1
|
von Werz V, Spadiut O, Kozma B. A review and statistical analysis to identify and describe relationships between CQAs and CPPs of natural killer cell expansion processes. Cytotherapy 2024; 26:1285-1298. [PMID: 38944794 DOI: 10.1016/j.jcyt.2024.05.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 05/29/2024] [Accepted: 05/29/2024] [Indexed: 07/01/2024]
Abstract
Natural killer (NK) cells make only a small fraction of immune cells in the human body, however, play a pivotal role in the fight against cancer by the immune system. They are capable of eliminating abnormal cells via several direct or indirect cytotoxicity pathways in a self-regulating manner, which makes them a favorable choice as a cellular therapy against cancer. Additionally, allogeneic NK cells, unlike other lymphocytes, do not or only minimally cause graft-versus-host diseases opening the door for an off-the-shelf therapy. However, to date, the production of NK cells faces several difficulties, especially because the critical process parameters (CPPs) influencing the critical quality attributes (CQAs) are difficult to identify or correlate. There are numerous different cultivation platforms available, all with own characteristics, benefits and disadvantages that add further difficulty to define CPPs and relate them to CQAs. Our goal in this contribution was to summarize the current knowledge about NK cell expansion CPPs and CQAs, therefore we analyzed the available literature of both dynamic and static culture format experiments in a systematic manner. We present a list of the identified CQAs and CPPs and discuss the role of each CPP in the regulation of the CQAs. Furthermore, we could identify potential relationships between certain CPPs and CQAs. The findings based on this systematic literature research can be the foundation for meaningful experiments leading to better process understanding and eventually control.
Collapse
Affiliation(s)
- Valentin von Werz
- Research Area Biochemical Engineering, Institute of Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, Vienna, Austria
| | - Oliver Spadiut
- Research Area Biochemical Engineering, Institute of Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, Vienna, Austria
| | - Bence Kozma
- Research Area Biochemical Engineering, Institute of Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, Vienna, Austria.
| |
Collapse
|
2
|
Nunes S, Tibúrcio R, Bonyek-Silva I, Oliveira PR, Khouri R, Boaventura V, Barral A, Brodskyn C, Tavares NM. Transcriptome Analysis Identifies the Crosstalk between Dendritic and Natural Killer Cells in Human Cutaneous Leishmaniasis. Microorganisms 2023; 11:1937. [PMID: 37630497 PMCID: PMC10459107 DOI: 10.3390/microorganisms11081937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/17/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023] Open
Abstract
Skin ulcers of cutaneous leishmaniasis (CL) are characterized by a localized inflammatory response mediated by innate and adaptive immune cells, including dendritic cells (DC) and natural killer (NK) cells. Bidirectional interactions between DCs and NK cells contribute to tailor leishmaniasis outcome. Despite advances in the Leishmania biology field in recent decades, the mechanisms involved in DC/NK-mediated control of Leishmania sp. pathogenesis as well as the cellular and molecular players involved in such interaction remain unclear. The present study sought to investigate canonical pathways associated with CL arising from Leishmania braziliensis infection. Initially, two publicly available microarray datasets of skin biopsies from active CL lesions were analyzed, and five pathways were identified using differentially expressed genes. The "Crosstalk between DCs and NK cells" pathway was notable due to a high number of modulated genes. The molecules significantly involved in this pathway were identified, and our findings were validated in newly obtained CL biopsies. We found increased expression of TLR4, TNFRSF1B, IL-15, IL-6, CD40, CCR7, TNF and IFNG, confirming the analysis of publicly available datasets. These findings reveal the "crosstalk between DCs and NK cells" as a potential pathway to be further explored in the pathogenesis of CL, especially the expression of CCR7, which is correlated with lesion development.
Collapse
Affiliation(s)
- Sara Nunes
- Laboratory of Parasite-Host Interaction and Epidemiology (LaIPHE), Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador 40296-710, Bahia, Brazil; (S.N.); (R.T.); (C.B.)
| | - Rafael Tibúrcio
- Laboratory of Parasite-Host Interaction and Epidemiology (LaIPHE), Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador 40296-710, Bahia, Brazil; (S.N.); (R.T.); (C.B.)
| | - Icaro Bonyek-Silva
- Baiano Federal Institute (IFBaiano), Xique-Xique 47400-000, Bahia, Brazil;
| | - Pablo Rafael Oliveira
- Biology Institute (IBIO), Federal University of Bahia (UFBA), Salvador 40170-115, Bahia, Brazil; (P.R.O.); (R.K.); (V.B.); (A.B.)
| | - Ricardo Khouri
- Biology Institute (IBIO), Federal University of Bahia (UFBA), Salvador 40170-115, Bahia, Brazil; (P.R.O.); (R.K.); (V.B.); (A.B.)
- Laboratory of Infectious Diseases Transmitted by Vectors (LEITV), Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador 40296-710, Bahia, Brazil
| | - Viviane Boaventura
- Biology Institute (IBIO), Federal University of Bahia (UFBA), Salvador 40170-115, Bahia, Brazil; (P.R.O.); (R.K.); (V.B.); (A.B.)
- Laboratory of Infectious Diseases Transmitted by Vectors (LEITV), Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador 40296-710, Bahia, Brazil
| | - Aldina Barral
- Biology Institute (IBIO), Federal University of Bahia (UFBA), Salvador 40170-115, Bahia, Brazil; (P.R.O.); (R.K.); (V.B.); (A.B.)
- Laboratory of Infectious Diseases Transmitted by Vectors (LEITV), Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador 40296-710, Bahia, Brazil
| | - Cláudia Brodskyn
- Laboratory of Parasite-Host Interaction and Epidemiology (LaIPHE), Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador 40296-710, Bahia, Brazil; (S.N.); (R.T.); (C.B.)
- Biology Institute (IBIO), Federal University of Bahia (UFBA), Salvador 40170-115, Bahia, Brazil; (P.R.O.); (R.K.); (V.B.); (A.B.)
| | - Natalia Machado Tavares
- Laboratory of Parasite-Host Interaction and Epidemiology (LaIPHE), Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador 40296-710, Bahia, Brazil; (S.N.); (R.T.); (C.B.)
- Biology Institute (IBIO), Federal University of Bahia (UFBA), Salvador 40170-115, Bahia, Brazil; (P.R.O.); (R.K.); (V.B.); (A.B.)
| |
Collapse
|
3
|
Kumar P, Jimenez Franco A, Zhao X. 3D culture of fibroblasts and neuronal cells on microfabricated free-floating carriers. Colloids Surf B Biointerfaces 2023; 227:113350. [PMID: 37209598 DOI: 10.1016/j.colsurfb.2023.113350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 02/07/2023] [Accepted: 05/12/2023] [Indexed: 05/22/2023]
Abstract
3D cell culture is a relatively recent trend in biomedical research for artificially mimicking in vivo environment and providing three dimensions for the cells to grow in vitro, particularly with regard to surface-adherent mammalian cells. Different cells and research objectives require different culture conditions which has led to an increase in the diversity of 3D cell culture models. In this study, we show two independent on-carrier 3D cell culture models aimed at two different potential applications. Firstly, micron-scale porous spherical structures fabricated from poly (lactic-co-glycolic acid) or PLGA are used as 3D cell carriers so that the cells do not lose their physiologically relevant spherical shape. Secondly, millimetre-scale silk fibroin structures fabricated by 3D inkjet bioprinting are used as 3D cell carriers to demonstrate cell growth patterning in 3D for use in applications which require directed cell growth. The L929 fibroblasts demonstrated excellent adherence, cell-division and proliferation on the PLGA carriers, while the PC12 neuronal cells showed excellent adherence, proliferation and spread on the fibroin carriers without any evidence of cytotoxicity from the carriers. The present study thus proposes two models for 3D cell culture and demonstrates, firstly, that easily fabricable porous PLGA structures can act as excellent cell carriers for aiding cells easily retain their physiologically relevant 3D spherical shape in vitro, and secondly, that 3D inkjet printed silk fibroin structures can act as geometrically-shaped carriers for 3D cell patterning or directed cell growth in vitro. While the 'fibroblasts on PLGA carriers' model will help achieve more accurate results than the conventional 2D culture in cell research, such as drug discovery, and cell proliferation for adoptive cell transfer, such as stem cell therapy, the 'neuronal cells on silk fibroin carriers' model will help in research requiring patterned cell growth, such as treatment of neuropathies.
Collapse
Affiliation(s)
- Piyush Kumar
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, UK; Centre for NanoHealth, Medical School, Swansea University, Swansea SA2 8PP, UK
| | - Ana Jimenez Franco
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, UK
| | - Xiubo Zhao
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, UK; School of Pharmacy, Changzhou University, Changzhou 213164, China.
| |
Collapse
|
4
|
Aghayev T, Mazitova AM, Fang JR, Peshkova IO, Rausch M, Hung M, White KF, Masia R, Titerina EK, Fatkhullina AR, Cousineau I, Turcotte S, Zhigarev D, Marchenko A, Khoziainova S, Makhov P, Tan YF, Kossenkov AV, Wiest DL, Stagg J, Wang XW, Campbell KS, Dzutsev AK, Trinchieri G, Hill JA, Grivennikov SI, Koltsova EK. IL27 Signaling Serves as an Immunologic Checkpoint for Innate Cytotoxic Cells to Promote Hepatocellular Carcinoma. Cancer Discov 2022; 12:1960-1983. [PMID: 35723626 PMCID: PMC9357073 DOI: 10.1158/2159-8290.cd-20-1628] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 04/01/2022] [Accepted: 06/03/2022] [Indexed: 02/07/2023]
Abstract
Although inflammatory mechanisms driving hepatocellular carcinoma (HCC) have been proposed, the regulators of anticancer immunity in HCC remain poorly understood. We found that IL27 receptor (IL27R) signaling promotes HCC development in vivo. High IL27EBI3 cytokine or IL27RA expression correlated with poor prognosis for patients with HCC. Loss of IL27R suppressed HCC in vivo in two different models of hepatocarcinogenesis. Mechanistically, IL27R sig-naling within the tumor microenvironment restrains the cytotoxicity of innate cytotoxic lymphocytes. IL27R ablation enhanced their accumulation and activation, whereas depletion or functional impairment of innate cytotoxic cells abrogated the effect of IL27R disruption. Pharmacologic neutralization of IL27 signaling increased infiltration of innate cytotoxic lymphocytes with upregulated cytotoxic molecules and reduced HCC development. Our data reveal an unexpected role of IL27R signaling as an immunologic checkpoint regulating innate cytotoxic lymphocytes and promoting HCC of different etiologies, thus indicating a therapeutic potential for IL27 pathway blockade in HCC. SIGNIFICANCE HCC, the most common form of liver cancer, is characterized by a poor survival rate and limited treatment options. The discovery of a novel IL27-dependent mechanism controlling anticancer cytotoxic immune response will pave the road for new treatment options for this devastating disease. This article is highlighted in the In This Issue feature, p. 1825.
Collapse
Affiliation(s)
- Turan Aghayev
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Aleksandra M. Mazitova
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
- Cedars-Sinai Medical Center, Cedars-Sinai Cancer Institute, Department of Medicine, Department of Biomedical Sciences 8700 Beverly Blvd, Los Angeles, CA, 900048
| | - Jennifer R. Fang
- Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA, 20892
| | - Iuliia O. Peshkova
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Matthew Rausch
- Surface Oncology Inc., 50 Hampshire St. Cambridge, MA, 02139
| | - Manhsin Hung
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA, 20892
- Liver Cancer Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA, 20892
| | - Kerry F. White
- Surface Oncology Inc., 50 Hampshire St. Cambridge, MA, 02139
| | - Ricard Masia
- Surface Oncology Inc., 50 Hampshire St. Cambridge, MA, 02139
| | - Elizaveta K. Titerina
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Aliia R. Fatkhullina
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Isabelle Cousineau
- Centre Hospitalier de l’Université de Montréal Research Center, Montreal, Quebec, Canada
| | - Simon Turcotte
- Centre Hospitalier de l’Université de Montréal Research Center, Montreal, Quebec, Canada
| | - Dmitry Zhigarev
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Anastasiia Marchenko
- Cedars-Sinai Medical Center, Cedars-Sinai Cancer Institute, Department of Medicine, Department of Biomedical Sciences 8700 Beverly Blvd, Los Angeles, CA, 900048
| | - Svetlana Khoziainova
- Cedars-Sinai Medical Center, Cedars-Sinai Cancer Institute, Department of Medicine, Department of Biomedical Sciences 8700 Beverly Blvd, Los Angeles, CA, 900048
| | - Petr Makhov
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
| | - Yin Fei Tan
- Genomics Facility, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | | | - David L. Wiest
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - John Stagg
- Centre Hospitalier de l’Université de Montréal Research Center, Montreal, Quebec, Canada
| | - Xin Wei Wang
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA, 20892
- Liver Cancer Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA, 20892
| | - Kerry S. Campbell
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Amiran K. Dzutsev
- Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA, 20892
| | - Giorgio Trinchieri
- Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA, 20892
| | | | - Sergei I. Grivennikov
- Cedars-Sinai Medical Center, Cedars-Sinai Cancer Institute, Department of Medicine, Department of Biomedical Sciences 8700 Beverly Blvd, Los Angeles, CA, 900048
- Cancer Prevention and Control Program, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
| | - Ekaterina K. Koltsova
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
- Cedars-Sinai Medical Center, Cedars-Sinai Cancer Institute, Department of Medicine, Department of Biomedical Sciences 8700 Beverly Blvd, Los Angeles, CA, 900048
| |
Collapse
|
5
|
Cluff E, Magdaleno CC, Fernandez E, House T, Swaminathan S, Varadaraj A, Rajasekaran N. Hypoxia-inducible factor-1 alpha expression is induced by IL-2 via the PI3K/mTOR pathway in hypoxic NK cells and supports effector functions in NKL cells and ex vivo expanded NK cells. Cancer Immunol Immunother 2022; 71:1989-2005. [PMID: 34999917 PMCID: PMC9294031 DOI: 10.1007/s00262-021-03126-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 12/02/2021] [Indexed: 12/13/2022]
Abstract
Natural killer (NK) cells are cytotoxic innate lymphocytes that are specialized to kill tumor cells. NK cells are responsive to the primary cytokine IL-2 in the tumor microenvironment (TME), to activate its effector functions against tumors. Despite their inherent ability to kill tumor cells, dysfunctional NK cells observed within advanced solid tumors are associated with poor patient survival. Hypoxia in the TME is a major contributor to immune evasion in solid tumors that could contribute to impaired NK cell function. HIF-1α is a nodal regulator of hypoxia in driving the adaptive cellular responses to changes in oxygen concentrations. Whether HIF-1α is expressed in hypoxic NK cells in the context of IL-2 and whether its expression regulates NK cell effector function are unclear. Here, we report that freshly isolated NK cells from human peripheral blood in hypoxia could not stabilize HIF-1α protein coincident with impaired anti-tumor cytotoxicity. However, ex vivo expansion of these cells restored HIF-1α levels in hypoxia to promote antitumor cytotoxic functions. Similarly, the human NK cell line NKL expressed HIF-1α upon IL-2 stimulation in hypoxia and exhibited improved anti-tumor cytotoxicity and IFN-γ secretion. We found that ex vivo expanded human NK cells and NKL cells required the concerted activation of PI3K/mTOR pathway initiated by IL-2 signaling in combination with hypoxia for HIF-1α stabilization. These findings highlight that HIF-1α stabilization in hypoxia maximizes NK cell effector function and raises the prospect of NK cells as ideal therapeutic candidates for solid tumors.
Collapse
Affiliation(s)
- Emily Cluff
- Department of Chemistry and Biochemistry, Northern Arizona University, 700 S Osbourne Drive, Flagstaff, AZ, 86004, USA
| | - Carina C Magdaleno
- Department of Chemistry and Biochemistry, Northern Arizona University, 700 S Osbourne Drive, Flagstaff, AZ, 86004, USA
| | - Emyly Fernandez
- Department of Chemistry and Biochemistry, Northern Arizona University, 700 S Osbourne Drive, Flagstaff, AZ, 86004, USA
| | - Trenton House
- Department of Chemistry and Biochemistry, Northern Arizona University, 700 S Osbourne Drive, Flagstaff, AZ, 86004, USA
| | - Srividya Swaminathan
- Department of Systems Biology, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
| | - Archana Varadaraj
- Department of Chemistry and Biochemistry, Northern Arizona University, 700 S Osbourne Drive, Flagstaff, AZ, 86004, USA
| | - Narendiran Rajasekaran
- Department of Chemistry and Biochemistry, Northern Arizona University, 700 S Osbourne Drive, Flagstaff, AZ, 86004, USA.
| |
Collapse
|
6
|
Gurney M, Kundu S, Pandey S, O’Dwyer M. Feeder Cells at the Interface of Natural Killer Cell Activation, Expansion and Gene Editing. Front Immunol 2022; 13:802906. [PMID: 35222382 PMCID: PMC8873083 DOI: 10.3389/fimmu.2022.802906] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 01/26/2022] [Indexed: 12/11/2022] Open
Abstract
Genome engineered natural killer (NK) cell therapies are emerging as a promising cancer immunotherapy platform with potential advantages and remaining uncertainties. Feeder cells induce activation and proliferation of NK cells via cell surface receptor-ligand interactions, supported by cytokines. Feeder cell expanded NK cell products have supported several NK cell adoptive transfer clinical trials over the past decade. Genome engineered NK cell therapies, including CAR-NK cells, seek to combine innate and alloreactive NK cell anti-tumor activity with antigen specific targeting or additional modifications aimed at improving NK cell persistence, homing or effector function. The profound activating and expansion stimulus provided by feeder cells is integral to current applications of clinical-scale genome engineering approaches in donor-derived, primary NK cells. Herein we explore the complex interactions that exist between feeder cells and both viral and emerging non-viral genome editing technologies in NK cell engineering. We focus on two established clinical-grade feeder systems; Epstein-Barr virus transformed lymphoblastoid cell lines and genetically engineered K562.mbIL21.4-1BBL feeder cells.
Collapse
Affiliation(s)
- Mark Gurney
- Department: Apoptosis Research Centre, National University of Ireland Galway, Galway, Ireland
| | - Soumyadipta Kundu
- Department: Apoptosis Research Centre, National University of Ireland Galway, Galway, Ireland
- ONK Therapeutics, Galway, Ireland
| | | | - Michael O’Dwyer
- Department: Apoptosis Research Centre, National University of Ireland Galway, Galway, Ireland
- ONK Therapeutics, Galway, Ireland
- *Correspondence: Michael O’Dwyer,
| |
Collapse
|
7
|
Fernández A, Navarro-Zapata A, Escudero A, Matamala N, Ruz-Caracuel B, Mirones I, Pernas A, Cobo M, Casado G, Lanzarot D, Rodríguez-Antolín C, Vela M, Ferreras C, Mestre C, Viejo A, Leivas A, Martínez J, Fernández L, Pérez-Martínez A. Optimizing the Procedure to Manufacture Clinical-Grade NK Cells for Adoptive Immunotherapy. Cancers (Basel) 2021; 13:cancers13030577. [PMID: 33540698 PMCID: PMC7867223 DOI: 10.3390/cancers13030577] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/14/2021] [Accepted: 01/26/2021] [Indexed: 01/18/2023] Open
Abstract
Simple Summary Natural Killer cells have shown promise to treat different malignancies. Several methods have been described to obtain fully activated NK cells for clinical use. Here, we use different cell culture media and different artificial antigen presenting cells to optimize a GMP compliant manufacturing method to obtain activated and expanded NK cells suitable for clinical use. Abstract Natural killer (NK) cells represent promising tools for cancer immunotherapy. We report the optimization of an NK cell activation–expansion process and its validation on clinical-scale. Methods: RPMI-1640, stem cell growth medium (SCGM), NK MACS and TexMACS were used as culture mediums. Activated and expanded NK cells (NKAE) were obtained by coculturing total peripheral blood mononuclear cells (PBMC) or CD45RA+ cells with irradiated K562mbIL15-41BBL or K562mbIL21-41BBL. Fold increase, NK cell purity, activation status, cytotoxicity and transcriptome profile were analyzed. Clinical-grade NKAE cells were manufactured in CliniMACS Prodigy. Results: NK MACS and TexMACs achieved the highest NK cell purity and lowest T cell contamination. Obtaining NKAE cells from CD45RA+ cells was feasible although PBMC yielded higher total cell numbers and NK cell purity than CD45RA+ cells. The highest fold expansion and NK purity were achieved by using PBMC and K562mbIL21-41BBL cells. However, no differences in activation and cytotoxicity were found when using either NK cell source or activating cell line. Transcriptome profile showed to be different between basal NK cells and NKAE cells expanded with K562mbIL21-41BBL or K562mbIL15-41BBL. Clinical-grade manufactured NKAE cells complied with the specifications from the Spanish Regulatory Agency. Conclusions: GMP-grade NK cells for clinical use can be obtained by using different starting cells and aAPC.
Collapse
Affiliation(s)
- Adrián Fernández
- Hematological Malignancies Lab-H12O Clinical Research Unit, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain; (A.F.); (A.L.); (J.M.); (L.F.)
| | - Alfonso Navarro-Zapata
- Translational Research Group in Paediatric Oncology Haematopoietic Transplantation & Cell Therapy, La Paz University Hospital Institute for Health Research-IdiPAZ, 28046 Madrid, Spain; (A.N.-Z.); (M.V.); (C.F.); (C.M.)
| | - Adela Escudero
- Institute of Medical and Molecular Genetics (INGEMM), La Paz University Hospital, 28046 Madrid, Spain;
- Translational Research in Pediatric Oncology, Hematopoietic Transplantation & Cell Therapy, La Paz University Hospital Institute for Health Research-Institute of Medical and Molecular Genetics (INGEMM-IdiPAZ), 28046 Madrid, Spain; (N.M.); (B.R.-C.)
| | - Nerea Matamala
- Translational Research in Pediatric Oncology, Hematopoietic Transplantation & Cell Therapy, La Paz University Hospital Institute for Health Research-Institute of Medical and Molecular Genetics (INGEMM-IdiPAZ), 28046 Madrid, Spain; (N.M.); (B.R.-C.)
| | - Beatriz Ruz-Caracuel
- Translational Research in Pediatric Oncology, Hematopoietic Transplantation & Cell Therapy, La Paz University Hospital Institute for Health Research-Institute of Medical and Molecular Genetics (INGEMM-IdiPAZ), 28046 Madrid, Spain; (N.M.); (B.R.-C.)
| | - Isabel Mirones
- Advanced Therapy Medicinal Products Production Unit Pediatric Hemato-Oncology Department, La Paz University Hospital, 28046 Madrid, Spain; (I.M.); (A.P.); (M.C.); (G.C.)
| | - Alicia Pernas
- Advanced Therapy Medicinal Products Production Unit Pediatric Hemato-Oncology Department, La Paz University Hospital, 28046 Madrid, Spain; (I.M.); (A.P.); (M.C.); (G.C.)
| | - Marta Cobo
- Advanced Therapy Medicinal Products Production Unit Pediatric Hemato-Oncology Department, La Paz University Hospital, 28046 Madrid, Spain; (I.M.); (A.P.); (M.C.); (G.C.)
| | - Gema Casado
- Advanced Therapy Medicinal Products Production Unit Pediatric Hemato-Oncology Department, La Paz University Hospital, 28046 Madrid, Spain; (I.M.); (A.P.); (M.C.); (G.C.)
- Advanced Therapy Medicinal Products Production Unit, Pediatric Hemato-Oncology Service and Pharmacy Service, La Paz University Hospital, 28046 Madrid, Spain
| | - Diego Lanzarot
- Applications Department Miltenyi Biotec, 28223 Madrid, Spain;
| | - Carlos Rodríguez-Antolín
- Experimental Therapies and Novel Biomarkers in Cancer, La Paz University Hospital Institute for Health Research-IdiPAZ, 28046 Madrid, Spain;
| | - María Vela
- Translational Research Group in Paediatric Oncology Haematopoietic Transplantation & Cell Therapy, La Paz University Hospital Institute for Health Research-IdiPAZ, 28046 Madrid, Spain; (A.N.-Z.); (M.V.); (C.F.); (C.M.)
| | - Cristina Ferreras
- Translational Research Group in Paediatric Oncology Haematopoietic Transplantation & Cell Therapy, La Paz University Hospital Institute for Health Research-IdiPAZ, 28046 Madrid, Spain; (A.N.-Z.); (M.V.); (C.F.); (C.M.)
| | - Carmen Mestre
- Translational Research Group in Paediatric Oncology Haematopoietic Transplantation & Cell Therapy, La Paz University Hospital Institute for Health Research-IdiPAZ, 28046 Madrid, Spain; (A.N.-Z.); (M.V.); (C.F.); (C.M.)
| | - Aurora Viejo
- Hematology and Hemotherapy Department, La Paz University Hospital, 28046 Madrid, Spain;
| | - Alejandra Leivas
- Hematological Malignancies Lab-H12O Clinical Research Unit, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain; (A.F.); (A.L.); (J.M.); (L.F.)
- Hematology Department 12 de Octubre University Hospital, 28041 Madrid, Spain
| | - Joaquín Martínez
- Hematological Malignancies Lab-H12O Clinical Research Unit, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain; (A.F.); (A.L.); (J.M.); (L.F.)
- Hematology Department 12 de Octubre University Hospital, 28041 Madrid, Spain
| | - Lucía Fernández
- Hematological Malignancies Lab-H12O Clinical Research Unit, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain; (A.F.); (A.L.); (J.M.); (L.F.)
| | - Antonio Pérez-Martínez
- Translational Research Group in Paediatric Oncology Haematopoietic Transplantation & Cell Therapy, La Paz University Hospital Institute for Health Research-IdiPAZ, 28046 Madrid, Spain; (A.N.-Z.); (M.V.); (C.F.); (C.M.)
- Pediatric Hemato-Oncology Department, La Paz University Hospital, 28046 Madrid, Spain
- Correspondence: ; Tel.: +34-912071408 (ext. 41408)
| |
Collapse
|
8
|
Gingrich AA, Modiano JF, Canter RJ. Characterization and Potential Applications of Dog Natural Killer Cells in Cancer Immunotherapy. J Clin Med 2019; 8:jcm8111802. [PMID: 31717876 PMCID: PMC6912828 DOI: 10.3390/jcm8111802] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 10/16/2019] [Accepted: 10/24/2019] [Indexed: 12/22/2022] Open
Abstract
Natural killer (NK) cells of the innate immune system are a key focus of research within the field of immuno-oncology based on their ability to recognize and eliminate malignant cells without prior sensitization or priming. However, barriers have arisen in the effective translation of NK cells to the clinic, in part because of critical species differences between mice and humans. Companion animals, especially dogs, are valuable species for overcoming many of these barriers, as dogs develop spontaneous tumors in the setting of an intact immune system, and the genetic and epigenetic factors that underlie oncogenesis appear to be similar between dogs and humans. Here, we summarize the current state of knowledge for dog NK cells, including cell surface marker phenotype, key NK genes and genetic regulation, similarities and differences of dog NK cells to other mammals, especially human and mouse, expression of canonical inhibitory and activating receptors, ex vivo expansion techniques, and current and future clinical applications. While dog NK cells are not as well described as those in humans and mice, the knowledge of the field is increasing and clinical applications in dogs can potentially advance the field of human NK biology and therapy. Better characterization is needed to truly understand the similarities and differences of dog NK cells with mouse and human. This will allow for the canine model to speed clinical translation of NK immunotherapy studies and overcome key barriers in the optimization of NK cancer immunotherapy, including trafficking, longevity, and maximal in vivo support.
Collapse
Affiliation(s)
- Alicia A. Gingrich
- Department of Surgery, University of California Davis, 2221 Stockton Blvd, Sacramento, CA 95817, USA;
| | - Jaime F. Modiano
- Animal Cancer Care and Research Program, College of Veterinary Medicine and Masonic Cancer Center, University of Minnesota, 1365 Gortner Ave, St. Paul, MN 55108, USA;
| | - Robert J. Canter
- Department of Surgery, University of California Davis, 2221 Stockton Blvd, Sacramento, CA 95817, USA;
- Correspondence:
| |
Collapse
|
9
|
Sabry M, Zubiak A, Hood SP, Simmonds P, Arellano-Ballestero H, Cournoyer E, Mashar M, Pockley AG, Lowdell MW. Tumor- and cytokine-primed human natural killer cells exhibit distinct phenotypic and transcriptional signatures. PLoS One 2019; 14:e0218674. [PMID: 31242243 PMCID: PMC6594622 DOI: 10.1371/journal.pone.0218674] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 06/06/2019] [Indexed: 11/19/2022] Open
Abstract
An emerging cellular immunotherapy for cancer is based on the cytolytic activity of natural killer (NK) cells against a wide range of tumors. Although in vitro activation, or “priming,” of NK cells by exposure to pro-inflammatory cytokines, such as interleukin (IL)-2, has been extensively studied, the biological consequences of NK cell activation in response to target cell interactions have not been thoroughly characterized. We investigated the consequences of co-incubation with K562, CTV-1, Daudi RPMI-8226, and MCF-7 tumor cell lines on the phenotype, cytokine expression profile, and transcriptome of human NK cells. We observe the downregulation of several activation receptors including CD16, CD62L, C-X-C chemokine receptor (CXCR)-4, natural killer group 2 member D (NKG2D), DNAX accessory molecule (DNAM)-1, and NKp46 following tumor-priming. Although this NK cell phenotype is typically associated with NK cell dysfunction in cancer, we reveal the upregulation of NK cell activation markers, such as CD69 and CD25; secretion of pro-inflammatory cytokines, including macrophage inflammatory proteins (MIP-1) α /β and IL-1β/6/8; and overexpression of numerous genes associated with enhanced NK cell cytotoxicity and immunomodulatory functions, such as FAS, TNFSF10, MAPK11, TNF, and IFNG. Thus, it appears that tumor-mediated ligation of receptors on NK cells may induce a primed state which may or may not lead to full triggering of the lytic or cytokine secreting machinery. Key signaling molecules exclusively affected by tumor-priming include MAP2K3, MARCKSL1, STAT5A, and TNFAIP3, which are specifically associated with NK cell cytotoxicity against tumor targets. Collectively, these findings help define the phenotypic and transcriptional signature of NK cells following their encounters with tumor cells, independent of cytokine stimulation, and provide insight into tumor-specific NK cell responses to inform the transition toward harnessing the therapeutic potential of NK cells in cancer.
Collapse
Affiliation(s)
- May Sabry
- Department of Haematology, University College London, London, United Kingdom
| | - Agnieszka Zubiak
- Department of Haematology, University College London, London, United Kingdom
| | - Simon P. Hood
- John van Geest Cancer Research Centre, Nottingham Trent University, Nottingham, United Kingdom
| | - Poppy Simmonds
- Department of Haematology, University College London, London, United Kingdom
| | | | - Eily Cournoyer
- Department of Haematology, University College London, London, United Kingdom
| | - Meghavi Mashar
- Department of Haematology, University College London, London, United Kingdom
| | - A. Graham Pockley
- John van Geest Cancer Research Centre, Nottingham Trent University, Nottingham, United Kingdom
| | - Mark W. Lowdell
- Department of Haematology, University College London, London, United Kingdom
- InmuneBio Inc., La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
10
|
Abstract
Monoclonal antibodies can mediate antitumor activity by multiple mechanisms. They can bind directly to tumor receptors resulting in tumor cell death, or can bind to soluble growth factors, angiogenic factors, or their cognate receptors blocking signals required for tumor cell growth or survival. Monoclonal antibodies, upon binding to tumor cell, can also engage the host's immune system to mediate immune-mediated destruction of the tumor. The Fc portion of the antibody is essential in engaging the host immune system by fixing complement resulting in complement-mediated cytotoxicity (CDC) of the tumor, or by engaging Fc receptors for IgG (FcγR) expressed by leukocytes leading to antibody-dependent cellular cytotoxicity (ADCC) or antibody-dependent cellular phagocytosis (ADCP) of tumor cells. Antibodies whose Fc portion preferentially engage activating FcγRs have shown greater inhibition of tumor growth and metastasis. Monoclonal antibodies can also stimulate the immune system by binding to targets expressed on immune cells. These antibodies may stimulate antitumor immunity by antagonizing a negative regulatory signal, agonizing a costimulatory signal, or depleting immune cells that are inhibitory. The importance of Fc:FcγR interactions in antitumor therapy for each of these mechanisms have been demonstrated in both mouse models and clinical trials and will be the focus of this chapter.
Collapse
Affiliation(s)
- Robert F Graziano
- Oncology Discovery, Bristol-Myers Squibb, Princeton, NJ, Redwood City, CA, USA
| | - John J Engelhardt
- Oncology Discovery, Bristol-Myers Squibb, Princeton, NJ, Redwood City, CA, USA.
| |
Collapse
|
11
|
Zakiryanova GK, Wheeler S, Shurin MR. Oncogenes in immune cells as potential therapeutic targets. Immunotargets Ther 2018; 7:21-28. [PMID: 29692982 PMCID: PMC5903485 DOI: 10.2147/itt.s150586] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The role of deregulated expression of oncogenes and tumor-suppressor genes in tumor development has been intensively investigated for decades. However, expression of oncogenes and their potential role in immune cell defects during carcinogenesis and tumor progression have not been thoroughly assessed. The defects in proto-oncogenes have been well documented and evaluated mostly in tumor cells, despite the fact that proto-oncogenes are expressed in all cells, including cells of the immune system. In this review, key studies from immune-mediated diseases that may be associated with oncogene signaling pathways are refocused to provide groundwork for beginning to understand the effects of oncogenes in and on the cancer-related immune system dysfunction.
Collapse
Affiliation(s)
- Gulnur K Zakiryanova
- Department Biophysics and Biomedicine, Faculty Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Sarah Wheeler
- Division of Clinical Immunopathology, Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Michael R Shurin
- Division of Clinical Immunopathology, Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| |
Collapse
|
12
|
Delso-Vallejo M, Kollet J, Koehl U, Huppert V. Influence of Irradiated Peripheral Blood Mononuclear Cells on Both Ex Vivo Proliferation of Human Natural Killer Cells and Change in Cellular Property. Front Immunol 2017; 8:854. [PMID: 28791015 PMCID: PMC5522833 DOI: 10.3389/fimmu.2017.00854] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 07/06/2017] [Indexed: 11/13/2022] Open
Abstract
Clinical studies with adoptive immunotherapy using allogeneic natural killer (NK) cells showed feasibility, but also limitation regarding the transfused absolute cell numbers. First promising results with peripheral blood mononuclear cells (PBMCs) as feeder cells to improve the final cell number need further optimization and investigation of the unknown controlling mechanism in the cross-talk to NK cells. We investigated the influence of irradiated autologous PBMCs to boost NK cell proliferation in the presence of OKT3 and IL-2. Our findings demonstrate a requirement for receptor-ligand interactions between feeders and NK cells to produce soluble factors that can sustain NK cell proliferation. Thus, both physical contact between feeder and NK cells, and soluble factors produced in consequence, are required to fully enhance NK cell ex vivo proliferation. This occurred with an indispensable role of the cross-talk between T cells, monocytes, and NK cells, while B cells had no further influence in supporting NK cell proliferation under these co-culture conditions. Moreover, gene expression analysis of highly proliferating and non-proliferating NK cells revealed important phenotypic changes on 5-day cultured NK cells. Actively proliferating NK cells have reduced Siglec-7 and -9 expression compared with non-proliferating and resting NK cells (day 0), independently of the presence of feeder cells. Interestingly, proliferating NK cells cultured with feeder cells contained increased frequencies of cells expressing RANKL, B7-H3, and HLA class II molecules, particularly HLA-DR, compared with resting NK cells or expanded with IL-2 only. A subset of HLA-DR expressing NK cells, co-expressing RANKL, and B7-H3 corresponded to the most proliferative population under the established co-culture conditions. Our results highlight the importance of the crosstalk between T cells, monocytes, and NK cells in autologous feeder cell-based ex vivo NK cell expansion protocols, and reveal the appearance of a highly proliferative subpopulation of NK cells (HLA-DR+RANKL+B7-H3+) with promising characteristics to extend the therapeutic potential of NK cells.
Collapse
Affiliation(s)
| | - Jutta Kollet
- Miltenyi Biotec GmbH, Bergisch-Gladbach, Germany
| | - Ulrike Koehl
- Hannover Medical School, Institute for Cellular Therapeutics, IFB-Tx, Hannover, Germany
| | | |
Collapse
|
13
|
Granzin M, Wagner J, Köhl U, Cerwenka A, Huppert V, Ullrich E. Shaping of Natural Killer Cell Antitumor Activity by Ex Vivo Cultivation. Front Immunol 2017; 8:458. [PMID: 28491060 PMCID: PMC5405078 DOI: 10.3389/fimmu.2017.00458] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Accepted: 04/04/2017] [Indexed: 01/11/2023] Open
Abstract
Natural killer (NK) cells are a promising tool for the use in adoptive immunotherapy, since they efficiently recognize and kill tumor cells. In this context, ex vivo cultivation is an attractive option to increase NK cells in numbers and to improve their antitumor potential prior to clinical applications. Consequently, various strategies to generate NK cells for adoptive immunotherapy have been developed. Here, we give an overview of different NK cell cultivation approaches and their impact on shaping the NK cell antitumor activity. So far, the cytokines interleukin (IL)-2, IL-12, IL-15, IL-18, and IL-21 are used to culture and expand NK cells. The selection of the respective cytokine combination is an important factor that directly affects NK cell maturation, proliferation, survival, distribution of NK cell subpopulations, activation, and function in terms of cytokine production and cytotoxic potential. Importantly, cytokines can upregulate the expression of certain activating receptors on NK cells, thereby increasing their responsiveness against tumor cells that express the corresponding ligands. Apart from using cytokines, cocultivation with autologous accessory non-NK cells or addition of growth-inactivated feeder cells are approaches for NK cell cultivation with pronounced effects on NK cell activation and expansion. Furthermore, ex vivo cultivation was reported to prime NK cells for the killing of tumor cells that were previously resistant to NK cell attack. In general, NK cells become frequently dysfunctional in cancer patients, for instance, by downregulation of NK cell activating receptors, disabling them in their antitumor response. In such scenario, ex vivo cultivation can be helpful to arm NK cells with enhanced antitumor properties to overcome immunosuppression. In this review, we summarize the current knowledge on NK cell modulation by different ex vivo cultivation strategies focused on increasing NK cytotoxicity for clinical application in malignant diseases. Moreover, we critically discuss the technical and regulatory aspects and challenges underlying NK cell based therapeutic approaches in the clinics.
Collapse
Affiliation(s)
- Markus Granzin
- Clinical Research, Miltenyi Biotec Inc., Gaithersburg, MD, USA
| | - Juliane Wagner
- Division for Stem Cell Transplantation and Immunology, Department for Children and Adolescents Medicine, Hospital of the Goethe University, Frankfurt, Germany.,LOEWE Center for Cell and Gene Therapy, Cellular Immunology, Goethe University, Frankfurt, Germany
| | - Ulrike Köhl
- Institute of Cellular Therapeutics, Integrated Research and Treatment Center Transplantation, Hannover Medical School, Hannover, Germany
| | - Adelheid Cerwenka
- Innate Immunity Group, German Cancer Research Center, Heidelberg, Germany.,Division of Immunbiochemistry, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Volker Huppert
- R&D Reagents, Miltenyi Biotec GmbH, Bergisch Gladbach, Germany
| | - Evelyn Ullrich
- Division for Stem Cell Transplantation and Immunology, Department for Children and Adolescents Medicine, Hospital of the Goethe University, Frankfurt, Germany.,LOEWE Center for Cell and Gene Therapy, Cellular Immunology, Goethe University, Frankfurt, Germany
| |
Collapse
|
14
|
Oyer JL, Pandey V, Igarashi RY, Somanchi SS, Zakari A, Solh M, Lee DA, Altomare DA, Copik AJ. Natural killer cells stimulated with PM21 particles expand and biodistribute in vivo: Clinical implications for cancer treatment. Cytotherapy 2016; 18:653-63. [PMID: 27059202 DOI: 10.1016/j.jcyt.2016.02.006] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 02/15/2016] [Accepted: 02/17/2016] [Indexed: 12/31/2022]
Abstract
BACKGROUND AIMS Natural killer (NK) cell immunotherapy for treatment of cancer is promising, but requires methods that expand cytotoxic NK cells that persist in circulation and home to disease site. METHODS We developed a particle-based method that is simple, effective and specifically expands cytotoxic NK cells from peripheral blood mononuclear cells (PBMCs) both ex vivo and in vivo. This method uses particles prepared from plasma membranes of K562-mb21-41BBL cells, expressing 41BBL and membrane bound interleukin-21 (PM21 particles). RESULTS Ex vivo, PM21 particles caused specific NK-cell expansion from PBMCs from healthy donors (mean 825-fold, range 163-2216, n = 13 in 14 days) and acute myeloid leukemia patients. The PM21 particles also stimulated in vivo NK cell expansion in NSG mice. Ex vivo pre-activation of PBMCs with PM21 particles (PM21-PBMC) before intraperitoneal (i.p.) injection resulted in 66-fold higher amounts of hNK cells in peripheral blood (PB) of mice compared with unactivated PBMCs on day 12 after injection. In vivo administration of PM21 particles resulted in a dose-dependent increase of PB hNK cells in mice injected i.p. with 2.0 × 10(6) PM21-PBMCs (11% NK cells). Optimal dose of 800 µg/injection of PM21 particles (twice weekly) with low-dose interleukin 2 (1000 U/thrice weekly) resulted in 470 ± 40 hNK/µL and 95 ± 2% of total hCD45(+) cells by day 12 in PB. Furthermore, hNK cells were found in marrow, spleen, lung, liver and brain (day 16 after i.p. PM21/PBMC injection), and mice injected with PM21 particles had higher amounts. CONCLUSIONS The extent of NK cells observed in PB, their persistence and the biodistribution would be relevant for cancer treatment.
Collapse
Affiliation(s)
- Jeremiah L Oyer
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, Florida, USA
| | - Veethika Pandey
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, Florida, USA
| | - Robert Y Igarashi
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, Florida, USA
| | - Srinivas S Somanchi
- Division of Pediatrics and Cell Therapy Section, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Ahmed Zakari
- Florida Hospital Cancer Institute, Orlando, Florida, USA
| | - Melhem Solh
- Florida Hospital Cancer Institute, Orlando, Florida, USA
| | - Dean A Lee
- Division of Pediatrics and Cell Therapy Section, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Deborah A Altomare
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, Florida, USA
| | - Alicja J Copik
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, Florida, USA.
| |
Collapse
|
15
|
"Adherent" versus Other Isolation Strategies for Expanding Purified, Potent, and Activated Human NK Cells for Cancer Immunotherapy. BIOMED RESEARCH INTERNATIONAL 2015; 2015:869547. [PMID: 26161419 PMCID: PMC4486741 DOI: 10.1155/2015/869547] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 11/07/2014] [Indexed: 01/21/2023]
Abstract
Natural killer (NK) cells have long been hypothesized to play a central role in the development of new immunotherapies to combat a variety of cancers due to their intrinsic ability to lyse tumor cells. For the past several decades, various isolation and expansion methods have been developed to harness the full antitumor potential of NK cells. These protocols have varied greatly between laboratories and several have been optimized for large-scale clinical use despite associated complexity and high cost. Here, we present a simple method of "adherent" enrichment and expansion of NK cells, developed using both healthy donors' and cancer patients' peripheral blood mononuclear cells (PBMCs), and compare its effectiveness with various published protocols to highlight the pros and cons of their use in adoptive cell therapy. By building upon the concepts and data presented, future research can be adapted to provide simple, cost-effective, reproducible, and translatable procedures for personalized treatment with NK cells.
Collapse
|
16
|
Wang F, Tian Z, Wei H. Genomic expression profiling of NK cells in health and disease. Eur J Immunol 2014; 45:661-78. [PMID: 25476835 DOI: 10.1002/eji.201444998] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 10/01/2014] [Accepted: 12/01/2014] [Indexed: 12/15/2022]
Abstract
NK cells are important components of innate and adaptive immunity. Functionally, they play key roles in host defense against tumors and infectious pathogens. Within the past few years, genomic-scale experiments have provided us with a plethora of gene expression data that reveal an extensive molecular and biological map underlying gene expression programs. In order to better explore and take advantage of existing datasets, we review here the genomic expression profiles of NK cells and their subpopulations in resting or stimulated states, in diseases, and in different organs; moreover, we contrast these expression data to those of other lymphocytes. We have also compiled a comprehensive list of genomic profiling studies of both human and murine NK cells in this review.
Collapse
Affiliation(s)
- Fuyan Wang
- Institute of Immunology, School of Life Sciences and Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, China; Diabetes Center, School of Medicine, Ningbo University, Ningbo, China
| | | | | |
Collapse
|
17
|
Kumar S, Kim CW, Simmons RD, Jo H. Role of flow-sensitive microRNAs in endothelial dysfunction and atherosclerosis: mechanosensitive athero-miRs. Arterioscler Thromb Vasc Biol 2014; 34:2206-16. [PMID: 25012134 DOI: 10.1161/atvbaha.114.303425] [Citation(s) in RCA: 213] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Atherosclerosis preferentially occurs in arterial regions exposed to disturbed flow, in part, due to alterations in gene expression. MicroRNAs (miRNAs) are small, noncoding genes that post-transcriptionally regulate gene expression by targeting messenger RNA transcripts. Emerging evidence indicates that alteration of flow conditions regulate expression of miRNAs in endothelial cells both in vitro and in vivo. These flow-sensitive miRNAs, known as mechano-miRs, regulate endothelial gene expression and can regulate endothelial dysfunction and atherosclerosis. MiRNAs such as, miR-10a, miR-19a, miR-23b, miR-17-92, miR-21, miR-663, miR-92a, miR-143/145, miR-101, miR-126, miR-712, miR-205, and miR-155, have been identified as mechano-miRs. Many of these miRNAs were initially identified as flow sensitive in vitro and were later found to play a critical role in endothelial function and atherosclerosis in vivo through either gain-of-function or loss-of-function approaches. The key signaling pathways that are targeted by these mechano-miRs include the endothelial cell cycle, inflammation, apoptosis, and nitric oxide signaling. Furthermore, we have recently shown that the miR-712/205 family, which is upregulated by disturbed flow, contributes to endothelial inflammation and vascular hyperpermeability by targeting tissue inhibitor of metalloproteinase-3, which regulates metalloproteinases and a disintegrin and metalloproteinases. The mechano-miRs that are implicated in atherosclerosis are termed as mechanosensitive athero-miRs and are potential therapeutic targets to prevent or treat atherosclerosis. This review summarizes the current knowledge of mechanosensitive athero-miRs and their role in vascular biology and atherosclerosis.
Collapse
Affiliation(s)
- Sandeep Kumar
- From the Wallace H. Coulter Department of Biomedical Engineering (S.K., C.W.K., R.D.S., H.J.) and Division of Cardiology (H.J.), Georgia Institute of Technology and Emory University, Atlanta, GA
| | - Chan Woo Kim
- From the Wallace H. Coulter Department of Biomedical Engineering (S.K., C.W.K., R.D.S., H.J.) and Division of Cardiology (H.J.), Georgia Institute of Technology and Emory University, Atlanta, GA
| | - Rachel D Simmons
- From the Wallace H. Coulter Department of Biomedical Engineering (S.K., C.W.K., R.D.S., H.J.) and Division of Cardiology (H.J.), Georgia Institute of Technology and Emory University, Atlanta, GA
| | - Hanjoong Jo
- From the Wallace H. Coulter Department of Biomedical Engineering (S.K., C.W.K., R.D.S., H.J.) and Division of Cardiology (H.J.), Georgia Institute of Technology and Emory University, Atlanta, GA.
| |
Collapse
|
18
|
Sanchez-Martínez D, Krzywinska E, Rathore MG, Saumet A, Cornillon A, Lopez-Royuela N, Martínez-Lostao L, Ramirez-Labrada A, Lu ZY, Rossi JF, Fernández-Orth D, Escorza S, Anel A, Lecellier CH, Pardo J, Villalba M. All-trans retinoic acid (ATRA) induces miR-23a expression, decreases CTSC expression and granzyme B activity leading to impaired NK cell cytotoxicity. Int J Biochem Cell Biol 2014; 49:42-52. [PMID: 24440757 DOI: 10.1016/j.biocel.2014.01.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 12/16/2013] [Accepted: 01/02/2014] [Indexed: 11/26/2022]
Abstract
NK cell is an innate immune system lymphocyte lineage with natural cytotoxicity. Its optimal use in the clinic requires in vitro expansion and activation. Cytokines and encounter with target cells activate NK cells and induce proliferation, and this could depend on the presence of other immune cells. Here we activated PBMCs during 5 days with IL-2, with IL-2 plus the tumor cell line K562 and with the lymphoblastoid cell line R69 and perform integrated analyses of microRNA and mRNA expression profiles of purified NK cells. The samples cluster depending on the stimuli and not on the donor, indicating that the pattern of NK cell stimulation is acutely well conserved between individuals. Regulation of mRNA expression is tighter than that of miRNA expression. All stimuli induce a common preserved genetic remodeling. In addition, encounter with target cells mainly activates pathways related to metabolism. Different target cells induce different NK cell remodeling which affects cytokine response and cytotoxicity, supporting the notion that encounter with different target cells significantly changing the activation pattern. We validate our analysis by showing that activation down regulates miR-23a, which is a negative regulator of cathepsin C (CTSC) mRNA, a gene up regulated by all stimuli. The peptidase CTSC activates the granzymes, the main effector proteases involved in NK cell cytotoxicity. All-trans retinoic acid (ATRA), which induces miR-23a expression, decreases CTSC expression and granzyme B activity leading to impaired NK cell cytotoxicity in an in vivo mouse model.
Collapse
Affiliation(s)
- Diego Sanchez-Martínez
- Cell Immunity in Cancer, Inflammation and infection Group, Biomedical Research Center of Aragon (CIBA), Nanoscience Institute of Aragon (INA), Aragon I+D Foundation (ARAID), IIS Aragon/University of Zaragoza, Zaragoza 50009, Spain
| | - Ewelina Krzywinska
- INSERM U1040, Université de Montpellier 1, UFR Médecine, Montpellier F-34295, France
| | - Moeez G Rathore
- INSERM U1040, Université de Montpellier 1, UFR Médecine, Montpellier F-34295, France
| | - Anne Saumet
- Institut de Recherche en Cancérologie de Montpellier INSERM U896, Université Montpellier 1, CRLC Val d'Aurelle Paul Lamarque, Montpellier F-34298, France
| | - Amelie Cornillon
- INSERM U1040, Université de Montpellier 1, UFR Médecine, Montpellier F-34295, France
| | - Nuria Lopez-Royuela
- INSERM U1040, Université de Montpellier 1, UFR Médecine, Montpellier F-34295, France
| | - Luis Martínez-Lostao
- Apoptosis, Immunity and Cancer Group, Department Biochemistry and Molecular and Cell Biology, Faculty of Sciences, University of Zaragoza, Zaragoza 50009, Spain
| | - Ariel Ramirez-Labrada
- Apoptosis, Immunity and Cancer Group, Department Biochemistry and Molecular and Cell Biology, Faculty of Sciences, University of Zaragoza, Zaragoza 50009, Spain
| | - Zhao-Yang Lu
- INSERM U1040, Université de Montpellier 1, UFR Médecine, Montpellier F-34295, France
| | - Jean-François Rossi
- INSERM U1040, Université de Montpellier 1, UFR Médecine, Montpellier F-34295, France
| | | | - Sergio Escorza
- Progenika Biopharma SA, Parque Tecnológico Bizkaia 504, 48160 Derio, Bizkaia, Spain
| | - Alberto Anel
- Apoptosis, Immunity and Cancer Group, Department Biochemistry and Molecular and Cell Biology, Faculty of Sciences, University of Zaragoza, Zaragoza 50009, Spain
| | - Charles-Henri Lecellier
- Institut de Génétique Moléculaire de Montpellier UMR 5535 CNRS, 1919 route de Mende, 34293 Montpellier cedex 5, France. Université Montpellier 2, Place Eugène Bataillon, 34095 Montpellier cedex 5, France. Université Montpellier 1, 5 Bd Henry IV, 34967 Montpellier Cedex 2, France
| | - Julian Pardo
- Cell Immunity in Cancer, Inflammation and infection Group, Biomedical Research Center of Aragon (CIBA), Nanoscience Institute of Aragon (INA), Aragon I+D Foundation (ARAID), IIS Aragon/University of Zaragoza, Zaragoza 50009, Spain
| | - Martin Villalba
- INSERM U1040, Université de Montpellier 1, UFR Médecine, Montpellier F-34295, France; Institut de Recherche en Biothérapie (IRB), CHU Montpellier, Montpellier 34295, France.
| |
Collapse
|
19
|
Radom-Aizik S, Zaldivar F, Haddad F, Cooper DM. Impact of brief exercise on peripheral blood NK cell gene and microRNA expression in young adults. J Appl Physiol (1985) 2013; 114:628-36. [PMID: 23288554 DOI: 10.1152/japplphysiol.01341.2012] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Natural killers (NK) cells are unique innate immune cells that increase up to fivefold in the circulating blood with brief exercise and are known to play a key role in first-response defense against pathogens and cancer immunosurveillance. Whether exercise alters NK cell gene and microRNA (miRNA) expression is not known. Thirteen healthy men (20-29 yr old) performed ten 2-min bouts of cycle ergometer exercise at a constant work equivalent to an average of 77% of maximum O2 consumption interspersed with 1-min rest. Blood was drawn before and immediately after the exercise challenge. NK cells were isolated from peripheral blood mononuclear cells using a negative magnetic cell separation method. We used Affymetrix U133+2.0 arrays for gene expression and Agilent Human miRNA V2 Microarray for miRNAs. A stringent statistical approach (false discovery rate < 0.05) was used to determine that exercise significantly altered the expression of 986 genes and 23 miRNAs. Using in silico analysis, we found exercise-related gene pathways where there was a high likelihood of gene-miRNA interactions. These pathways were predominantly associated with cancer and cell communication, including p53 signaling pathway, melanoma, glioma, prostate cancer, adherens junction, and focal adhesion. These data support the hypothesis that exercise affects the gene and miRNA expression pattern in the population of NK cells in the circulation and suggest mechanisms through which physical activity could alter health through the innate immune system.
Collapse
Affiliation(s)
- Shlomit Radom-Aizik
- Pediatric Exercise Research Center, Department of Pediatrics, University of California, Irvine, Irvine, California 92697-4094, USA.
| | | | | | | |
Collapse
|
20
|
NK cells are dysfunctional in human chronic myelogenous leukemia before and on imatinib treatment and in BCR-ABL-positive mice. Leukemia 2011; 26:465-74. [PMID: 21904381 DOI: 10.1038/leu.2011.239] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Although BCR-ABL+ stem cells in chronic myeloid leukemia (CML) resist elimination by targeted pharmacotherapy in most patients, immunological graft-versus-leukemia effects can cure the disease. Besides cytotoxic T cells, natural killer (NK) cells may have a role in immune control of CML. Here, we explored the functionality of NK cells in CML patients and in a transgenic inducible BCR-ABL mouse model. Compared with controls, NK-cell proportions among lymphocytes were decreased at diagnosis of CML and did not recover during imatinib-induced remission for 10-34 months. Functional experiments revealed limited in vitro expansion of NK cells from CML patients and a reduced degranulation response to K562 target cells both at diagnosis and during imatinib therapy. Consistent with the results in human CML, relative numbers of NK1.1+ NK cells were reduced following induction of BCR-ABL expression in mice, and the defects persisted after BCR-ABL reversion. Moreover, target-induced degranulation by expanded BCR-ABL+ NK cells was compromised. We conclude that CML is associated with quantitative and functional defects within the NK-cell compartment, which is reproduced by induced BCR-ABL expression in mice. Further work will aim at identifying the mechanisms of NK-cell deficiency in CML and at developing strategies to exploit NK cells for immunotherapy.
Collapse
|
21
|
Mujaj SA, Spanevello MM, Gandhi MK, Nourse JP. Molecular mechanisms influencing NK cell development: implications for NK cell malignancies. AMERICAN JOURNAL OF BLOOD RESEARCH 2011; 1:34-45. [PMID: 22432064 PMCID: PMC3301417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Accepted: 05/18/2011] [Indexed: 05/31/2023]
Abstract
Natural Killer (NK) cells are important effector cells in both the innate and adaptive immune responses. Although they were identified almost 40 years ago, our understanding of how and where NK cells develop is rudimentary. In particular, we have only a limited understanding of the signaling pathways that need to be activated to cause NK cell commitment and maturation. Knowledge of this process is important as disruptions can lead to the development of highly aggressive NK cell malignancies. In this review, we discuss the known molecular mechanisms that trigger NK cell commitment, prompt them to mature and finally allow them to become functional killers. Known disruptions in this developmental process, and how they may contribute to malignancy, are also addressed.
Collapse
|