into the list of cancer vaccines from live viral or bacterial agents harboring antigens to synthetic peptides with the hope of stronger and durable immune responses that will tackle cancers better. Unlike adoptive cell therapy, cancer vaccines can take advantage of using a patient's entire immune system that can include more than engineered receptors or ligands in developing antigen-specific responses. Advances in molecular technology also secured the use of genetically modified genes or proteins of interest to enhance the chance of stronger immune responses. The formulation of vaccines to increase chances of immune recognition such as nanoparticles for peptide delivery is another area of great interest. Studies indicate that cancer vaccines alone may elicit tumor-specific cellular or humoral responses in immunologic assays and even regression or shrinkage of the cancer in select trials, but novel strategies, especially in combination with other cancer therapies, are under study and are likely to be critical to achieve and optimize reliable objective responses and survival benefit. In this review, cancer vaccine platforms with different approaches to deliver tumor antigens and boost immunity are discussed with the intention of summarizing what we know and what we need to improve in the clinical trial setting.
Collapse
Affiliation(s)
- Hoyoung M. Maeng
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jay A. Berzofsky
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| |
Collapse
|
6
|
Lester JF, Casbard AC, Al-Taei S, Harrop R, Katona L, Attanoos RL, Tabi Z, Griffiths GO. A single centre phase II trial to assess the immunological activity of TroVax® plus pemetrexed/cisplatin in patients with malignant pleural mesothelioma - the SKOPOS trial. Oncoimmunology 2018; 7:e1457597. [PMID: 30524880 PMCID: PMC6279419 DOI: 10.1080/2162402x.2018.1457597] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 03/16/2018] [Accepted: 03/20/2018] [Indexed: 12/29/2022] Open
Abstract
Vaccines in combination with chemotherapy have been shown to be safe in different tumor types. We investigated the immunological activity of the TroVax® vaccine in combination with pemetrexed-cisplatin chemotherapy in malignant pleural mesothelioma (MPM). In this first line, open-label, single-arm, phase 2 study, patients with locally advanced or metastatic MPM were enrolled. Eligible patients received up to 9 intramuscular injections of TroVax®, starting two weeks before chemotherapy and continuing at regular intervals during and after chemotherapy to 24 weeks. The primary endpoint was the induction of cellular or humoral anti-5T4 immune response (defined as a doubling of either response at any of six follow-up time points), with a target response rate of 64%. Of 27 patients, enrolled between Feb 2013-Dec 2014, 23 (85%) received at least three doses of TroVax® and one cycle of chemotherapy and were included in the per-protocol analysis (PPA). 22/23 patients (95.6%) developed humoral or cellular immune response to 5T4. Thus, the study reached its primary endpoint. Disease control was observed in 87% of patients (partial response: 17.4%, stable disease: 69.6%). The median progression-free survival was 6.8 months and median overall survival 10.9 months. Treatment-related adverse events were comparable to those observed in patients with chemotherapy alone. Translational immunology studies revealed a circulating baseline immune signature that was significantly associated with long-term (>20 months in n = 8/23, 34.8%) survival. In this phase 2 trial, TroVax® with pemetrexed-cisplatin chemotherapy showed robust immune activity, acceptable safety and tolerability to warrant further investigation in a phase 3 setting.
Collapse
Affiliation(s)
| | - Angela C Casbard
- Wales Cancer Trials Unit, Centre for Trials Research, Cardiff University, Cardiff, UK
| | - Saly Al-Taei
- Division of Cancer and Genetics, Cardiff University, Cardiff, UK
| | | | - Lajos Katona
- Wales Cancer Trials Unit, Centre for Trials Research, Cardiff University, Cardiff, UK
| | - Richard L Attanoos
- Department of Cellular Pathology, Cardiff and Vale University Health Board and Cardiff University, Cardiff, UK
| | - Zsuzsanna Tabi
- Division of Cancer and Genetics, Cardiff University, Cardiff, UK
| | - Gareth O Griffiths
- Wales Cancer Trials Unit, Centre for Trials Research, Cardiff University, Cardiff, UK
- Clinical Trials Unit, Faculty of Medicine, University of Southampton, Southampton, UK
| |
Collapse
|
7
|
Sebastian S, Lambe T. Clinical Advances in Viral-Vectored Influenza Vaccines. Vaccines (Basel) 2018; 6:E29. [PMID: 29794983 PMCID: PMC6027524 DOI: 10.3390/vaccines6020029] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 05/21/2018] [Accepted: 05/21/2018] [Indexed: 12/27/2022] Open
Abstract
Influenza-virus-mediated disease can be associated with high levels of morbidity and mortality, particularly in younger children and older adults. Vaccination is the primary intervention used to curb influenza virus infection, and the WHO recommends immunization for at-risk individuals to mitigate disease. Unfortunately, influenza vaccine composition needs to be updated annually due to antigenic shift and drift in the viral immunogen hemagglutinin (HA). There are a number of alternate vaccination strategies in current development which may circumvent the need for annual re-vaccination, including new platform technologies such as viral-vectored vaccines. We discuss the different vectored vaccines that have been or are currently in clinical trials, with a forward-looking focus on immunogens that may be protective against seasonal and pandemic influenza infection, in the context of viral-vectored vaccines. We also discuss future perspectives and limitations in the field that will need to be addressed before new vaccines can significantly impact disease levels.
Collapse
Affiliation(s)
- Sarah Sebastian
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Headington, Oxford OX3 DQ, UK.
| | - Teresa Lambe
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Headington, Oxford OX3 DQ, UK.
| |
Collapse
|
8
|
Cappuccini F, Pollock E, Stribbling S, Hill AVS, Redchenko I. 5T4 oncofoetal glycoprotein: an old target for a novel prostate cancer immunotherapy. Oncotarget 2018; 8:47474-47489. [PMID: 28537896 PMCID: PMC5564579 DOI: 10.18632/oncotarget.17666] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 04/19/2017] [Indexed: 01/20/2023] Open
Abstract
The tumour-associated antigen 5T4 is an attractive target for cancer immunotherapy. However to date, reported 5T4-specific cellular immune responses induced by various immunisation platforms have been largely weak or non-existent. In the present study, we have evaluated a heterologous prime boost regime based on the simian adenovirus ChAdOx1 and modified vaccinia virus Ankara (MVA) expressing 5T4 for immunogenicity and tumour protective efficacy in a mouse cancer model. Vaccination-induced immune responses were strong, durable and attributable primarily to CD8+ T cells. By comparison, homologous MVA vaccination regimen did not induce detectable 5T4-specific T cell responses. ChAdOx1-MVA vaccinated mice were completely protected against subsequent B16 melanoma challenge, but in therapeutic settings this regime was only modestly effective in delaying tumour outgrowth. Concomitant delivery of the vaccine with monoclonal antibodies (mAbs) targeting immune checkpoint regulators LAG-3, PD-1 or PD-L1 demonstrated that the combination of vaccine with anti PD-1 mAb could significantly delay tumour growth and increase overall survival of tumour-bearing mice. Our findings support a translation of the combinatorial approach based on the heterologous ChAdOx1-MVA vaccination platform with immune checkpoint blockade into the clinic for the treatment of 5T4-positive tumours such as prostate, renal, colorectal, gastric, ovarian, lung cancer and mesothelioma.
Collapse
Affiliation(s)
- Federica Cappuccini
- The Jenner Institute, University of Oxford, Roosevelt Drive Oxford, Oxford OX3 7DQ, United Kingdom
| | - Emily Pollock
- The Jenner Institute, University of Oxford, Roosevelt Drive Oxford, Oxford OX3 7DQ, United Kingdom
| | - Stephen Stribbling
- The Jenner Institute, University of Oxford, Roosevelt Drive Oxford, Oxford OX3 7DQ, United Kingdom
| | - Adrian V S Hill
- The Jenner Institute, University of Oxford, Roosevelt Drive Oxford, Oxford OX3 7DQ, United Kingdom
| | - Irina Redchenko
- The Jenner Institute, University of Oxford, Roosevelt Drive Oxford, Oxford OX3 7DQ, United Kingdom
| |
Collapse
|
9
|
Stern PL, Harrop R. 5T4 oncofoetal antigen: an attractive target for immune intervention in cancer. Cancer Immunol Immunother 2017; 66:415-426. [PMID: 27757559 PMCID: PMC11029567 DOI: 10.1007/s00262-016-1917-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 10/12/2016] [Indexed: 01/18/2023]
Abstract
The natural history of a patient's cancer is often characterised by genetic diversity and sequential sweeps of clonal dominance. It is therefore not surprising that identifying the most appropriate tumour-associated antigen for targeted intervention is challenging. The 5T4 oncofoetal antigen was identified by searching for surface molecules shared between human trophoblast and cancer cells with the rationale that they may function to allow survival of the foetus as a semi-allograft in the mother or a tumour in its host. The 5T4 protein is expressed by many different cancers but rarely in normal adult tissues. 5T4 molecules are 72 kD, heavily N-glycosylated proteins with several leucine-rich repeats which are often associated with protein-protein interactions. 5T4 expression is associated with the directional movement of cells through epithelial mesenchymal transition, potentiation of CXCL12/CXCR4 chemotaxis and inhibition of canonical Wnt/beta-catenin while favouring non-canonical pathway signalling; all processes which help drive the spread of cancer cells. The selective pattern of 5T4 tumour expression, association with a tumour-initiating phenotype plus a mechanistic involvement with cancer spread have underwritten the clinical development of different immunotherapeutic strategies including a vaccine, a tumour-targeted superantigen and an antibody drug conjugate. In addition, a chimeric antigen receptor T cell approach targeting 5T4 expressing tumour cells is in pre-clinical development. A key challenge will include how best to combine each 5T4 targeted immunotherapy with the most appropriate standard of care treatment (or adjunct therapy) to maximise the recovery of immune control and ultimately eliminate the tumour.
Collapse
Affiliation(s)
- Peter L Stern
- Institute of Cancer Studies, Paterson Institute for Cancer Research, University of Manchester, Wilmslow Road, Manchester, M20 4BX, UK
| | - Richard Harrop
- Oxford BioMedica Plc, Windrush Court, Transport Way, Oxford, OX4 6LT, UK.
| |
Collapse
|
10
|
Taguchi S, Fukuhara H, Homma Y, Todo T. Current status of clinical trials assessing oncolytic virus therapy for urological cancers. Int J Urol 2017; 24:342-351. [PMID: 28326624 DOI: 10.1111/iju.13325] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 02/02/2017] [Indexed: 12/17/2022]
Abstract
Oncolytic virus therapy has recently been recognized as a promising new option for cancer treatment. Oncolytic viruses replicate selectively in cancer cells, thus killing them without harming normal cells. Notably, T-VEC (talimogene laherparepvec, formerly called OncoVEXGM-CSF ), an oncolytic herpes simplex virus type 1, was approved by the US Food and Drug Administration for the treatment of inoperable melanoma in October 2015, and was subsequently approved in Europe and Australia in 2016. The efficacies of many types of oncolytic viruses against urological cancers have been investigated in preclinical studies during the past decade, and some have already been tested in clinical trials. For example, a phase I trial of the third-generation oncolytic Herpes simplex virus type 1, G47Δ, in patients with prostate cancer was completed in 2016. We summarize the current status of clinical trials of oncolytic virus therapy in patients with the three major urological cancers: prostate, bladder and renal cell cancers. In addition to Herpes simplex virus type 1, adenoviruses, reoviruses, vaccinia virus, Sendai virus and Newcastle disease virus have also been used as parental viruses in these trials. We believe that oncolytic virus therapy is likely to become an important and major treatment option for urological cancers in the near future.
Collapse
Affiliation(s)
- Satoru Taguchi
- Department of Urology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiroshi Fukuhara
- Department of Urology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yukio Homma
- Department of Urology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tomoki Todo
- Division of Innovative Cancer Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
11
|
Dowall SD, Buttigieg KR, Findlay-Wilson SJD, Rayner E, Pearson G, Miloszewska A, Graham VA, Carroll MW, Hewson R. A Crimean-Congo hemorrhagic fever (CCHF) viral vaccine expressing nucleoprotein is immunogenic but fails to confer protection against lethal disease. Hum Vaccin Immunother 2016; 12:519-27. [PMID: 26309231 PMCID: PMC5049717 DOI: 10.1080/21645515.2015.1078045] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Crimean-Congo Hemorrhagic Fever (CCHF) is a severe tick-borne disease, endemic in many countries in Africa, the Middle East, Eastern Europe and Asia. Between 15–70% of reported cases are fatal with no approved vaccine available. In the present study, the attenuated poxvirus vector, Modified Vaccinia virus Ankara, was used to develop a recombinant candidate vaccine expressing the CCHF virus nucleoprotein. Cellular and humoral immunogenicity was confirmed in 2 mouse strains, including type I interferon receptor knockout mice, which are susceptible to CCHF disease. Despite the immune responses generated post-immunisation, the vaccine failed to protect animals from lethal disease in a challenge model.
Collapse
Affiliation(s)
- S D Dowall
- a Public Health England ; Porton Down; Salisbury , Wiltshire , UK
| | - K R Buttigieg
- a Public Health England ; Porton Down; Salisbury , Wiltshire , UK
| | | | - E Rayner
- a Public Health England ; Porton Down; Salisbury , Wiltshire , UK
| | - G Pearson
- a Public Health England ; Porton Down; Salisbury , Wiltshire , UK
| | - A Miloszewska
- a Public Health England ; Porton Down; Salisbury , Wiltshire , UK
| | - V A Graham
- a Public Health England ; Porton Down; Salisbury , Wiltshire , UK
| | - M W Carroll
- a Public Health England ; Porton Down; Salisbury , Wiltshire , UK
| | - R Hewson
- a Public Health England ; Porton Down; Salisbury , Wiltshire , UK
| |
Collapse
|
12
|
Berry J, Vreeland T, Trappey A, Hale D, Peace K, Tyler J, Walker A, Brown R, Herbert G, Yi F, Jackson D, Clifton G, Peoples GE. Cancer vaccines in colon and rectal cancer over the last decade: lessons learned and future directions. Expert Rev Clin Immunol 2016; 13:235-245. [PMID: 27552944 DOI: 10.1080/1744666x.2016.1226132] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
INTRODUCTION Great advances have been made in screening for and treatment of colorectal cancer (CRC), but recurrence rates remain high and additional therapies are needed. There is great excitement around the field of immunotherapy and many attempts have been made to bring immunotherapy to CRC through a cancer vaccine. Areas covered: This is a detailed review of the last decade's significant CRC vaccine trials. Expert commentary: Monotherapy with a CRC vaccine is likely best suited for adjuvant therapy in disease free patients. Vaccine therapy elicits crucial tumor infiltrating lymphocytes, which are lacking in microsatellite-stable tumors, and therefore may be better suited for these patients. The combination of CRC vaccines with checkpoint inhibitors may unlock the potential of immunotherapy for a much broader range of patients. Future studies should focus on vaccine monotherapy in correctly selected patients and combination therapy in more advanced disease.
Collapse
Affiliation(s)
- John Berry
- a Department of Colorectal Surgery , Washington University School of Medicine , St. Louis , MO , USA.,b Cancer Vaccine Development Program San Antonio , TX , USA
| | - Timothy Vreeland
- b Cancer Vaccine Development Program San Antonio , TX , USA.,c Department of Surgery , Womack Army Medical Center, Fort Bragg , NC , USA
| | - Alfred Trappey
- d Departmentof Surgery , San Antonio Military Medical Center, Fort Sam Houston , TX , USA
| | - Diane Hale
- b Cancer Vaccine Development Program San Antonio , TX , USA.,d Departmentof Surgery , San Antonio Military Medical Center, Fort Sam Houston , TX , USA
| | - Kaitlin Peace
- d Departmentof Surgery , San Antonio Military Medical Center, Fort Sam Houston , TX , USA
| | - Joshua Tyler
- e Department of Surgery , Keesler Air Force Medical Center, Keesler AFB , MS , USA
| | - Avery Walker
- f Department of Surgery , Brian Allgood Army Community Hospital , Seoul , South Korea
| | - Ramon Brown
- e Department of Surgery , Keesler Air Force Medical Center, Keesler AFB , MS , USA
| | - Garth Herbert
- d Departmentof Surgery , San Antonio Military Medical Center, Fort Sam Houston , TX , USA
| | - Fia Yi
- d Departmentof Surgery , San Antonio Military Medical Center, Fort Sam Houston , TX , USA
| | - Doreen Jackson
- b Cancer Vaccine Development Program San Antonio , TX , USA.,d Departmentof Surgery , San Antonio Military Medical Center, Fort Sam Houston , TX , USA
| | - Guy Clifton
- b Cancer Vaccine Development Program San Antonio , TX , USA.,d Departmentof Surgery , San Antonio Military Medical Center, Fort Sam Houston , TX , USA.,g Department of Surgery , MD Anderson Cancer Center , Houston , TX , USA
| | | |
Collapse
|
13
|
A non-randomized dose-escalation Phase I trial of a protein-based immunotherapeutic for the treatment of breast cancer patients with HER2-overexpressing tumors. Breast Cancer Res Treat 2016; 156:319-30. [DOI: 10.1007/s10549-016-3751-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 03/07/2016] [Indexed: 11/26/2022]
|
14
|
Curigliano G, Romieu G, Campone M, Dorval T, Duck L, Canon JL, Roemer-Becuwe C, Roselli M, Neciosup S, Burny W, Callegaro A, de Sousa Alves PM, Louahed J, Brichard V, Lehmann FF. A phase I/II trial of the safety and clinical activity of a HER2-protein based immunotherapeutic for treating women with HER2-positive metastatic breast cancer. Breast Cancer Res Treat 2016; 156:301-10. [DOI: 10.1007/s10549-016-3750-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 03/07/2016] [Indexed: 11/25/2022]
|
15
|
Wurz GT, Kao CJ, DeGregorio MW. Novel cancer antigens for personalized immunotherapies: latest evidence and clinical potential. Ther Adv Med Oncol 2016; 8:4-31. [PMID: 26753003 DOI: 10.1177/1758834015615514] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The clinical success of monoclonal antibody immune checkpoint modulators such as ipilimumab, which targets cytotoxic T lymphocyte-associated antigen 4 (CTLA-4), and the recently approved agents nivolumab and pembrolizumab, which target programmed cell death receptor 1 (PD-1), has stimulated renewed enthusiasm for anticancer immunotherapy, which was heralded by Science as 'Breakthrough of the Year' in 2013. As the potential of cancer immunotherapy has been recognized since the 1890s when William Coley showed that bacterial products could be beneficial in cancer patients, leveraging the immune system in the treatment of cancer is certainly not a new concept; however, earlier attempts to develop effective therapeutic vaccines and antibodies against solid tumors, for example, melanoma, frequently met with failure due in part to self-tolerance and the development of an immunosuppressive tumor microenvironment. Increased knowledge of the mechanisms through which cancer evades the immune system and the identification of tumor-associated antigens (TAAs) and negative immune checkpoint regulators have led to the development of vaccines and monoclonal antibodies targeting specific tumor antigens and immune checkpoints such as CTLA-4 and PD-1. This review first discusses the established targets of currently approved cancer immunotherapies and then focuses on investigational cancer antigens and their clinical potential. Because of the highly heterogeneous nature of tumors, effective anticancer immunotherapy-based treatment regimens will likely require a personalized combination of therapeutic vaccines, antibodies and chemotherapy that fit the specific biology of a patient's disease.
Collapse
Affiliation(s)
- Gregory T Wurz
- Department of Internal Medicine, Division of Hematology and Oncology, University of California, Davis, Sacramento, CA, USA
| | - Chiao-Jung Kao
- Department of Obstetrics and Gynecology, University of California, Davis Sacramento, CA, USA
| | - Michael W DeGregorio
- Department of Internal Medicine, Division of Hematology and Oncology, University of California, Davis, 4501 X Street Suite 3016, Sacramento, CA 95817, USA
| |
Collapse
|
16
|
Patel SP, Osada T, Lyerly HK, Morse MA. Designing effective vaccines for colorectal cancer. Immunotherapy 2015; 6:913-26. [PMID: 25313570 DOI: 10.2217/imt.14.61] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Achieving long-term control of colorectal cancers with therapeutic vaccines that generate potent anti-tumor T cell and antibody responses has been a goal for more than two decades. To date, clinical trials of these vaccines have demonstrated induction of immune responses, but clinical benefit has been limited. Improved vector delivery systems with enhanced immunostimulatory properties, decreased immunogenicity against vector and improved antigen presentation are some of the key features of modern tumor vaccines. Furthermore, an improved understanding of the various immunosuppressive factors in the tumor microenvironment and regional lymph nodes, coupled with a burgeoning ability to impair inhibitory immune synapses, highlights a growing opportunity to induce beneficial antigen-specific responses against tumor. The combination of improved antigenic delivery systems, coupled with therapeutic immune activation, represents state-of-the-art colorectal vaccine design concepts with the goal of augmenting immune responses against tumor and improving clinical outcomes.
Collapse
Affiliation(s)
- Sandip P Patel
- UCSD Moores Cancer Center, Division of Medical Oncology, Cancer Immunotherapy Program, 3855 Health Sciences Drive #0987, La Jolla, CA 92093, USA
| | | | | | | |
Collapse
|
17
|
Understanding and exploiting 5T4 oncofoetal glycoprotein expression. Semin Cancer Biol 2014; 29:13-20. [PMID: 25066861 DOI: 10.1016/j.semcancer.2014.07.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 07/17/2014] [Indexed: 01/14/2023]
Abstract
Oncofoetal antigens are present during foetal development with generally limited expression in the adult but are upregulated in cancer. These molecules can sometimes be used to diagnose or follow treatment of tumours or as a target for different immunotherapies. The 5T4 oncofoetal glycoprotein was identified by searching for shared surface molecules of human trophoblast and cancer cells with the rationale that they may function to allow survival of the foetus as a semi-allograft in the mother or a tumour in its host, potentially influencing growth, invasion or altered immune surveillance of the host. 5T4 tumour selective expression has stimulated the development of 5T4 vaccine, 5T4 antibody targeted-superantigen and 5T4 antibody-drug therapies through preclinical and into clinical studies. It is now apparent that 5T4 expression is a marker of the use (or not) of several cellular pathways relevant to tumour growth and spread. Thus 5T4 expression is mechanistically associated with the directional movement of cells through epithelial mesenchymal transition, facilitation of CXCL12/CXCR4 chemotaxis, blocking of canonical Wnt/beta-catenin while favouring non-canonical pathway signalling. These processes are highly regulated in development and in normal adult tissues but can contribute to the spread of cancer cells. Understanding the differential impact of these pathways marked by 5T4 can potentially improve existing, or aid development of novel cancer treatment strategies.
Collapse
|
18
|
Gómez CE, Perdiguero B, García-Arriaza J, Esteban M. Clinical applications of attenuated MVA poxvirus strain. Expert Rev Vaccines 2013; 12:1395-416. [PMID: 24168097 DOI: 10.1586/14760584.2013.845531] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The highly attenuated poxvirus strain modified vaccinia virus Ankara (MVA) has reached maturity as a vector delivery system and as a vaccine candidate against a broad spectrum of diseases. This has been largely recognized from research on virus-host cell interactions and immunological studies in pre-clinical and clinical trials. This review addresses the studies of MVA vectors used in phase I/II clinical trials, with the aim to provide the main findings obtained on their behavior when tested against relevant human diseases and cancer and also highlights the strategies currently implemented to improve the MVA immunogenicity. The authors assess that MVA vectors are progressing as strong vaccine candidates either alone or when administered in combination with other vectors.
Collapse
Affiliation(s)
- Carmen Elena Gómez
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | | | | | | |
Collapse
|
19
|
Cottingham MG, Carroll MW. Recombinant MVA vaccines: dispelling the myths. Vaccine 2013; 31:4247-51. [PMID: 23523407 DOI: 10.1016/j.vaccine.2013.03.021] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Accepted: 03/11/2013] [Indexed: 12/22/2022]
Abstract
Diseases such as HIV/AIDS, tuberculosis, malaria and cancer are prime targets for prophylactic or therapeutic vaccination, but have proven partially or wholly resistant to traditional approaches to vaccine design. New vaccines based on recombinant viral vectors expressing a foreign antigen are under intense development for these and other indications. One of the most advanced and most promising vectors is the attenuated, non-replicating poxvirus MVA (modified vaccinia virus Ankara), a safer derivative of the uniquely successful smallpox vaccine. Despite the ability of recombinant MVA to induce potent humoral and cellular immune responses against transgenic antigen in humans, especially when used as the latter element of a heterologous prime-boost regimen, doubts are occasionally expressed about the ultimate feasibility of this approach. In this review, five common misconceptions over recombinant MVA are discussed, and evidence is cited to show that recombinant MVA is at least sufficiently genetically stable, manufacturable, safe, and immunogenic (even in the face of prior anti-vector immunity) to warrant reasonable hope over the feasibility of large-scale deployment, should useful levels of protection against target pathogens, or therapeutic benefit for cancer, be demonstrated in efficacy trials.
Collapse
Affiliation(s)
- Matthew G Cottingham
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, OX3 7DQ, UK.
| | | |
Collapse
|
20
|
Combining T-cell immunotherapy and anti-androgen therapy for prostate cancer. Prostate Cancer Prostatic Dis 2013; 16:123-31, S1. [PMID: 23295316 DOI: 10.1038/pcan.2012.49] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Prostate cancer remains a significant health problem for men in the Western world. Although treatment modalities are available, these do not confer long-term benefit and are accompanied by substantial side effects. Adoptive immunotherapy represents an attractive alternative to conventional treatments as a means to control tumor growth. METHODS To selectively target the tumor-expressed form of Muc1 we constructed a retroviral vector encoding a chimeric antigen receptor (CAR) directed against the aberrantly-expressed extracellular portion of Muc1 called the 'variable number of tandem repeats'. RESULTS We now demonstrate that T cells can be genetically engineered to express a CAR targeting the tumor-associated antigen Muc1. CAR-Muc1 T cells were able to selectively kill Muc1-expressing human prostate cancer cells. However, we noted that heterogeneous expression of the Muc1 antigen on tumor cells facilitated immune escape and the outgrowth of target-antigen loss variants of the tumor. Given the importance of androgen ablation therapy in the management of metastatic prostate cancer, we therefore also tested the value of combining conventional (anti-androgen) and experimental (CAR-Muc1 T cells) approaches. We show that CAR-Muc1 T cells were not adversely impacted by anti-androgen therapy and subsequently demonstrate the feasibility of combining the approaches to produce additive anti-tumor effects in vitro. CONCLUSIONS Adoptive transfer of CAR-Muc1 T cells alone or in combination with other luteinizing hormone-releasing hormone analogs or antagonists should be tested in human clinical trials.
Collapse
|
21
|
Harrop R, Treasure P, de Belin J, Kelleher M, Bolton G, Naylor S, Shingler WH. Analysis of pre-treatment markers predictive of treatment benefit for the therapeutic cancer vaccine MVA-5T4 (TroVax). Cancer Immunol Immunother 2012; 61:2283-94. [PMID: 22692758 PMCID: PMC11029511 DOI: 10.1007/s00262-012-1302-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Accepted: 05/30/2012] [Indexed: 01/21/2023]
Abstract
Cancer vaccines such as MVA-5T4 (TroVax(®)) must induce an efficacious immune response to deliver therapeutic benefit. The identification of biomarkers that impact on the clinical and/or immunological efficacy of cancer vaccines is required in order to select patients who are most likely to benefit from this treatment modality. Here, we sought to identify a predictor of treatment benefit for renal cancer patients treated with MVA-5T4. Statistical modeling was undertaken using data from a phase III trial in which patients requiring first-line treatment for metastatic renal cell carcinoma were randomized 1:1 to receive MVA-5T4 or placebo alongside sunitinib, IL-2 or IFN-α. Numerous pre-treatment factors associated with inflammatory anemia (e.g., CRP, hemoglobin, hematocrit, IL-6, ferritin, platelets) demonstrated a significant relationship with tumor burden and patient survival. From these prognostic factors, the pre-treatment mean corpuscular hemoglobin concentration (MCHC) was found to be the best predictor of treatment benefit (P < 0.01) for MVA-5T4 treated patients and also correlated positively with tumor shrinkage (P < 0.001). Furthermore, MCHC levels showed a significant positive association with 5T4 antibody response (P = 0.01). The latter result was confirmed using an independent data set comprising phase II trials of MVA-5T4 in patients with colorectal, renal and prostate cancers. Retrospective analyses demonstrated that RCC patients who had very large tumor burdens and low MCHC levels received little or no benefit from treatment with MVA-5T4; however, patients with smaller tumor burdens and normal MCHC levels received substantial benefit from treatment with MVA-5T4.
Collapse
Affiliation(s)
- Richard Harrop
- Oxford BioMedica (UK) Ltd, The Medawar Centre, Oxford Science Park, Oxford, OX4 4GA, UK.
| | | | | | | | | | | | | |
Collapse
|
22
|
Castro FV, Al-Muftah M, Mulryan K, Jiang HR, Drijfhout JW, Ali S, Rutkowski AJ, Kalaitsidou M, Gilham DE, Stern PL. Regulation of autologous immunity to the mouse 5T4 oncofoetal antigen: implications for immunotherapy. Cancer Immunol Immunother 2012; 61:1005-18. [PMID: 22127365 PMCID: PMC11029011 DOI: 10.1007/s00262-011-1167-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Accepted: 11/16/2011] [Indexed: 02/06/2023]
Abstract
Effective vaccination against tumour-associated antigens (TAA) such as the 5T4 oncofoetal glycoprotein may be limited by the nature of the T cell repertoire and the influence of immunomodulatory factors in particular T regulatory cells (Treg). Here, we identified mouse 5T4-specific T cell epitopes using a 5T4 knock out (5T4KO) mouse and evaluated corresponding wild-type (WT) responses as a model to refine and improve immunogenicity. We have shown that 5T4KO mice vaccinated by replication defective adenovirus encoding mouse 5T4 (Adm5T4) generate potent 5T4-specific IFN-γ CD8 and CD4 T cell responses which mediate significant protection against 5T4 positive tumour challenge. 5T4KO CD8 but not CD4 primed T cells also produced IL-17. By contrast, Adm5T4-immunized WT mice showed no tumour protection consistent with only low avidity CD8 IFN-γ, no IL-17 T cell responses and no detectable CD4 T cell effectors producing IFN-γ or IL-17. Treatment with anti-folate receptor 4 (FR4) antibody significantly reduced the frequency of Tregs in WT mice and enhanced 5T4-specific IFN-γ but reduced IL-10 T cell responses but did not reveal IL-17-producing effectors. This altered balance of effectors by treatment with FR4 antibody after Adm5T4 vaccination provided modest protection against autologous B16m5T4 melanoma challenge. The efficacy of 5T4 and some other TAA vaccines may be limited by the combination of TAA-specific T regs, the deletion and/or alternative differentiation of CD4 T cells as well as the absence of distinct subsets of CD8 T cells.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/pharmacology
- Antigens, Surface/genetics
- Antigens, Surface/immunology
- Cancer Vaccines/immunology
- Cancer Vaccines/pharmacology
- Epitopes, T-Lymphocyte/immunology
- Immunotherapy, Active/methods
- Melanoma, Experimental/immunology
- Melanoma, Experimental/prevention & control
- Membrane Glycoproteins/deficiency
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/immunology
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Knockout
- Molecular Sequence Data
- Receptors, Cell Surface/immunology
- T-Lymphocytes, Regulatory/immunology
Collapse
Affiliation(s)
- Fernanda V. Castro
- Immunology Group, Paterson Institute for Cancer Research, University of Manchester, Wilmslow Road, Withington, Manchester, M20 4BX UK
| | - Mariam Al-Muftah
- Immunology Group, Paterson Institute for Cancer Research, University of Manchester, Wilmslow Road, Withington, Manchester, M20 4BX UK
- Clinical and Experimental Immunotherapy, Medical Oncology, School of Cancer and Enabling Sciences, University of Manchester, Manchester Academic Healthcare Science Centre, Manchester, UK
| | - Kate Mulryan
- Immunology Group, Paterson Institute for Cancer Research, University of Manchester, Wilmslow Road, Withington, Manchester, M20 4BX UK
| | - Hui-Rong Jiang
- Immunology Group, Paterson Institute for Cancer Research, University of Manchester, Wilmslow Road, Withington, Manchester, M20 4BX UK
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Jan-Wouter Drijfhout
- Immunohaematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Sumia Ali
- Immunology Group, Paterson Institute for Cancer Research, University of Manchester, Wilmslow Road, Withington, Manchester, M20 4BX UK
| | - Andrzej J. Rutkowski
- Immunology Group, Paterson Institute for Cancer Research, University of Manchester, Wilmslow Road, Withington, Manchester, M20 4BX UK
| | - Milena Kalaitsidou
- Immunology Group, Paterson Institute for Cancer Research, University of Manchester, Wilmslow Road, Withington, Manchester, M20 4BX UK
| | - David E. Gilham
- Clinical and Experimental Immunotherapy, Medical Oncology, School of Cancer and Enabling Sciences, University of Manchester, Manchester Academic Healthcare Science Centre, Manchester, UK
| | - Peter L. Stern
- Immunology Group, Paterson Institute for Cancer Research, University of Manchester, Wilmslow Road, Withington, Manchester, M20 4BX UK
| |
Collapse
|
23
|
Verardi PH, Titong A, Hagen CJ. A vaccinia virus renaissance: new vaccine and immunotherapeutic uses after smallpox eradication. Hum Vaccin Immunother 2012; 8:961-70. [PMID: 22777090 PMCID: PMC3495727 DOI: 10.4161/hv.21080] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
In 1796, Edward Jenner introduced the concept of vaccination with cowpox virus, an Orthopoxvirus within the family Poxviridae that elicits cross protective immunity against related orthopoxviruses, including smallpox virus (variola virus). Over time, vaccinia virus (VACV) replaced cowpox virus as the smallpox vaccine, and vaccination efforts eventually led to the successful global eradication of smallpox in 1979. VACV has many characteristics that make it an excellent vaccine and that were crucial for the successful eradication of smallpox, including (1) its exceptional thermal stability (a very important but uncommon characteristic in live vaccines), (2) its ability to elicit strong humoral and cell-mediated immune responses, (3) the fact that it is easy to propagate, and (4) that it is not oncogenic, given that VACV replication occurs exclusively within the host cell cytoplasm and there is no evidence that the viral genome integrates into the host genome. Since the eradication of smallpox, VACV has experienced a renaissance of interest as a viral vector for the development of recombinant vaccines, immunotherapies, and oncolytic therapies, as well as the development of next-generation smallpox vaccines. This revival is mainly due to the successful use and extensive characterization of VACV as a vaccine during the smallpox eradication campaign, along with the ability to genetically manipulate its large dsDNA genome while retaining infectivity and immunogenicity, its wide mammalian host range, and its natural tropism for tumor cells that allows its use as an oncolytic vector. This review provides an overview of new uses of VACV that are currently being explored for the development of vaccines, immunotherapeutics, and oncolytic virotherapies.
Collapse
Affiliation(s)
- Paulo H Verardi
- Department of Pathobiology and Veterinary Science, College of Agriculture and Natural Resources, University of Connecticut, Storrs, CT, USA.
| | | | | |
Collapse
|
24
|
Al-Taei S, Salimu J, Lester JF, Linnane S, Goonewardena M, Harrop R, Mason MD, Tabi Z. Overexpression and potential targeting of the oncofoetal antigen 5T4 in malignant pleural mesothelioma. Lung Cancer 2012; 77:312-8. [PMID: 22498111 DOI: 10.1016/j.lungcan.2012.03.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Revised: 03/02/2012] [Accepted: 03/14/2012] [Indexed: 01/18/2023]
Abstract
Malignant pleural mesothelioma (MPM) is resistant to conventional treatments. Novel, targeted treatments are hampered by the relative lack of MPM-associated tumour antigens. The aim of this study was to evaluate the level of expression and the relevance of 5T4 as a tumour-associated antigen in MPM. 5T4 expression was assessed by Western blotting, flow cytometry, immuno-cytochemistry and -histochemistry in 11 mesothelioma cell lines, 21 tumour biopsies, and ex vivo tumour cells obtained from the pleural fluid (PF) of 10 patients. 5T4 antibody levels were also determined in the plasma of patients and healthy donors. The susceptibility of MPM cells to 5T4-specific T-cell-mediated killing was determined using an HLA-A2(+), CD8(+) T-cell line, developed against the 5T4(17-25) peptide. We report here that cell surface 5T4 expression was detected in all mesothelioma cell lines and PF cell samples. Mesothelin and CD200, a suggested mesothelioma marker, were co-expressed with 5T4 on tumour cells in PF. Immunohistochemistry confirmed overexpression of 5T4, similar to mesothelin, on tumour cells but not on reactive stroma in all tissue sections tested. Median 5T4 antibody levels were 46% higher in patient than in healthy donor plasma, indicating immune recognition. Importantly, 5T4-specific CD8(+) T-cells were able to kill four out of six HLA-A2(+) MPM cell lines but not an HLA-A2(-) cell line, demonstrating immune recognition of MPM-associated 5T4 antigen at the effector T-cell level. We conclude that 5T4 is a potential new antigen for targeted therapies such as immunotherapy in MPM, as it is overexpressed on mesothelioma cells and recognised by 5T4-specific cytotoxic T-cells. Our findings have been translated into a Phase II clinical trial applying 5T4-targeted therapies in MPM patients.
Collapse
Affiliation(s)
- Saly Al-Taei
- Department of Oncology, School of Medicine, Cardiff University, Velindre Cancer Centre, Velindre Road, Whitchurch, Cardiff CF14 2TL, UK
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Walsh SR, Dolin R. Vaccinia viruses: vaccines against smallpox and vectors against infectious diseases and tumors. Expert Rev Vaccines 2012; 10:1221-40. [PMID: 21854314 DOI: 10.1586/erv.11.79] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Less than 200 years after its introduction, widespread use of vaccinia virus (VACV) as a smallpox vaccine has eradicated variola virus. Along with the remarkable success of the vaccination program, frequent and sometimes severe adverse reactions to VACV were encountered. After eradication, VACV has been reserved for select populations who might be at significant risk for orthopoxvirus infections. Events over the past decade have renewed concerns over the potential use of variola virus as a biological weapon. Accordingly, interest in VACV and attenuated derivatives has increased, both as vaccines against smallpox and as vectors for other vaccines. This article will focus on new developments in the field of orthopoxvirus immunization and will highlight recent advances in the use of vaccinia viruses as vectors for infectious diseases and malignancies.
Collapse
Affiliation(s)
- Stephen R Walsh
- Division of Viral Pathogenesis, Beth Israel Deaconess Medical Center, Three Blackfan Circle, E/CLS-1006, Boston, MA 02215, USA.
| | | |
Collapse
|
26
|
The immune response to tumors as a tool toward immunotherapy. Clin Dev Immunol 2011; 2011:894704. [PMID: 22190975 PMCID: PMC3235449 DOI: 10.1155/2011/894704] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Revised: 09/08/2011] [Accepted: 09/20/2011] [Indexed: 11/17/2022]
Abstract
Until recently cancer medical therapy was limited to chemotherapy that could not differentiate cancer cells from normal cells. More recently with the remarkable mushroom of immunology, newer tools became available, resulting in the novel possibility to attack cancer with the specificity of the immune system. Herein we will review some of the recent achievement of immunotherapy in such aggressive cancers as melanoma, prostatic cancer, colorectal carcinoma, and hematologic malignancies. Immunotherapy of tumors has developed several techniques: immune cell transfer, vaccines, immunobiological molecules such as monoclonal antibodies that improve the immune responses to tumors. This can be achieved by blocking pathways limiting the immune response, such as CTLA-4 or Tregs. Immunotherapy may also use cytokines especially proinflammatory cytokines to enhance the activity of cytotoxic T cells (CTLs) derived from tumor infiltrating lymphocytes (TILs). The role of newly discovered cytokines remains to be investigated. Alternatively, an other mechanism consists in enhancing the expression of TAAs on tumor cells. Finally, monoclonal antibodies may be used to target oncogenes.
Collapse
|
27
|
Current World Literature. Curr Opin Support Palliat Care 2011; 5:297-305. [DOI: 10.1097/spc.0b013e32834a76ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
28
|
Song GY, Srivastava T, Ishizaki H, Lacey SF, Diamond DJ, Ellenhorn JDI. Recombinant modified vaccinia virus ankara (MVA) expressing wild-type human p53 induces specific antitumor CTL expansion. Cancer Invest 2011; 29:501-10. [PMID: 21843052 PMCID: PMC3260009 DOI: 10.3109/07357907.2011.606248] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The p53 gene product is an attractive target for tumor immunotherapy. The present study aims to understand the potential of MVAp53 vaccine to induce expansion of p53-specific cytotoxic T lymphocyte ex vivo in cancer patients. The result indicated that 14 of 23 cancer patients demonstrated p53-specific IFN-γ production, degranulation, cell proliferation, and lysis of p53 overexpressed human tumor cell lines. These experiments show that MVAp53 stimulation has the potential to induce the expansion of p53-specific cytotoxic T lymphocyte from the memory T cell repertoire. The data suggest that MVAp53 vaccine is an ideal candidate for cancer immunotherapy.
Collapse
Affiliation(s)
- Guang-Yun Song
- Division of Translational Vaccine Research, City of Hope National Medical Center, Duarte, California, USA
| | | | | | | | | | | |
Collapse
|
29
|
Harrop R, Shingler WH, McDonald M, Treasure P, Amato RJ, Hawkins RE, Kaufman HL, de Belin J, Kelleher M, Goonewardena M, Naylor S. MVA-5T4-induced immune responses are an early marker of efficacy in renal cancer patients. Cancer Immunol Immunother 2011; 60:829-37. [PMID: 21387109 PMCID: PMC11028484 DOI: 10.1007/s00262-011-0993-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Accepted: 02/14/2011] [Indexed: 10/18/2022]
Abstract
Few immunotherapy compounds have demonstrated a direct link between the predicted mode of action of the product and benefit to the patient. Since cancer vaccines are thought to have a delayed therapeutic effect, identification of the active moiety may enable the development of an early marker of efficacy. Patients with renal cancer and requiring first-line treatment for metastatic disease were randomized 1:1 to receive MVA-5T4 (TroVax(®)) or placebo alongside Sunitinib, IL-2 or IFN-α in a multicentre phase III trial. Antibody responses were quantified following the 3rd and 4th vaccinations. A surrogate for 5T4 antibody response (the immune response surrogate; IRS) was constructed and then used in a survival analysis to evaluate treatment benefit. Seven hundred and thirty-three patients were randomized, and immune responses were assessed in 590 patients. A high 5T4 antibody response was associated with longer survival within the MVA-5T4-treated group. The IRS was constructed as a linear combination of pre-treatment 5T4 antibody levels, hemoglobin and hematocrit and was shown to be a significant predictor of treatment benefit in the phase III study. Importantly, the IRS was also associated with antibody response and survival in an independent dataset comprising renal, colorectal and prostate cancer patients treated with MVA-5T4 in phase I-II studies. The derivation of the IRS formed part of an exploratory, retrospective analysis; however, if confirmed in future studies, the results have important implications for the development and use of the MVA-5T4 vaccine and potentially for other similar vaccines.
Collapse
Affiliation(s)
- Richard Harrop
- Oxford BioMedica (UK) Ltd, The Medawar Centre, Oxford Science Park, Oxford, OX4 4GA, UK.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Abern M, Kaufman HL, Latchamsetty K. An update on TroVax for the treatment of progressive castration-resistant prostate cancer. Onco Targets Ther 2011; 4:33-41. [PMID: 21691576 PMCID: PMC3116792 DOI: 10.2147/ott.s14271] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Indexed: 11/23/2022] Open
Abstract
Prostate cancer is a common human malignancy with few effective therapeutic options for treating advanced castration-resistant disease. The potential therapeutic effectiveness of immunotherapy and vaccines, in particular, has gained popularity based on the identification of prostate-associated antigens, potent expression vectors for vaccination, and data from recent clinical trials. A modified vaccinia Ankara (MVA) virus expressing 5T4, a tumor-associated glycoprotein, has shown promise in preclinical studies and clinical trials in patients with colorectal and renal cell carcinoma. This review will discuss the rationale for immunotherapy in prostate cancer and describe preclinical and limited clinical data in prostate cancer for the MVA-5T4 (TroVax®) vaccine.
Collapse
Affiliation(s)
- Michael Abern
- Department of Urology, Rush University Medical Center, Chicago, IL, USA
| | | | | |
Collapse
|