1
|
Xiao T, Chen Z, Xie Y, Yang C, Wu J, Gao L. Histone deacetylase inhibitors: targeting epigenetic regulation in the treatment of acute leukemia. Ther Adv Hematol 2024; 15:20406207241283277. [PMID: 39421716 PMCID: PMC11483798 DOI: 10.1177/20406207241283277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 08/22/2024] [Indexed: 10/19/2024] Open
Abstract
Acute leukemia (AL) is a rare yet perilous malignancy. Currently, the primary treatment for AL involves combination chemotherapy as the cornerstone of comprehensive measures, alongside hematopoietic stem cell transplantation as a radical approach. However, despite these interventions, mortality rates remain high, particularly among refractory/recurrent patients or elderly individuals with a poor prognosis. Acetylation, a form of epigenetic regulation, has emerged as a promising therapeutic avenue for treating AL. Recent studies have highlighted the potential of acetylation regulation as a novel treatment pathway. Histone deacetylase inhibitors (HDACis) play a pivotal role in modulating the differentiation and development of tumor cells through diverse pathways, simultaneously impacting the maturation and function of lymphocytes. HDACis demonstrate promise in enhancing survival rates and achieving a complete response in both acute myeloid leukemia and acute T-lymphoblastic leukemia patients. This article provides a comprehensive review of the advancements in HDACi therapy for AL, shedding light on its potential implications for clinical practice.
Collapse
Affiliation(s)
- Tong Xiao
- Medical Center of Hematology, State Key Laboratory of Trauma, Burn and Combined Injury, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Zhigang Chen
- Medical Center of Hematology, State Key Laboratory of Trauma, Burn and Combined Injury, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Yutong Xie
- Medical Center of Hematology, State Key Laboratory of Trauma, Burn and Combined Injury, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Chao Yang
- Medical Center of Hematology, State Key Laboratory of Trauma, Burn and Combined Injury, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Junhong Wu
- Medical Center of Hematology, State Key Laboratory of Trauma, Burn and Combined Injury, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Lei Gao
- Medical Center of Hematology, State Key Laboratory of Trauma, Burn and Combined Injury, Xinqiao Hospital, Army Medical University, No. 183, Xinqiao Street, Shapingba District, Chongqing 400037, China
| |
Collapse
|
2
|
Rana PS, Ignatz-Hoover JJ, Kim BG, Malek E, Federov Y, Adams D, Chan T, Driscoll JJ. HDAC6 Inhibition Releases HR23B to Activate Proteasomes, Expand the Tumor Immunopeptidome and Amplify T-cell Antimyeloma Activity. CANCER RESEARCH COMMUNICATIONS 2024; 4:1517-1532. [PMID: 38747592 PMCID: PMC11188874 DOI: 10.1158/2767-9764.crc-23-0528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/14/2024] [Accepted: 05/09/2024] [Indexed: 06/19/2024]
Abstract
Proteasomes degrade intracellular proteins to generate antigenic peptides that are recognized by the adaptive immune system and promote anticancer immunity. However, tumors subvert the antigen presentation machinery to escape immunosurveillance. We hypothesized that proteasome activation could concomitantly increase antigen abundance and diversity in multiple myeloma cells. High-throughput screens revealed that histone deacetylase 6 (HDAC6) inhibitors activated proteasomes to unmask neoantigens and amplify the tumor-specific antigenic landscape. Treatment of patient CD138+ cells with HDAC6 inhibitors significantly promoted the antimyeloma activity of autologous CD8+ T cells. Pharmacologic blockade and genetic ablation of the HDAC6 ubiquitin-binding domain released HR23B, which shuttles ubiquitinylated cargo to proteasomes, while silencing HDAC6 or HR23B in multiple myeloma cells abolished the effect of HDAC6 inhibitors on proteasomes, antigen presentation, and T-cell cytotoxicity. Taken together, our results demonstrate the paradigm-shifting translational impact of proteasome activators to expand the myeloma immunopeptidome and have revealed novel, actionable antigenic targets for T cell-directed immunotherapy. SIGNIFICANCE The elimination of therapy-resistant tumor cells remains a major challenge in the treatment of multiple myeloma. Our study identifies and functionally validates agents that amplify MHC class I-presented antigens and pave the way for the development of proteasome activators as immune adjuvants to enhance immunotherapeutic responses in patients with multiple myeloma.
Collapse
Affiliation(s)
- Priyanka S. Rana
- Case Comprehensive Cancer Center, School of Medicine, Case Western Reserve University, Cleveland, Ohio
- Division of Hematology and Oncology, Department of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - James J. Ignatz-Hoover
- Case Comprehensive Cancer Center, School of Medicine, Case Western Reserve University, Cleveland, Ohio
- Division of Hematology and Oncology, Department of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Byung-Gyu Kim
- Case Comprehensive Cancer Center, School of Medicine, Case Western Reserve University, Cleveland, Ohio
- Division of Hematology and Oncology, Department of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Ehsan Malek
- Case Comprehensive Cancer Center, School of Medicine, Case Western Reserve University, Cleveland, Ohio
- Division of Hematology and Oncology, Department of Medicine, Case Western Reserve University, Cleveland, Ohio
- Adult Hematologic Malignancies and Stem Cell Transplant Section, Seidman Cancer Center, University Hospitals Cleveland Medical Center, Cleveland, Ohio
| | - Yuriy Federov
- Case Comprehensive Cancer Center, School of Medicine, Case Western Reserve University, Cleveland, Ohio
- Small Molecule Drug Discovery Core, Case Western Reserve University, Cleveland, Ohio
| | - Drew Adams
- Case Comprehensive Cancer Center, School of Medicine, Case Western Reserve University, Cleveland, Ohio
- Small Molecule Drug Discovery Core, Case Western Reserve University, Cleveland, Ohio
| | - Timothy Chan
- Case Comprehensive Cancer Center, School of Medicine, Case Western Reserve University, Cleveland, Ohio
- Cleveland Clinic, Lerner Research Institute, Cleveland, Ohio
| | - James J. Driscoll
- Case Comprehensive Cancer Center, School of Medicine, Case Western Reserve University, Cleveland, Ohio
- Division of Hematology and Oncology, Department of Medicine, Case Western Reserve University, Cleveland, Ohio
- Adult Hematologic Malignancies and Stem Cell Transplant Section, Seidman Cancer Center, University Hospitals Cleveland Medical Center, Cleveland, Ohio
| |
Collapse
|
3
|
Díaz-Tejedor A, Rodríguez-Ubreva J, Ciudad L, Lorenzo-Mohamed M, González-Rodríguez M, Castellanos B, Sotolongo-Ravelo J, San-Segundo L, Corchete LA, González-Méndez L, Martín-Sánchez M, Mateos MV, Ocio EM, Garayoa M, Paíno T. Tinostamustine (EDO-S101), an Alkylating Deacetylase Inhibitor, Enhances the Efficacy of Daratumumab in Multiple Myeloma by Upregulation of CD38 and NKG2D Ligands. Int J Mol Sci 2024; 25:4718. [PMID: 38731936 PMCID: PMC11083018 DOI: 10.3390/ijms25094718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/18/2024] [Accepted: 04/20/2024] [Indexed: 05/13/2024] Open
Abstract
Multiple myeloma is a malignancy characterized by the accumulation of malignant plasma cells in bone marrow and the production of monoclonal immunoglobulin. A hallmark of cancer is the evasion of immune surveillance. Histone deacetylase inhibitors have been shown to promote the expression of silenced molecules and hold potential to increase the anti-MM efficacy of immunotherapy. The aim of the present work was to assess the potential effect of tinostamustine (EDO-S101), a first-in-class alkylating deacetylase inhibitor, in combination with daratumumab, an anti-CD38 monoclonal antibody (mAb), through different preclinical studies. Tinostamustine increases CD38 expression in myeloma cell lines, an effect that occurs in parallel with an increment in CD38 histone H3 acetylation levels. Also, the expression of MICA and MICB, ligands for the NK cell activating receptor NKG2D, augments after tinostamustine treatment in myeloma cell lines and primary myeloma cells. Pretreatment of myeloma cell lines with tinostamustine increased the sensitivity of these cells to daratumumab through its different cytotoxic mechanisms, and the combination of these two drugs showed a higher anti-myeloma effect than individual treatments in ex vivo cultures of myeloma patients' samples. In vivo data confirmed that tinostamustine pretreatment followed by daratumumab administration significantly delayed tumor growth and improved the survival of mice compared to individual treatments. In summary, our results suggest that tinostamustine could be a potential candidate to improve the efficacy of anti-CD38 mAbs.
Collapse
Affiliation(s)
- Andrea Díaz-Tejedor
- Centro de Investigación del Cáncer-Instituto de Biología Molecular y Celular del Cáncer (CIC-IBMCC), Universidad de Salamanca, Consejo Superior de Investigaciones Científicas (CSIC), 37007 Salamanca, Spain; (A.D.-T.); (M.L.-M.); (M.G.-R.); (B.C.); (J.S.-R.); (L.S.-S.); (L.A.C.); (L.G.-M.); (M.M.-S.); (M.-V.M.); (M.G.)
- Servicio de Hematología, Complejo Asistencial Universitario de Salamanca, Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain
| | - Javier Rodríguez-Ubreva
- Epigenetics and Immune Disease Group, Josep Carreras Research Institute (IJC), 08916 Badalona, Spain; (J.R.-U.); (L.C.)
| | - Laura Ciudad
- Epigenetics and Immune Disease Group, Josep Carreras Research Institute (IJC), 08916 Badalona, Spain; (J.R.-U.); (L.C.)
| | - Mauro Lorenzo-Mohamed
- Centro de Investigación del Cáncer-Instituto de Biología Molecular y Celular del Cáncer (CIC-IBMCC), Universidad de Salamanca, Consejo Superior de Investigaciones Científicas (CSIC), 37007 Salamanca, Spain; (A.D.-T.); (M.L.-M.); (M.G.-R.); (B.C.); (J.S.-R.); (L.S.-S.); (L.A.C.); (L.G.-M.); (M.M.-S.); (M.-V.M.); (M.G.)
- Servicio de Hematología, Complejo Asistencial Universitario de Salamanca, Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain
| | - Marta González-Rodríguez
- Centro de Investigación del Cáncer-Instituto de Biología Molecular y Celular del Cáncer (CIC-IBMCC), Universidad de Salamanca, Consejo Superior de Investigaciones Científicas (CSIC), 37007 Salamanca, Spain; (A.D.-T.); (M.L.-M.); (M.G.-R.); (B.C.); (J.S.-R.); (L.S.-S.); (L.A.C.); (L.G.-M.); (M.M.-S.); (M.-V.M.); (M.G.)
- Servicio de Hematología, Complejo Asistencial Universitario de Salamanca, Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain
| | - Bárbara Castellanos
- Centro de Investigación del Cáncer-Instituto de Biología Molecular y Celular del Cáncer (CIC-IBMCC), Universidad de Salamanca, Consejo Superior de Investigaciones Científicas (CSIC), 37007 Salamanca, Spain; (A.D.-T.); (M.L.-M.); (M.G.-R.); (B.C.); (J.S.-R.); (L.S.-S.); (L.A.C.); (L.G.-M.); (M.M.-S.); (M.-V.M.); (M.G.)
- Servicio de Hematología, Complejo Asistencial Universitario de Salamanca, Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain
| | - Janet Sotolongo-Ravelo
- Centro de Investigación del Cáncer-Instituto de Biología Molecular y Celular del Cáncer (CIC-IBMCC), Universidad de Salamanca, Consejo Superior de Investigaciones Científicas (CSIC), 37007 Salamanca, Spain; (A.D.-T.); (M.L.-M.); (M.G.-R.); (B.C.); (J.S.-R.); (L.S.-S.); (L.A.C.); (L.G.-M.); (M.M.-S.); (M.-V.M.); (M.G.)
- Servicio de Hematología, Complejo Asistencial Universitario de Salamanca, Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain
| | - Laura San-Segundo
- Centro de Investigación del Cáncer-Instituto de Biología Molecular y Celular del Cáncer (CIC-IBMCC), Universidad de Salamanca, Consejo Superior de Investigaciones Científicas (CSIC), 37007 Salamanca, Spain; (A.D.-T.); (M.L.-M.); (M.G.-R.); (B.C.); (J.S.-R.); (L.S.-S.); (L.A.C.); (L.G.-M.); (M.M.-S.); (M.-V.M.); (M.G.)
- Servicio de Hematología, Complejo Asistencial Universitario de Salamanca, Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain
| | - Luis A. Corchete
- Centro de Investigación del Cáncer-Instituto de Biología Molecular y Celular del Cáncer (CIC-IBMCC), Universidad de Salamanca, Consejo Superior de Investigaciones Científicas (CSIC), 37007 Salamanca, Spain; (A.D.-T.); (M.L.-M.); (M.G.-R.); (B.C.); (J.S.-R.); (L.S.-S.); (L.A.C.); (L.G.-M.); (M.M.-S.); (M.-V.M.); (M.G.)
- Servicio de Hematología, Complejo Asistencial Universitario de Salamanca, Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain
- Centro de Investigación Biomédica En Red de Cáncer (CIBERONC, CB16/12/00233), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Lorena González-Méndez
- Centro de Investigación del Cáncer-Instituto de Biología Molecular y Celular del Cáncer (CIC-IBMCC), Universidad de Salamanca, Consejo Superior de Investigaciones Científicas (CSIC), 37007 Salamanca, Spain; (A.D.-T.); (M.L.-M.); (M.G.-R.); (B.C.); (J.S.-R.); (L.S.-S.); (L.A.C.); (L.G.-M.); (M.M.-S.); (M.-V.M.); (M.G.)
- Servicio de Hematología, Complejo Asistencial Universitario de Salamanca, Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain
| | - Montserrat Martín-Sánchez
- Centro de Investigación del Cáncer-Instituto de Biología Molecular y Celular del Cáncer (CIC-IBMCC), Universidad de Salamanca, Consejo Superior de Investigaciones Científicas (CSIC), 37007 Salamanca, Spain; (A.D.-T.); (M.L.-M.); (M.G.-R.); (B.C.); (J.S.-R.); (L.S.-S.); (L.A.C.); (L.G.-M.); (M.M.-S.); (M.-V.M.); (M.G.)
- Servicio de Hematología, Complejo Asistencial Universitario de Salamanca, Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain
| | - María-Victoria Mateos
- Centro de Investigación del Cáncer-Instituto de Biología Molecular y Celular del Cáncer (CIC-IBMCC), Universidad de Salamanca, Consejo Superior de Investigaciones Científicas (CSIC), 37007 Salamanca, Spain; (A.D.-T.); (M.L.-M.); (M.G.-R.); (B.C.); (J.S.-R.); (L.S.-S.); (L.A.C.); (L.G.-M.); (M.M.-S.); (M.-V.M.); (M.G.)
- Servicio de Hematología, Complejo Asistencial Universitario de Salamanca, Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain
- Centro de Investigación Biomédica En Red de Cáncer (CIBERONC, CB16/12/00233), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
- Departamento de Medicina, Universidad de Salamanca, 37007 Salamanca, Spain
| | - Enrique M. Ocio
- Hospital Universitario Marqués de Valdecilla (IDIVAL), Universidad de Cantabria, 39008 Santander, Spain;
| | - Mercedes Garayoa
- Centro de Investigación del Cáncer-Instituto de Biología Molecular y Celular del Cáncer (CIC-IBMCC), Universidad de Salamanca, Consejo Superior de Investigaciones Científicas (CSIC), 37007 Salamanca, Spain; (A.D.-T.); (M.L.-M.); (M.G.-R.); (B.C.); (J.S.-R.); (L.S.-S.); (L.A.C.); (L.G.-M.); (M.M.-S.); (M.-V.M.); (M.G.)
- Servicio de Hematología, Complejo Asistencial Universitario de Salamanca, Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain
| | - Teresa Paíno
- Centro de Investigación del Cáncer-Instituto de Biología Molecular y Celular del Cáncer (CIC-IBMCC), Universidad de Salamanca, Consejo Superior de Investigaciones Científicas (CSIC), 37007 Salamanca, Spain; (A.D.-T.); (M.L.-M.); (M.G.-R.); (B.C.); (J.S.-R.); (L.S.-S.); (L.A.C.); (L.G.-M.); (M.M.-S.); (M.-V.M.); (M.G.)
- Servicio de Hematología, Complejo Asistencial Universitario de Salamanca, Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain
- Centro de Investigación Biomédica En Red de Cáncer (CIBERONC, CB16/12/00233), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
- Departamento de Fisiología y Farmacología, Universidad de Salamanca, 37007 Salamanca, Spain
| |
Collapse
|
4
|
Ibrahim ML, Zheng H, Barlow ML, Latif Y, Chen Z, Yu X, Beg AA. Histone Deacetylase Inhibitors Directly Modulate T Cell Gene Expression and Signaling and Promote Development of Effector-Exhausted T Cells in Murine Tumors. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:737-747. [PMID: 38169329 PMCID: PMC10872871 DOI: 10.4049/jimmunol.2300475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 12/05/2023] [Indexed: 01/05/2024]
Abstract
Epigenetic regulation plays a crucial role in the development and progression of cancer, including the regulation of antitumor immunity. The reversible nature of epigenetic modifications offers potential therapeutic avenues for cancer treatment. In particular, histone deacetylase (HDAC) inhibitors (HDACis) have been shown to promote antitumor T cell immunity by regulating myeloid cell types, enhancing tumor Ag presentation, and increasing expression of chemokines. HDACis are currently being evaluated to determine whether they can increase the response rate of immune checkpoint inhibitors in cancer patients. Although the potential direct effect of HDACis on T cells likely impacts antitumor immunity, little is known about how HDAC inhibition alters the transcriptomic profile of T cells. In this article, we show that two clinical-stage HDACis profoundly impact gene expression and signaling networks in CD8+ and CD4+ T cells. Specifically, HDACis promoted T cell effector function by enhancing expression of TNF-α and IFN-γ and increasing CD8+ T cell cytotoxicity. Consistently, in a murine tumor model, HDACis led to enrichment of CD8+ T cell subsets with high expression of effector molecules (Prf1, Ifng, Gzmk, and Grmb) but also molecules associated with T cell exhaustion (Tox, Pdcd1, Lag3, and Havcr2). HDACis further generated a tumor microenvironment dominated by myeloid cells with immune suppressive signatures. These results indicate that HDACis directly and favorably augment T cell effector function but also increase their exhaustion signal in the tumor microenvironment, which may add a layer of complexity for achieving clinical benefit in combination with immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Mohammed L Ibrahim
- Department of Immunology, Moffitt Cancer Center, Tampa, FL
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Hong Zheng
- Department of Immunology, Moffitt Cancer Center, Tampa, FL
| | | | - Yousuf Latif
- Department of Immunology, Moffitt Cancer Center, Tampa, FL
| | - Zhihua Chen
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, FL
| | - Xiaoqing Yu
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, FL
| | - Amer A Beg
- Department of Immunology, Moffitt Cancer Center, Tampa, FL
| |
Collapse
|
5
|
Vuletić A, Mirjačić Martinović K, Spasić J. Role of Histone Deacetylase 6 and Histone Deacetylase 6 Inhibition in Colorectal Cancer. Pharmaceutics 2023; 16:54. [PMID: 38258065 PMCID: PMC10818982 DOI: 10.3390/pharmaceutics16010054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/22/2023] [Accepted: 12/27/2023] [Indexed: 01/24/2024] Open
Abstract
Histone deacetylase 6 (HDAC6), by deacetylation of multiple substrates and association with interacting proteins, regulates many physiological processes that are involved in cancer development and invasiveness such as cell proliferation, apoptosis, motility, epithelial to mesenchymal transition, and angiogenesis. Due to its ability to remove misfolded proteins, induce autophagy, and regulate unfolded protein response, HDAC6 plays a protective role in responses to stress and enables tumor cell survival. The scope of this review is to discuss the roles of HDCA6 and its implications for the therapy of colorectal cancer (CRC). As HDAC6 is overexpressed in CRC, correlates with poor disease prognosis, and is not essential for normal mammalian development, it represents a good therapeutic target. Selective inhibition of HDAC6 impairs growth and progression without inducing major adverse events in experimental animals. In CRC, HDAC6 inhibitors have shown the potential to reduce tumor progression and enhance the therapeutic effect of other drugs. As HDAC6 is involved in the regulation of immune responses, HDAC6 inhibitors have shown the potential to improve antitumor immunity by increasing the immunogenicity of tumor cells, augmenting immune cell activity, and alleviating immunosuppression in the tumor microenvironment. Therefore, HDAC6 inhibitors may represent promising candidates to improve the effect of and overcome resistance to immunotherapy.
Collapse
Affiliation(s)
- Ana Vuletić
- Department of Experimental Oncology, Institute of Oncology and Radiology of Serbia, Pasterova 14, 11000 Belgrade, Serbia;
| | - Katarina Mirjačić Martinović
- Department of Experimental Oncology, Institute of Oncology and Radiology of Serbia, Pasterova 14, 11000 Belgrade, Serbia;
| | - Jelena Spasić
- Clinic for Medical Oncology, Institute of Oncology and Radiology of Serbia, Pasterova 14, 11000 Belgrade, Serbia;
| |
Collapse
|
6
|
Yan M, Cao H, Tao K, Xiao B, Chu Y, Ma D, Huang X, Han Y, Ji T. HDACs alters negatively to the tumor immune microenvironment in gynecologic cancers. Gene 2023; 885:147704. [PMID: 37572797 DOI: 10.1016/j.gene.2023.147704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 08/03/2023] [Accepted: 08/09/2023] [Indexed: 08/14/2023]
Abstract
The role of histone deacetylases (HDACs) in the tumor immune microenvironment of gynecologic tumors remains unexplored. We integrated data from The Cancer Genome Atlas and Human Protein Atlas to examine HDAC expression in breast, cervical, ovarian, and endometrial cancers. Elevated HDAC expression correlated with poor prognosis and highly malignant cancer subtypes. Gene Set Enrichment Analysis revealed positive associations between HDAC expression and tumor proliferation signature, while negative associations were found with tumor inflammation signature. Increased HDAC expression was linked to reduced infiltration of natural killer (NK), NKT, and CD8+ T cells, along with negative associations with the expression of PSMB10, NKG7, CCL5, CD27, HLA-DQA1, and HLA-DQB1. In a murine 4T1 breast cancer model, treatment with suberoylanilide hydroxamic acid (SAHA; HDAC inhibitor) and PD-1 antibody significantly inhibited tumor growth and infiltration of CD3+ and CD8+ T cells. Real-time polymerase chain reaction revealed upregulated expressions of Psmb10, Nkg7, Ccl5, Cd8a, Cxcr6, and Cxcl9 genes, while Ctnnb1 and Myc genes were inhibited, indicating tumor suppression and immune microenvironment activation. Our study revealed that HDACs play tumor-promoting and immunosuppressive roles in gynecologic cancers, suggesting HDAC inhibitors as potential therapeutic agents for these cancers.
Collapse
Affiliation(s)
- Miao Yan
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Heng Cao
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kangjia Tao
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bing Xiao
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yifan Chu
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ding Ma
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoyuan Huang
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yingyan Han
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Teng Ji
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
7
|
El Omari N, Bakrim S, Khalid A, Abdalla AN, Almalki WH, Lee LH, Ardianto C, Ming LC, Bouyahya A. Molecular mechanisms underlying the clinical efficacy of panobinostat involve Stochasticity of epigenetic signaling, sensitization to anticancer drugs, and induction of cellular cell death related to cellular stresses. Biomed Pharmacother 2023; 164:114886. [PMID: 37224752 DOI: 10.1016/j.biopha.2023.114886] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/04/2023] [Accepted: 05/12/2023] [Indexed: 05/26/2023] Open
Abstract
Panobinostat, also known as Farydak®, LBH589, PNB, or panobinostat lactate, is a hydroxamic acid that has been approved by the Food and Drug Administration (FDA) for its anti-cancer properties. This orally bioavailable drug is classified as a non-selective histone deacetylase inhibitor (pan-HDACi) that inhibits class I, II, and IV HDACs at nanomolar levels due to its significant histone modifications and epigenetic mechanisms. A mismatch between histone acetyltransferases (HATs) and HDACs can negatively affect the regulation of the genes concerned, which in turn can contribute to tumorigenesis. Indeed, panobinostat inhibits HDACs, potentially leading to acetylated histone accumulation, re-establishing normal gene expression in cancer cells, and helping to drive multiple signaling pathways. These pathways include induction of histone acetylation and cytotoxicity for the majority of tested cancer cell lines, increased levels of p21 cell cycle proteins, enhanced amounts of pro-apoptotic factors (such as caspase-3/7 activity and cleaved poly (ADP-ribose) polymerase (PARP)) associated with decreased levels of anti-apoptotic factors [B-cell lymphoma 2 (Bcl-2) and B-cell lymphoma-extra-large (Bcl-XL)], as well as regulation of immune response [upregulated programmed death-ligand 1 (PD-L1) and interferon gamma receptor 1 (IFN-γR1) expression] and other events. The therapeutic outcome of panobinostat is therefore mediated by sub-pathways involving proteasome and/or aggresome degradation, endoplasmic reticulum, cell cycle arrest, promotion of extrinsic and intrinsic processes of apoptosis, tumor microenvironment remodeling, and angiogenesis inhibition. In this investigation, we aimed to pinpoint the precise molecular mechanism underlying panobinostat's HDAC inhibitory effect. A more thorough understanding of these mechanisms will greatly advance our knowledge of cancer cell aberrations and, as a result, provide an opportunity for the discovery of significant new therapeutic perspectives through cancer therapeutics.
Collapse
Affiliation(s)
- Nasreddine El Omari
- Laboratory of Histology, Embryology, and Cytogenetic, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Rabat 10100, Morocco
| | - Saad Bakrim
- Geo-Bio-Environment Engineering and Innovation Laboratory, Molecular Engineering, Biotechnology and Innovation Team, Polydisciplinary Faculty of Taroudant, Ibn Zohr University, Agadir 80000, Morocco
| | - Asaad Khalid
- Substance Abuse and Toxicology Research Center, Jazan University, P.O. Box: 114, Jazan 45142, Saudi Arabia; Medicinal and Aromatic Plants and Traditional Medicine Research Institute, National Center for Research, P. O. Box 2404, Khartoum, Sudan
| | - Ashraf N Abdalla
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia.
| | - Waleed Hassan Almalki
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Learn-Han Lee
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University, Malaysia.
| | - Chrismawan Ardianto
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia.
| | - Long Chiau Ming
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia; PAP Rashidah Sa'adatul Bolkiah Institute of Health Sciences, Universiti Brunei Darussalam, Gadong, Brunei Darussalam; School of Medical and Life Sciences, Sunway University, Sunway City 47500, Malaysia
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10106, Morocco.
| |
Collapse
|
8
|
Jin ML, Jeong KW. Histone modifications in drug-resistant cancers: From a cancer stem cell and immune evasion perspective. Exp Mol Med 2023; 55:1333-1347. [PMID: 37394580 PMCID: PMC10394043 DOI: 10.1038/s12276-023-01014-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/25/2023] [Accepted: 03/20/2023] [Indexed: 07/04/2023] Open
Abstract
The development and immune evasion of cancer stem cells (CSCs) limit the efficacy of currently available anticancer therapies. Recent studies have shown that epigenetic reprogramming regulates the expression of characteristic marker proteins and tumor plasticity associated with cancer cell survival and metastasis in CSCs. CSCs also possess unique mechanisms to evade external attacks by immune cells. Hence, the development of new strategies to restore dysregulated histone modifications to overcome cancer resistance to chemotherapy and immunotherapy has recently attracted attention. Restoring abnormal histone modifications can be an effective anticancer strategy to increase the therapeutic effect of conventional chemotherapeutic and immunotherapeutic drugs by weakening CSCs or by rendering them in a naïve state with increased sensitivity to immune responses. In this review, we summarize recent findings regarding the role of histone modifiers in the development of drug-resistant cancer cells from the perspectives of CSCs and immune evasion. In addition, we discuss attempts to combine currently available histone modification inhibitors with conventional chemotherapy or immunotherapy.
Collapse
Affiliation(s)
- Ming Li Jin
- Gachon Research Institute of Pharmaceutical Sciences, College of Pharmacy, Gachon University, 191 Hambakmoero, Yeonsu-gu, Incheon, 21936, Republic of Korea
| | - Kwang Won Jeong
- Gachon Research Institute of Pharmaceutical Sciences, College of Pharmacy, Gachon University, 191 Hambakmoero, Yeonsu-gu, Incheon, 21936, Republic of Korea.
| |
Collapse
|
9
|
Histone deacetylase inhibitors promote breast cancer metastasis by elevating NEDD9 expression. Signal Transduct Target Ther 2023; 8:11. [PMID: 36604412 PMCID: PMC9816171 DOI: 10.1038/s41392-022-01221-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 04/13/2022] [Accepted: 09/29/2022] [Indexed: 01/07/2023] Open
Abstract
Histone deacetylase (HDAC) is a kind of protease that modifies histone to regulate gene expression, and is usually abnormally activated in tumors. The approved pan-HDAC inhibitors have demonstrated clinical benefits for patients in some hematologic malignancies. Only limited therapeutic success in breast cancer has been observed in clinical trials. In this study, we declare that pan-HDAC inhibitors targeting NEDD9-FAK pathway exacerbate breast cancer metastasis in preclinical models, which may severely impede their clinical success. NEDD9 is not an oncogene, however, it has been demonstrated recently that there are high level or activity changes of NEDD9 in a variety of cancer, including leukemia, colon cancer, and breast cancer. Mechanistically, pan-HDAC inhibitors enhance H3K9 acetylation at the nedd9 gene promoter via inhibition of HDAC4 activity, thus increase NEDD9 expression, and then activate FAK phosphorylation. The realization that pan-HDAC inhibitors can alter the natural history of breast cancer by increasing invasion warrants clinical attention. In addition, although NEDD9 has been reported to have a hand in breast cancer metastasis, it has not received much attention, and no therapeutic strategies have been developed. Notably, we demonstrate that FAK inhibitors can reverse breast cancer metastasis induced by upregulation of NEDD9 via pan-HDAC inhibitors, which may offer a potential combination therapy for breast cancer.
Collapse
|
10
|
Novel dual LSD1/HDAC6 inhibitor for the treatment of cancer. PLoS One 2023; 18:e0279063. [PMID: 36595522 PMCID: PMC9810167 DOI: 10.1371/journal.pone.0279063] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 11/11/2022] [Indexed: 01/04/2023] Open
Abstract
Dually targeting the epigenetic proteins lysine specific demethylase 1 (LSD1) and histone deacetylases (HDACs) that play a key role in cancer cells by modulating gene repressor complexes including CoREST will have a profound effect in inhibiting tumour growth. Here, we evaluated JBI-097 a dual LSD1/HDAC6 inhibitor, for its in vitro and in vivo activities in various tumor models. In vitro, JBI-097 showed a strong potency in inhibiting LSD1 and HDAC6 enzymatic activities with the isoform selectivity over other HDACs. Cell-based experiments demonstrated a superior anti-proliferative profile against haematological and solid tumor cell lines. JBI-097 also showed strong modulation of HDAC6 and LSD1 specific biomarkers, alpha-tubulin, CD86, CD11b, and GFi1b. In vivo, JBI-097 showed a stronger effect in erythroleukemia, multiple myeloma xenograft models, and in CT-26 syngeneic model. JBI-097 also showed efficacy as monotherapy and additive or synergistic efficacy in combination with the standard of care or with immune checkpoint inhibitors. These and other findings suggest that JBI-097 could be a promising molecule for targeting the LSD1 and HDAC6. Further studies are warranted to elucidate the mechanism of action.
Collapse
|
11
|
Wu Y, Chen X, Wang L, Zhou X, Liu Y, Ji D, Ren P, Zhou GG, Zhao J. Histone Deacetylase Inhibitor Panobinostat Benefits the Therapeutic Efficacy of Oncolytic Herpes Simplex Virus Combined with PD-1/PD-L1 Blocking in Glioma and Squamous Cell Carcinoma Models. Viruses 2022; 14:v14122796. [PMID: 36560800 PMCID: PMC9781547 DOI: 10.3390/v14122796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 11/22/2022] [Accepted: 11/26/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Combination therapy has been widely explored for oncolytic virus (OV), as it can be met with tumor resistance. The HDAC inhibitor (HDACi) panobinostat is a potent pan-deacetylase inhibitor which blocks multiple cancer-related pathways and reverses epigenetic events in cancer progression. METHODS In this study, oncolytic activity in vitro and antitumor therapeutic efficacy in vivo when combined with oHSV and panobinostat were investigated. RESULTS (1) Treatment with panobinostat enhanced oHSV propagation and cytotoxicity in human glioma A172 and squamous cell carcinoma SCC9 cells. (2) Combined treatment with oHSV and panobinostat enhanced virus replication mediated by the transcriptional downregulation of IFN-β- and IFN-responsive antiviral genes in human glioma A172 and squamous cell carcinoma SCC9 cells. (3) Panobinostat treatment induced upregulation of PD-L1 expression in both glioma and squamous cell carcinoma cells. (4) A significantly enhanced therapeutic efficacy was shown in vivo for the murine glioma CT-2A and squamous cell carcinoma SCC7 models when treated with a combination of oHSV, including PD-1/PD-L1 blockade and HDAC inhibition. CONCLUSIONS Consequently, these data provide some new clues for the clinical development of combination therapy with OVs, epigenetic modifiers, and checkpoint blockades for glioma and squamous cell carcinoma.
Collapse
Affiliation(s)
- Yinglin Wu
- Department of Immunology, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Xiaoqing Chen
- Shenzhen International Institute for Biomedical Research, Shenzhen 518110, China
| | - Lei Wang
- Shenzhen International Institute for Biomedical Research, Shenzhen 518110, China
- Research Center for Reproduction and Health Development, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xusha Zhou
- Shenzhen International Institute for Biomedical Research, Shenzhen 518110, China
| | - Yonghong Liu
- Shenzhen International Institute for Biomedical Research, Shenzhen 518110, China
| | - Dongmei Ji
- Department of Medical Oncology, Shanghai Cancer Center and Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Peigen Ren
- Research Center for Reproduction and Health Development, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Grace Guoying Zhou
- Shenzhen International Institute for Biomedical Research, Shenzhen 518110, China
- Correspondence: (G.G.Z.); (J.Z.)
| | - Jing Zhao
- Shenzhen International Institute for Biomedical Research, Shenzhen 518110, China
- Correspondence: (G.G.Z.); (J.Z.)
| |
Collapse
|
12
|
Anestopoulos I, Kyriakou S, Tragkola V, Paraskevaidis I, Tzika E, Mitsiogianni M, Deligiorgi MV, Petrakis G, Trafalis DT, Botaitis S, Giatromanolaki A, Koukourakis MI, Franco R, Pappa A, Panayiotidis MI. Targeting the epigenome in malignant melanoma: Facts, challenges and therapeutic promises. Pharmacol Ther 2022; 240:108301. [PMID: 36283453 DOI: 10.1016/j.pharmthera.2022.108301] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 10/03/2022] [Accepted: 10/19/2022] [Indexed: 11/16/2022]
Abstract
Malignant melanoma is the most lethal type of skin cancer with high rates of mortality. Although current treatment options provide a short-clinical benefit, acquired-drug resistance highlights the low 5-year survival rate among patients with advanced stage of the disease. In parallel, the involvement of an aberrant epigenetic landscape, (e.g., alterations in DNA methylation patterns, histone modifications marks and expression of non-coding RNAs), in addition to the genetic background, has been also associated with the onset and progression of melanoma. In this review article, we report on current therapeutic options in melanoma treatment with a focus on distinct epigenetic alterations and how their reversal, by specific drug compounds, can restore a normal phenotype. In particular, we concentrate on how single and/or combinatorial therapeutic approaches have utilized epigenetic drug compounds in being effective against malignant melanoma. Finally, the role of deregulated epigenetic mechanisms in promoting drug resistance to targeted therapies and immune checkpoint inhibitors is presented leading to the development of newly synthesized and/or improved drug compounds capable of targeting the epigenome of malignant melanoma.
Collapse
Affiliation(s)
- I Anestopoulos
- Department of Cancer Genetics, Therapeutics & Ultrastructural Pathology, The Cyprus Institute of Neurology & Genetics, Nicosia, Cyprus
| | - S Kyriakou
- Department of Cancer Genetics, Therapeutics & Ultrastructural Pathology, The Cyprus Institute of Neurology & Genetics, Nicosia, Cyprus
| | - V Tragkola
- Department of Cancer Genetics, Therapeutics & Ultrastructural Pathology, The Cyprus Institute of Neurology & Genetics, Nicosia, Cyprus
| | - I Paraskevaidis
- Department of Cancer Genetics, Therapeutics & Ultrastructural Pathology, The Cyprus Institute of Neurology & Genetics, Nicosia, Cyprus
| | - E Tzika
- Department of Cancer Genetics, Therapeutics & Ultrastructural Pathology, The Cyprus Institute of Neurology & Genetics, Nicosia, Cyprus
| | | | - M V Deligiorgi
- Laboratory of Pharmacology, Medical School, National & Kapodistrian University of Athens, Athens, Greece
| | - G Petrakis
- Saint George Hospital, Chania, Crete, Greece
| | - D T Trafalis
- Laboratory of Pharmacology, Medical School, National & Kapodistrian University of Athens, Athens, Greece
| | - S Botaitis
- Department of Surgery, Alexandroupolis University Hospital, Democritus University of Thrace School of Medicine, Alexandroupolis, Greece
| | - A Giatromanolaki
- Department of Pathology, Democritus University of Thrace, University General Hospital of Alexandroupolis, Alexandroupolis, Greece
| | - M I Koukourakis
- Radiotherapy / Oncology, Radiobiology & Radiopathology Unit, Department of Medicine, School of Health Sciences, Democritus University of Thrace, Alexandroupolis, Greece
| | - R Franco
- Redox Biology Centre, University of Nebraska-Lincoln, Lincoln, NE, USA; School of Veterinary Medicine & Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - A Pappa
- Department of Molecular Biology & Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | - M I Panayiotidis
- Department of Cancer Genetics, Therapeutics & Ultrastructural Pathology, The Cyprus Institute of Neurology & Genetics, Nicosia, Cyprus.
| |
Collapse
|
13
|
Morante M, Pandiella A, Crespo P, Herrero A. Immune Checkpoint Inhibitors and RAS-ERK Pathway-Targeted Drugs as Combined Therapy for the Treatment of Melanoma. Biomolecules 2022; 12:1562. [PMID: 36358912 PMCID: PMC9687808 DOI: 10.3390/biom12111562] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/13/2022] [Accepted: 10/20/2022] [Indexed: 08/08/2023] Open
Abstract
Metastatic melanoma is a highly immunogenic tumor with very poor survival rates due to immune system escape-mechanisms. Immune checkpoint inhibitors (ICIs) targeting the cytotoxic T-lymphocyte-associated protein 4 (CTLA4) and the programmed death-1 (PD1) receptors, are being used to impede immune evasion. This immunotherapy entails an increment in the overall survival rates. However, melanoma cells respond with evasive molecular mechanisms. ERK cascade inhibitors are also used in metastatic melanoma treatment, with the RAF activity blockade being the main therapeutic approach for such purpose, and in combination with MEK inhibitors improves many parameters of clinical efficacy. Despite their efficacy in inhibiting ERK signaling, the rewiring of the melanoma cell-signaling results in disease relapse, constituting the reinstatement of ERK activation, which is a common cause of some resistance mechanisms. Recent studies revealed that the combination of RAS-ERK pathway inhibitors and ICI therapy present promising advantages for metastatic melanoma treatment. Here, we present a recompilation of the combined therapies clinically evaluated in patients.
Collapse
Affiliation(s)
- Marta Morante
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Consejo Superior de Investigaciones Científicas (CSIC)—Universidad de Cantabria, 39011 Santander, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, 28009 Madrid, Spain
| | - Atanasio Pandiella
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, 28009 Madrid, Spain
- Centro de Investigación del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)—Universidad de Salamanca and IBSAL, 37007 Salamanca, Spain
| | - Piero Crespo
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Consejo Superior de Investigaciones Científicas (CSIC)—Universidad de Cantabria, 39011 Santander, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, 28009 Madrid, Spain
| | - Ana Herrero
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Consejo Superior de Investigaciones Científicas (CSIC)—Universidad de Cantabria, 39011 Santander, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, 28009 Madrid, Spain
| |
Collapse
|
14
|
Looi CK, Gan LL, Sim W, Hii LW, Chung FFL, Leong CO, Lim WM, Mai CW. Histone Deacetylase Inhibitors Restore Cancer Cell Sensitivity towards T Lymphocytes Mediated Cytotoxicity in Pancreatic Cancer. Cancers (Basel) 2022; 14:3709. [PMID: 35954379 PMCID: PMC9367398 DOI: 10.3390/cancers14153709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 02/04/2023] Open
Abstract
Despite medical advancements, the prognosis of pancreatic ductal adenocarcinoma (PDAC) has not improved significantly over the past 50 years. By utilising the large-scale genomic datasets available from the Australia Pancreatic Cancer Project (PACA-AU) and The Cancer Genomic Atlas Project (TCGA-PAAD), we studied the immunophenotype of PDAC in silico and identified that tumours with high cytotoxic T lymphocytes (CTL) killing activity were associated with favourable clinical outcomes. Using the STRING protein-protein interaction network analysis, the identified differentially expressed genes with low CTL killing activity were associated with TWIST/IL-6R, HDAC5, and EOMES signalling. Following Connectivity Map analysis, we identified 44 small molecules that could restore CTL sensitivity in the PDAC cells. Further high-throughput chemical library screening identified 133 inhibitors that effectively target both parental and CTL-resistant PDAC cells in vitro. Since CTL-resistant PDAC had a higher expression of histone proteins and its acetylated proteins compared to its parental cells, we further investigated the impact of histone deacetylase inhibitors (HDACi) on CTL-mediated cytotoxicity in PDAC cells in vitro, namely SW1990 and BxPC3. Further analyses revealed that givinostat and dacinostat were the two most potent HDAC inhibitors that restored CTL sensitivity in SW1990 and BxPC3 CTL-resistant cells. Through our in silico and in vitro studies, we demonstrate the novel role of HDAC inhibition in restoring CTL resistance and that combinations of HDACi with CTL may represent a promising therapeutic strategy, warranting its further detailed molecular mechanistic studies and animal studies before embarking on the clinical evaluation of these novel combined PDAC treatments.
Collapse
Affiliation(s)
- Chin-King Looi
- School of Postgraduate Studies, International Medical University, Kuala Lumpur 57000, Malaysia; (C.-K.L.); (L.-L.G.)
| | - Li-Lian Gan
- School of Postgraduate Studies, International Medical University, Kuala Lumpur 57000, Malaysia; (C.-K.L.); (L.-L.G.)
- Clinical Research Centre, Hospital Tuanku Ja’afar Seremban, Ministry of Health Malaysia, Seremban 70300, Malaysia
| | - Wynne Sim
- School of Medicine, International Medical University, Kuala Lumpur 57000, Malaysia;
| | - Ling-Wei Hii
- Center for Cancer and Stem Cell Research, Development and Innovation (IRDI), Institute for Research, International Medical University, Kuala Lumpur 57000, Malaysia; (L.-W.H.); (C.-O.L.); (W.-M.L.)
- School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Felicia Fei-Lei Chung
- Department of Medical Sciences, School of Medical and Life Sciences, Sunway University, Subang Jaya 47500, Malaysia;
| | - Chee-Onn Leong
- Center for Cancer and Stem Cell Research, Development and Innovation (IRDI), Institute for Research, International Medical University, Kuala Lumpur 57000, Malaysia; (L.-W.H.); (C.-O.L.); (W.-M.L.)
- School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia
- AGTC Genomics, Kuala Lumpur 57000, Malaysia
| | - Wei-Meng Lim
- Center for Cancer and Stem Cell Research, Development and Innovation (IRDI), Institute for Research, International Medical University, Kuala Lumpur 57000, Malaysia; (L.-W.H.); (C.-O.L.); (W.-M.L.)
- School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia
- School of Pharmacy, Monash University Malaysia, Subang Jaya 47500, Malaysia
| | - Chun-Wai Mai
- Center for Cancer and Stem Cell Research, Development and Innovation (IRDI), Institute for Research, International Medical University, Kuala Lumpur 57000, Malaysia; (L.-W.H.); (C.-O.L.); (W.-M.L.)
- School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Pudong New District, Shanghai 200127, China
| |
Collapse
|
15
|
He Y, Fang Y, Zhang M, Zhao Y, Tu B, Shi M, Muhitdinov B, Asrorov A, Xu Q, Huang Y. Remodeling “cold” tumor immune microenvironment via epigenetic-based therapy using targeted liposomes with in situ formed albumin corona. Acta Pharm Sin B 2022; 12:2057-2073. [PMID: 35847495 PMCID: PMC9279642 DOI: 10.1016/j.apsb.2021.09.022] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 01/07/2023] Open
Abstract
There is a close connection between epigenetic regulation, cancer metabolism, and immunology. The combination of epigenetic therapy and immunotherapy provides a promising avenue for cancer management. As an epigenetic regulator of histone acetylation, panobinostat can induce histone acetylation and inhibit tumor cell proliferation, as well as regulate aerobic glycolysis and reprogram intratumoral immune cells. JQ1 is a BRD4 inhibitor that can suppress PD-L1 expression. Herein, we proposed a chemo-free, epigenetic-based combination therapy of panobinostat/JQ1 for metastatic colorectal cancer. A novel targeted binary-drug liposome was developed based on lactoferrin-mediated binding with the LRP-1 receptor. It was found that the tumor-targeted delivery was further enhanced by in situ formation of albumin corona. The lactoferrin modification and endogenous albumin adsorption contribute a dual-targeting effect on the receptors of both LRP-1 and SPARC that were overexpressed in tumor cells and immune cells (e.g., tumor-associated macrophages). The targeted liposomal therapy was effective to suppress the crosstalk between tumor metabolism and immune evasion via glycolysis inhibition and immune normalization. Consequently, lactic acid production was reduced and angiogenesis inhibited; TAM switched to an anti-tumor phenotype, and the anti-tumor function of the effector CD8+ T cells was reinforced. The strategy provides a potential method for remodeling the tumor immune microenvironment (TIME).
Collapse
|
16
|
Bag A, Schultz A, Bhimani S, Stringfield O, Dominguez W, Mo Q, Cen L, Adeegbe D. Coupling the immunomodulatory properties of the HDAC6 inhibitor ACY241 with Oxaliplatin promotes robust anti-tumor response in non-small cell lung cancer. Oncoimmunology 2022; 11:2042065. [PMID: 35223194 PMCID: PMC8865306 DOI: 10.1080/2162402x.2022.2042065] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
While HDAC inhibitors have shown promise in hematologic cancers, their efficacy remains limited in solid cancers. In the present study, we evaluated the immunomodulatory properties of the HDAC6 inhibitor, Citarinostat (ACY241) on lung tumor immune compartment and its therapeutic potential in combination with Oxaliplatin. As a single agent, ACY241 treatment promoted increased infiltration, activation, proliferation, and effector function of T cells in the tumors of lung adenocarcinoma-bearing mice. Furthermore, tumor-associated macrophages exhibited downregulated expression of inhibitory ligands in favor of increased MHC and co-stimulatory molecules in addition to higher expression of CCL4 that favored increased T cell numbers in the tumors. RNA-sequencing of tumor-associated T cells and macrophages after ACY241 treatment revealed significant genomic changes that is consistent with improved T cell viability, reduced inhibitory molecular signature, and enhancement of macrophage capacity for improved T cell priming. Finally, coupling these ACY241-mediated effects with the chemotherapy drug Oxaliplatin led to significantly enhanced tumor-associated T cell effector functionality in lung cancer-bearing mice and in patient-derived tumors. Collectively, our studies highlight the molecular underpinnings of the expansive immunomodulatory activity of ACY241 and supports its suitability as a partner agent in combination with rationally selected chemotherapy agents for therapeutic intervention in NSCLC.
Collapse
Affiliation(s)
- Arup Bag
- Department of Immunology, H. Lee. Moffitt Cancer Center, Tampa, Florida, USA
| | - Andrew Schultz
- Department of Immunology, H. Lee. Moffitt Cancer Center, Tampa, Florida, USA
| | - Saloni Bhimani
- Department of Immunology, H. Lee. Moffitt Cancer Center, Tampa, Florida, USA
| | - Olya Stringfield
- Department of Thoracic Oncology, H. Lee. Moffitt Cancer Center, Tampa, FL, USA
| | - William Dominguez
- Small Animal Imaging Lab, H. Lee. Moffitt Cancer Center, Tampa, FL, USA
| | - Qianxing Mo
- Department of Biostatistics and Bioinformatics, H. Lee. Moffitt Cancer Center, Tampa, FL, USA
| | - Ling Cen
- Department of Biostatistics and Bioinformatics, H. Lee. Moffitt Cancer Center, Tampa, FL, USA
| | - Dennis Adeegbe
- Department of Immunology, H. Lee. Moffitt Cancer Center, Tampa, Florida, USA
| |
Collapse
|
17
|
Hanly A, Gibson F, Nocco S, Rogers S, Wu M, Alani RM. Drugging the Epigenome: Overcoming Resistance to Targeted and Immunotherapies in Melanoma. JID INNOVATIONS 2022; 2:100090. [PMID: 35199090 PMCID: PMC8844701 DOI: 10.1016/j.xjidi.2021.100090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 11/11/2021] [Accepted: 11/12/2021] [Indexed: 12/31/2022] Open
Abstract
This past decade has seen tremendous advances in understanding the molecular pathogenesis of melanoma and the development of novel effective therapies for melanoma. Targeted therapies and immunotherapies that extend survival of patients with advanced disease have been developed; however, the vast majority of patients experience relapse and therapeutic resistance over time. Moreover, cellular plasticity has been demonstrated to be a driver of therapeutic resistance mechanisms in melanoma and other cancers, largely functioning through epigenetic mechanisms, suggesting that targeting of the cancer epigenetic landscape may prove a worthwhile endeavor to ensure durable treatment responses and cures. Here, we review the epigenetic alterations that characterize melanoma development, progression, and resistance to targeted therapies as well as epigenetic therapies currently in use and under development for melanoma and other cancers. We further assess the landscape of epigenetic therapies in clinical trials for melanoma and provide a framework for future advances in epigenetic therapies to circumvent the development of therapeutic resistance in melanoma.
Collapse
Key Words
- BRAFi, BRAF inhibitor
- DNMT, DNA methyltransferase
- DNMTi, DNA methyltransferase inhibitor
- EZH2, enhancer of zeste homolog 2
- EZH2i, enhancer of zeste homolog 2 inhibitor
- HAT, histone acetyltransferase
- HDAC, histone deacetylase
- HDACi, histone deacetylase inhibitor
- MEKi, MAPK/extracellular signal‒regulated kinase inhibitor
- PTM, post-translational modification
- SIRT, sirtuin
- TMZ, temozolomide
- dsRNA, double-stranded RNA
Collapse
Affiliation(s)
- Ailish Hanly
- Department of Dermatology, Boston University School of Medicine|Boston Medical Center, Boston, Massachusetts, USA
| | - Frederick Gibson
- Department of Dermatology, Boston University School of Medicine|Boston Medical Center, Boston, Massachusetts, USA
| | - Sarah Nocco
- Department of Dermatology, Boston University School of Medicine|Boston Medical Center, Boston, Massachusetts, USA
| | - Samantha Rogers
- Department of Dermatology, Boston University School of Medicine|Boston Medical Center, Boston, Massachusetts, USA
| | - Muzhou Wu
- Department of Dermatology, Boston University School of Medicine|Boston Medical Center, Boston, Massachusetts, USA
| | - Rhoda M. Alani
- Department of Dermatology, Boston University School of Medicine|Boston Medical Center, Boston, Massachusetts, USA
| |
Collapse
|
18
|
HDAC Inhibition for Optimized Cellular Immunotherapy of NY-ESO-1-Positive Soft Tissue Sarcoma. Biomedicines 2022; 10:biomedicines10020373. [PMID: 35203582 PMCID: PMC8962361 DOI: 10.3390/biomedicines10020373] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/01/2022] [Accepted: 02/01/2022] [Indexed: 12/10/2022] Open
Abstract
Adoptive cell therapy with NY-ESO-1-specific T cells is a promising option for the treatment of soft tissue sarcoma (STS) but achieves only transient tumor control in the majority of cases. A strategy to optimize this cell therapeutic approach might be the modulation of the expression of the cancer-testis antigen NY-ESO-1 using histone deacetylase inhibitors (HDACis). In this study, the ex vivo effect of combining NY-ESO-1-specific T cells with the clinically approved pan HDACis panobinostat or vorionstat was investigated. Our data demonstrated that STS cells were sensitive to HDACis. Administration of HDACi prior to NY-ESO-1-specific T cells exerted enhanced lysis against the NY-ESO-1+ STS cell line SW982. This correlated with an increase in the NY-ESO-1 and HLA-ABC expression of SW982 cells, as well as increased CD25 expression on NY-ESO-1-specific T cells. Furthermore, the immune reactivity of NY-ESO-1-specific CD8+ T cells in terms of cytokine release was enhanced by HDACis. In summary, pretreatment with HDACis represents a potential means of enhancing the cytotoxic efficacy of NY-ESO-1-specific T cells against NY-ESO-1-positive STS.
Collapse
|
19
|
Shanmugam G, Rakshit S, Sarkar K. HDAC inhibitors: Targets for tumor therapy, immune modulation and lung diseases. Transl Oncol 2022; 16:101312. [PMID: 34922087 PMCID: PMC8688863 DOI: 10.1016/j.tranon.2021.101312] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 12/06/2021] [Indexed: 12/13/2022] Open
Abstract
Histone deacetylases (HDACs) are enzymes that play a key role in the epigenetic regulation of gene expression by remodeling chromatin. Inhibition of HDACs is a prospective therapeutic approach for reversing epigenetic alteration in several diseases. In preclinical research, numerous types of HDAC inhibitors were discovered to exhibit powerful and selective anticancer properties. However, such research has revealed that the effects of HDAC inhibitors may be far broader and more intricate than previously thought. This review will provide insight into the HDAC inhibitors and their mechanism of action with special emphasis on the significance of HDAC inhibitors in the treatment of Chronic Obstructive Pulmonary Disease and lung cancer. Nanocarrier-mediated HDAC inhibitor delivery and new approaches for targeting HDACs are also discussed.
Collapse
Affiliation(s)
- Geetha Shanmugam
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Sudeshna Rakshit
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Koustav Sarkar
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India.
| |
Collapse
|
20
|
Heppt MV, Wessely A, Hornig E, Kammerbauer C, Graf SA, Besch R, French LE, Matthies A, Kuphal S, Kappelmann-Fenzl M, Bosserhoff AK, Berking C. HDAC2 Is Involved in the Regulation of BRN3A in Melanocytes and Melanoma. Int J Mol Sci 2022; 23:ijms23020849. [PMID: 35055045 PMCID: PMC8778714 DOI: 10.3390/ijms23020849] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/05/2022] [Accepted: 01/10/2022] [Indexed: 11/16/2022] Open
Abstract
The neural crest transcription factor BRN3A is essential for the proliferation and survival of melanoma cells. It is frequently expressed in melanoma but not in normal melanocytes or benign nevi. The mechanisms underlying the aberrant expression of BRN3A are unknown. Here, we investigated the epigenetic regulation of BRN3A in melanocytes and melanoma cell lines treated with DNA methyltransferase (DNMT), histone acetyltransferase (HAT), and histone deacetylase (HDAC) inhibitors. DNMT and HAT inhibition did not significantly alter BRN3A expression levels, whereas panHDAC inhibition by trichostatin A led to increased expression. Treatment with the isoform-specific HDAC inhibitor mocetinostat, but not with PCI-34051, also increased BRN3A expression levels, suggesting that class I HDACs HDAC1, HDAC2, and HDAC3, and class IV HDAC11, were involved in the regulation of BRN3A expression. Transient silencing of HDACs 1, 2, 3, and 11 by siRNAs revealed that, specifically, HDAC2 inhibition was able to increase BRN3A expression. ChIP-Seq analysis uncovered that HDAC2 inhibition specifically increased H3K27ac levels at a distal enhancer region of the BRN3A gene. Altogether, our data suggest that HDAC2 is a key epigenetic regulator of BRN3A in melanocytes and melanoma cells. These results highlight the importance of epigenetic mechanisms in regulating melanoma oncogenes.
Collapse
Affiliation(s)
- Markus V. Heppt
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (A.W.); (C.B.)
- Comprehensive Cancer Center Erlangen-European Metropolitan Area of Nuremberg (CCC ER-EMN), 91054 Erlangen, Germany
- Correspondence: ; Tel.: +49-9131-85-35747
| | - Anja Wessely
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (A.W.); (C.B.)
- Comprehensive Cancer Center Erlangen-European Metropolitan Area of Nuremberg (CCC ER-EMN), 91054 Erlangen, Germany
| | - Eva Hornig
- Department of Dermatology and Allergy, University Hospital, LMU Munich, 80337 Munich, Germany; (E.H.); (C.K.); (S.A.G.); (R.B.); (L.E.F.)
| | - Claudia Kammerbauer
- Department of Dermatology and Allergy, University Hospital, LMU Munich, 80337 Munich, Germany; (E.H.); (C.K.); (S.A.G.); (R.B.); (L.E.F.)
| | - Saskia A. Graf
- Department of Dermatology and Allergy, University Hospital, LMU Munich, 80337 Munich, Germany; (E.H.); (C.K.); (S.A.G.); (R.B.); (L.E.F.)
| | - Robert Besch
- Department of Dermatology and Allergy, University Hospital, LMU Munich, 80337 Munich, Germany; (E.H.); (C.K.); (S.A.G.); (R.B.); (L.E.F.)
| | - Lars E. French
- Department of Dermatology and Allergy, University Hospital, LMU Munich, 80337 Munich, Germany; (E.H.); (C.K.); (S.A.G.); (R.B.); (L.E.F.)
| | - Alexander Matthies
- Institute of Biochemistry, Friedrich-Alexander University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (A.M.); (S.K.); (A.K.B.)
| | - Silke Kuphal
- Institute of Biochemistry, Friedrich-Alexander University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (A.M.); (S.K.); (A.K.B.)
| | | | - Anja K. Bosserhoff
- Institute of Biochemistry, Friedrich-Alexander University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (A.M.); (S.K.); (A.K.B.)
| | - Carola Berking
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (A.W.); (C.B.)
- Comprehensive Cancer Center Erlangen-European Metropolitan Area of Nuremberg (CCC ER-EMN), 91054 Erlangen, Germany
| |
Collapse
|
21
|
Enhancing Therapeutic Approaches for Melanoma Patients Targeting Epigenetic Modifiers. Cancers (Basel) 2021; 13:cancers13246180. [PMID: 34944799 PMCID: PMC8699560 DOI: 10.3390/cancers13246180] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/30/2021] [Accepted: 12/03/2021] [Indexed: 12/25/2022] Open
Abstract
Melanoma is the least common but deadliest type of skin cancer. Melanomagenesis is driven by a series of mutations and epigenetic alterations in oncogenes and tumor suppressor genes that allow melanomas to grow, evolve, and metastasize. Epigenetic alterations can also lead to immune evasion and development of resistance to therapies. Although the standard of care for melanoma patients includes surgery, targeted therapies, and immune checkpoint blockade, other therapeutic approaches like radiation therapy, chemotherapy, and immune cell-based therapies are used for patients with advanced disease or unresponsive to the conventional first-line therapies. Targeted therapies such as the use of BRAF and MEK inhibitors and immune checkpoint inhibitors such as anti-PD-1 and anti-CTLA4 only improve the survival of a small subset of patients. Thus, there is an urgent need to identify alternative standalone or combinatorial therapies. Epigenetic modifiers have gained attention as therapeutic targets as they modulate multiple cellular and immune-related processes. Due to melanoma's susceptibility to extrinsic factors and reversible nature, epigenetic drugs are investigated as a therapeutic avenue and as adjuvants for targeted therapies and immune checkpoint inhibitors, as they can sensitize and/or reverse resistance to these therapies, thus enhancing their therapeutic efficacy. This review gives an overview of the role of epigenetic changes in melanoma progression and resistance. In addition, we evaluate the latest advances in preclinical and clinical research studying combinatorial therapies and discuss the use of epigenetic drugs such as HDAC and DNMT inhibitors as potential adjuvants for melanoma patients.
Collapse
|
22
|
Corley MJ, Pang APS, Rasmussen TA, Tolstrup M, Søgaard OS, Ndhlovu LC. Candidate host epigenetic marks predictive for HIV reservoir size, responsiveness to latency reversal, and viral rebound. AIDS 2021; 35:2269-2279. [PMID: 34482353 PMCID: PMC8563431 DOI: 10.1097/qad.0000000000003065] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
OBJECTIVE This study aimed to identify candidate host epigenetic biomarkers predicting latency reversal agents (LRA) efficacy and HIV-1 rebound kinetics during analytical treatment interruption (ATI). DESIGN Retrospective longitudinal epigenetic profiling study from 13 people with HIV (PWH) on virologically suppressive antiretroviral therapy (ART) that participated in a LRA (HDAC inhibitor) clinical trial (NCT01680094) and a subsequent optional ATI to monitor for viral recrudescence after ART cessation. METHODS Genome-wide DNA methylation (DNAm) in purified CD4+ T cells was measured at single-nucleotide resolution using the Infinium MethylationEPIC array. HIV-1 DNA and RNA measures were previously assessed by PCR-based methods and the association of DNAm levels at regulatory sites of the human genome were examined with reservoir size, responsiveness to LRA, and time to viral rebound following ATI. RESULTS A distinct set of 15 candidate DNAm sites in purified CD4+ T cells at baseline pre-LRA and pre-ATI significantly correlated with time to viral rebound. Eight of these DNAm sites occurred in genes linked to HIV-1 replication dynamics including (SEPSECS, cg19113954), (MALT1, cg15968021), (CPT1C, cg14318858), (CRTAM, cg10977115), (B4GALNT4, cg04663285), (IL10, cg16284789), (TFPI2, cg19645693), and (LIFR, cg26437306); with the remaining sites at intergenic regions containing regulatory elements. Moreover, baseline DNAm states related to total HIV-1 DNA levels and the fold change in unspliced cell-associated HIV RNA following LRA treatment. CONCLUSION Preexisting host epigenetic states may determine HIV-1 rebound kinetics and reservoir maintenance. These findings suggest integrating a suite of DNA methylation markers to improve optimal participant selection and drug regimen in future HIV cure clinical trials.
Collapse
Affiliation(s)
- Michael J. Corley
- Department of Medicine, Division of Infectious Diseases, Weill Cornell Medicine, New York City, New York, USA
| | - Alina PS Pang
- Department of Medicine, Division of Infectious Diseases, Weill Cornell Medicine, New York City, New York, USA
| | - Thomas A. Rasmussen
- The Peter Doherty Institute for Infection and Immunity, The University of Melbourne and Royal Melbourne Hospital, Melbourne, VIC 3000, Australia
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Martin Tolstrup
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Ole S. Søgaard
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Lishomwa C. Ndhlovu
- Department of Medicine, Division of Infectious Diseases, Weill Cornell Medicine, New York City, New York, USA
- Department of Tropical Medicine, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii
| |
Collapse
|
23
|
Afolabi LO, Bi J, Li X, Adeshakin AO, Adeshakin FO, Wu H, Yan D, Chen L, Wan X. Synergistic Tumor Cytolysis by NK Cells in Combination With a Pan-HDAC Inhibitor, Panobinostat. Front Immunol 2021; 12:701671. [PMID: 34531855 PMCID: PMC8438531 DOI: 10.3389/fimmu.2021.701671] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 08/17/2021] [Indexed: 01/18/2023] Open
Abstract
Histone deacetylases (HDAC) are frequently overexpressed in tumors, and their inhibition has shown promising anti-tumor effects. However, the synergistic effects of HDAC inhibition with immune cell therapy have not been fully explored. Natural killer (NK) cells are cytotoxic lymphocytes for anti-tumor immune surveillance, with immunotherapy potential. We showed that a pan-HDAC inhibitor, panobinostat, alone demonstrated anti-tumor and anti-proliferative activities on all tested tumors in vitro. Additionally, panobinostat co-treatment or pretreatment synergized with NK cells to mediate tumor cell cytolysis. Mechanistically, panobinostat treatment increased the expression of cell adhesion and tight junction-related genes, promoted conjugation formation between NK and tumor cells, and modulates NK cell-activating receptors and ligands on tumor cells, contributing to the increased tumor cytolysis. Finally, panobinostat therapy led to better tumor control and synergized with anti-PD-L1 therapy. Our data highlights the anti-tumor potential of HDAC inhibition through tumor-intrinsic toxicity and enhancement of NK -based immunotherapy.
Collapse
Affiliation(s)
- Lukman O. Afolabi
- Guangdong Immune Cell Therapy Engineering and Technology Research Center, Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jiacheng Bi
- Guangdong Immune Cell Therapy Engineering and Technology Research Center, Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Xuguang Li
- Department of Stomatology, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen, China
| | - Adeleye O. Adeshakin
- Guangdong Immune Cell Therapy Engineering and Technology Research Center, Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Funmilayo O. Adeshakin
- Guangdong Immune Cell Therapy Engineering and Technology Research Center, Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Haisi Wu
- Guangdong Immune Cell Therapy Engineering and Technology Research Center, Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Dehong Yan
- Guangdong Immune Cell Therapy Engineering and Technology Research Center, Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Liang Chen
- Guangdong Immune Cell Therapy Engineering and Technology Research Center, Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaochun Wan
- Guangdong Immune Cell Therapy Engineering and Technology Research Center, Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
24
|
Diener J, Baggiolini A, Pernebrink M, Dalcher D, Lerra L, Cheng PF, Varum S, Häusel J, Stierli S, Treier M, Studer L, Basler K, Levesque MP, Dummer R, Santoro R, Cantù C, Sommer L. Epigenetic control of melanoma cell invasiveness by the stem cell factor SALL4. Nat Commun 2021; 12:5056. [PMID: 34417458 PMCID: PMC8379183 DOI: 10.1038/s41467-021-25326-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 08/03/2021] [Indexed: 02/06/2023] Open
Abstract
Melanoma cells rely on developmental programs during tumor initiation and progression. Here we show that the embryonic stem cell (ESC) factor Sall4 is re-expressed in the Tyr::NrasQ61K; Cdkn2a-/- melanoma model and that its expression is necessary for primary melanoma formation. Surprisingly, while Sall4 loss prevents tumor formation, it promotes micrometastases to distant organs in this melanoma-prone mouse model. Transcriptional profiling and in vitro assays using human melanoma cells demonstrate that SALL4 loss induces a phenotype switch and the acquisition of an invasive phenotype. We show that SALL4 negatively regulates invasiveness through interaction with the histone deacetylase (HDAC) 2 and direct co-binding to a set of invasiveness genes. Consequently, SALL4 knock down, as well as HDAC inhibition, promote the expression of an invasive signature, while inhibition of histone acetylation partially reverts the invasiveness program induced by SALL4 loss. Thus, SALL4 appears to regulate phenotype switching in melanoma through an HDAC2-mediated mechanism.
Collapse
Affiliation(s)
- Johanna Diener
- University of Zürich, Institute of Anatomy, Zürich, Switzerland
| | - Arianna Baggiolini
- University of Zürich, Institute of Anatomy, Zürich, Switzerland
- Developmental Biology, The Center for Stem Cell Biology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mattias Pernebrink
- Wallenberg Centre for Molecular Medicine, Linköping University, Linköping, Sweden
- Department of Biomedical and Clinical Sciences, Division of Molecular Medicine and Virology; Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| | - Damian Dalcher
- University of Zürich, Department of Molecular Mechanisms of Disease, Zürich, Switzerland
| | - Luigi Lerra
- University of Zürich, Department of Molecular Mechanisms of Disease, Zürich, Switzerland
| | - Phil F Cheng
- University Hospital of Zürich, Department of Dermatology, Zürich, Switzerland
| | - Sandra Varum
- University of Zürich, Institute of Anatomy, Zürich, Switzerland
| | - Jessica Häusel
- University of Zürich, Institute of Anatomy, Zürich, Switzerland
| | - Salome Stierli
- University of Zürich, Institute of Anatomy, Zürich, Switzerland
| | - Mathias Treier
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
- Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Lorenz Studer
- Developmental Biology, The Center for Stem Cell Biology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Konrad Basler
- University of Zürich, Institute of Molecular Life Sciences, Zürich, Switzerland
| | - Mitchell P Levesque
- University Hospital of Zürich, Department of Dermatology, Zürich, Switzerland
| | - Reinhard Dummer
- University Hospital of Zürich, Department of Dermatology, Zürich, Switzerland
| | - Raffaella Santoro
- University of Zürich, Department of Molecular Mechanisms of Disease, Zürich, Switzerland
| | - Claudio Cantù
- Wallenberg Centre for Molecular Medicine, Linköping University, Linköping, Sweden
- Department of Biomedical and Clinical Sciences, Division of Molecular Medicine and Virology; Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
- University of Zürich, Institute of Molecular Life Sciences, Zürich, Switzerland
| | - Lukas Sommer
- University of Zürich, Institute of Anatomy, Zürich, Switzerland.
| |
Collapse
|
25
|
Epigenetic Regulation in Melanoma: Facts and Hopes. Cells 2021; 10:cells10082048. [PMID: 34440824 PMCID: PMC8392422 DOI: 10.3390/cells10082048] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 07/31/2021] [Accepted: 08/02/2021] [Indexed: 12/25/2022] Open
Abstract
Cutaneous melanoma is a lethal disease, even when diagnosed in advanced stages. Although recent progress in biology and treatment has dramatically improved survival rates, new therapeutic approaches are still needed. Deregulation of epigenetics, which mainly controls DNA methylation status and chromatin remodeling, is implied not only in cancer initiation and progression, but also in resistance to antitumor drugs. Epigenetics in melanoma has been studied recently in both melanoma preclinical models and patient samples, highlighting its potential role in different phases of melanomagenesis, as well as in resistance to approved drugs such as immune checkpoint inhibitors and MAPK inhibitors. This review summarizes what is currently known about epigenetics in melanoma and dwells on the recognized and potential new targets for testing epigenetic drugs, alone or together with other agents, in advanced melanoma patients.
Collapse
|
26
|
Booth SW, Eyre TA, Whittaker J, Campo L, Wang LM, Soilleux E, Royston D, Rees G, Kesavan M, Hildyard C, Kazmi F, La Thangue N, Kerr D, Middleton MR, Collins GP. A Phase 2a cohort expansion study to assess the safety, tolerability, and preliminary efficacy of CXD101 in patients with advanced solid-organ cancer expressing HR23B or lymphoma. BMC Cancer 2021; 21:851. [PMID: 34301221 PMCID: PMC8306282 DOI: 10.1186/s12885-021-08595-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 07/06/2021] [Indexed: 12/01/2022] Open
Abstract
Background This Phase 2a dose expansion study was performed to assess the safety, tolerability and preliminary efficacy of the maximum tolerated dose of the oral histone de-acetylase (HDAC) inhibitor CXD101 in patients with relapsed / refractory lymphoma or advanced solid organ cancers and to assess HR23B protein expression by immunohistochemistry as a biomarker of HDAC inhibitor sensitivity. Methods Patients with advanced solid-organ cancers with high HR23B expression or lymphomas received CXD101 at the recommended phase 2 dose (RP2D). Key exclusions: corrected QT > 450 ms, neutrophils < 1.5 × 109/L, platelets < 75 × 109/L, ECOG > 1. Baseline HR23B expression was assessed by immunohistochemistry. Results Fifty-one patients enrolled between March 2014 and September 2019, 47 received CXD101 (19 solid-organ cancer, 28 lymphoma). Thirty-four patients received ≥80% RP2D. Baseline characteristics: median age 57.4 years, median prior lines 3, male sex 57%. The most common grade 3–4 adverse events were neutropenia (32%), thrombocytopenia (17%), anaemia (13%), and fatigue (9%) with no deaths on CXD101. No responses were seen in solid-organ cancers, with disease stabilisation in 36% or patients; the overall response rate in lymphoma was 17% with disease stabilisation in 52% of patients. Median progression-free survival was 1.2 months (95% confidence interval (CI) 1.2–5.4) in solid-organ cancers and 2.6 months (95%CI 1.2–5.6) in lymphomas. HR23B status did not predict response. Conclusions CXD101 showed acceptable tolerability with efficacy seen in Hodgkin lymphoma, T-cell lymphoma and follicular lymphoma. Further studies assessing combination approaches are warranted. Trial registration ClinicalTrials.gov identifier NCT01977638. Registered 07 November 2013. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-08595-w.
Collapse
Affiliation(s)
- Stephen W Booth
- Department of Haematology, NIHR Oxford Biomedical Research Centre, Oxford University Hospitals, Oxford, UK.
| | - Toby A Eyre
- Department of Haematology, NIHR Oxford Biomedical Research Centre, Oxford University Hospitals, Oxford, UK
| | | | - Leticia Campo
- Department of Oncology, University of Oxford, Oxford, UK
| | - Lai Mun Wang
- Department of Cellular Pathology, Oxford University Hospitals, Oxford, UK
| | | | - Daniel Royston
- Department of Cellular Pathology, Oxford University Hospitals, Oxford, UK
| | - Gabrielle Rees
- Department of Cellular Pathology, Oxford University Hospitals, Oxford, UK
| | - Murali Kesavan
- Department of Haematology, NIHR Oxford Biomedical Research Centre, Oxford University Hospitals, Oxford, UK
| | - Catherine Hildyard
- Department of Haematology, Milton Keynes University Hospital, Milton Keynes, UK
| | - Farasat Kazmi
- Department of Oncology, University of Oxford, Oxford, UK
| | - Nick La Thangue
- Celleron Therapeutics Ltd, Oxford, UK.,Department of Oncology, University of Oxford, Oxford, UK
| | - David Kerr
- Celleron Therapeutics Ltd, Oxford, UK.,Department of Oncology, University of Oxford, Oxford, UK
| | | | - Graham P Collins
- Department of Haematology, NIHR Oxford Biomedical Research Centre, Oxford University Hospitals, Oxford, UK
| |
Collapse
|
27
|
Nong Y, Hou Y, Pu Y, Li S, Lan Y. Development and Validation of High-Content Analysis for Screening HDAC6-Selective Inhibitors. SLAS DISCOVERY 2021; 26:628-641. [PMID: 33783263 DOI: 10.1177/24725552211002463] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Throughout recent decades, histone deacetylase (HDAC) inhibitors have shown encouraging potential in cancer treatment, and several pan-HDAC inhibitors have been approved for treating malignant cancers. Numerous adverse effects of pan-HDAC inhibitors have been reported, however, during preclinical and clinical evaluations. To avoid undesirable responses, an increasing number of investigations are focusing on the development of isotype-selective HDAC inhibitors. In this study, we present an effective and quantitative cellular assay using high-content analysis (HCA) to determine compounds' inhibition of the activity of HDAC6 and Class I HDAC isoforms, by detecting the acetylation of their corresponding substrates (i.e., α-tubulin and histone H3). Several conditions that are critical for HCA assays, such as cell seeding number, fixation and permeabilization reagent, and antibody dilution, have been fully validated in this study. We used selective HDAC6 inhibitors and inhibitors targeting different HDAC isoforms to optimize and validate the capability of the HCA assay. The results indicated that the HCA assay is a robust assay for quantifying compounds' selectivity of HDAC6 and Class I HDAC isoforms in cells. Moreover, we screened a panel of compounds for HDAC6 selectivity using this HCA assay, which provided valuable information for the structure-activity relationship (SAR). In summary, our results suggest that the HCA assay is a powerful tool for screening selective HDAC6 inhibitors.
Collapse
Affiliation(s)
- Yunhong Nong
- Discovery Project Unit, HitGen, Chengdu, Sichuan, China
| | - Yanyan Hou
- Discovery Project Unit, HitGen, Chengdu, Sichuan, China
| | - Yuting Pu
- Discovery Project Unit, HitGen, Chengdu, Sichuan, China
| | - Si Li
- Discovery Project Unit, HitGen, Chengdu, Sichuan, China
| | - Yan Lan
- Discovery Project Unit, HitGen, Chengdu, Sichuan, China
| |
Collapse
|
28
|
Bever KM, Thomas DL, Zhang J, Diaz Rivera EA, Rosner GL, Zhu Q, Nauroth JM, Christmas B, Thompson ED, Anders RA, Judkins C, Liu M, Jaffee EM, Ahuja N, Zheng L, Azad NS. A feasibility study of combined epigenetic and vaccine therapy in advanced colorectal cancer with pharmacodynamic endpoint. Clin Epigenetics 2021; 13:25. [PMID: 33531075 PMCID: PMC7856736 DOI: 10.1186/s13148-021-01014-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 01/13/2021] [Indexed: 12/19/2022] Open
Abstract
Epigenetic therapies may modulate the tumor microenvironment. We evaluated the safety and optimal sequence of combination DNA methyltransferase inhibitor guadecitabine with a granulocyte macrophage-colony-stimulating-factor (GM-CSF) secreting colon cancer (CRC) vaccine (GVAX) using a primary endpoint of change in CD45RO + T cells. 18 patients with advanced CRC enrolled, 11 underwent paired biopsies and were evaluable for the primary endpoint. No significant increase in CD45RO + cells was noted. Grade 3-4 toxicities were expected and manageable. Guadecitabine + GVAX was tolerable but demonstrated no significant immunologic activity in CRC. We report a novel trial design to efficiently evaluate investigational therapies with a primary pharmacodynamic endpoint.Trial registry Clinicaltrials.gov: NCT01966289. Registered 21 October, 2013.
Collapse
Affiliation(s)
- Katherine M Bever
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Bloomberg~Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, 1650 Orleans Street, Office 4M10, Baltimore, MD, 21287, USA
| | - Dwayne L Thomas
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Bloomberg~Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, 1650 Orleans Street, Office 4M10, Baltimore, MD, 21287, USA.,Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jiajia Zhang
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Bloomberg~Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, 1650 Orleans Street, Office 4M10, Baltimore, MD, 21287, USA
| | - Ernie A Diaz Rivera
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Bloomberg~Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, 1650 Orleans Street, Office 4M10, Baltimore, MD, 21287, USA
| | - Gary L Rosner
- Division of Biostatistics and Bioinformatics, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Qingfeng Zhu
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Bloomberg~Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, 1650 Orleans Street, Office 4M10, Baltimore, MD, 21287, USA
| | - Julie M Nauroth
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Bloomberg~Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, 1650 Orleans Street, Office 4M10, Baltimore, MD, 21287, USA
| | - Brian Christmas
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Bloomberg~Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, 1650 Orleans Street, Office 4M10, Baltimore, MD, 21287, USA
| | - Elizabeth D Thompson
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Bloomberg~Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, 1650 Orleans Street, Office 4M10, Baltimore, MD, 21287, USA.,Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Robert A Anders
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Carol Judkins
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Bloomberg~Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, 1650 Orleans Street, Office 4M10, Baltimore, MD, 21287, USA
| | - Meizheng Liu
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Bloomberg~Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, 1650 Orleans Street, Office 4M10, Baltimore, MD, 21287, USA
| | - Elizabeth M Jaffee
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Bloomberg~Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, 1650 Orleans Street, Office 4M10, Baltimore, MD, 21287, USA
| | - Nita Ahuja
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Bloomberg~Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, 1650 Orleans Street, Office 4M10, Baltimore, MD, 21287, USA.,Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Departments of Surgery, Oncology, and Pathology, Smilow Comprehensive Cancer Center, Yale University School of Medicine, New Haven, CT, USA
| | - Lei Zheng
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Bloomberg~Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, 1650 Orleans Street, Office 4M10, Baltimore, MD, 21287, USA.,Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Nilofer S Azad
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Bloomberg~Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, 1650 Orleans Street, Office 4M10, Baltimore, MD, 21287, USA.
| |
Collapse
|
29
|
Adamo A, Frusteri C, Pallotta MT, Pirali T, Sartoris S, Ugel S. Moonlighting Proteins Are Important Players in Cancer Immunology. Front Immunol 2021; 11:613069. [PMID: 33584695 PMCID: PMC7873856 DOI: 10.3389/fimmu.2020.613069] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 11/30/2020] [Indexed: 12/21/2022] Open
Abstract
Plasticity and adaptation to environmental stress are the main features that tumor and immune system share. Except for intrinsic and high-defined properties, cancer and immune cells need to overcome the opponent's defenses by activating more effective signaling networks, based on common elements such as transcriptional factors, protein-based complexes and receptors. Interestingly, growing evidence point to an increasing number of proteins capable of performing diverse and unpredictable functions. These multifunctional proteins are defined as moonlighting proteins. During cancer progression, several moonlighting proteins are involved in promoting an immunosuppressive microenvironment by reprogramming immune cells to support tumor growth and metastatic spread. Conversely, other moonlighting proteins support tumor antigen presentation and lymphocytes activation, leading to several anti-cancer immunological responses. In this light, moonlighting proteins could be used as promising new potential targets for improving current cancer therapies. In this review, we describe in details 12 unprecedented moonlighting proteins that during cancer progression play a decisive role in guiding cancer-associated immunomodulation by shaping innate or adaptive immune response.
Collapse
Affiliation(s)
- Annalisa Adamo
- Section of Immunology, Department of Medicine, University of Verona, Verona, Italy
| | - Cristina Frusteri
- Section of Immunology, Department of Medicine, University of Verona, Verona, Italy
| | | | - Tracey Pirali
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Novara, Italy
| | - Silvia Sartoris
- Section of Immunology, Department of Medicine, University of Verona, Verona, Italy
| | - Stefano Ugel
- Section of Immunology, Department of Medicine, University of Verona, Verona, Italy
| |
Collapse
|
30
|
Dellac S, Ben-Dov H, Raanan A, Saleem H, Zamostiano R, Semyatich R, Lavi S, Witz IP, Bacharach E, Ehrlich M. Constitutive low expression of antiviral effectors sensitizes melanoma cells to a novel oncolytic virus. Int J Cancer 2020; 148:2321-2334. [PMID: 33197301 DOI: 10.1002/ijc.33401] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 10/30/2020] [Accepted: 11/03/2020] [Indexed: 12/15/2022]
Abstract
STAT1 is a critical effector and a target gene of interferon (IFN) signaling, and thus a central mediator of antiviral responses. As both a mediator and a target of IFN signals, STAT1 expression reports on, and determines IFN activity. Gene expression analyses of melanoma patient samples revealed varied levels of STAT1 expression, which highly correlated with expression of >700 genes. The ability of oncolytic viruses to exploit tumor-induced defects to antiviral responses suggests that oncolytic viruses may efficiently target a subset of melanomas, yet these should be defined. We modeled this scenario with murine B16F10 melanomas, immortalized skin fibroblasts as controls and a novel oncolytic virus, EHDV-TAU. In B16F10 cells, constitutive low expression of STAT1 and its target genes, which included intracellular pattern recognition receptors (PRRs), correlated with their inability to mount IFN-based antiviral responses upon EHDV-TAU challenge, and with potency of EHDV-TAU-induced oncolysis. This underexpression of interferon stimulated genes (ISGs) and PRRs, and the inability of EHDV-TAU to induce their expression, were reversed by epigenetic modifiers, suggesting epigenetic silencing as a basis for their underexpression. Despite their inability to mount IFN/STAT-based responses upon viral infection, EHDV-TAU infected B16F10 cells secreted immune-stimulatory chemokines. Accordingly, in vivo, EHDV-TAU enhanced intratumoral infiltration of cytotoxic T-cells and reduced growth of local and distant tumors. We propose that "STAT1 signatures" should guide melanoma virotherapy treatments, and that oncolytic viruses such as EHDV-TAU have the potential to exploit the cellular context of low-STAT1 tumors.
Collapse
Affiliation(s)
- Sarah Dellac
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Hamutal Ben-Dov
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Ayala Raanan
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Hanna Saleem
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Rachel Zamostiano
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Rinat Semyatich
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Sara Lavi
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Isaac P Witz
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Eran Bacharach
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Marcelo Ehrlich
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
31
|
Saleh R, Toor SM, Sasidharan Nair V, Elkord E. Role of Epigenetic Modifications in Inhibitory Immune Checkpoints in Cancer Development and Progression. Front Immunol 2020; 11:1469. [PMID: 32760400 PMCID: PMC7371937 DOI: 10.3389/fimmu.2020.01469] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 06/05/2020] [Indexed: 12/16/2022] Open
Abstract
A balance between co-inhibitory and co-stimulatory signals in the tumor microenvironment (TME) is critical to suppress tumor development and progression, primarily via maintaining effective immunosurveillance. Aberrant expression of immune checkpoints (ICs), including programmed cell death protein 1 (PD-1), cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), T cell immunoglobulin and mucin-domain containing-3 (TIM-3), lymphocyte-activation gene 3 (LAG-3) and T cell immunoreceptor with Ig and ITIM domains (TIGIT), can create an immune-subversive environment, which helps tumor cells to evade immune destruction. Recent studies showed that epigenetic modifications play critical roles in regulating the expression of ICs and their ligands in the TME. Reports showed that the promoter regions of genes encoding ICs/IC ligands can undergo inherent epigenetic alterations, such as DNA methylation and histone modifications (acetylation and methylation). These epigenetic aberrations can significantly contribute to the transcriptomic upregulation of ICs and their ligands. Epigenetic therapeutics, including DNA methyltransferase and histone deacetylase inhibitors, can be used to revert these epigenetic anomalies acquired during the progression of disease. These discoveries have established a promising therapeutic modality utilizing the combination of epigenetic and immunotherapeutic agents to restore the physiological epigenetic profile and to re-establish potent host immunosurveillance mechanisms. In this review, we highlight the roles of epigenetic modifications on the upregulation of ICs, focusing on tumor development, and progression. We discuss therapeutic approaches of epigenetic modifiers, including clinical trials in various cancer settings and their impact on current and future anti-cancer therapies.
Collapse
Affiliation(s)
- Reem Saleh
- Cancer Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
| | - Salman M Toor
- Cancer Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
| | - Varun Sasidharan Nair
- Cancer Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
| | - Eyad Elkord
- Cancer Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar.,Biomedical Research Center, School of Science, Engineering and Environment, University of Salford, Manchester, United Kingdom
| |
Collapse
|
32
|
McGuire JJ, Nerlakanti N, Lo CH, Tauro M, Utset-Ward TJ, Reed DR, Lynch CC. Histone deacetylase inhibition prevents the growth of primary and metastatic osteosarcoma. Int J Cancer 2020; 147:2811-2823. [PMID: 32599665 DOI: 10.1002/ijc.33046] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/18/2020] [Accepted: 04/14/2020] [Indexed: 12/16/2022]
Abstract
Overall survival rates for patients with advanced osteosarcoma have remained static for over three decades. An in vitro analysis of osteosarcoma cell lines for sensitivity to an array of approved cancer therapies revealed that panobinostat, a broad spectrum histone deacetalyase (HDAC) inhibitor, is highly effective at triggering osteosarcoma cell death. Using in vivo models of orthotopic and metastatic osteosarcoma, here we report that panobinostat impairs the growth of primary osteosarcoma in bone and spontaneous metastasis to the lung, the most common site of metastasis for this disease. Further, pretreatment of mice with panobinostat prior to tail vein inoculation of osteosarcoma prevents the seeding and growth of lung metastases. Additionally, panobinostat impaired the growth of established lung metastases and improved overall survival, and these effects were also manifest in the lung metastatic SAOS2-LM7 model. Mechanistically, the efficacy of panobinostat was linked to high expression of HDAC1 and HDAC2 in osteosarcoma, and silencing of HDAC1 and 2 greatly reduced osteosarcoma growth in vitro. In accordance with these findings, treatment with the HDAC1/2 selective inhibitor romidepsin compromised the growth of osteosarcoma in vitro and in vivo. Analysis of patient-derived xenograft osteosarcoma cell lines further demonstrated the sensitivity of the disease to panobinostat or romidepsin. Collectively, these studies provide rationale for clinical trials in osteosarcoma patients using the approved therapies panobinostat or romidepsin.
Collapse
Affiliation(s)
- Jeremy J McGuire
- Cancer Biology Ph.D. Program, University of South Florida, Tampa, Florida, USA.,Tumor Biology Department, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Niveditha Nerlakanti
- Cancer Biology Ph.D. Program, University of South Florida, Tampa, Florida, USA.,Tumor Biology Department, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Chen Hao Lo
- Cancer Biology Ph.D. Program, University of South Florida, Tampa, Florida, USA.,Tumor Biology Department, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Marilena Tauro
- Tumor Biology Department, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Thomas J Utset-Ward
- Department of Drug Discovery, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA.,Department of Orthopaedic Surgery and Rehabilitation Medicine, University of Chicago, Chicago, Illinois, USA
| | - Damon R Reed
- Sarcoma Department & Department of Interdisciplinary Cancer Management (DICaM), H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Conor C Lynch
- Tumor Biology Department, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| |
Collapse
|
33
|
Kyriakou G, Melachrinou M. Cancer stem cells, epigenetics, tumor microenvironment and future therapeutics in cutaneous malignant melanoma: a review. Future Oncol 2020; 16:1549-1567. [PMID: 32484008 DOI: 10.2217/fon-2020-0151] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
This review provides an overview of the current understanding of the ontogeny and biology of melanoma stem cells in cutaneous malignant melanoma. This article also summarizes and evaluates the current knowledge of the underlying epigenetic mechanisms, the regulation of melanoma progress by the tumor microenvironment as well as the therapeutic implications and applications of these novel insights, in the setting of personalized medicine. Unraveling the complex ecosystem of cutaneous malignant melanoma and the interplay between its components, aims to provide novel insights into the establishment of efficient therapeutic strategies.
Collapse
Affiliation(s)
- Georgia Kyriakou
- Department of Dermatology, University General Hospital of Patras, Rion 265 04, Greece
| | - Maria Melachrinou
- Department of Pathology, University General Hospital of Patras, Rion 265 04, Greece
| |
Collapse
|
34
|
Burke B, Eden C, Perez C, Belshoff A, Hart S, Plaza-Rojas L, Delos Reyes M, Prajapati K, Voelkel-Johnson C, Henry E, Gupta G, Guevara-Patiño J. Inhibition of Histone Deacetylase (HDAC) Enhances Checkpoint Blockade Efficacy by Rendering Bladder Cancer Cells Visible for T Cell-Mediated Destruction. Front Oncol 2020; 10:699. [PMID: 32500025 PMCID: PMC7243798 DOI: 10.3389/fonc.2020.00699] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 04/14/2020] [Indexed: 12/11/2022] Open
Abstract
Inhibitory checkpoint blockade therapy is an immunomodulatory strategy that results in the restoration of T cell functions, and its efficacy depends on the recognition of tumor cells for destruction. Considering the factors at play, one could propose that anti-tumor responses will not occur if tumor cells are immunologically invisible to T cells. In this study, we tested a strategy based on the modulation of cancer cell's immunovisibility through HDAC inhibition. In a model (heterotopic and orthotopic) of mouse urothelial bladder cancer, we demonstrated that the use of intratumoral or intravesical HDACi in combination with systemic anti-PD-1 was effective at inducing curative responses with durable anti-tumor immunity capable of preventing tumor growth at a distal site. Mechanistically, we determined that protective responses were dependent on CD8 cells, but not NK cells. Of significance, in an in vitro human model, we found that fully activated T cells fail at killing bladder cancer cells unless tumor cells were pretreated with HDACi. Complementary to this observation, we found that HDACi cause gene deregulation, that results in the upregulation of genes responsible for mediating immunorecognition, NKG2D ligands and HSP70. Taken together, these data indicate that HDAC inhibition results in the elimination of the tumor cell's “invisibility cloak” that prevents T cells from recognizing and killing them. Finally, as checkpoint blockade therapy moves into the adjuvant setting, its combined use with locally administrated HDACi represents a new approach to be included in our current therapeutic treatment toolbox.
Collapse
Affiliation(s)
- Brianna Burke
- Department of Surgery and Cancer Biology, Loyola University Chicago, Chicago, IL, United States
| | - Catherine Eden
- Department of Urology, Loyola University Medical Center, Maywood, IL, United States
| | - Cynthia Perez
- Department of Surgery and Cancer Biology, Loyola University Chicago, Chicago, IL, United States
| | - Alex Belshoff
- Department of Urology, Loyola University Medical Center, Maywood, IL, United States
| | - Spencer Hart
- Department of Urology, Loyola University Medical Center, Maywood, IL, United States
| | - Lourdes Plaza-Rojas
- Department of Surgery and Cancer Biology, Loyola University Chicago, Chicago, IL, United States
| | - Michael Delos Reyes
- Department of Surgery and Cancer Biology, Loyola University Chicago, Chicago, IL, United States
| | - Kushal Prajapati
- Department of Surgery and Cancer Biology, Loyola University Chicago, Chicago, IL, United States
| | - Christina Voelkel-Johnson
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States
| | - Elizabeth Henry
- Department of Oncology, Loyola University Medical Center, Maywood, IL, United States
| | - Gopal Gupta
- Department of Surgery and Cancer Biology, Loyola University Chicago, Chicago, IL, United States.,Department of Urology, Loyola University Medical Center, Maywood, IL, United States
| | - José Guevara-Patiño
- Department of Surgery and Cancer Biology, Loyola University Chicago, Chicago, IL, United States
| |
Collapse
|
35
|
Wang Y, Wang P, Xu J. Phosphorylation: A Fast Switch For Checkpoint Signaling. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1248:347-398. [PMID: 32185718 DOI: 10.1007/978-981-15-3266-5_15] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Checkpoint signaling involves a variety of upstream and downstream factors that participate in the regulation of checkpoint expression, activation, and degradation. During the process, phosphorylation plays a critical role. Phosphorylation is one of the most well-documented post-translational modifications of proteins. Of note, the importance of phosphorylation has been emphasized in aspects of cell activities, including proliferation, metabolism, and differentiation. Here we summarize how phosphorylation of specific molecules affects the immune activities with preference in tumor immunity. Of course, immune checkpoints are given extra attention in this book. There are many common pathways that are involved in signaling of different checkpoints. Some of them are integrated and presented as common activities in the early part of this chapter, especially those associated with PD-1/PD-L1 and CTLA-4, because investigations concerning them are particularly abundant and variant. Their distinct regulation is supplementarily discussed in their respective section. As for checkpoints that are so far not well explored, their related phosphorylation modulations are listed separately in the later part. We hope to provide a clear and systematic view of the phosphorylation-modulated immune signaling.
Collapse
Affiliation(s)
- Yiting Wang
- School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Ping Wang
- Shanghai Tenth People's Hospital of Tongji University, School of Medicine, School of Life Sciences and Technology, Tongji University Cancer Center, Tongji University, Shanghai, 200092, China
| | - Jie Xu
- Institutes of Biomedical Sciences, Zhongshan-Xuhui Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
36
|
Strub T, Ballotti R, Bertolotto C. The "ART" of Epigenetics in Melanoma: From histone "Alterations, to Resistance and Therapies". Theranostics 2020; 10:1777-1797. [PMID: 32042336 PMCID: PMC6993228 DOI: 10.7150/thno.36218] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 11/14/2019] [Indexed: 02/07/2023] Open
Abstract
Malignant melanoma is the most deadly form of skin cancer. It originates from melanocytic cells and can also arise at other body sites. Early diagnosis and appropriate medical care offer excellent prognosis with up to 5-year survival rate in more than 95% of all patients. However, long-term survival rate for metastatic melanoma patients remains at only 5%. Indeed, malignant melanoma is known for its notorious resistance to most current therapies and is characterized by both genetic and epigenetic alterations. In cutaneous melanoma (CM), genetic alterations have been implicated in drug resistance, yet the main cause of this resistance seems to be non-genetic in nature with a change in transcription programs within cell subpopulations. This change can adapt and escape targeted therapy and immunotherapy cytotoxic effects favoring relapse. Because they are reversible in nature, epigenetic changes are a growing focus in cancer research aiming to prevent or revert the drug resistance with current therapies. As such, the field of epigenetic therapeutics is among the most active area of preclinical and clinical research with effects of many classes of epigenetic drugs being investigated. Here, we review the multiplicity of epigenetic alterations, mainly histone alterations and chromatin remodeling in both cutaneous and uveal melanomas, opening opportunities for further research in the field and providing clues to specifically control these modifications. We also discuss how epigenetic dysregulations may be exploited to achieve clinical benefits for the patients, the limitations of these therapies, and recent data exploring this potential through combinatorial epigenetic and traditional therapeutic approaches.
Collapse
Affiliation(s)
- Thomas Strub
- Université Nice Côte d'Azur, Inserm, C3M, France
- Biology and pathologies of melanocytes, Equipe labellisée ARC 2019, C3M, team 1, France
| | - Robert Ballotti
- Université Nice Côte d'Azur, Inserm, C3M, France
- Biology and pathologies of melanocytes, Equipe labellisée ARC 2019, C3M, team 1, France
| | - Corine Bertolotto
- Université Nice Côte d'Azur, Inserm, C3M, France
- Biology and pathologies of melanocytes, Equipe labellisée ARC 2019, C3M, team 1, France
| |
Collapse
|
37
|
Bezu L, Wu Chuang A, Liu P, Kroemer G, Kepp O. Immunological Effects of Epigenetic Modifiers. Cancers (Basel) 2019; 11:cancers11121911. [PMID: 31805711 PMCID: PMC6966579 DOI: 10.3390/cancers11121911] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 11/27/2019] [Accepted: 11/28/2019] [Indexed: 12/23/2022] Open
Abstract
Epigenetic alterations are associated with major pathologies including cancer. Epigenetic dysregulation, such as aberrant histone acetylation, altered DNA methylation, or modified chromatin organization, contribute to oncogenesis by inactivating tumor suppressor genes and activating oncogenic pathways. Targeting epigenetic cancer hallmarks can be harnessed as an immunotherapeutic strategy, exemplified by the use of pharmacological inhibitors of DNA methyltransferases (DNMT) and histone deacetylases (HDAC) that can result in the release from the tumor of danger-associated molecular patterns (DAMPs) on one hand and can (re-)activate the expression of tumor-associated antigens on the other hand. This finding suggests that epigenetic modifiers and more specifically the DNA methylation status may change the interaction of chromatin with chaperon proteins including HMGB1, thereby contributing to the antitumor immune response. In this review, we detail how epigenetic modifiers can be used for stimulating therapeutically relevant anticancer immunity when used as stand-alone treatments or in combination with established immunotherapies.
Collapse
Affiliation(s)
- Lucillia Bezu
- Service anesthésie-réanimation, Hôpital européen Georges Pompidou, AP-HP, 75015 Paris, France;
- Faculty of Medicine, University of Paris Sud, 94270 Kremlin-Bicêtre, France;
- Equipe labellisée par la Ligue contre le cancer, 75000, Paris, France;
- Université de Paris, Sorbonne, INSERM U1138, Centre de Recherche des Cordeliers, 75006 Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, 94800 Villejuif, France
| | - Alejandra Wu Chuang
- Faculty of Medicine, University of Paris Sud, 94270 Kremlin-Bicêtre, France;
- Equipe labellisée par la Ligue contre le cancer, 75000, Paris, France;
- Université de Paris, Sorbonne, INSERM U1138, Centre de Recherche des Cordeliers, 75006 Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, 94800 Villejuif, France
| | - Peng Liu
- Equipe labellisée par la Ligue contre le cancer, 75000, Paris, France;
- Université de Paris, Sorbonne, INSERM U1138, Centre de Recherche des Cordeliers, 75006 Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, 94800 Villejuif, France
| | - Guido Kroemer
- Equipe labellisée par la Ligue contre le cancer, 75000, Paris, France;
- Université de Paris, Sorbonne, INSERM U1138, Centre de Recherche des Cordeliers, 75006 Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, 94800 Villejuif, France
- Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, 75015 Paris, France
- Suzhou Institute for Systems Medicine, Chinese Academy of Medical Sciences, 215123 Suzhou, China
- Department of Women’s and Children’s Health, Karolinska Institute, Karolinska University Hospital, 171 76 Stockholm, Sweden
- Correspondence: (G.K.); (O.K.)
| | - Oliver Kepp
- Equipe labellisée par la Ligue contre le cancer, 75000, Paris, France;
- Université de Paris, Sorbonne, INSERM U1138, Centre de Recherche des Cordeliers, 75006 Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, 94800 Villejuif, France
- Correspondence: (G.K.); (O.K.)
| |
Collapse
|
38
|
Histone deacetylase inhibition promotes intratumoral CD8 + T-cell responses, sensitizing murine breast tumors to anti-PD1. Cancer Immunol Immunother 2019; 68:2081-2094. [PMID: 31720815 DOI: 10.1007/s00262-019-02430-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 11/07/2019] [Indexed: 12/23/2022]
Abstract
Histone deacetylase (HDAC) inhibitors impair tumor cell proliferation and alter gene expression. However, the impact of these changes on anti-tumor immunity is poorly understood. Here, we showed that the class I HDAC inhibitor, entinostat (ENT), promoted the expression of immune-modulatory molecules, including MHCII, costimulatory ligands, and chemokines on murine breast tumor cells in vitro and in vivo. ENT also impaired tumor growth in vivo-an effect that was dependent on both CD8+ T cells and IFNγ. Moreover, ENT promoted intratumoral T-cell clonal expansion and enhanced their functional activity. Importantly, ENT sensitized normally unresponsive tumors to the effects of PD1 blockade, predominantly through increases in T-cell proliferation. Our findings suggest that class I HDAC inhibitors impair tumor growth by enhancing the proliferative and functional capacity of CD8+ T cells and by sensitizing tumor cells to T-cell recognition.
Collapse
|
39
|
Zhao LM, Zhang JH. Histone Deacetylase Inhibitors in Tumor Immunotherapy. Curr Med Chem 2019; 26:2990-3008. [PMID: 28762309 DOI: 10.2174/0929867324666170801102124] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 04/26/2017] [Accepted: 06/27/2017] [Indexed: 01/20/2023]
Abstract
BACKGROUND With an increasing understanding of the antitumor immune response, considerable progress has been made in the field of tumor immunotherapy in the last decade. Inhibition of histone deacetylases represents a new strategy in tumor therapy and histone deacetylase inhibitors have been recently developed and validated as potential antitumor drugs. In addition to the direct antitumor effects, histone deacetylase inhibitors have been found to have the ability to improve tumor recognition by immune cells that may contribute to their antitumor activity. These immunomodolutory effects are desirable, and their in-depth comprehension will facilitate the design of novel regimens with improved clinical efficacy. OBJECTIVE Our goal here is to review recent developments in the application of histone deacetylase inhibitors as immune modulators in cancer treatment. METHODS Systemic compilation of the relevant literature in this field. RESULTS & CONCLUSION In this review, we summarize recent advances in the understanding of how histone deacetylase inhibitors alter immune process and discuss their effects on various cytokines. We also discuss the challenges to optimize the use of these inhibitors as immune modulators in cancer treatment. Information gained from this review will be valuable to this field and may be helpful for designing tumor immunotherapy trials involving histone deacetylase inhibitors.
Collapse
Affiliation(s)
- Li-Ming Zhao
- School of Chemistry and Chemical Engineering, and Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, Jiangsu, China.,State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, Guangxi, China
| | - Jie-Huan Zhang
- School of Chemistry and Chemical Engineering, and Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, Jiangsu, China
| |
Collapse
|
40
|
Chen MC, Lin YC, Liao YH, Liou JP, Chen CH. MPT0G612, a Novel HDAC6 Inhibitor, Induces Apoptosis and Suppresses IFN-γ-Induced Programmed Death-Ligand 1 in Human Colorectal Carcinoma Cells. Cancers (Basel) 2019; 11:cancers11101617. [PMID: 31652644 PMCID: PMC6826904 DOI: 10.3390/cancers11101617] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/13/2019] [Accepted: 10/18/2019] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is the third most common cancer and the leading cause of cancer-associated death worldwide. Histone deacetylases (HDACs) have been implicated in regulating complex cellular mechanisms to influence tumor biology and immunogenicity in various types of cancer. The potential of selective inhibition of HDAC6 has been widely discussed for the treatment of hematologic malignancies. We previously identified that MPT0G612 is a novel HDAC6 inhibitor exhibiting a promising antitumor activity against several solid tumors. The purpose of the present study was to evaluate the feasibility and pharmacological mechanisms of MPT0G612 as a potential therapy for CRC patients. Results revealed that MPT0G612 significantly suppresses the proliferation and viability, as well as induces apoptosis in CRC cells. Autophagy activation with LC3B-II formation and p62 degradation was observed, and the inhibition of autophagy by pharmacological inhibitor or Atg5 knockdown enhances MPT0G612-induced cell death. In addition, HDAC6 knockdown reduces MPT0G612-mediated autophagy and further potentiates apoptotic cell death. Furthermore, MPT0G612 downregulates the expression of PD-L1 induced by IFN-γ in CRC cells. These results suggest that MPT0G612 is a potent cell death inducer through inhibiting HDAC6-associated pathway, and a potential agent for combination strategy with immune checkpoint inhibitors for the treatment of CRC.
Collapse
Affiliation(s)
- Mei-Chuan Chen
- Ph.D. Program in Clinical Drug Development of Herbal Medicine, College of Pharmacy, Taipei Medical University, Taipei 110, Taiwan.
- Traditional Herbal Medicine Research Center of Taipei Medical University Hospital, Taipei 110, Taiwan.
| | - Yu-Chen Lin
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan.
| | - Yu-Hsuan Liao
- Ph.D. Program in Clinical Drug Development of Herbal Medicine, College of Pharmacy, Taipei Medical University, Taipei 110, Taiwan.
| | - Jing-Ping Liou
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 110, Taiwan.
| | - Chun-Han Chen
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan.
- Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei 110, Taiwan.
| |
Collapse
|
41
|
Wang X, Waschke BC, Woolaver RA, Chen Z, Zhang G, Piscopio AD, Liu X, Wang JH. Histone Deacetylase Inhibition Sensitizes PD1 Blockade-Resistant B-cell Lymphomas. Cancer Immunol Res 2019; 7:1318-1331. [PMID: 31235619 PMCID: PMC6679731 DOI: 10.1158/2326-6066.cir-18-0875] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 03/22/2019] [Accepted: 06/13/2019] [Indexed: 01/05/2023]
Abstract
PD1 blockade is effective in a subset of patients with B-cell lymphoma (e.g., classical-Hodgkin lymphomas); however, most patients do not respond to anti-PD1 therapy. To study PD1 resistance, we used an isoform-selective histone deacetylase inhibitor (HDACi; OKI-179), and a mouse mature B-cell lymphoma, G1XP lymphoma, immunosuppressive features of which resemble those of human B-cell lymphomas, including downregulation of MHC class I and II, exhaustion of CD8+ and CD4+ tumor-infiltrating lymphocytes (TIL), and PD1-blockade resistance. Using two lymphoma models, we show that treatment of B-cell lymphomas refractory to PD1 blockade with both OKI-179 and anti-PD1 inhibited growth; furthermore, sensitivity to single or combined treatment required tumor-derived MHC class I, and positively correlated with MHC class II expression level. We conclude that OKI-179 sensitizes lymphomas to PD1-blockade by enhancing tumor immunogenicity. In addition, we found that different HDACis exhibited distinct effects on tumors and T cells, yet the same HDACi could differentially affect HLA expression on different human B-cell lymphomas. Our study highlights the immunologic effects of HDACis on antitumor responses and suggests that optimal treatment efficacy requires personalized design and rational combination based on prognostic biomarkers (e.g., MHCs) and the individual profiles of HDACi.
Collapse
Affiliation(s)
- Xiaoguang Wang
- Department of Immunology and Microbiology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Brittany C Waschke
- Department of Immunology and Microbiology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Rachel A Woolaver
- Department of Immunology and Microbiology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Zhangguo Chen
- Department of Immunology and Microbiology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Gan Zhang
- Department of Biochemistry, University of Colorado Boulder, Boulder, Colorado
| | | | - Xuedong Liu
- Department of Biochemistry, University of Colorado Boulder, Boulder, Colorado
- OnKure Inc., Boulder, Colorado
| | - Jing H Wang
- Department of Immunology and Microbiology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado.
| |
Collapse
|
42
|
Pandey MR, Ernstoff MS. Mechanism of resistance to immune checkpoint inhibitors. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2019; 2:178-188. [PMID: 35582715 PMCID: PMC8992621 DOI: 10.20517/cdr.2018.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 04/16/2019] [Accepted: 05/08/2019] [Indexed: 11/15/2022]
Abstract
Immune checkpoint inhibitors (ICI) have revolutionized the management of cancer over the last decade. Instead of targeting the cancer cell directly these agents work by augmenting the immune response towards tumor. Although they are associated with improved responses compared to traditional treatments in several malignancies, a majority of the patients don't respond to ICIs even when used in the frontline setting. In patients who do respond, a significant number eventually develop resistance. We will review ICI mechanisms of action and resistance. We will also discuss new therapeutic options and combinations with other agents that are currently being evaluated to overcome resistance to ICI.
Collapse
Affiliation(s)
- Manu R. Pandey
- Department of Medicine, Roswell Park Comprehensive Cancer Center, NY 14203, USA
| | - Marc S. Ernstoff
- Department of Medicine, Roswell Park Comprehensive Cancer Center, NY 14203, USA
| |
Collapse
|
43
|
Selective HDAC6 inhibitors improve anti-PD-1 immune checkpoint blockade therapy by decreasing the anti-inflammatory phenotype of macrophages and down-regulation of immunosuppressive proteins in tumor cells. Sci Rep 2019; 9:6136. [PMID: 30992475 PMCID: PMC6467894 DOI: 10.1038/s41598-019-42237-3] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 03/19/2019] [Indexed: 01/29/2023] Open
Abstract
Histone deacetylases (HDACs) are involved in diverse cellular regulatory mechanisms including non-canonical functions outside the chromatin environment. Several publications have demonstrated that selective HDAC inhibitors (HDACi) can influence tumor immunogenicity and the functional activity of specific immune cells. In particular, the selective inhibition of HDAC6 has been reported to decrease tumor growth in several malignancies. However, there is still no clarity about the cellular components mediating this effect. In this study, we evaluated the HDAC6i Nexturastat A as a priming agent to facilitate the transition of the tumor microenvironment from “cold” to “hot”, and potentially augment immune check-point blockade therapies. This combination modality demonstrated to significantly reduce tumor growth in syngeneic melanoma tumor models. Additionally, we observed a complete neutralization of the up-regulation of PD-L1 and other immunosuppressive pathways induced by the treatment with anti-PD-1 blockade. This combination also showed profound changes in the tumor microenvironment such as enhanced infiltration of immune cells, increased central and effector T cell memory, and a significant reduction of pro-tumorigenic M2 macrophages. The evaluation of individual components of the tumor microenvironment suggested that the in vivo anti-tumor activity of HDAC6i is mediated by its effect on tumor cells and tumor-associated macrophages, and not directly over T cells. Overall, our results indicate that selective HDAC6i could be used as immunological priming agents to sensitize immunologically “cold” tumors and subsequently improve ongoing immune check-point blockade therapies.
Collapse
|
44
|
Smith WM, Purvis IJ, Bomstad CN, Labak CM, Velpula KK, Tsung AJ, Regan JN, Venkataraman S, Vibhakar R, Asuthkar S. Therapeutic targeting of immune checkpoints with small molecule inhibitors. Am J Transl Res 2019; 11:529-541. [PMID: 30899360 PMCID: PMC6413273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 12/18/2018] [Indexed: 06/09/2023]
Abstract
Immune checkpoints are known to contribute to tumor progression by enhancing cancer's ability to evade the immune system and metastasize. Immunotherapies, including monoclonal antibodies, have been developed to target specific immunosuppressive molecules on the membranes of cancer cells and have proven revolutionary in the field of oncology. Recently, small molecule inhibitors (SMIs) have gained increased attention in cancer research with potential applications in immunotherapy. SMIs have desirable benefits over large-molecule inhibitors, such as monoclonal antibodies, including greater cell permeability, organ specificity, longer half-lives, cheaper production costs, and the possibility for oral administration. This paper will review the mechanisms by which noteworthy and novel immune checkpoints contribute to tumor progression, and how they may be targeted by SMIs and epigenetic modifiers to offer possible adjuvants to established therapeutic regimens. SMIs target immune checkpoints in several ways, such as blocking signaling between tumorigenic factors, building immune tolerance, and direct inhibition via epigenetic repression of immune inhibitory molecules. Further investigation into combination therapies utilizing SMIs and conventional cancer therapies will uncover new treatment options that may provide better patient outcomes across a range of cancers.
Collapse
Affiliation(s)
- Wade M Smith
- Department of Cancer Biology and Pharmacology, University of Illinois College of MedicinePeoria, IL
| | - Ian J Purvis
- Department of Cancer Biology and Pharmacology, University of Illinois College of MedicinePeoria, IL
| | - Colin N Bomstad
- Department of Cancer Biology and Pharmacology, University of Illinois College of MedicinePeoria, IL
| | - Collin M Labak
- Department of Cancer Biology and Pharmacology, University of Illinois College of MedicinePeoria, IL
| | - Kiran K Velpula
- Department of Cancer Biology and Pharmacology, University of Illinois College of MedicinePeoria, IL
- Department of Neurosurgery, University of Illinois College of MedicinePeoria, IL
| | - Andrew J Tsung
- Department of Cancer Biology and Pharmacology, University of Illinois College of MedicinePeoria, IL
- Department of Neurosurgery, University of Illinois College of MedicinePeoria, IL
- Department of Illinois Neurological Institute, University of Illinois College of MedicinePeoria, IL
| | - Jenna N Regan
- Department of Health Sciences Education, University of Illinois College of MedicinePeoria, IL
| | | | - Rajeev Vibhakar
- Department of Pediatrics, University of Colorado School of MedicineAurora, CO
| | - Swapna Asuthkar
- Department of Cancer Biology and Pharmacology, University of Illinois College of MedicinePeoria, IL
| |
Collapse
|
45
|
Allyl isothiocyanate regulates lysine acetylation and methylation marks in an experimental model of malignant melanoma. Eur J Nutr 2019; 59:557-569. [PMID: 30762097 PMCID: PMC7058602 DOI: 10.1007/s00394-019-01925-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 02/05/2019] [Indexed: 12/19/2022]
Abstract
Objective(s) Isothiocyanates (ITCs) are biologically active plant secondary metabolites capable of mediating various biological effects including modulation of the epigenome. Our aim was to characterize the effect of allyl isothiocyanate (AITC) on lysine acetylation and methylation marks as a potential epigenetic-induced anti-melanoma strategy. Methods Our malignant melanoma model consisted of (1) human (A375) and murine (B16-F10) malignant melanoma as well as of human; (2) brain (VMM1) and lymph node (Hs 294T) metastatic melanoma; (3) non-melanoma epidermoid carcinoma (A431) and (4) immortalized keratinocyte (HaCaT) cells subjected to AITC. Cell viability, histone deacetylases (HDACs) and acetyltransferases (HATs) activities were evaluated by the Alamar blue, Epigenase HDAC Activity/Inhibition and EpiQuik HAT Activity/Inhibition assay kits, respectively, while their expression levels together with those of lysine acetylation and methylation marks by western immunoblotting. Finally, apoptotic gene expression was assessed by an RT-PCR-based gene expression profiling methodology. Results AITC reduces cell viability, decreases HDACs and HATs activities and causes changes in protein expression levels of various HDACs, HATs, and histone methyl transferases (HMTs) all of which have a profound effect on specific lysine acetylation and methylation marks. Moreover, AITC regulates the expression of a number of genes participating in various apoptotic cascades thus indicating its involvement in apoptotic induction. Conclusions AITC exerts a potent epigenetic effect suggesting its potential involvement as a promising epigenetic-induced bioactive for the treatment of malignant melanoma.
Collapse
|
46
|
Laino AS, Betts BC, Veerapathran A, Dolgalev I, Sarnaik A, Quayle SN, Jones SS, Weber JS, Woods DM. HDAC6 selective inhibition of melanoma patient T-cells augments anti-tumor characteristics. J Immunother Cancer 2019; 7:33. [PMID: 30728070 PMCID: PMC6366050 DOI: 10.1186/s40425-019-0517-0] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 01/21/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Therapies targeting anti-tumor T-cell responses have proven successful in the treatment of a variety of malignancies. However, as most patients still fail to respond, approaches to augment immunotherapeutic efficacy are needed. Here, we investigated the ability of histone deacetylase 6 (HDAC6)-selective inhibitors to decrease immunosuppression and enhance immune function of melanoma patient T-cells in ex vivo cultures. METHODS T-cells were harvested from peripheral blood or tumor biopsies of metastatic melanoma patients and cultured in the presence of pan-, class-specific or class-selective histone deacetylase (HDAC) inhibitors. Changes in cytokine production were evaluated by Luminex and intracellular flow cytometry staining. Expression of surface markers, transcription factors, protein phosphorylation, and cell viability were assessed by flow cytometry. Changes in chromatin structure were determined by ATAC-seq. RESULTS T-cell viability was impaired with low doses of pan-HDAC inhibitors but not with specific or selective HDAC inhibitors. The HDAC6-selective inhibitors ACY-1215 (ricolinostat) and ACY-241 (citarinostat) decreased Th2 cytokine production (i.e. IL-4, IL-5, IL-6, IL-10 and IL-13). Expansion of peripheral blood T-cells from melanoma patients in the presence of these inhibitors resulted in downregulation of the Th2 transcription factor GATA3, upregulation of the Th1 transcription factor T-BET, accumulation of central memory phenotype T-cells (CD45RA-CD45RO + CD62L + CCR7+), reduced exhaustion-associated phenotypes (i.e. TIM3 + LAG3 + PD1+ and EOMES+PD1+), and enhanced killing in mixed lymphocyte reactions. The frequency, FOXP3 expression, and suppressive function of T regulatory cells (Tregs) were decreased after exposure to ACY-1215 or ACY-241. Higher frequencies of T-cells expressing CD107a + IFNγ+ and central memory markers were observed in melanoma tumor-infiltrating lymphocytes (TIL), which persisted after drug removal and further expansion. After ACY-1215 treatment, increased chromatin accessibility was observed in regions associated with T-cell effector function and memory phenotypes, while condensed chromatin was found in regions encoding the mTOR downstream molecules AKT, SGK1 and S6K. Decreased phosphorylation of these proteins was observed in ACY-1215 and ACY-241-treated T-cells. AKT- and SGK1-specific inhibition recapitulated the increase in central memory frequency and decrease in IL-4 production, respectively, similar to the observed effects of HDAC6-selective inhibition. CONCLUSIONS HDAC6-selective inhibitors augmented melanoma patient T-cell immune properties, providing a rationale for translational investigation assessing their potential clinical efficacy.
Collapse
Affiliation(s)
- Andressa S. Laino
- NYU Langone Health, 522 First Avenue, 1306 Smilow Research Building, New York, NY 10016 USA
| | - B. C. Betts
- H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL USA
| | - A. Veerapathran
- H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL USA
| | - I. Dolgalev
- NYU Langone Health, 522 First Avenue, 1306 Smilow Research Building, New York, NY 10016 USA
| | - A. Sarnaik
- H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL USA
| | | | | | - J. S. Weber
- NYU Langone Health, 522 First Avenue, 1306 Smilow Research Building, New York, NY 10016 USA
| | - David M. Woods
- NYU Langone Health, 522 First Avenue, 1306 Smilow Research Building, New York, NY 10016 USA
| |
Collapse
|
47
|
Smith HJ, McCaw TR, Londono AI, Katre AA, Meza-Perez S, Yang ES, Forero A, Buchsbaum DJ, Randall TD, Straughn JM, Norian LA, Arend RC. The antitumor effects of entinostat in ovarian cancer require adaptive immunity. Cancer 2018; 124:4657-4666. [PMID: 30423192 DOI: 10.1002/cncr.31761] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 12/15/2017] [Accepted: 01/12/2018] [Indexed: 01/03/2023]
Abstract
BACKGROUND Ovarian cancer is poorly immunogenic; however, increased major histocompatibility complex class II (MHCII) expression correlates with improved immune response and prolonged survival in patients with ovarian cancer. The authors previously demonstrated that the histone deacetylase inhibitor entinostat increases MHCII expression on ovarian cancer cells. In the current study, they evaluated whether entinostat treatment and resultant MHCII expression would enhance beneficial immune responses and impair tumor growth in mice with ovarian cancer. METHODS C57BL/6 mice bearing intraperitoneal ID8 tumors were randomized to receive entinostat 20 mg/kg daily versus control. Changes in messenger RNA (mRNA) expression of 46 genes important for antitumor immunity were evaluated using NanoString analysis, and multicolor flow cytometry was used to measure changes in protein expression and tumor-infiltrating immune cells. RESULTS Entinostat treatment decreased the growth of both subcutaneously and omental ID8 tumors and prolonged survival in immunocompetent C57BL/6 mice. NanoString analysis revealed significant changes in mRNA expression in 21 of 46 genes, including increased expression of the MHCI pathway, the MHCII transactivator (CIITA), interferon γ, and granzyme B. C57BL/6 mice that received entinostat had increased MHCII expression on omental tumor cells and a higher frequency of tumor-infiltrating, CD8-positive T cells by flow cytometry. In immunocompromised mice, treatment with entinostat had no effect on tumor size and did not increase MHCII expression. CONCLUSIONS In the current murine ovarian cancer model, entinostat treatment enhances beneficial immune responses. Moreover, these antitumor effects of entinostat are dependent on an intact immune system. Future studies combining entinostat with checkpoint inhibitors or other immunomodulatory agents may achieve more durable antitumor responses in patients with ovarian cancer.
Collapse
Affiliation(s)
- Haller J Smith
- Division of Gynecologic Oncology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Tyler R McCaw
- Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Angelina I Londono
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Ashwini A Katre
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Selene Meza-Perez
- Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Eddy S Yang
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Andres Forero
- Division of Hematology and Oncology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Donald J Buchsbaum
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Troy D Randall
- Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, Alabama
| | - J Michael Straughn
- Division of Gynecologic Oncology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Lyse A Norian
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, Alabama
| | - Rebecca C Arend
- Division of Gynecologic Oncology, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
48
|
Bae J, Hideshima T, Tai YT, Song Y, Richardson P, Raje N, Munshi NC, Anderson KC. Histone deacetylase (HDAC) inhibitor ACY241 enhances anti-tumor activities of antigen-specific central memory cytotoxic T lymphocytes against multiple myeloma and solid tumors. Leukemia 2018; 32:1932-1947. [PMID: 29487385 PMCID: PMC6537609 DOI: 10.1038/s41375-018-0062-8] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 11/27/2017] [Accepted: 12/15/2017] [Indexed: 12/17/2022]
Abstract
Histone deacetylases (HDAC) are therapeutic targets in multiple cancers. ACY241, an HDAC6 selective inhibitor, has shown anti-multiple myeloma (MM) activity in combination with immunomodulatory drugs and proteasome inhibitors. Here we show ACY241 significantly reduces the frequency of CD138+ MM cells, CD4+CD25+FoxP3+ regulatory T cells, and HLA-DRLow/-CD11b+CD33+ myeloid-derived suppressor cells; and decreases expression of PD1/PD-L1 on CD8+ T cells and of immune checkpoints in bone marrow cells from myeloma patients. ACY241 increased B7 (CD80, CD86) and MHC (Class I, Class II) expression on tumor and dendritic cells. We further evaluated the effect of ACY241 on antigen-specific cytotoxic T lymphocytes (CTL) generated with heteroclitic XBP1unspliced184-192 (YISPWILAV) and XBP1spliced367-375 (YLFPQLISV) peptides. ACY241 induces co-stimulatory (CD28, 41BB, CD40L, OX40) and activation (CD38) molecule expression in a dose- and time-dependent manner, and anti-tumor activities, evidenced by increased perforin/CD107a expression, IFN-γ/IL-2/TNF-α production, and antigen-specific central memory CTL. These effects of ACY241 on antigen-specific memory T cells were associated with activation of downstream AKT/mTOR/p65 pathways and upregulation of transcription regulators including Bcl-6, Eomes, HIF-1 and T-bet. These studies therefore demonstrate mechanisms whereby ACY241 augments immune response, providing the rationale for its use, alone and in combination, to restore host anti-tumor immunity and improve patient outcome.
Collapse
MESH Headings
- Antigens, Neoplasm/genetics
- Antigens, Neoplasm/immunology
- Biomarkers
- Cell Line, Tumor
- Cytotoxicity, Immunologic/drug effects
- Epitopes, T-Lymphocyte/genetics
- Epitopes, T-Lymphocyte/immunology
- Gene Expression Regulation, Neoplastic/drug effects
- Histone Deacetylase Inhibitors/pharmacology
- Histone Deacetylases/metabolism
- Humans
- Immunologic Memory
- Lymphocyte Activation/drug effects
- Lymphocyte Activation/immunology
- Multiple Myeloma/drug therapy
- Multiple Myeloma/genetics
- Multiple Myeloma/immunology
- Multiple Myeloma/metabolism
- Neoplasms/drug therapy
- Neoplasms/genetics
- Neoplasms/immunology
- Neoplasms/metabolism
- Peptides/immunology
- Signal Transduction/drug effects
- T-Lymphocyte Subsets/drug effects
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- T-Lymphocytes, Cytotoxic/drug effects
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/metabolism
- X-Box Binding Protein 1/chemistry
- X-Box Binding Protein 1/genetics
- X-Box Binding Protein 1/immunology
Collapse
Affiliation(s)
- Jooeun Bae
- Dana-Farber Cancer Institute, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
| | - Teru Hideshima
- Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Yu-Tzu Tai
- Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Yan Song
- Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Paul Richardson
- Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Noopur Raje
- Harvard Medical School, Boston, MA, USA
- Massachusetts General Hospital, Boston, MA, USA
| | - Nikhil C Munshi
- Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- VA Boston Healthcare System, Boston, MA, USA
| | - Kenneth C Anderson
- Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| |
Collapse
|
49
|
Briere D, Sudhakar N, Woods DM, Hallin J, Engstrom LD, Aranda R, Chiang H, Sodré AL, Olson P, Weber JS, Christensen JG. The class I/IV HDAC inhibitor mocetinostat increases tumor antigen presentation, decreases immune suppressive cell types and augments checkpoint inhibitor therapy. Cancer Immunol Immunother 2018; 67:381-392. [PMID: 29124315 PMCID: PMC11028326 DOI: 10.1007/s00262-017-2091-y] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 11/07/2017] [Indexed: 02/07/2023]
Abstract
Checkpoint inhibitor therapy has led to major treatment advances for several cancers including non-small cell lung cancer (NSCLC). Despite this, a significant percentage of patients do not respond or develop resistance. Potential mechanisms of resistance include lack of expression of programmed death ligand 1 (PD-L1), decreased capacity to present tumor antigens, and the presence of an immunosuppressive tumor microenvironment. Mocetinostat is a spectrum-selective inhibitor of class I/IV histone deacetylases (HDACs), a family of proteins implicated in epigenetic silencing of immune regulatory genes in tumor and immune cells. Mocetinostat upregulated PD-L1 and antigen presentation genes including class I and II human leukocyte antigen (HLA) family members in a panel of NSCLC cell lines in vitro. Mocetinostat target gene promoters were occupied by a class I HDAC and exhibited increased active histone marks after mocetinostat treatment. Mocetinostat synergized with interferon γ (IFN-γ) in regulating class II transactivator (CIITA), a master regulator of class II HLA gene expression. In a syngeneic tumor model, mocetinostat decreased intratumoral T-regulatory cells (Tregs) and potentially myeloid-derived suppressor cell (MDSC) populations and increased intratumoral CD8+ populations. In ex vivo assays, patient-derived, mocetinostat-treated Tregs also showed significant down regulation of FOXP3 and HELIOS. The combination of mocetinostat and a murine PD-L1 antibody antagonist demonstrated increased anti-tumor activity compared to either therapy alone in two syngeneic tumor models. Together, these data provide evidence that mocetinostat modulates immune-related genes in tumor cells as well as immune cell types in the tumor microenvironment and enhances checkpoint inhibitor therapy.
Collapse
Affiliation(s)
- David Briere
- Mirati Therapeutics, Inc., 9393 Towne Center Dr, Suite 200, San Diego, CA, 92121, USA
| | - Niranjan Sudhakar
- Mirati Therapeutics, Inc., 9393 Towne Center Dr, Suite 200, San Diego, CA, 92121, USA
| | - David M Woods
- NYU Langone Medical Center, New York, NY, 10016, USA
| | - Jill Hallin
- Mirati Therapeutics, Inc., 9393 Towne Center Dr, Suite 200, San Diego, CA, 92121, USA
| | - Lars D Engstrom
- Mirati Therapeutics, Inc., 9393 Towne Center Dr, Suite 200, San Diego, CA, 92121, USA
| | - Ruth Aranda
- Mirati Therapeutics, Inc., 9393 Towne Center Dr, Suite 200, San Diego, CA, 92121, USA
| | - Harrah Chiang
- Mirati Therapeutics, Inc., 9393 Towne Center Dr, Suite 200, San Diego, CA, 92121, USA
| | | | - Peter Olson
- Mirati Therapeutics, Inc., 9393 Towne Center Dr, Suite 200, San Diego, CA, 92121, USA
| | | | - James G Christensen
- Mirati Therapeutics, Inc., 9393 Towne Center Dr, Suite 200, San Diego, CA, 92121, USA.
| |
Collapse
|
50
|
Hornig E, Heppt MV, Graf SA, Ruzicka T, Berking C. Inhibition of histone deacetylases in melanoma-a perspective from bench to bedside. Exp Dermatol 2018; 25:831-838. [PMID: 27792246 DOI: 10.1111/exd.13089] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2016] [Indexed: 12/13/2022]
Abstract
Histone deacetylases (HDACs) are critically involved in epigenetic gene regulation through alterations of the chromatin status of DNA. Aberrant expression, dysregulation of their enzymatic activity or imbalances between HDACs and histone acetyltransferases are likely involved in the development and progression of cancer. Pharmacologic inhibition of HDACs shows potent antitumor activity in a panel of malignancies such as colon or gastric cancer and multiple myeloma. In this review, we summarize the current knowledge of HDACs in melanoma and evaluate the application of HDAC inhibition from an experimental and clinical perspective. The molecular functions of HDACs can be classified into histone and non-histone effects with diverse implications in proliferation, cell cycle progression and apoptosis. HDAC inhibition results in G1 cell cycle arrest, induces apoptosis and increases the immunogenicity of melanoma cells. Some studies proposed that HDAC inhibition may overcome the resistance of melanoma cells to BRAF inhibition. Several inhibitors such as vorinostat, entinostat and valproic acid have recently been tested in phase I and early phase II trials, yet most agents show limited efficacy and tolerability as single agents. The most frequent adverse events of HDAC inhibition comprise haematological toxicity, fatigue, nausea and laboratory abnormalities. Existing evidence supports the hypothesis that HDAC inhibitors (HDACi) may sensitize melanoma cells to immunotherapy and targeted therapy and hence bear therapeutic potential concurrent with immune checkpoint blockade or BRAF and MEK inhibition.
Collapse
Affiliation(s)
- Eva Hornig
- Department of Dermatology and Allergy, Munich University Hospital (LMU), Munich, Germany
| | - Markus V Heppt
- Department of Dermatology and Allergy, Munich University Hospital (LMU), Munich, Germany
| | - Saskia A Graf
- Department of Dermatology and Allergy, Munich University Hospital (LMU), Munich, Germany
| | - Thomas Ruzicka
- Department of Dermatology and Allergy, Munich University Hospital (LMU), Munich, Germany
| | - Carola Berking
- Department of Dermatology and Allergy, Munich University Hospital (LMU), Munich, Germany.
| |
Collapse
|