1
|
Aibara D, Matsusue K. Glycoprotein nonmetastatic melanoma protein B is regulated by hepatic peroxisome proliferator-activated receptor γ in liver steatosis. Cell Signal 2025; 130:111678. [PMID: 39971219 DOI: 10.1016/j.cellsig.2025.111678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 02/09/2025] [Accepted: 02/16/2025] [Indexed: 02/21/2025]
Abstract
Hepatic glycoprotein nonmetastatic melanoma protein B (GPNMB) and nuclear receptor peroxisome proliferator-activated receptor gamma (PPARγ) play essential roles in lipid metabolism. This study aimed to examine the molecular mechanism through which PPARγ controls GPNMB expression in liver steatosis. A microarray database was used to examine the gene expression patterns associated with fatty liver in type 2 diabetic leptin-deficient (ob/ob) mice, as well as in patients with non-alcoholic fatty liver disease (NAFLD) and advanced NAFLD. GPNMB expression significantly increased in the fatty livers of humans and mice. Elevated Gpnmb expression was notably reduced by liver-specific Pparγ knockout (PPARγLKO) in ob/ob mice. Similarly, alcohol-fed mice had increased hepatic Gpnmb levels. Transcriptomic analysis of the human liver samples revealed that Gpnmb expression was markedly higher in patients with fatty liver diseases, including those with NAFLD and alcoholic fatty liver disease, than in controls. Reporter and electrophoretic mobility shift assays confirmed that PPARγ directly enhances Gpnmb transcription via three functional PPARγ-responsive elements within the first intron. In conclusion, these findings suggest that Gpnmb is a novel PPARγ target in liver steatosis.
Collapse
Affiliation(s)
- Daisuke Aibara
- Faculty of Pharmaceutical Science, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan.
| | - Kimihiko Matsusue
- Faculty of Pharmaceutical Science, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| |
Collapse
|
2
|
Klein S, Tolkach Y, Reinhardt HC, Buettner R, Quaas A, Helbig D. Proteomic analysis of pleomorphic dermal sarcoma reveals a fibroblastic cell of origin and distinct immune evasion mechanisms. Sci Rep 2024; 14:12516. [PMID: 38822058 PMCID: PMC11143252 DOI: 10.1038/s41598-024-62927-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 05/22/2024] [Indexed: 06/02/2024] Open
Abstract
Pleomorphic dermal sarcomas are infrequent neoplastic skin tumors, manifesting in regions of the skin exposed to ultraviolet radiation. Diagnosing the entity can be challenging and therapeutic options are limited. We analyzed 20 samples of normal healthy skin tissue (SNT), 27 malignant melanomas (MM), 20 cutaneous squamous cell carcinomas (cSCC), and 24 pleomorphic dermal sarcomas (PDS) using mass spectrometry. We explored a potential cell of origin in PDS and validated our findings using publicly available single-cell sequencing data. By correlating tumor purity (TP), inferred by both RNA- and DNA-sequencing, to protein abundance, we found that fibroblasts shared most of the proteins correlating to TP. This observation could also be made using publicly available SNT single cell sequencing data. Moreover, we studied relevant pathways of receptor/ligand (R/L) interactions. Analysis of R/L interactions revealed distinct pathways in cSCC, MM and PDS, with a prominent role of PDGFRB-PDGFD R/L interactions and upregulation of PI3K/AKT signaling pathway. By studying differentially expressed proteins between cSCC and PDS, markers such as MAP1B could differentiate between these two entities. To this end, we studied proteins associated with immunosuppression in PDS, uncovering that immunologically cold PDS cases shared a "negative regulation of interferon-gamma signaling" according to overrepresentation analysis.
Collapse
Affiliation(s)
- Sebastian Klein
- Department of Hematology and Stem Cell Transplantation, University Duisburg-Essen, University Hospital Essen, Hufelandstraße 55, 45147, Essen, Germany.
- West German Cancer Center Network, Partner Site Essen, Essen, Germany.
- Institute for Pathology and Neuropathology, University Hospital and Medical Faculty Cologne, Kerpenerstr 62, 50937, Cologne, Germany.
| | - Yuri Tolkach
- Institute for Pathology and Neuropathology, University Hospital and Medical Faculty Cologne, Kerpenerstr 62, 50937, Cologne, Germany
| | - Hans Christian Reinhardt
- Department of Hematology and Stem Cell Transplantation, University Duisburg-Essen, University Hospital Essen, Hufelandstraße 55, 45147, Essen, Germany
- West German Cancer Center Network, Partner Site Essen, Essen, Germany
| | - Reinhard Buettner
- Institute for Pathology and Neuropathology, University Hospital and Medical Faculty Cologne, Kerpenerstr 62, 50937, Cologne, Germany
- Center for Molecular Medicine Cologne, Cologne, Germany
| | - Alexander Quaas
- Institute for Pathology and Neuropathology, University Hospital and Medical Faculty Cologne, Kerpenerstr 62, 50937, Cologne, Germany
| | - Doris Helbig
- Department of Dermatology, Medical Faculty, University Hospital Cologne, Cologne, Germany
| |
Collapse
|
3
|
Wang X, Qin S, Ren Y, Feng B, Liu J, Yu K, Yu H, Liao Z, Mei H, Tan M. Gpnmb silencing protects against hyperoxia-induced acute lung injury by inhibition of mitochondrial-mediated apoptosis. Hum Exp Toxicol 2024; 43:9603271231222873. [PMID: 38166464 DOI: 10.1177/09603271231222873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Background: Hyperoxia-induced acute lung injury (HALI) is a complication to ventilation in patients with respiratory failure, which can lead to acute inflammatory lung injury and chronic lung disease. The aim of this study was to integrate bioinformatics analysis to identify key genes associated with HALI and validate their role in H2O2-induced cell injury model.Methods: Integrated bioinformatics analysis was performed to screen vital genes involved in hyperoxia-induced lung injury (HLI). CCK-8 and flow cytometry assays were performed to assess cell viability and apoptosis. Western blotting was performed to assess protein expression.Results: In this study, glycoprotein non-metastatic melanoma protein B (Gpnmb) was identified as a key gene in HLI by integrated bioinformatics analysis of 4 Gene Expression Omnibus (GEO) datasets (GSE97804, GSE51039, GSE76301 and GSE87350). Knockdown of Gpnmb increased cell viability and decreased apoptosis in H2O2-treated MLE-12 cells, suggesting that Gpnmb was a proapoptotic gene during HALI. Western blotting results showed that knockdown of Gpnmb reduced the expression of Bcl-2 associated X (BAX) and cleaved-caspase 3, and increased the expression of Bcl-2 in H2O2 treated MLE-12 cells. Furthermore, Gpnmb knockdown could significantly reduce reactive oxygen species (ROS) generation and improve the mitochondrial membrane potential.Conclusion: The present study showed that knockdown of Gpnmb may protect against HLI by repressing mitochondrial-mediated apoptosis.
Collapse
Affiliation(s)
- Xiaoqin Wang
- Department of Pediatrics, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Song Qin
- Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yingcong Ren
- Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Banghai Feng
- Department of Critical Care Medicine, Zunyi Hospital of Traditional Chinese Medicine, Zunyi, China
| | - Junya Liu
- Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Kun Yu
- Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Hong Yu
- Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Zhenliang Liao
- Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Hong Mei
- Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Mei Tan
- Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Department of Pediatrics, Guizhou Children's Hospital, Zunyi, China
- Collaborative Innovation Center for Tissue Injury Repair and Regenerative Medicine of Zunyi Medical University, Zunyi, China
| |
Collapse
|
4
|
Kawasaki Y, Suzuki H, Suzuki S, Yamada T, Suzuki M, Ito A, Hatakeyama H, Miura M, Omori Y. GPNMB-Positive Cells in Head and Neck Squamous Cell Carcinoma-Their Roles in Cancer Stemness, Therapy Resistance, and Metastasis. Pathol Oncol Res 2022; 28:1610450. [PMID: 36061142 PMCID: PMC9437205 DOI: 10.3389/pore.2022.1610450] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 07/20/2022] [Indexed: 11/16/2022]
Abstract
Objective: Despite the use of surgical and chemoradiation therapies, head and neck squamous cell carcinoma (HNSCC) still has a poor prognosis. Immune checkpoint inhibitors have been shown to prolong life expectancy but have limited efficacy. Glycoprotein nonmetastatic melanoma protein B (GPNMB) has received significant attention in breast cancer treatment, in which it has been associated with cancer stem cells (CSCs) and epithelial-mesenchymal transition (EMT); however, the function of GPNMB in HNSCC is completely unknown. This study aimed to clarify the characteristics of GPNMB-positive cells in vitro and their association with the prognosis by immunostaining clinical specimens. Methods: We examined the sphere formation, invasion, and migration ability of GPNMB-positive cells in four HNSCC cell lines in vitro. We also immunostained biopsy specimens with GPNMB from 174 patients with HNSCC diagnosed, treated, and followed-up in our institution to evaluate overall survival and progression-free survival. Results: GPNMB-positive cells showed enhanced sphere formation, invasion, and migration, suggesting that they could have CSC characteristics and the ability to induce EMT, as reported for breast cancer. Clinical specimens showed that overall survival was 39.4% and 57.8% (p = 0.045) and that progression-free survival was 27.6% and 51.6% (p = 0.013) for the high-expression and the low-expression groups, respectively, indicating poor prognosis for the high GPNMB group. The high GPNMB group was also more resistant to chemoradiation and bioradiotherapy. GPNMB was more highly expressed in metastatic lymph nodes than in the primary tumor. Conclusion: GPNMB-positive cells might have CSC characteristics and induce EMT. Detailed functional analyses of GPNMB in HNSCC and the establishment of therapies targeting GPNMB will lead to improved prognoses.
Collapse
Affiliation(s)
- Yohei Kawasaki
- Department of Otorhinolaryngology and Head-and-Neck Surgery, Akita University Graduate School of Medicine, Akita, Japan
| | - Hitomi Suzuki
- Department of Otorhinolaryngology and Head-and-Neck Surgery, Akita University Graduate School of Medicine, Akita, Japan
- Department of Molecular and Tumour Pathology, Akita University Graduate School of Medicine, Akita, Japan
| | - Shinsuke Suzuki
- Department of Otorhinolaryngology and Head-and-Neck Surgery, Akita University Graduate School of Medicine, Akita, Japan
| | - Takechiyo Yamada
- Department of Otorhinolaryngology and Head-and-Neck Surgery, Akita University Graduate School of Medicine, Akita, Japan
| | - Maya Suzuki
- Department of Molecular and Tumour Pathology, Akita University Graduate School of Medicine, Akita, Japan
| | - Ayumi Ito
- Department of Molecular and Tumour Pathology, Akita University Graduate School of Medicine, Akita, Japan
| | - Haruka Hatakeyama
- Department of Molecular and Tumour Pathology, Akita University Graduate School of Medicine, Akita, Japan
| | - Masahito Miura
- Department of Molecular and Tumour Pathology, Akita University Graduate School of Medicine, Akita, Japan
| | - Yasufumi Omori
- Department of Molecular and Tumour Pathology, Akita University Graduate School of Medicine, Akita, Japan
| |
Collapse
|
5
|
Antibody–Drug Conjugates as an Emerging Therapy in Oncodermatology. Cancers (Basel) 2022; 14:cancers14030778. [PMID: 35159045 PMCID: PMC8833781 DOI: 10.3390/cancers14030778] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/28/2022] [Accepted: 02/01/2022] [Indexed: 12/10/2022] Open
Abstract
Simple Summary Currently, the therapeutic arsenal to fight cancers is extensive. Among these, antibody–drug conjugates (ADCs) consist in an antibody linked to a cytotoxic agent, allowing a specific delivery to tumor cells. ADCs are an emerging class of therapeutics, with twelve FDA- and EMA-approved drugs for hematological and solid cancers. In recent years, tremendous progress has been observed in therapeutic approaches for advanced skin cancer patients. ADCs appear as an emerging therapeutic option in oncodermatology. After providing an overview of ADC design and development, the goal of this article is to review the potential ADC indications in the field of oncodermatology. Abstract Antibody–drug conjugates (ADCs) are an emerging class of therapeutics, with twelve FDA- and EMA-approved drugs for hematological and solid cancers. Such drugs consist in a monoclonal antibody linked to a cytotoxic agent, allowing a specific cytotoxicity to tumor cells. In recent years, tremendous progress has been observed in therapeutic approaches for advanced skin cancer patients. In this regard, targeted therapies (e.g., kinase inhibitors) or immune checkpoint-blocking antibodies outperformed conventional chemotherapy, with proven benefit to survival. Nevertheless, primary and acquired resistances as well as adverse events remain limitations of these therapies. Therefore, ADCs appear as an emerging therapeutic option in oncodermatology. After providing an overview of ADC design and development, the goal of this article is to review the potential ADC indications in the field of oncodermatology.
Collapse
|
6
|
Wang Z, Ran X, Qian S, Hou H, Dong M, Wu S, Ding M, Zhang Y, Zhang X, Zhang M, Chen Q. GPNMB promotes the progression of diffuse large B cell lymphoma via YAP1-mediated activation of the Wnt/β-catenin signaling pathway. Arch Biochem Biophys 2021; 710:108998. [PMID: 34280359 DOI: 10.1016/j.abb.2021.108998] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 06/28/2021] [Accepted: 07/15/2021] [Indexed: 01/06/2023]
Abstract
Glycoprotein non-metastatic melanoma protein B (GPNMB) has been confirmed to be related to the pathogenesis of tumors. However, the potential impact of GPNMB on the progression of diffuse large B-cell lymphoma (DLBCL) is unclear. In this study, the expression levels of GPNMB and Yes-associated protein (YAP) were analyzed using qRT-PCT and Western blot assay. Cell counting kit-8, EdU, and flow cytometry assays were used to detect the proliferation and apoptosis of DLBCL cells. A nude mice xenograft model was established for in vivo research. Results showed that GPNMB and YAP1 were upregulated in DLBCL cell lines. Knockdown of GPNMB inhibited cell proliferation and promoted apoptosis in DLBCL cells. Additionally, the expression levels of YAP1 and the downstream effector of Hippo pathway (c-myc) were markedly decreased when GPNMB was knocked down. Moreover, knockdown of GPNMB inhibited the nuclear translocation of β-catenin protein, which could be abolished by YAP1 overexpression. Simultaneously, the anti-proliferative and pro-apoptotic effects of GPNMB knockdown could be reversed by YAP1 overexpression or LiCl (the activator of Wnt/β-catenin pathway). Furthermore, the mice xenograft model confirmed that inhibition of GPNMB restrained the tumorigenesis of DLBCL in vivo. In conclusion, GPNMB could partly activate the Wnt/β-catenin signaling pathway by targeting YAP1, so as to participate in tumorigenesis of DLBCL.
Collapse
Affiliation(s)
- Zeyuan Wang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, China
| | - Xianting Ran
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Zhengzhou University, China
| | - Siyu Qian
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, China
| | - Huting Hou
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, China
| | - Meng Dong
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, China
| | - Shaoxuan Wu
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, China
| | - Mengjie Ding
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, China
| | - Yue Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, China
| | - Xudong Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, China
| | - Mingzhi Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, China
| | - Qingjiang Chen
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, China.
| |
Collapse
|
7
|
A Phase II Study of Glembatumumab Vedotin for Metastatic Uveal Melanoma. Cancers (Basel) 2020; 12:cancers12082270. [PMID: 32823698 PMCID: PMC7465139 DOI: 10.3390/cancers12082270] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/10/2020] [Accepted: 08/11/2020] [Indexed: 12/13/2022] Open
Abstract
Glembatumumab vedotin (CDX-011, GV) is a fully human Immunoglobulin G2 monoclonal antibody directed against glycoprotein NMB coupled via a peptide linker to monomethyl auristatin E (MMAE), a potent cytotoxic microtubule inhibitor. This phase II study evaluated the overall response rate and safety of GV, glycoprotein NMB (GPNMB) expression, and survival in patients with metastatic uveal melanoma. Eligible patients with metastatic uveal melanoma who had not previously been treated with chemotherapy received GV 1.9 mg/kg every three weeks. The primary endpoint was the objective response rate (ORR). Secondary endpoints included GPNMB expression, progression-free survival (PFS), overall survival (OS), and toxicity analysis. GPNMB expression was assessed pre- and post-treatment via immunohistochemistry for patients with available tumor tissue. Out of 35 patients who received treatment, two patients had confirmed partial responses (PRs; 6%), and 18 patients had a stable disease (SD; 51%) as the best objective response. 38% of the patients had stable disease >100 days. The grade 3 or 4 toxicities that occurred in two or more patients were neutropenia, rash, hyponatremia, and vomiting. The median progression-free survival was 3.1 months (95% CI: 1.5–5.6), and the median overall survival was 11.9 months (95% CI 9.0–16.9) in the evaluable study population. GV is well-tolerated in metastatic uveal melanoma. The disease control rate was 57% despite a low objective response rate. Exploratory immune correlation studies are underway to provide insight into target saturation, combination strategies, and antigen release.
Collapse
|
8
|
Kaštelan S, Antunica AG, Oresković LB, Pelčić G, Kasun E, Hat K. Immunotherapy for Uveal Melanoma - Current Knowledge and Perspectives. Curr Med Chem 2020; 27:1350-1366. [DOI: 10.2174/0929867326666190704141444] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 06/09/2019] [Accepted: 06/14/2019] [Indexed: 12/17/2022]
Abstract
Uveal melanoma is the most prevalent primary intraocular tumour in adults with
the incidence between five and six cases per million people in the United States and Europe.
The prognosis of patients with uveal melanoma is unfavourable with a 5-year survival rate of
50-70% despite significant advances in local tumour treatment using radiotherapy or surgical
resection. Approximately 50% of the patients develop metastases within 15 years from initial
diagnosis, mostly in the liver. The median survival rate after the onset of metastases is 6
months. Potential treatment options for metastatic uveal melanoma are chemotherapy, targeted
therapy, and immunotherapy but no method showed satisfactory results. Immunotherapy
with checkpoint inhibition showed promising results in the treatment of cutaneous melanoma;
however, it did not appear to be equally effective with uveal melanoma. This may be
due to differences in mutational burden, expression of neoantigens between these two types of
tumour, immunosuppressive tumour microenvironment, and low immunogenicity and immune
privilege of uveal melanoma. Considering the disappointing results of treatment with
anti-CTLA-4 and PD-1/PD-L1 blockade in patients with advanced uveal melanoma several
new forms of therapies are being developed. This may include immunotherapy with
IMCgp100, glembatumumab vedotin and the infusion of autologous TILs, targeted therapy
with selective MEK inhibitors, epigenetic therapy, and nanotherapy. Better insight into the
molecular and genetic profile of uveal melanoma will facilitate detection of new prognostic
biomarkers and thus enable a better modification of the existing immunotherapy methods and
development of new forms of treatment specifically designed for uveal melanoma patients.
Collapse
Affiliation(s)
- Snježana Kaštelan
- Department of Ophthalmology, University Hospital Dubrava, Zagreb, Croatia
| | | | | | - Goran Pelčić
- Department of Ophthalmology, Faculty of Medicine, University of Rijeka and Clinical Hospital Center Rijeka, Rijeka, Croatia
| | - Ema Kasun
- School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Koraljka Hat
- Department of Maxillofacial Surgery, University Hospital Dubrava, Zagreb, Croatia
| |
Collapse
|
9
|
Biswas KB, Takahashi A, Mizutani Y, Takayama S, Ishitsuka A, Yang L, Yang F, Iddamalgoda A, Katayama I, Inoue S. GPNMB is expressed in human epidermal keratinocytes but disappears in the vitiligo lesional skin. Sci Rep 2020; 10:4930. [PMID: 32188902 PMCID: PMC7080742 DOI: 10.1038/s41598-020-61931-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 03/03/2020] [Indexed: 12/11/2022] Open
Abstract
GPNMB is involved in multiple cellular functions including cell adhesion, stress protection and stem cell maintenance. In skin, melanocyte-GPNMB is suggested to mediate pigmentation through melanosome formation, but details of keratinocyte-GPNMB have yet to be well understood. We confirmed the expression of GPNMB in normal human epidermal keratinocytes (NHEKs) by reducing the expression using siRNA. A higher calcium concentration of over 1.25 mM decreased the GPNMB expression. Histological staining showed that GPNMB was expressed in the basal layer of normal skins but completely absent in vitiligo skins. The normal expression of GPNMB in nevus depigmentosus skin suggested that lack of GPNMB is characteristic of vitiligo lesional skins. IFN-γ and IL-17A, two cytokines with possible causal roles in vitiligo development, inhibited GPNMB expression in vitro. Approximately 4–8% of the total GPNMB expressed on NHEKs were released possibly by ADAM 10 as a soluble form, but the process of release was not affected by the cytokines. The suppressive effect of IFN-γ on GPNMB was partially via IFN-γ/JAK2/STAT1 signaling axis. Decreased GPNMB expression in keratinocytes may affect melanocyte maintenance or survival against oxidative stress although further studies are needed. These findings indicate a new target for vitiligo treatment, focusing on the novel role of IFN-γ and IL-17 in downregulating keratinocyte-GPNMB.
Collapse
Affiliation(s)
- Kazal Boron Biswas
- Department of Cosmetic Health Science, Gifu Pharmaceutical University, Gifu, Japan.,Department of Research and Development, Ichimaru Pharcos Co. Ltd., Motosu, Gifu, Japan
| | - Aya Takahashi
- Department of Dermatology, Osaka University School of Medicine, Osaka, Japan
| | - Yukiko Mizutani
- Department of Cosmetic Health Science, Gifu Pharmaceutical University, Gifu, Japan
| | - Satoru Takayama
- Department of Cosmetic Health Science, Gifu Pharmaceutical University, Gifu, Japan.,Department of Research and Development, Ichimaru Pharcos Co. Ltd., Motosu, Gifu, Japan
| | - Asako Ishitsuka
- Department of Cosmetic Health Science, Gifu Pharmaceutical University, Gifu, Japan
| | - Lingli Yang
- Department of Dermatology, Osaka University School of Medicine, Osaka, Japan
| | - Fei Yang
- Department of Dermatology, Osaka University School of Medicine, Osaka, Japan
| | - Arunasiri Iddamalgoda
- Department of Cosmetic Health Science, Gifu Pharmaceutical University, Gifu, Japan.,Department of Research and Development, Ichimaru Pharcos Co. Ltd., Motosu, Gifu, Japan
| | - Ichiro Katayama
- Department of Dermatology, Osaka University School of Medicine, Osaka, Japan.
| | - Shintaro Inoue
- Department of Cosmetic Health Science, Gifu Pharmaceutical University, Gifu, Japan.
| |
Collapse
|
10
|
|
11
|
Ren F, Zhao Q, Liu B, Sun X, Tang Y, Huang H, Mei L, Yu Y, Mo H, Dong H, Zheng P, Mi Y. Transcriptome analysis reveals GPNMB as a potential therapeutic target for gastric cancer. J Cell Physiol 2019; 235:2738-2752. [PMID: 31498430 DOI: 10.1002/jcp.29177] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 08/23/2019] [Indexed: 12/31/2022]
Abstract
Gastric cancer has the fifth highest incidence of disease and is the third leading cause of cancer-associated mortality in the world. The etiology of gastric cancer is complex and needs to be fully elucidated. Thus, it is necessary to explore potential pathogenic genes and pathways that contribute to gastric cancer. Gene expression profiles of the GSE33335 and GSE54129 datasets were downloaded from the Gene Expression Omnibus database. The differentially expressed genes (DEGs) were compared and identified using R software. The DEGs were then subjected to gene set enrichment analysis and Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses. Survival analyses based on The Cancer Genome Atlas database were used to further screen the essential DEGs. A knockdown assay was performed to determine the function of the candidate gene in gastric cancer. Finally, the association between the candidate gene and immune-related genes was investigated. We found that GPNMB serves as an essential gene, with a high expression level, and predicts a worse outcome of gastric cancer. Knockdown of GPNMB inhibited gastric cancer cell proliferation and migration. In addition, GPNMB may augment the immunosuppressive ability of gastric cancer by recruiting immunosuppressive cells and promoting immune cell exhaustion through PI3K/AKT/CCL4 signaling axis. Collectively, these data suggest that GPNMB acts as an important positive mediator of tumor progression in gastric cancer, and GPNMB could exert multimodality modulation of gastric cancer-mediated immune suppression.
Collapse
Affiliation(s)
- Feifei Ren
- Henan Key Laboratory for Helicobacter pylori & Microbiota and GI cancer, Marshall Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Department of Gastroenterology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Qitai Zhao
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Bin Liu
- Henan Key Laboratory for Helicobacter pylori & Microbiota and GI cancer, Marshall Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Department of Gastroenterology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xiangdong Sun
- Henan Key Laboratory for Helicobacter pylori & Microbiota and GI cancer, Marshall Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Department of Gastroenterology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Youcai Tang
- Henan Key Laboratory for Helicobacter pylori & Microbiota and GI cancer, Marshall Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Department of Gastroenterology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Department of Sciences and Education and Pediatrics, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Huang Huang
- Henan Key Laboratory for Helicobacter pylori & Microbiota and GI cancer, Marshall Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Department of Gastroenterology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Lu Mei
- Henan Key Laboratory for Helicobacter pylori & Microbiota and GI cancer, Marshall Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Department of Gastroenterology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yong Yu
- Henan Key Laboratory for Helicobacter pylori & Microbiota and GI cancer, Marshall Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Department of Gastroenterology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Hui Mo
- Henan Key Laboratory for Helicobacter pylori & Microbiota and GI cancer, Marshall Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Department of Gastroenterology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Haibin Dong
- Henan Key Laboratory for Helicobacter pylori & Microbiota and GI cancer, Marshall Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Department of Gastroenterology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Pengyuan Zheng
- Henan Key Laboratory for Helicobacter pylori & Microbiota and GI cancer, Marshall Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Department of Gastroenterology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yang Mi
- Henan Key Laboratory for Helicobacter pylori & Microbiota and GI cancer, Marshall Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Department of Gastroenterology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
12
|
Wang L, Li NN, Lu ZJ, Li JY, Peng JX, Duan LR, Peng R. Association of three candidate genetic variants in ACMSD/TMEM163, GPNMB and BCKDK /STX1B with sporadic Parkinson's disease in Han Chinese. Neurosci Lett 2019; 703:45-48. [PMID: 30880162 DOI: 10.1016/j.neulet.2019.03.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 02/18/2019] [Accepted: 03/12/2019] [Indexed: 02/05/2023]
Abstract
Large-scale meta-analyses of genome-wide association studies have identified that polymorphisms ACMSD/TMEM163 rs6430538, GPNMB rs199347 and BCKDK /STX1B rs14235 to be the risk loci for Parkinson's disease (PD) in a Caucasian population. However, the role of these three polymorphisms in a Han Chinese population from mainland China still remains to be clarified. We conducted a large sample study to examine genetic associations of rs6430538, rs199347 and rs14235 with PD in a Han Chinese population of 989 sporadic PD patients and 1058 healthy controls. All subjects were genotyped for these loci using the Sequenom iPLEX Assay. In addition, we conducted further stratified analysis according to age at onset and compared the clinical characteristics between minor allele carriers and non-carriers for each locus. However, no significant differences were found in genotype and allele frequency distribution between PD patients and controls for the three loci, even after being stratified by age at onset. Moreover, we demonstrated that minor allele carriers cannot be distinguished from non-carriers based on their clinical features. Our study is the first to demonstrate that ACMSD/TMEM163 rs6430538, GPNMB rs199347 and BCKDK /STX1B rs14235 do not confer a significant risk for sporadic PD in mainland China. Therefore, more replication studies in additional Chinese population and other cohorts and functional studies are warranted to further clarify the role of the three loci in PD susceptibility.
Collapse
Affiliation(s)
- Ling Wang
- Department of Neurology, West China Hospital, Sichuan University, Sichuan, China
| | - Nan-Nan Li
- Department of Neurology, West China Hospital, Sichuan University, Sichuan, China
| | - Zhong-Jiao Lu
- Department of Neurology, West China Hospital, Sichuan University, Sichuan, China
| | - Jun-Ying Li
- Department of Neurology, West China Hospital, Sichuan University, Sichuan, China
| | - Jia-Xin Peng
- Department of Neurology, West China Hospital, Sichuan University, Sichuan, China
| | - Li-Ren Duan
- Department of Neurology, West China Hospital, Sichuan University, Sichuan, China
| | - Rong Peng
- Department of Neurology, West China Hospital, Sichuan University, Sichuan, China.
| |
Collapse
|
13
|
Kumari K, Das B, Adhya AK, Rath AK, Mishra SK. Genome-wide expression analysis reveals six contravened targets of EZH2 associated with breast cancer patient survival. Sci Rep 2019; 9:1974. [PMID: 30760814 PMCID: PMC6374476 DOI: 10.1038/s41598-019-39122-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 10/27/2018] [Indexed: 01/31/2023] Open
Abstract
Several pioneering work have established that apart from genetic alterations, epigenetic modifications contribute significantly in tumor progression. Remarkable role of EZH2 in cancer highlights the importance of identifying its targets. Although much emphasis has been placed in recent years in designing drugs and inhibitors targeting EZH2, less effort has been given in exploring its existing targets that will help in understanding the oncogenic role of EZH2 in turn which may provide a more stringent method of targeting EZH2. In the present study, we validated six direct targets of EZH2 that are GPNMB, PMEPA1, CoL5A1, VGLL4, POMT2 and SUMF1 associated with cancer related pathways. Upon EZH2 knockdown, more than two fold increase in the target gene expression was evident. CHIP-qPCR performed in both MCF-7 and MDA-MDA-231 confirmed the in-vivo binding of EZH2 on its identified target. Thirty invasive breast carcinoma cases with their adjacent normal tissues were included in the study. Immunohistochemistry in primary breast tumor tissue array showed tumor dependent expression of EZH2. Array of MERAV expression database revealed the strength of association of EZH2 with its target genes. Real time PCR performed with RNA extracted from breast tumor tissues further authenticated the existing negative correlation between EZH2 and its target genes. Pearson correlation coefficient & statistical significance computed using the matrix provided in the database strengthened the negative correlation between identified target genes and EZH2. KM plotter analysis showed improved relapse-free survival with increased expression of PMEPA1, POMT2, VGLL4 and SUMF1 in breast cancer patients indicating their therapeutic potential. While investigating the relevance of these target genes, different mutations of them were found in breast cancer patients. Seeking the clinical relevance of our study, following our recent publication that reports the role of EZH2 in nicotine-mediated breast cancer development and progression, we observed significant reduced expression of SUMF1 in breast cancer patient samples with smoking history in comparison to never-smoked patient samples.
Collapse
Affiliation(s)
- Kanchan Kumari
- Cancer Biology Laboratory, Department of Cancer Biology, Institute of Life Sciences, Bhubaneswar, Odisha, India.,Utkal University, Bhubaneswar, Odisha, India
| | - Biswajit Das
- Tumor Microenvironment and Animal Models Laboratory, Department of Translational Research, Institute of Life Sciences, Bhubaneswar, Odisha, India.,Manipal University, Manipal, Karnataka, India
| | - Amit K Adhya
- Department of Pathology, AIIMS, Bhubaneswar, Odisha, India
| | - Arabinda K Rath
- Hemalata Hospitals and Research Centre, Chandrashekharpur, Bhubaneswar, Odisha, India
| | - Sandip K Mishra
- Cancer Biology Laboratory, Department of Cancer Biology, Institute of Life Sciences, Bhubaneswar, Odisha, India.
| |
Collapse
|
14
|
Hüttenrauch M, Ogorek I, Klafki H, Otto M, Stadelmann C, Weggen S, Wiltfang J, Wirths O. Glycoprotein NMB: a novel Alzheimer's disease associated marker expressed in a subset of activated microglia. Acta Neuropathol Commun 2018; 6:108. [PMID: 30340518 PMCID: PMC6194687 DOI: 10.1186/s40478-018-0612-3] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 10/02/2018] [Indexed: 12/12/2022] Open
Abstract
Alzheimer’s disease (AD) is an irreversible, devastating neurodegenerative brain disorder characterized by the loss of neurons and subsequent cognitive decline. Despite considerable progress in the understanding of the pathophysiology of AD, the precise molecular mechanisms that cause the disease remain elusive. By now, there is ample evidence that activated microglia have a critical role in the initiation and progression of AD. The present study describes the identification of Glycoprotein nonmetastatic melanoma protein B (GPNMB) as a novel AD-related factor in both transgenic mice and sporadic AD patients by expression profiling, immunohistochemistry and ELISA measurements. We show that GPNMB levels increase in an age-dependent manner in transgenic AD models showing profound cerebral neuron loss and demonstrate that GPNMB co-localizes with a distinct population of IBA1-positive microglia cells that cluster around amyloid plaques. Our data further indicate that GPNMB is part of a microglia activation state that is only present under neurodegenerative conditions and that is characterized by the up-regulation of a subset of genes including TREM2, APOE and CST7. In agreement, we provide in vitro evidence that soluble Aβ has a direct effect on GPNMB expression in an immortalized microglia cell line. Importantly, we show for the first time that GPNMB is elevated in brain samples and cerebrospinal fluid (CSF) of sporadic AD patients when compared to non-demented controls. The current findings indicate that GPNMB represents a novel disease-associated marker that appears to play a role in the neuroinflammatory response of AD.
Collapse
|
15
|
Sacco JJ, Kalirai H, Kenyani J, Figueiredo CR, Coulson JM, Coupland SE. Recent breakthroughs in metastatic uveal melanoma: a cause for optimism? Future Oncol 2018; 14:1335-1338. [PMID: 29741103 DOI: 10.2217/fon-2018-0116] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Joseph J Sacco
- Liverpool Ocular Oncology Research Group, Department of Molecular & Clinical Cancer Medicine, Institute of Translational Medicine, University of Liverpool, UK.,Department of Medical Oncology, Clatterbridge Cancer Centre, Bebington, UK
| | - Helen Kalirai
- Liverpool Ocular Oncology Research Group, Department of Molecular & Clinical Cancer Medicine, Institute of Translational Medicine, University of Liverpool, UK
| | - Jenna Kenyani
- Liverpool Ocular Oncology Research Group, Department of Molecular & Clinical Cancer Medicine, Institute of Translational Medicine, University of Liverpool, UK
| | - Carlos R Figueiredo
- Liverpool Ocular Oncology Research Group, Department of Molecular & Clinical Cancer Medicine, Institute of Translational Medicine, University of Liverpool, UK
| | - Judy M Coulson
- Liverpool Ocular Oncology Research Group, Department of Molecular & Clinical Cancer Medicine, Institute of Translational Medicine, University of Liverpool, UK.,Department of Cellular & Molecular Physiology, Institute of Translational Medicine, University of Liverpool, UK
| | - Sarah E Coupland
- Liverpool Ocular Oncology Research Group, Department of Molecular & Clinical Cancer Medicine, Institute of Translational Medicine, University of Liverpool, UK.,Department of Cellular Pathology, Royal Liverpool University Hospital, Liverpool, UK
| |
Collapse
|
16
|
Overexpression of GPNMB predicts an unfavorable outcome of epithelial ovarian cancer. Arch Gynecol Obstet 2018; 297:1235-1244. [PMID: 29428978 DOI: 10.1007/s00404-018-4699-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 01/30/2018] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Glycoprotein non-metastatic protein B (GPNMB) is a transmembrane glycoprotein that is expressed at higher levels in several malignant human tissues than those in matched normal tissues. Thus, GPNMB may serve as an attractive therapeutic target of cancer treatment. In this study, the prognostic value of GPNMB expression was examined in tumors derived from a cohort of patients with epithelial ovarian cancer (EOC). METHODS GPNMB expression in matched formalin-fixed and paraffin-embedded tissue samples was evaluated by immunohistochemistry (IHC), whereas GPNMB mRNA expression in fresh-frozen biopsy tissues was detected using real-time quantitative PCR (qPCR). Meanwhile, the correlations of GPNMB expression with the clinical characteristics of EOC were assessed. Besides, survival data were analysed using Kaplan-Meier and Cox regression analyses, respectively. RESULTS GPNMB expression was remarkably upregulated in EOC tissues compared with that in normal ovarian controls at both mRNA and protein levels. In addition, abundant GPNMB expression in EOC was correlated with the International Federation of Gynecology and Obstetrics (FIGO) stage (P < 0.001), residual tumor (P = 0.036), and lymph node metastasis (P = 0.004). Furthermore, results of univariate and multivariate analyses indicated that GPNMB expression level was an independent prognostic factor of the progression-free survival (PFS) and overall survival (OS) (P < 0.001 and P < 0.001, respectively) for EOC patients. CONCLUSION Upregulated GPNMB levels in EOC patients are associated with dismal prognosis. Moreover, findings in the current study indicate that GPNMB is a potentially useful prognostic predictor of the therapeutic approaches for EOC.
Collapse
|
17
|
Abstract
Oncogene-targeted therapy is a major component of precision oncology, and although patients with metastatic melanoma have experienced improved outcomes with this strategy, there are a number of potential therapeutic targets currently under study that may further increase the drug armamentarium for this patient population. In this review, we discuss the landscape of targeted therapies for patients with advanced melanoma, focusing on oncogene mutation-specific targets. In patients with typical BRAF V600-mutant melanoma, combination BRAF and MEK inhibition has surpassed outcomes compared with monotherapy with BRAF or MEK inhibition alone, and current strategies seek to address inevitable resistance mechanisms. For patients with NRAS-mutant melanoma, MEK inhibitor monotherapy and combined MEK and CDK4/6 inhibition are burgeoning strategies; for patients with KIT-mutant melanoma, tyrosine kinase inhibition is being leveraged, and for NF-1-mutant melanoma, mTOR and MEK inhibition is being actively evaluated. In patients with atypical, non-V600 BRAF-mutant melanoma, MEK inhibitor monotherapy is the potential novel targeted approach on the horizon. For advanced uveal melanoma, novel targets such as IMCgp100 and glembatumumab have shown activity in early studies. We review additional strategies that remain in the preclinical and early clinical pipeline, so there is much hope for the future of targeted agents for distinct molecular cohorts of patients with advanced melanoma.
Collapse
|
18
|
Rose AAN, Biondini M, Curiel R, Siegel PM. Targeting GPNMB with glembatumumab vedotin: Current developments and future opportunities for the treatment of cancer. Pharmacol Ther 2017; 179:127-141. [PMID: 28546082 DOI: 10.1016/j.pharmthera.2017.05.010] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
GPNMB has emerged as an immunomodulator and an important positive mediator of tumor progression and metastasis in numerous solid cancers. Tumor intrinsic GPNMB-mediated effects on cellular signaling, coupled with the ability of GPNMB to influence the primary tumor and metastatic microenvironments in a non-cell autonomous fashion, combine to augment malignant cancer phenotypes. In addition, GPNMB is often overexpressed in a variety of cancers, making it an attractive therapeutic target. In this regard, glembatumumab vedotin, an antibody-drug conjugate (ADC) that targets GPNMB, is currently in clinical trials as a single agent in multiple cancers. In this review, we will describe the physiological functions of GPNMB in normal tissues and summarize the processes through which GPNMB augments tumor growth and metastasis. We will review the pre-clinical and clinical development of glembatumumab vedotin, evaluate on-going clinical trials, explore emerging opportunities for this agent in new disease indications and discuss exciting possibilities for this ADC in the context of combination therapies.
Collapse
Affiliation(s)
- April A N Rose
- Goodman Cancer Research Centre, McGill University, Montréal, Québec, Canada; Department of Medicine, McGill University, Montréal, Québec, Canada
| | - Marco Biondini
- Goodman Cancer Research Centre, McGill University, Montréal, Québec, Canada; Department of Medicine, McGill University, Montréal, Québec, Canada
| | | | - Peter M Siegel
- Goodman Cancer Research Centre, McGill University, Montréal, Québec, Canada; Department of Medicine, McGill University, Montréal, Québec, Canada; Department of Biochemistry, McGill University, Montréal, Québec, Canada; Department of Anatomy and Cell Biology, McGill University, Montréal, Québec, Canada; Department of Oncology, McGill University, Montréal, Québec, Canada.
| |
Collapse
|
19
|
Breazzano MP, Milam RW, Batson SA, Johnson DB, Daniels AB. Immunotherapy for Uveal Melanoma. Int Ophthalmol Clin 2017; 57:29-39. [PMID: 27898611 DOI: 10.1097/iio.0000000000000148] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
|
20
|
MiR-508-5p Inhibits the Progression of Glioma by Targeting Glycoprotein Non-metastatic Melanoma B. Neurochem Res 2016; 41:1684-90. [PMID: 27003587 DOI: 10.1007/s11064-016-1884-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 03/03/2016] [Accepted: 03/05/2016] [Indexed: 10/22/2022]
Abstract
Glioma is a severe and highly lethal brain cancer, a malignancy largely stemming from growing in a relatively restrained area of the brain. Hence, the understanding of the molecular regulation of the growth of glioma is critical for improving its treatment. MicroRNA has become a hotspot in research on diseases, especially in the initiation and progression of different types of cancer. However, the molecular function and mechanisms of miR-508-5p in gliomagenesis are still unclear. The aim of this study was to investigate miR-508-5p expression in glioma and determine its effects on proliferation. miR-508-5p expression levels, both in glioma cell lines and in tissue, were significantly lower than in a normal human astrocyte cell line or adjacent tissues. Cell growth was analyzed using a MTT assay and over-expression of miR-508-5p was found to decrease glioma cell growth. Moreover, a bioinformatic analysis was performed, showing that glycoprotein non-metastatic melanoma B (GPNMB) was a direct target for miR-508-5p in glioma cells. Furthermore, in vivo treatment with miR-508-5p reduced GPNMB protein levels in the tumor. Additionally, overexpression of GPNMB without 3'-UTR partially reversed the cell growth arrest induced by miR-508-5p over-expression in glioma cells. In conclusion, these results indicate that increased expression of miR-508-5p might be related to glioma progression, indicating a potential role of miR-508-5p for clinical therapy.
Collapse
|
21
|
Abstract
Patients with metastatic melanoma have historically had dismal outcomes. The last several years has seen the emergence of effective immune and targeted therapies for metastatic melanoma. Targeted therapies have primarily impacted the 40-50% of patients with BRAF(V600) mutated melanoma. The remainder of patients with advanced melanoma harbor a wide spectrum of mutations other than BRAF(V600) that are associated with unique pathophysiological, prognostic, and therapeutic implications. The treatment of this subset of patients is a challenging problem. In recent years, preclinical and early clinical studies have suggested that inhibitors of mitogen activated protein kinase (MAPK) pathway and parallel signaling networks may have activity in treatment of BRAF(V600) wild-type (WT) melanoma. In this review, we will discuss available and developing therapies for BRAF WT patients with metastatic melanoma, particularly focusing on molecular targeted options for various genetically defined melanoma subsets.
Collapse
Affiliation(s)
- Romany A N Johnpulle
- Department of Medicine, Division of Hematology/Oncology, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, 777 Preston Research Building, 2220 Pierce Avenue, Nashville, TN, 37232, USA.
| | - Douglas B Johnson
- Department of Medicine, Division of Hematology/Oncology, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, 777 Preston Research Building, 2220 Pierce Avenue, Nashville, TN, 37232, USA.
| | - Jeffrey A Sosman
- Department of Medicine, Division of Hematology/Oncology, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, 777 Preston Research Building, 2220 Pierce Avenue, Nashville, TN, 37232, USA.
| |
Collapse
|
22
|
Nagahara Y, Shimazawa M, Tanaka H, Ono Y, Noda Y, Ohuchi K, Tsuruma K, Katsuno M, Sobue G, Hara H. Glycoprotein nonmetastatic melanoma protein B ameliorates skeletal muscle lesions in a SOD1G93A mouse model of amyotrophic lateral sclerosis. J Neurosci Res 2015; 93:1552-66. [PMID: 26140698 DOI: 10.1002/jnr.23619] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 05/26/2015] [Accepted: 06/19/2015] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by progressive loss of motor neurons and subsequent muscular atrophy. The quality of life of patients with ALS is significantly improved by ameliorating muscular symptoms. We previously reported that glycoprotein nonmetastatic melanoma protein B (GPNMB; osteoactivin) might serve as a target for ALS therapy. In the present study, superoxide dismutase 1/glycine residue 93 changed to alanine (SOD1(G93A) ) transgenic mice were used as a model of ALS. Expression of the C-terminal fragment of GPNMB was increased in the skeletal muscles of SOD1(G93A) mice and patients with sporadic ALS. SOD1(G93A) /GPNMB transgenic mice were generated to determine whether GPNMB expression ameliorates muscular symptoms. The weight and cross-sectional area of the gastrocnemius muscle, number and cross-sectional area of myofibers, and denervation of neuromuscular junctions were ameliorated in SOD1(G93A) /GPNMB vs. SOD1(G93A) mice. Furthermore, direct injection of a GPNMB expression plasmid into the gastrocnemius muscle of SOD1(G93A) mice increased the numbers of myofibers and prevented myofiber atrophy. These findings suggest that GPNMB directly affects skeletal muscle and prevents muscular pathology in SOD1(G93A) mice and may therefore serve as a target for therapy of ALS.
Collapse
Affiliation(s)
- Yuki Nagahara
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| | - Masamitsu Shimazawa
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| | - Hirotaka Tanaka
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| | - Yoko Ono
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| | - Yasuhiro Noda
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| | - Kazuki Ohuchi
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| | - Kazuhiro Tsuruma
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| | - Masahisa Katsuno
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Gen Sobue
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hideaki Hara
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| |
Collapse
|
23
|
Vaklavas C, Forero A. Management of metastatic breast cancer with second-generation antibody-drug conjugates: focus on glembatumumab vedotin (CDX-011, CR011-vcMMAE). BioDrugs 2015; 28:253-63. [PMID: 24496926 DOI: 10.1007/s40259-014-0085-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Exploiting the highly targeted nature of monoclonal antibodies to deliver selectively to tumor cells a cytotoxic payload is an attractive concept and the successful precedents of the recent past set the stage for broader applications in the future. Antibody-drug conjugates may currently hold an unprecedented potential; however, there are multiple unique challenges in their development, and the recent successes have come hand in hand with significant technologic advances in their chemistry and manufacturing. Over the years, multiple factors have been identified to affect the pharmacokinetic and pharmacodynamic properties of an antibody-drug conjugate, but many important details remain to be further investigated. These factors pertain to the target antigen, antibody, conjugate, linker, as well as the nature of the malignancy under treatment. Glembatumumab vedotin is an antibody-drug conjugate targeting glycoprotein non-metastatic B (GPNMB) expressed in multiple malignancies, including breast cancer. The expression of this protein has been associated with an aggressive malignant phenotype, invasive growth, angiogenesis, and generation of skeletal metastases. Glembatumumab vedotin is currently in early stages of clinical development in melanoma and breast cancer. Although in unselected patients with metastatic breast cancer glembatumumab vedotin was not superior to other agents, by virtue of its target being frequently and highly expressed in triple-negative breast cancer, its activity was particularly promising in this subset of patients. Results from the clinical studies in breast cancer as well as companion studies in melanoma indicate that a biomarker-informed approach is the optimal pathway for the future development of this drug.
Collapse
Affiliation(s)
- Christos Vaklavas
- Division of Hematology/Clinical Oncology, Department of Medicine, Comprehensive Cancer Center, University of Alabama at Birmingham, NP 2540M, 1802 6th Avenue South, Birmingham, AL, 35294-3300, USA,
| | | |
Collapse
|
24
|
The potential role of the glycoprotein osteoactivin/glycoprotein nonmetastatic melanoma protein B in pancreatic cancer. Pancreas 2015; 44:302-10. [PMID: 25426614 DOI: 10.1097/mpa.0000000000000250] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVES Pancreatic ductal adenocarcinoma is still one of the deadliest solid cancers so the finding of new therapeutic approaches and novel targets are of utmost importance. Glycoprotein nonmetastatic melanoma protein B (GPNMB), initially termed glycoprotein nonmetastatic gene B and also named osteoactivin (OA), is a type 1 transmembrane protein that has been recently found to play a role in cancer cell proliferation, angiogenesis, and invasion. Due to its potential responsibility in cancer aggressiveness, the main objective of this work was to assess the role of GPNMB/OA in human pancreatic cancer. METHODS Using the human pancreatic cancer cell line Panc-1 in vitro, the effects of GPNMB on growth, proliferation, and invasion were tested by BrdU uptake, cell cycle and Annexin V-FITC analysis, RT-PCR, protein expression, and invasion chamber assays. RESULTS Our results showed that GPNMB/OA protein expression prevents cells from apoptosis-enhancing proliferation and represents a novel modulator of the invasion and metastasis in pancreatic cancer cells. CONCLUSIONS Due to its main membrane localization in cancer cells and its role in the aggressiveness of pancreatic cancer, GPNMB/OA could represent a novel targeted therapy for pancreatic cancer being attractive for antibody-based therapies.
Collapse
|
25
|
Torres C, Perales S, Alejandre MJ, Iglesias J, Palomino RJ, Martin M, Caba O, Prados JC, Aránega A, Delgado JR, Irigoyen A, Ortuño FM, Rojas I, Linares A. Serum cytokine profile in patients with pancreatic cancer. Pancreas 2014; 43:1042-1049. [PMID: 24979617 DOI: 10.1097/mpa.0000000000000155] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Pancreatic ductal adenocarcinoma is a deadly disease because of late diagnosis and chemoresistance. We aimed to find a panel of serum cytokines representing diagnostic and predictive biomarkers for pancreatic cancer. METHODS A cytokine antibody array was performed to simultaneously identify 507 cytokines in sera of patients with pancreatic cancer and healthy controls. The nonparametric Mann-Whitney U test was used to pairwise compare the controls, the pretreated patients, and the posttreated patients. Fold changes greater than or equal to 1.5 or less than or equal to 1/1.5 were considered significant. Receiver operating characteristic curves were used to assess the performance of the model. A leave-one-out cross-validation was used for estimating prediction error. RESULTS Comparing the sera of pretreated patients against the control samples, the cytokines fibroblast growth factor 10 (FGF-10/keratinocyte growth factor-2 (KGF-2), chemokine (C-X-C motif) ligand 11 interferon inducible T cell alpha chemokine (I-TAC)/chemokine [C-X-C motif] ligand 11 (CXCL11), oncostatin M (OSM), osteoactivin/glycoprotein nonmetastatic melanoma protein B, and stem cell factor (SCF) were found significantly overexpressed. Besides, the cytokines CD30 ligand/tumor necrosis factor superfamily, member 8 (TNFSF8), chordin-like 2, FGF-10/KGF-2, growth/differentiation factor 15, I-TAC/CXCL11, OSM, and SCF were differentially expressed in response to treatment. CONCLUSIONS We propose a role for FGF-10/KGF-2, I-TAC/CXCL11, OSM, osteoactivin/glycoprotein nonmetastatic melanoma protein B, and SCF as novel diagnostic biomarkers. CD30 ligand/TNFSF8, chordin-like 2, FGF-10/KGF-2, growth/differentiation factor 15, I-TAC/CXCL11, OSM, and SCF might represent as predictive biomarkers for gemcitabine and erlotinib response of patients with pancreatic cancer.
Collapse
Affiliation(s)
- Carolina Torres
- From the *Department of Biochemistry and Molecular Biology I, Faculty of Sciences, University of Granada; †Department of Molecular Oncology, Pfizer-University of Granada Center for Genomics and Oncological Research, Granada; ‡Department of Health Sciences, University of Jaen, Jaen; §Department of Human Anatomy and Embryology, University of Granada; ∥Oncology Service, Virgen de las Nieves Hospital; and ¶Department of Computer Architecture and Computer Technology, University of Granada, Granada, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Ott PA, Hamid O, Pavlick AC, Kluger H, Kim KB, Boasberg PD, Simantov R, Crowley E, Green JA, Hawthorne T, Davis TA, Sznol M, Hwu P. Phase I/II study of the antibody-drug conjugate glembatumumab vedotin in patients with advanced melanoma. J Clin Oncol 2014; 32:3659-66. [PMID: 25267741 DOI: 10.1200/jco.2013.54.8115] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
PURPOSE The antibody-drug conjugate glembatumumab vedotin links a fully human immunoglobulin G2 monoclonal antibody against the melanoma-related glycoprotein NMB (gpNMB) to the potent cytotoxin monomethyl auristatin E. This study evaluated the safety and activity of glembatumumab vedotin in patients with advanced melanoma. PATIENTS AND METHODS Patients received glembatumumab vedotin every 3 weeks (schedule 1) in a dose escalation and phase II expansion at the maximum-tolerated dose (MTD). Dosing during 2 of 3 weeks (schedule 2) and weekly (schedule 3) was also assessed. The primary end points were safety and pharmacokinetics. The secondary end points included antitumor activity, gpNMB expression, and immunogenicity. RESULTS One hundred seventeen patients were treated using schedule 1 (n = 79), schedule 2 (n = 15), or schedule 3 (n = 23). The MTDs were 1.88, 1.5, and 1.0 mg/kg for schedules 1, 2, and 3, respectively. Grade 3/4 treatment-related toxicities that occurred in two or more patients included rash, neutropenia, fatigue, neuropathy, arthralgia, myalgia, and diarrhea. Three treatment-related deaths (resulting from pneumococcal sepsis, toxic epidermal necrolysis, and renal failure) occurred at doses exceeding the MTDs. In the schedule 1 phase II expansion cohort (n = 34), five patients (15%) had a partial response and eight patients (24%) had stable disease for ≥ 6 months. The objective response rate (ORR) was 2 of 6 (33%) for the schedule 2 MTD and 3 of 12 (25%) for the schedule 3 MTD. Rash was correlated with a greater ORR and improved progression-free survival. CONCLUSION Glembatumumab vedotin is active in advanced melanoma. The schedule 1 MTD (1.88 mg/kg once every 3 weeks) was associated with a promising ORR and was generally well tolerated. More frequent dosing was potentially associated with a greater ORR but increased toxicity.
Collapse
Affiliation(s)
- Patrick A Ott
- Patrick A. Ott and Anna C. Pavlick, New York University Cancer Institute, New York, NY; Omid Hamid and Peter D. Boasberg, The Angeles Clinic and Research Institute, Los Angeles, CA; Harriet Kluger and Mario Sznol, Yale Cancer Center, New Haven, CT; Kevin B. Kim and Patrick Hwu, University of Texas MD Anderson Cancer Center, Houston, TX; Ronit Simantov, Elizabeth Crowley, Jennifer A. Green, Thomas Hawthorne, and Thomas A. Davis, Celldex Therapeutics, Hampton, NJ.
| | - Omid Hamid
- Patrick A. Ott and Anna C. Pavlick, New York University Cancer Institute, New York, NY; Omid Hamid and Peter D. Boasberg, The Angeles Clinic and Research Institute, Los Angeles, CA; Harriet Kluger and Mario Sznol, Yale Cancer Center, New Haven, CT; Kevin B. Kim and Patrick Hwu, University of Texas MD Anderson Cancer Center, Houston, TX; Ronit Simantov, Elizabeth Crowley, Jennifer A. Green, Thomas Hawthorne, and Thomas A. Davis, Celldex Therapeutics, Hampton, NJ
| | - Anna C Pavlick
- Patrick A. Ott and Anna C. Pavlick, New York University Cancer Institute, New York, NY; Omid Hamid and Peter D. Boasberg, The Angeles Clinic and Research Institute, Los Angeles, CA; Harriet Kluger and Mario Sznol, Yale Cancer Center, New Haven, CT; Kevin B. Kim and Patrick Hwu, University of Texas MD Anderson Cancer Center, Houston, TX; Ronit Simantov, Elizabeth Crowley, Jennifer A. Green, Thomas Hawthorne, and Thomas A. Davis, Celldex Therapeutics, Hampton, NJ
| | - Harriet Kluger
- Patrick A. Ott and Anna C. Pavlick, New York University Cancer Institute, New York, NY; Omid Hamid and Peter D. Boasberg, The Angeles Clinic and Research Institute, Los Angeles, CA; Harriet Kluger and Mario Sznol, Yale Cancer Center, New Haven, CT; Kevin B. Kim and Patrick Hwu, University of Texas MD Anderson Cancer Center, Houston, TX; Ronit Simantov, Elizabeth Crowley, Jennifer A. Green, Thomas Hawthorne, and Thomas A. Davis, Celldex Therapeutics, Hampton, NJ
| | - Kevin B Kim
- Patrick A. Ott and Anna C. Pavlick, New York University Cancer Institute, New York, NY; Omid Hamid and Peter D. Boasberg, The Angeles Clinic and Research Institute, Los Angeles, CA; Harriet Kluger and Mario Sznol, Yale Cancer Center, New Haven, CT; Kevin B. Kim and Patrick Hwu, University of Texas MD Anderson Cancer Center, Houston, TX; Ronit Simantov, Elizabeth Crowley, Jennifer A. Green, Thomas Hawthorne, and Thomas A. Davis, Celldex Therapeutics, Hampton, NJ
| | - Peter D Boasberg
- Patrick A. Ott and Anna C. Pavlick, New York University Cancer Institute, New York, NY; Omid Hamid and Peter D. Boasberg, The Angeles Clinic and Research Institute, Los Angeles, CA; Harriet Kluger and Mario Sznol, Yale Cancer Center, New Haven, CT; Kevin B. Kim and Patrick Hwu, University of Texas MD Anderson Cancer Center, Houston, TX; Ronit Simantov, Elizabeth Crowley, Jennifer A. Green, Thomas Hawthorne, and Thomas A. Davis, Celldex Therapeutics, Hampton, NJ
| | - Ronit Simantov
- Patrick A. Ott and Anna C. Pavlick, New York University Cancer Institute, New York, NY; Omid Hamid and Peter D. Boasberg, The Angeles Clinic and Research Institute, Los Angeles, CA; Harriet Kluger and Mario Sznol, Yale Cancer Center, New Haven, CT; Kevin B. Kim and Patrick Hwu, University of Texas MD Anderson Cancer Center, Houston, TX; Ronit Simantov, Elizabeth Crowley, Jennifer A. Green, Thomas Hawthorne, and Thomas A. Davis, Celldex Therapeutics, Hampton, NJ
| | - Elizabeth Crowley
- Patrick A. Ott and Anna C. Pavlick, New York University Cancer Institute, New York, NY; Omid Hamid and Peter D. Boasberg, The Angeles Clinic and Research Institute, Los Angeles, CA; Harriet Kluger and Mario Sznol, Yale Cancer Center, New Haven, CT; Kevin B. Kim and Patrick Hwu, University of Texas MD Anderson Cancer Center, Houston, TX; Ronit Simantov, Elizabeth Crowley, Jennifer A. Green, Thomas Hawthorne, and Thomas A. Davis, Celldex Therapeutics, Hampton, NJ
| | - Jennifer A Green
- Patrick A. Ott and Anna C. Pavlick, New York University Cancer Institute, New York, NY; Omid Hamid and Peter D. Boasberg, The Angeles Clinic and Research Institute, Los Angeles, CA; Harriet Kluger and Mario Sznol, Yale Cancer Center, New Haven, CT; Kevin B. Kim and Patrick Hwu, University of Texas MD Anderson Cancer Center, Houston, TX; Ronit Simantov, Elizabeth Crowley, Jennifer A. Green, Thomas Hawthorne, and Thomas A. Davis, Celldex Therapeutics, Hampton, NJ
| | - Thomas Hawthorne
- Patrick A. Ott and Anna C. Pavlick, New York University Cancer Institute, New York, NY; Omid Hamid and Peter D. Boasberg, The Angeles Clinic and Research Institute, Los Angeles, CA; Harriet Kluger and Mario Sznol, Yale Cancer Center, New Haven, CT; Kevin B. Kim and Patrick Hwu, University of Texas MD Anderson Cancer Center, Houston, TX; Ronit Simantov, Elizabeth Crowley, Jennifer A. Green, Thomas Hawthorne, and Thomas A. Davis, Celldex Therapeutics, Hampton, NJ
| | - Thomas A Davis
- Patrick A. Ott and Anna C. Pavlick, New York University Cancer Institute, New York, NY; Omid Hamid and Peter D. Boasberg, The Angeles Clinic and Research Institute, Los Angeles, CA; Harriet Kluger and Mario Sznol, Yale Cancer Center, New Haven, CT; Kevin B. Kim and Patrick Hwu, University of Texas MD Anderson Cancer Center, Houston, TX; Ronit Simantov, Elizabeth Crowley, Jennifer A. Green, Thomas Hawthorne, and Thomas A. Davis, Celldex Therapeutics, Hampton, NJ
| | - Mario Sznol
- Patrick A. Ott and Anna C. Pavlick, New York University Cancer Institute, New York, NY; Omid Hamid and Peter D. Boasberg, The Angeles Clinic and Research Institute, Los Angeles, CA; Harriet Kluger and Mario Sznol, Yale Cancer Center, New Haven, CT; Kevin B. Kim and Patrick Hwu, University of Texas MD Anderson Cancer Center, Houston, TX; Ronit Simantov, Elizabeth Crowley, Jennifer A. Green, Thomas Hawthorne, and Thomas A. Davis, Celldex Therapeutics, Hampton, NJ
| | - Patrick Hwu
- Patrick A. Ott and Anna C. Pavlick, New York University Cancer Institute, New York, NY; Omid Hamid and Peter D. Boasberg, The Angeles Clinic and Research Institute, Los Angeles, CA; Harriet Kluger and Mario Sznol, Yale Cancer Center, New Haven, CT; Kevin B. Kim and Patrick Hwu, University of Texas MD Anderson Cancer Center, Houston, TX; Ronit Simantov, Elizabeth Crowley, Jennifer A. Green, Thomas Hawthorne, and Thomas A. Davis, Celldex Therapeutics, Hampton, NJ
| |
Collapse
|
27
|
Glycoprotein nonmetastatic melanoma protein B (GPNMB) as a novel neuroprotective factor in cerebral ischemia–reperfusion injury. Neuroscience 2014; 277:123-31. [DOI: 10.1016/j.neuroscience.2014.06.065] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 06/26/2014] [Accepted: 06/28/2014] [Indexed: 11/18/2022]
|
28
|
Chen R, Zhang G, Zhou Y, Li N, Lin J. A time course-dependent metastatic gene expression signature predicts outcome in human metastatic melanomas. Diagn Pathol 2014; 9:155. [PMID: 25116415 PMCID: PMC4149277 DOI: 10.1186/s13000-014-0155-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 07/29/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The prognosis of patients with metastatic melanomas is extremely heterogeneous. Therefore, identifying high-risk subgroups by using innovative prediction models would help to improve selection of appropriate management options. METHODS In this study, two datasets (GSE7929 and GSE7956) of mRNA expression microarray in an animal melanoma model were normalized by frozen Robust Multi-Array Analysis and then combined by the distance-weighted discrimination method to identify time course-dependent metastasis-related gene signatures by Biometric Research Branch-ArrayTools (BRB)-ArrayTools. Then two datasets (GSE8401 and GSE19234) of clinical melanoma samples with relevant clinical and survival data were used to validate the prognosis signature. RESULTS A novel 192-gene set that varies significantly in parallel with the increasing of metastatic potentials was identified in the animal melanoma model. Further, this gene signature was validated to correlate with poor prognosis of human metastatic melanomas but not of primary melanomas in two independent datasets. Furthermore, multivariate Cox proportional hazards regression analyses demonstrated that the prognostic value of the 192-gene set is independent of the TNM stage and has higher areas under the receiver operating characteristic curve than stage information in both validation datasets. CONCLUSION Our findings suggest that a time course-dependent metastasis-related gene expression signature is useful in predicting survival of malignant melanomas and might be useful in informing treatment decisions for these patients.
Collapse
Affiliation(s)
- Rongyi Chen
- Department of Dermatology, Affiliated Hospital of Guangdong Medical College, Zhanjiang, 524001 China
| | - Guoxue Zhang
- Department of Dermatology, Affiliated Hospital of Guangdong Medical College, Zhanjiang, 524001 China
| | - Ying Zhou
- Department of Dermatology, Affiliated Hospital of Guangdong Medical College, Zhanjiang, 524001 China
| | - Nan Li
- Department of Dermatology, Affiliated Hospital of Guangdong Medical College, Zhanjiang, 524001 China
| | - Jiaxi Lin
- Department of Dermatology, Affiliated Hospital of Guangdong Medical College, Zhanjiang, 524001 China
| |
Collapse
|
29
|
Fiorentini C, Bodei S, Bedussi F, Fragni M, Bonini SA, Simeone C, Zani D, Berruti A, Missale C, Memo M, Spano P, Sigala S. GPNMB/OA protein increases the invasiveness of human metastatic prostate cancer cell lines DU145 and PC3 through MMP-2 and MMP-9 activity. Exp Cell Res 2014; 323:100-111. [DOI: 10.1016/j.yexcr.2014.02.025] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 01/21/2014] [Accepted: 02/22/2014] [Indexed: 01/03/2023]
|
30
|
Abstract
The field of anatomic pathology has changed significantly over the last decades and, as a result of the technological developments in molecular pathology and genetics, has had increasing pressures put on it to become quantitative and to provide more information about protein expression on a cellular level in tissue sections. Multispectral imaging (MSI) has a long history as an advanced imaging modality and has been used for over a decade now in pathology to improve quantitative accuracy, enable the analysis of multicolor immunohistochemistry, and drastically reduce the impact of contrast-robbing tissue autofluorescence common in formalin-fixed, paraffin-embedded tissues. When combined with advanced software for the automated segmentation of different tissue morphologies (eg, tumor vs stroma) and cellular and subcellular segmentation, MSI can enable the per-cell quantitation of many markers simultaneously. This article covers the role that MSI has played in anatomic pathology in the analysis of formalin-fixed, paraffin-embedded tissue sections, discusses the technological aspects of why MSI has been adopted, and provides a review of the literature of the application of MSI in anatomic pathology.
Collapse
|
31
|
Maric G, Rose AA, Annis MG, Siegel PM. Glycoprotein non-metastatic b (GPNMB): A metastatic mediator and emerging therapeutic target in cancer. Onco Targets Ther 2013; 6:839-52. [PMID: 23874106 PMCID: PMC3711880 DOI: 10.2147/ott.s44906] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Molecularly targeted therapies are rapidly growing with respect to their clinical development and impact on cancer treatment due to their highly selective anti-tumor action. However, many aggressive cancers such as triple-negative breast cancer (TNBC) currently lack well-defined therapeutic targets against which such agents can be developed. The identification of tumor-associated antigens and the generation of antibody drug-conjugates represent an emerging area of intense interest and growth in the field of cancer therapeutics. Glycoprotein non-metastatic b (GPNMB) has recently been identified as a gene that is over-expressed in numerous cancers, including TNBC, and often correlates with the metastatic phenotype. In breast cancer, GPNMB expression in the tumor epithelium is associated with a reduction in disease-free and overall survival. Based on these findings, glembatumumab vedotin (CDX-011), an antibody-drug conjugate that selectively targets GPNMB, is currently being investigated in clinical trials for patients with metastatic breast cancer and unresectable melanoma. This review discusses the physiological and potential pathological roles of GPNMB in normal and cancer tissues, respectively, and details the clinical advances and challenges in targeting GPNMB-expressing malignancies.
Collapse
Affiliation(s)
- Gordana Maric
- Goodman Cancer Research Centre, McGill University, Montréal, Québec, Canada ; Department of Medicine, McGill University, Montréal, Québec, Canada
| | | | | | | |
Collapse
|
32
|
Theos AC, Watt B, Harper DC, Janczura KJ, Theos SC, Herman KE, Marks MS. The PKD domain distinguishes the trafficking and amyloidogenic properties of the pigment cell protein PMEL and its homologue GPNMB. Pigment Cell Melanoma Res 2013; 26:470-86. [PMID: 23452376 DOI: 10.1111/pcmr.12084] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2012] [Accepted: 02/26/2013] [Indexed: 11/29/2022]
Abstract
Proteolytic fragments of the pigment cell-specific glycoprotein, PMEL, form the amyloid fibrillar matrix underlying melanins in melanosomes. The fibrils form within multivesicular endosomes to which PMEL is selectively sorted and that serve as melanosome precursors. GPNMB is a tissue-restricted glycoprotein with substantial sequence homology to PMEL, but no known function, and was proposed to localize to non-fibrillar domains of distinct melanosome subcompartments in melanocytes. Here we confirm that GPNMB localizes to compartments distinct from the PMEL-containing multivesicular premelanosomes or late endosomes in melanocytes and HeLa cells, respectively, and is largely absent from fibrils. Using domain swapping, the unique PMEL localization is ascribed to its polycystic kidney disease (PKD) domain, whereas the homologous PKD domain of GPNMB lacks apparent sorting function. The difference likely reflects extensive modification of the GPNMB PKD domain by N-glycosylation, nullifying its sorting function. These results reveal the molecular basis for the distinct trafficking and morphogenetic properties of PMEL and GPNMB and support a deterministic function of the PMEL PKD domain in both protein sorting and amyloidogenesis.
Collapse
Affiliation(s)
- Alexander C Theos
- Department of Pathology & Laboratory Medicine and Physiology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Wang T, Ge Y, Xiao M, Lopez-Coral A, Azuma R, Somasundaram R, Zhang G, Wei Z, Xu X, Rauscher FJ, Herlyn M, Kaufman RE. Melanoma-derived conditioned media efficiently induce the differentiation of monocytes to macrophages that display a highly invasive gene signature. Pigment Cell Melanoma Res 2012; 25:493-505. [PMID: 22498258 DOI: 10.1111/j.1755-148x.2012.01005.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The presence of tumor-associated macrophages (TAMs) in melanomas is correlated with a poor clinical prognosis. However, there is limited information on the characteristics and biological activities of human TAMs in melanomas. In this study, we developed an in vitro method to differentiate human monocytes to macrophages using modified melanoma-conditioned medium (MCM). We demonstrate that factors from MCM-induced macrophages (MCMI-Mφ) express both M1-Mφ and M2-Mφ markers and inhibit melanoma-specific T-cell proliferation. Furthermore, microarray analyses reveal that the majority of genes up-regulated in MCMI-Mφ are associated with tumor invasion. The most strikingly up-regulated genes are CCL2 and MMP-9. Consistent with this, blockade of both CCL-2 and MMPs diminish MCMI-Mφ-induced melanoma invasion. Finally, we demonstrated that both MCMI-Mφ and in vivo TAMs express the pro-invasive, melanoma-associated gene, glycoprotein non-metastatic melanoma protein B. Our study provides a framework for understanding the mechanisms of cross-talk between TAMs and melanoma cells within the tumor microenvironment.
Collapse
Affiliation(s)
- Tao Wang
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, PA, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
The potential of GPNMB as novel neuroprotective factor in amyotrophic lateral sclerosis. Sci Rep 2012; 2:573. [PMID: 22891158 PMCID: PMC3417778 DOI: 10.1038/srep00573] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Accepted: 07/27/2012] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is an incurable and fatal neurodegenerative disease characterized by the loss of motor neurons. Despite substantial research, the causes of ALS remain unclear. Glycoprotein nonmetastatic melanoma protein B (GPNMB) was identified as an ALS-related factor using DNA microarray analysis with mutant superoxide dismutase (SOD1G93A) mice. GPNMB was greatly induced in the spinal cords of ALS patients and a mouse model as the disease progressed. It was especially expressed in motor neurons and astrocytes. In an NSC34 cell line, glycosylation of GPNMB was inhibited by interaction with SOD1G93A, increasing motor neuron vulnerability, whereas extracellular fragments of GPNMB secreted from activated astrocytes attenuated the neurotoxicity of SOD1G93A in neural cells. Furthermore, GPNMB expression was substantial in the sera of sporadic ALS patients than that of other diseased patients. This study suggests that GPNMB can be a target for therapeutic intervention for suppressing motor neuron degeneration in ALS.
Collapse
|
35
|
Sheng MHC, Wergedal JE, Mohan S, Amoui M, Baylink DJ, Lau KHW. Targeted overexpression of osteoactivin in cells of osteoclastic lineage promotes osteoclastic resorption and bone loss in mice. PLoS One 2012; 7:e35280. [PMID: 22536365 PMCID: PMC3335057 DOI: 10.1371/journal.pone.0035280] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Accepted: 03/14/2012] [Indexed: 01/04/2023] Open
Abstract
This study sought to test whether targeted overexpression of osteoactivin (OA) in cells of osteoclastic lineage, using the tartrate-resistant acid phosphase (TRAP) exon 1B/C promoter to drive OA expression, would increase bone resorption and bone loss in vivo. OA transgenic osteoclasts showed ∼2-fold increases in OA mRNA and proteins compared wild-type (WT) osteoclasts. However, the OA expression in transgenic osteoblasts was not different. At 4, 8, and 15.3 week-old, transgenic mice showed significant bone loss determined by pQCT and confirmed by μ-CT. In vitro, transgenic osteoclasts were twice as large, had twice as much TRAP activity, resorbed twice as much bone matrix, and expressed twice as much osteoclastic genes (MMP9, calciton receptor, and ADAM12), as WT osteoclasts. The siRNA-mediated suppression of OA expression in RAW264.7-derived osteoclasts reduced cell size and osteoclastic gene expression. Bone histomorphometry revealed that transgenic mice had more osteoclasts and osteoclast surface. Plasma c-telopeptide (a resorption biomarker) measurements confirmed an increase in bone resorption in transgenic mice in vivo. In contrast, histomorphometric bone formation parameters and plasma levels of bone formation biomarkers (osteocalcin and pro-collagen type I N-terminal peptide) were not different between transgenic mice and WT littermates, indicating the lack of bone formation effects. In conclusion, this study provides compelling in vivo evidence that osteoclast-derived OA is a novel stimulator of osteoclast activity and bone resorption.
Collapse
Affiliation(s)
- Matilda H-C Sheng
- Regenerative Medicine Division, Department of Medicine, Loma Linda University School of Medicine, Loma Linda, California, United States of America.
| | | | | | | | | | | |
Collapse
|
36
|
Huang JJ, Ma WJ, Yokoyama S. Expression and immunolocalization of Gpnmb, a glioma-associated glycoprotein, in normal and inflamed central nervous systems of adult rats. Brain Behav 2012; 2:85-96. [PMID: 22574278 PMCID: PMC3345354 DOI: 10.1002/brb3.39] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Accepted: 01/03/2012] [Indexed: 01/16/2023] Open
Abstract
Glycoprotein nonmetastatic melanoma B (Gpnmb) is a type I transmembrane protein implicated in cell differentiation, inflammation, tissue regeneration, and tumor progression. Gpnmb, which is highly expressed in glioblastoma cells, is a potential therapeutic target. However, little is known about its expression, cellular localization, and roles in non-tumorous neural tissues. In this study, we examined Gpnmb expression in the central nervous system of adult rats under both normal and inflammatory conditions. Reverse transcription-polymerase chain reaction analysis revealed that Gpnmb mRNA was expressed in the cerebrum, cerebellum, brain stem, and spinal cord of normal adult rats. Immunoperoxidase staining revealed that Gpnmb-immunoreactive cells were widely distributed in the parenchyma of all brain regions examined, with the cells being most prevalent in the hippocampal dentate gyrus, cerebellar cortex, spinal dorsal horn, choroid plexus, ependyma, periventricular regions, and in layers II and III of the cerebral cortex. Double immunofluorescence staining showed that these cells were co-stained most frequently with the microglia/macrophage marker OX42, and occasionally with the radial glia marker RC2 or the neuronal marker NeuN. Furthermore, an intraperitoneal injection of bacterial endotoxin lipopolysaccharide increased the number of Gpnmb and OX42 double-positive cells in the area postrema, which is one of the circumventricular organs, indicating infiltration of hematogenous macrophages. These results suggest that Gpnmb, which is expressed in microglia and macrophages in non-tumorous neural tissues, plays an important role in the regulation of immune/inflammatory responses.
Collapse
Affiliation(s)
- Jian-Jun Huang
- Department of Biophysical Genetics, Kanazawa University Graduate School of Medicine Kanazawa 920-8640, Japan
| | | | | |
Collapse
|
37
|
Rose AAN, Annis MG, Dong Z, Pepin F, Hallett M, Park M, Siegel PM. ADAM10 releases a soluble form of the GPNMB/Osteoactivin extracellular domain with angiogenic properties. PLoS One 2010; 5:e12093. [PMID: 20711474 PMCID: PMC2919417 DOI: 10.1371/journal.pone.0012093] [Citation(s) in RCA: 155] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Accepted: 07/18/2010] [Indexed: 01/10/2023] Open
Abstract
Background Glycoprotein non-metastatic melanoma protein B (GPNMB)/Osteoactivin (OA) is a transmembrane protein expressed in approximately 40–75% of breast cancers. GPNMB/OA promotes the migration, invasion and metastasis of breast cancer cells; it is commonly expressed in basal/triple-negative breast tumors and is associated with shorter recurrence-free and overall survival times in patients with breast cancer. Thus, GPNMB/OA represents an attractive target for therapeutic intervention in breast cancer; however, little is known about the functions of GPNMB/OA within the primary tumor microenvironment. Methodology/Principal Findings We have employed mouse and human breast cancer cells to investigate the effects of GPNMB/OA on tumor growth and angiogenesis. GPNMB/OA-expressing tumors display elevated endothelial recruitment and reduced apoptosis when compared to vector control-derived tumors. Primary human breast cancers characterized by high vascular density also display elevated levels of GPNMB/OA when compared to those with low vascular density. Using immunoblot and ELISA assays, we demonstrate the GPNMB/OA ectodomain is shed from the surface of breast cancer cells. Transient siRNA-mediated knockdown studies of known sheddases identified ADAM10 as the protease responsible for GPNMB/OA processing. Finally, we demonstrate that the shed extracellular domain (ECD) of GPNMB/OA can promote endothelial migration in vitro. Conclusions/Significance GPNMB/OA expression promotes tumor growth, which is associated with enhanced endothelial recruitment. We identify ADAM10 as a sheddase capable of releasing the GPNMB/OA ectodomain from the surface of breast cancer cells, which induces endothelial cell migration. Thus, ectodomain shedding may serve as a novel mechanism by which GPNMB/OA promotes angiogenesis in breast cancer.
Collapse
Affiliation(s)
- April A. N. Rose
- Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada
- Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Matthew G. Annis
- Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada
- Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Zhifeng Dong
- Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada
- Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Francois Pepin
- Life Science Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Michael Hallett
- Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada
- McGill Centre for Bioinformatics, McGill University, Montreal, Quebec, Canada
| | - Morag Park
- Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada
- Department of Medicine, McGill University, Montreal, Quebec, Canada
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
- Department of Oncology, McGill University, Montreal, Quebec, Canada
| | - Peter M. Siegel
- Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada
- Department of Medicine, McGill University, Montreal, Quebec, Canada
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
- * E-mail:
| |
Collapse
|