1
|
Moriarty C, Gupta N, Bhattacharya D. Role of Glutamate Excitotoxicity in Glioblastoma Growth and Its Implications in Treatment. Cell Biol Int 2025; 49:421-434. [PMID: 40014265 PMCID: PMC11994879 DOI: 10.1002/cbin.70005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 01/31/2025] [Accepted: 02/13/2025] [Indexed: 02/28/2025]
Abstract
Glioblastoma is a highly malignant and invasive type of primary brain tumor that originates from astrocytes. Glutamate, a neurotransmitter in the brain plays a crucial role in excitotoxic cell death. Excessive glutamate triggers a pathological process known as glutamate excitotoxicity, leading to neuronal damage. This excitotoxicity contributes to neuronal death and tumor necrosis in glioblastoma, resulting in seizures and symptoms such as difficulty in concentrating, low energy, depression, and insomnia. Glioblastoma cells, derived from astrocytes, fail to maintain glutamate-glutamine homeostasis, releasing excess glutamate into the extracellular space. This glutamate activates ionotropic N-methyl-D-aspartate (NMDA) receptors and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors on nearby neurons, causing hyperexcitability and triggering apoptosis through caspase activation. Additionally, glioblastoma cells possess calcium-permeable AMPA receptors, which are activated by glutamate in an autocrine manner. This activation increases intracellular calcium levels, triggering various signaling pathways. Alkylating agent temozolomide has been used to counteract glutamate excitotoxicity, but its efficacy in directly combating excitotoxicity is limited due to the development of resistance in glioblastoma cells. There is an unmet need for alternative biochemical agents that can have the greatest impact on reducing glutamate excitotoxicity in glioblastoma. In this review, we discuss the mechanism and various signaling pathways involved in glutamate excitotoxicity in glioblastoma cells. We also examine the roles of various receptor and transporter proteins, in glutamate excitotoxicity and highlight biochemical agents that can mitigate glutamate excitotoxicity in glioblastoma and serve as potential therapeutic agents.
Collapse
Affiliation(s)
- Colin Moriarty
- Department of Neurology and Rehabilitation MedicineUniversity of Cincinnati College of MedicineCincinnatiOhioUSA
| | - Natasha Gupta
- Department of Neurology and Rehabilitation MedicineUniversity of Cincinnati College of MedicineCincinnatiOhioUSA
| | - Debanjan Bhattacharya
- Department of Neurology and Rehabilitation MedicineUniversity of Cincinnati College of MedicineCincinnatiOhioUSA
| |
Collapse
|
2
|
Kastbom L, Karlsson M, Letter N, Degsell E, Malmström A. Our clock is truly ticking-a qualitative study on patients' experiences of tumor treating fields. Neurooncol Pract 2025; 12:325-332. [PMID: 40110062 PMCID: PMC11913639 DOI: 10.1093/nop/npae102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025] Open
Abstract
Background TTFields is recommended internationally for the treatment of glioblastoma. In Sweden, TTFields requires a possibly challenging collaboration between the patient, next-of-kin, healthcare, and the private company providing the device, both from an ethical and practical perspective. Little is known about glioblastoma patients' own experiences of TTFields treatment. Methods Semi-structured individual interviews were conducted with 31 patients with glioblastoma who had been offered TTFields by the healthcare. These were analyzed by qualitative content analysis. Results Participants described there being multiple actors around them as TTFields users; (1) device prescription from physicians, sometimes providing insufficient information, (2) practical assistance from next-of-kin, necessary to access treatment, (3) home visits from the private company staff for device control, where close bonds between patients and TTFields staff occurred. TTFields treatment created hope and a feeling of control in an otherwise hopeless situation, sometimes evoking worries at the time of planned treatment stop. Some refrained from TTFields or discontinued early due to fear or experience of negative effects on quality of life. Others described finding practical and mental solutions for coping with the treatment in everyday life. Conclusions Our study identified a need for better support and information from healthcare providers for TTFields. A solution is necessary for assistance with TTFields for those without support from next-of-kin. The study raises the question of possible advantages of healthcare handling the technical support of the device instead of a private company, thereby avoiding a true or perceived influence on the patient's decision to continue or stop treatment.
Collapse
Affiliation(s)
- Lisa Kastbom
- Primary Health Care Centre Ekholmen, Linköping and Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
- Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | - Marit Karlsson
- Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
- Department of Advanced Home Care in Linköping and Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | - Nina Letter
- Department of Advanced Home Care in Linköping and Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | - Eskil Degsell
- Swedish Brain Tumor Association and NOCRiiC, Neuro Oncology Clinical Research, innovation, implementation and Collaboration, Karolinska University Hospital, Stockholm, and Department of Micro, Tumor and Cell biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | - Annika Malmström
- Division of Cell and Neurobiology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- Department of Advanced Home Care in Linköping and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
3
|
Shah S, Nag A, Lucke-Wold B. Association of tumor treating fields (TTFields) therapy with overall survival in newly diagnosed glioblastoma. Clin Transl Oncol 2025:10.1007/s12094-025-03849-6. [PMID: 39893330 DOI: 10.1007/s12094-025-03849-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 01/08/2025] [Indexed: 02/04/2025]
Abstract
Glioblastoma (GBM) is a rare and aggressive primary central nervous system tumor with high morbidity and mortality. Standard treatments include surgery, radiotherapy (RT), and temozolomide (TMZ) chemotherapy, but these options are often insufficient and cause severe side effects. Tumor Treating Fields (TTFields) have emerged as a fourth treatment, offering improved survival, better prognosis, and minimal side effects, significantly enhancing the quality of life for GBM patients. For newly diagnosed cases, TTFields combined with TMZ is the recommended standard of care for eligible patients. Current GBM therapy focuses on extending survival while reducing harm. Ongoing research seeks to explore TTFields in innovative radiological-based therapeutic paradigms.
Collapse
Affiliation(s)
- Siddharth Shah
- Lillian S Wells Department of Neurosurgery, University of Florida, Gainesville, USA.
| | - Aiswarya Nag
- Lillian S Wells Department of Neurosurgery, University of Florida, Gainesville, USA
| | - Brandon Lucke-Wold
- Lillian S Wells Department of Neurosurgery, University of Florida, Gainesville, USA
| |
Collapse
|
4
|
Hu X, Qiu Z, Yang Y, Xu T, Sheng K, Lu W, Xie J, Xu B. Implantable Ultrasound-Powered MXene/PVA Hydrogel-Based Generator for Treatment of Glioblastoma. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2309610. [PMID: 39665226 PMCID: PMC11791951 DOI: 10.1002/advs.202309610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 06/17/2024] [Indexed: 12/13/2024]
Abstract
Glioblastoma (GBM) is a lethal disease with a poor prognosis due to its strong infiltration, which makes it difficult to remove completely. In this study, an implantable, modulus-tunable, and ultrasound-powered MXene/PVA hydrogel-based tumor treatment device (UP-MPH-TTD), which generates specific electromagnetic alternating fields that disrupt the mitosis of cancer cells without adversely affecting normal neurons is developed. The MXene/PVA hydrogel is used to form a tumor treatment field due to its high biocompatibility, excellent flexibility, and high conductivity, which improves ultrasonic electrical conversion efficiency and significantly reduces the size of the equipment. The implantable UP-MPH-TTD is wirelessly ultrasound-powered, small-sized, lightweight, and simply structured, significantly boosting therapeutic efficiency and reducing restrictions on patient movement. In vitro and in vivo experiments confirmed the device's therapeutic effect, demonstrating a ≈92% inhibition rate in the growth of clinical tumor cells and a 73% reduction in tumor area in tumor-bearing mice. The promising results indicate the broad application potential of the device in the treatment and prognostic improvement of GBM.
Collapse
Affiliation(s)
- Xiaoping Hu
- School of Biomedical EngineeringSun Yat‐sen UniversityNo. 135, Xingang Xi RoadGuangzhou510275P. R. China
- School of Biomedical EngineeringShenzhen Campus of Sun Yat‐sen UniversityNo.66, Gongchang Road, Guangming DistrictShenzhen518107P. R. China
| | - Ziyi Qiu
- School of Biomedical EngineeringSun Yat‐sen UniversityNo. 135, Xingang Xi RoadGuangzhou510275P. R. China
- School of Biomedical EngineeringShenzhen Campus of Sun Yat‐sen UniversityNo.66, Gongchang Road, Guangming DistrictShenzhen518107P. R. China
| | - Yilin Yang
- Faculty of EngineeringDepartment of Electrical and Electronic EngineeringThe University of Hong KongPokfulamHong Kong SAR999077P. R. China
| | - Ting Xu
- School of Biomedical EngineeringShenzhen Campus of Sun Yat‐sen UniversityNo.66, Gongchang Road, Guangming DistrictShenzhen518107P. R. China
| | - Kai Sheng
- School of Biomedical EngineeringSun Yat‐sen UniversityNo. 135, Xingang Xi RoadGuangzhou510275P. R. China
- School of Biomedical EngineeringShenzhen Campus of Sun Yat‐sen UniversityNo.66, Gongchang Road, Guangming DistrictShenzhen518107P. R. China
| | - Weicheng Lu
- Department of AnesthesiologyState Key Laboratory of Oncology in Southern ChinaCollaborative Innovation for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouGuangdong510060P. R. China
| | - Jingdun Xie
- Department of AnesthesiologyState Key Laboratory of Oncology in Southern ChinaCollaborative Innovation for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouGuangdong510060P. R. China
| | - Bingzhe Xu
- School of Biomedical EngineeringSun Yat‐sen UniversityNo. 135, Xingang Xi RoadGuangzhou510275P. R. China
- School of Biomedical EngineeringShenzhen Campus of Sun Yat‐sen UniversityNo.66, Gongchang Road, Guangming DistrictShenzhen518107P. R. China
| |
Collapse
|
5
|
Golovin A, Dzarieva F, Rubetskaya K, Shamadykova D, Usachev D, Pavlova G, Kopylov A. In Silico Born Designed Anti-EGFR Aptamer Gol1 Has Anti-Proliferative Potential for Patient Glioblastoma Cells. Int J Mol Sci 2025; 26:1072. [PMID: 39940838 PMCID: PMC11817825 DOI: 10.3390/ijms26031072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/31/2024] [Accepted: 01/20/2025] [Indexed: 02/16/2025] Open
Abstract
The epidermal growth factor receptor (EGFR) is one of the key oncomarkers in glioblastoma (GB) biomedical research. High levels of EGFR expression and mutations have been found in many GB patients, making the EGFR an attractive target for therapeutic treatment. The EGFRvIII mutant is the most studied, it is not found in normal cells and is positively associated with tumor cell aggressiveness and poor patient prognosis, not to mention there is a possibility of it being a tumor stem cell marker. Some anti-EGFR DNA aptamers have already been selected, including the aptamer U2. The goal of this study was to construct a more stable derivative of the aptamer U2, while not ruining its functional potential toward cell cultures from GB patients. A multiloop motif in a putative secondary structure of the aptamer U2 was taken as a key feature to design a novel minimal aptamer, Gol1, using molecular dynamics simulations for predicted 3D models. It turned out that the aptamer Gol1 has a similar putative secondary structure, with G-C base pairs providing its stability. The anti-proliferative activities of the aptamer Gol1 were assessed using patient-derived GB continuous cell cultures, G01 and BU881, with different abundances of EGFR and EGFRvIII. The transcriptome data for the cell culture G01, after aptamer Gol1 treatment, revealed significant changes in gene expression; it induced the transcription of genes associated with neurogenesis and cell differentiation, and it decreased the transcription of genes mediating key nuclear processes. There were significant changes in the gene transcription of key pro-oncogenic signaling pathways mediated by the EGFR. Therefore, the aptamer Gol1 could potentially be an efficient molecule for translation into biomedicine, in order to develop targeted therapy for GB patients.
Collapse
Affiliation(s)
- Andrey Golovin
- Belozersky Research Institute of Physical Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia;
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, GSP-1, Leninskiye Gory, 1-73, 119234 Moscow, Russia
| | - Fatima Dzarieva
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 117485 Moscow, Russia; (K.R.); (D.S.); (G.P.)
- Institution N. N. Burdenko National Medical Research Center of Neurosurgery of the Ministry of Health of the Russian Federation, 125047 Moscow, Russia;
| | - Ksenia Rubetskaya
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 117485 Moscow, Russia; (K.R.); (D.S.); (G.P.)
| | - Dzhirgala Shamadykova
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 117485 Moscow, Russia; (K.R.); (D.S.); (G.P.)
| | - Dmitry Usachev
- Institution N. N. Burdenko National Medical Research Center of Neurosurgery of the Ministry of Health of the Russian Federation, 125047 Moscow, Russia;
| | - Galina Pavlova
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 117485 Moscow, Russia; (K.R.); (D.S.); (G.P.)
- Institution N. N. Burdenko National Medical Research Center of Neurosurgery of the Ministry of Health of the Russian Federation, 125047 Moscow, Russia;
| | - Alexey Kopylov
- Belozersky Research Institute of Physical Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia;
- Institution N. N. Burdenko National Medical Research Center of Neurosurgery of the Ministry of Health of the Russian Federation, 125047 Moscow, Russia;
| |
Collapse
|
6
|
Macarie AC, Suveges S, Okasha M, Hossain-Ibrahim K, Steele JD, Trucu D. Post-operative glioblastoma cancer cell distribution in the peritumoural oedema. Front Oncol 2024; 14:1447010. [PMID: 39726706 PMCID: PMC11669604 DOI: 10.3389/fonc.2024.1447010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 09/20/2024] [Indexed: 12/28/2024] Open
Abstract
Glioblastoma multiforme (GBM), the most aggressive primary brain tumour, exhibits low survival rates due to its rapid growth, infiltrates surrounding brain tissue, and is highly resistant to treatment. One major challenge is oedema infiltration, a fluid build-up that provides a path for cancer cells to invade other areas. MRI resolution is insufficient to detect these infiltrating cells, leading to relapses despite chemotherapy and radiotherapy. In this work, we propose a new multiscale mathematical modelling method, to explore the oedema infiltration and predict tumour relapses. To address tumour relapses, we investigated several possible scenarios for the distribution of remaining GBM cells within the oedema after surgery. Furthermore, in this computational modelling investigation on tumour relapse scenarios were investigated assuming the presence of clinically relevant chemo-radio therapy, numerical results suggest that a higher concentration of GBM cells near the surgical cavity edge led to limited spread and slower progression of tumour relapse. Finally, we explore mathematical and computational avenues for reconstructing relevant shapes for the initial distributions of GBM cells within the oedema from available MRI scans. The results obtained show good overlap between our simulation and the patient's serial MRI scans taken 881 days into the treatment. While still under analytical investigation, this work paves the way for robust reconstruction of tumour relapses from available clinical data.
Collapse
Affiliation(s)
- Andrei Ciprian Macarie
- Division of Mathematics, University of Dundee, Dundee, United Kingdom
- Division of Neuroscience, School of Medicine, University of Dundee, Dundee, United Kingdom
| | - Szabolcs Suveges
- Division of Neuroscience, School of Medicine, University of Dundee, Dundee, United Kingdom
| | - Mohamed Okasha
- Department of Neurosurgery, Ninewells Hospital and School of Medicine, National Health Service (NHS) Tayside, Dundee, United Kingdom
| | - Kismet Hossain-Ibrahim
- Department of Neurosurgery, Ninewells Hospital and School of Medicine, National Health Service (NHS) Tayside, Dundee, United Kingdom
| | - J. Douglas Steele
- Division of Neuroscience, School of Medicine, University of Dundee, Dundee, United Kingdom
| | - Dumitru Trucu
- Division of Mathematics, University of Dundee, Dundee, United Kingdom
| |
Collapse
|
7
|
Li X, Shan Y, Wang S, Wang J, Heng X. Triptolide induces apoptosis of glioma cells by inhibiting NF-κB activation during oxidative stress. Sci Rep 2024; 14:29740. [PMID: 39614071 DOI: 10.1038/s41598-024-80856-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 11/21/2024] [Indexed: 12/01/2024] Open
Abstract
Glioma is a common and fatal malignant primary brain tumor. Radiotherapy and first-line chemotherapy have little effect on the survival rate of patients, requiring alternative therapies. The main active ingredient of Tripterygium wilfordii Hook. F. triptolide (TP) has been shown to have anti-inflammatory and anti-proliferative properties, along with a wide range of anticancer activities. This study aimed to investigate the molecular mechanisms of triptolide in glioma treatment through network pharmacology and experimental validation. Cell viability was first assessed using Cell Counting Kit-8 (CCK8), followed by cell scratch assay and cell migration ability. Apoptosis-related markers, including TUNEL staining, Bcl-2-associated X protein (Bax), and B-cell lymphoma-2 (Bcl-2), were detected. Network pharmacology was used to predict the key targets of glioma, detect its signal pathways, screen the key components and targets for molecular docking, and explore the signaling pathways of TP. Lastly, immunofluorescence assays and ELISA were performed to elucidate the underlying mechanistic pathways. The network pharmacology data suggested that TP may inhibit glioma proliferation by regulating the signaling pathway of the nuclear factor kappa-B (NF-κB). The results showed that the underlying mechanism involved the regulation of the NF-κB signaling pathway to promote the generation of reactive oxygen species, thereby enhancing oxidative stress response and promoting cell apoptosis.
Collapse
Affiliation(s)
- Xinglan Li
- Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
- Department of Oncology, Linyi People's Hospital, Linyi, 276000, China
| | - Yubang Shan
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Si Wang
- The First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Jia Wang
- Library, Linyi People's Hospital, Linyi, 276000, China
| | - Xueyuan Heng
- Department of Neurosurgery, Linyi People's Hospital, Linyi, 276000, China.
- Department of Neurosurgery, Linyi People's Hospital, 27 East Jiefang Road, Lanshan District, Linyi City, Linyi, 276000, Shandong Province, China.
| |
Collapse
|
8
|
Li S, Zhu Z, Chen Z, Guo Z, Wang Y, Li X, Ma K. Network pharmacology-based investigation of the effects of Shenqi Fuzheng injection on glioma proliferation and migration via the SRC/PI3K/AKT signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 328:118128. [PMID: 38561056 DOI: 10.1016/j.jep.2024.118128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/23/2024] [Accepted: 03/28/2024] [Indexed: 04/04/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE In the clinic, Shenqi Fuzheng Injection (SFI) is used as an adjuvant for cancer chemotherapy. However, the molecular mechanism is unclear. AIM OF THE STUDY We screened potential targets of SFI action on gliomas by network pharmacology and performed experiments to validate possible molecular mechanisms against gliomas. MATERIALS AND METHODS We consulted relevant reports on the SFI and glioma incidence from PubMed and Web of Science and focused on the mechanism through which the SFI inhibits glioma. According to the literature, two primary SFI components-Codonopsis pilosula (Franch.) Nannf. and Astragalus membranaceus (Fisch.) Bunge-have been found. All plant names have been sourced from "The Plant List" (www.theplantlist.org). The cell lines U87, T98G and GL261 were used in this study. The inhibitory effects of SFI on glioma cells U87 and T98G were detected by CCK-8 assay, EdU, plate cloning assay, scratch assay, Transwell assay, immunofluorescence, flow cytometry and Western blot. A subcutaneous tumor model of C57BL/6 mice was constructed using GL261 cells, and the SFI was evaluated by HE staining and immunohistochemistry. The targets of glioma and the SFI were screened using network pharmacology. RESULTS A total of 110 targets were enriched, and a total of 26 major active components in the SFI were investigated. There were a total of 3,343 targets for gliomas, of which 79 targets were shared between the SFI and glioma tissues. SFI successfully prevented proliferation and caused cellular S-phase blockage in U87 and T98G cells, thus decreasing their growth. Furthermore, SFI suppressed cell migration by downregulating EMT marker expression. According to the results of the in vivo tests, the SFI dramatically decreased the development of tumors in a transplanted tumour model. Network pharmacological studies revealed that the SRC/PI3K/AKT signaling pathway may be the pathway through which SFI exerts its anti-glioma effects. CONCLUSIONS The findings revealed that the SRC/PI3K/AKT signaling pathway may be involved in the mechanism through which SFI inhibits the proliferation and migration of glioma cells.
Collapse
Affiliation(s)
- Shuang Li
- The Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University Medical College, Shihezi, 832000, China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, Shihezi, 832002, China; Department of Pathophysiology, School of Medicine, Shihezi University, Shihezi, 832000, China.
| | - Zhenglin Zhu
- The Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University Medical College, Shihezi, 832000, China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, Shihezi, 832002, China; Department of Pathophysiology, School of Medicine, Shihezi University, Shihezi, 832000, China.
| | - Zhijian Chen
- The Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University Medical College, Shihezi, 832000, China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, Shihezi, 832002, China; Department of Pathophysiology, School of Medicine, Shihezi University, Shihezi, 832000, China.
| | - Zhenli Guo
- The Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University Medical College, Shihezi, 832000, China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, Shihezi, 832002, China; Department of Physiology, Shihezi University Medical College, Shihezi, 832000, China.
| | - Yan Wang
- The Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University Medical College, Shihezi, 832000, China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, Shihezi, 832002, China.
| | - Xinzhi Li
- The Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University Medical College, Shihezi, 832000, China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, Shihezi, 832002, China; Department of Pathophysiology, School of Medicine, Shihezi University, Shihezi, 832000, China.
| | - Ketao Ma
- The Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University Medical College, Shihezi, 832000, China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, Shihezi, 832002, China; Department of Physiology, Shihezi University Medical College, Shihezi, 832000, China.
| |
Collapse
|
9
|
Xiang Y, Chen Y, Xu Z, Zhou S, Qin Z, Chen L, Xiao D, Liu S. Real-world cost- effectiveness analysis: Tumor Treating Fields for newly diagnosed glioblastoma in China. J Neurooncol 2024; 168:259-267. [PMID: 38563851 DOI: 10.1007/s11060-024-04662-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 03/25/2024] [Indexed: 04/04/2024]
Abstract
BACKGROUND Glioblastoma (GBM) stands as the most aggressive and prevalent primary brain malignancy. Tumor Treating Fields (TTFields), an innovative therapy complementing chemotherapy for GBM treatment, which can significantly enhance overall survival, disease progression-free survival, and patient's quality of life. However, there is a dearth of health economics evaluation on TTFields therapy both domestically and internationally. OBJECTIVE The study aims to assess the cost-effectiveness of TTFields + temozolomide (TMZ) in comparison to TMZ alone for newly diagnosed GBM patients. The intent is to provide robust economic evidence to serve as a foundation for policymaking and decision-making processes in GBM treatment. METHODS We estimated outcomes for newly diagnosed GBM patients over a lifetime horizon using a partitioned survival model with three states: Progression-Free Survival, Progression Disease, and Death. The survival model was derived from a real-world study in China, with long-term survival data drawn from GBM epidemiology literature. Adverse event rates were sourced from the EF-14 trial data. Cost data, validated by expert consultation, was obtained from public literature and databases. Utility values were extracted from published literature. Using Microsoft Excel, we calculated expected costs and quality-adjusted life years (QALYs) over 15 years from a health system perspective. The willingness-to-pay threshold was set at three times the Chinese per capita Gross Domestic Product (GDP) in 2022, amounting to CN¥242,928 (US$37,655) /QALY. A 5% discount rate was applied to costs and utilities. Results underwent analysis through single factor and probability sensitivity analyses. RESULTS TTFields + TMZ demonstrated a mean increase in cost by CN¥389,326 (US$57,859) and an increase of 2.46 QALYs compared to TMZ alone. The incremental cost-effectiveness ratio (ICER) was CN¥157,979 (US$23,474) per QALY gained. The model exhibited heightened sensitivity to changes in the discount rate. Probability sensitivity analysis indicates that, under the existing threshold, the probability of TTFields + TMZ being economical is 95.60%. CONCLUSIONS This cost-effectiveness analysis affirms that incorporating TTFields into TMZ treatment proves to be cost-effective, given a threshold three times the Chinese per capita GDP.
Collapse
Affiliation(s)
- Yuliang Xiang
- School of Public Health, Fudan University, Shanghai, China
- National Health Commission Key Laboratory of Health Technology Assessment, Fudan University, 130 Dongan Rd, Xuhui, Shanghai, 200032, China
| | - Yingyao Chen
- School of Public Health, Fudan University, Shanghai, China
- National Health Commission Key Laboratory of Health Technology Assessment, Fudan University, 130 Dongan Rd, Xuhui, Shanghai, 200032, China
| | - Zian Xu
- School of Public Health, Fudan University, Shanghai, China
- National Health Commission Key Laboratory of Health Technology Assessment, Fudan University, 130 Dongan Rd, Xuhui, Shanghai, 200032, China
| | - Shanyan Zhou
- School of Public Health, Fudan University, Shanghai, China
- National Health Commission Key Laboratory of Health Technology Assessment, Fudan University, 130 Dongan Rd, Xuhui, Shanghai, 200032, China
| | - Zhiyong Qin
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, 200040, China
- National Center for Neurological Disorders, Shanghai, 200040, China
| | - Lingchao Chen
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, 200040, China
- National Center for Neurological Disorders, Shanghai, 200040, China
| | - Dunming Xiao
- School of Public Health, Fudan University, Shanghai, China
- National Health Commission Key Laboratory of Health Technology Assessment, Fudan University, 130 Dongan Rd, Xuhui, Shanghai, 200032, China
| | - Shimeng Liu
- School of Public Health, Fudan University, Shanghai, China.
- National Health Commission Key Laboratory of Health Technology Assessment, Fudan University, 130 Dongan Rd, Xuhui, Shanghai, 200032, China.
| |
Collapse
|
10
|
Wang J, Du Q, Chen J, Liu J, Gu Z, Wang X, Zhang A, Gao S, Shao A, Zhang J, Wang Y. Tumor treating fields in glioblastoma: long-term treatment and high compliance as favorable prognostic factors. Front Oncol 2024; 14:1345190. [PMID: 38571508 PMCID: PMC10987822 DOI: 10.3389/fonc.2024.1345190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 02/26/2024] [Indexed: 04/05/2024] Open
Abstract
Introduction Tumor treating fields (TTFields) have earned substantial attention in recent years as a novel therapeutic approach with the potential to improve the prognosis of glioblastoma (GBM) patients. However, the impact of TTFields remains a subject of ongoing debate. This study aimed to offer real-world evidence on TTFields therapy for GBM, and to investigate the clinical determinants affecting its efficacy. Methods We have reported a retrospective analysis of 81 newly diagnosed Chinese GBM patients who received TTFields/Stupp treatment in the Second Affiliated Hospital of Zhejiang University. Overall survival (OS) and progression-free survival (PFS) were analyzed using Kaplan-Meier method. Cox regression models with time-dependent covariates were utilized to address non-proportional hazards and to assess the influence of clinical variables on PFS and OS. Results The median PFS and OS following TTFields/STUPP treatment was 12.6 months (95% CI 11.0-14.1) and 21.3 months (95% CI 10.0-32.6) respectively. Long-term TTFields treatment (>2 months) exhibits significant improvements in PFS and OS compared to the short-term treatment group (≤2 months). Time-dependent covariate COX analysis revealed that longer TTFields treatment was correlated with enhanced PFS and OS for up to 12 and 13 months, respectively. Higher compliance to TTFields (≥ 0.8) significantly reduced the death risk (HR=0.297, 95%CI 0.108-0.819). Complete surgical resection and MGMT promoter methylation were associated with significantly lower risk of progression (HR=0.337, 95% CI 0.176-0.643; HR=0.156, 95% CI 0.065-0.378) and death (HR=0.276, 95% CI 0.105-0.727; HR=0.249, 95% CI 0.087-0.710). Conclusion The TTFields/Stupp treatment may prolong median OS and PFS in GBM patients, with long-term TTFields treatment, higher TTFields compliance, complete surgical resection, and MGMT promoter methylation significantly improving prognosis.
Collapse
Affiliation(s)
- Junjie Wang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China
| | - Quan Du
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Department of Neurosurgery, Hangzhou First People’s Hospital, Hangzhou, China
| | - Jiarui Chen
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China
| | - Jianjian Liu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China
| | - Zhaowen Gu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China
| | - Xiaoyu Wang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China
| | - Anke Zhang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China
| | - Shiqi Gao
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China
| | - Anwen Shao
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China
| | - Jianmin Zhang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China
- Brain Research Institute, Zhejiang University, Hangzhou, China
- Collaborative Innovation Center for Brain Science, Zhejiang University, Hangzhou, China
| | - Yongjie Wang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China
| |
Collapse
|
11
|
Obrador E, Moreno-Murciano P, Oriol-Caballo M, López-Blanch R, Pineda B, Gutiérrez-Arroyo JL, Loras A, Gonzalez-Bonet LG, Martinez-Cadenas C, Estrela JM, Marqués-Torrejón MÁ. Glioblastoma Therapy: Past, Present and Future. Int J Mol Sci 2024; 25:2529. [PMID: 38473776 PMCID: PMC10931797 DOI: 10.3390/ijms25052529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 02/10/2024] [Accepted: 02/16/2024] [Indexed: 03/14/2024] Open
Abstract
Glioblastoma (GB) stands out as the most prevalent and lethal form of brain cancer. Although great efforts have been made by clinicians and researchers, no significant improvement in survival has been achieved since the Stupp protocol became the standard of care (SOC) in 2005. Despite multimodality treatments, recurrence is almost universal with survival rates under 2 years after diagnosis. Here, we discuss the recent progress in our understanding of GB pathophysiology, in particular, the importance of glioma stem cells (GSCs), the tumor microenvironment conditions, and epigenetic mechanisms involved in GB growth, aggressiveness and recurrence. The discussion on therapeutic strategies first covers the SOC treatment and targeted therapies that have been shown to interfere with different signaling pathways (pRB/CDK4/RB1/P16ink4, TP53/MDM2/P14arf, PI3k/Akt-PTEN, RAS/RAF/MEK, PARP) involved in GB tumorigenesis, pathophysiology, and treatment resistance acquisition. Below, we analyze several immunotherapeutic approaches (i.e., checkpoint inhibitors, vaccines, CAR-modified NK or T cells, oncolytic virotherapy) that have been used in an attempt to enhance the immune response against GB, and thereby avoid recidivism or increase survival of GB patients. Finally, we present treatment attempts made using nanotherapies (nanometric structures having active anti-GB agents such as antibodies, chemotherapeutic/anti-angiogenic drugs or sensitizers, radionuclides, and molecules that target GB cellular receptors or open the blood-brain barrier) and non-ionizing energies (laser interstitial thermal therapy, high/low intensity focused ultrasounds, photodynamic/sonodynamic therapies and electroporation). The aim of this review is to discuss the advances and limitations of the current therapies and to present novel approaches that are under development or following clinical trials.
Collapse
Affiliation(s)
- Elena Obrador
- Scientia BioTech S.L., 46002 Valencia, Spain; (P.M.-M.); (M.O.-C.); (R.L.-B.); (J.M.E.)
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain;
| | - Paz Moreno-Murciano
- Scientia BioTech S.L., 46002 Valencia, Spain; (P.M.-M.); (M.O.-C.); (R.L.-B.); (J.M.E.)
| | - María Oriol-Caballo
- Scientia BioTech S.L., 46002 Valencia, Spain; (P.M.-M.); (M.O.-C.); (R.L.-B.); (J.M.E.)
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain;
| | - Rafael López-Blanch
- Scientia BioTech S.L., 46002 Valencia, Spain; (P.M.-M.); (M.O.-C.); (R.L.-B.); (J.M.E.)
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain;
| | - Begoña Pineda
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain;
| | - Julia Lara Gutiérrez-Arroyo
- Department of Medicine, Jaume I University of Castellon, 12071 Castellon, Spain; (J.L.G.-A.); (A.L.); (C.M.-C.)
| | - Alba Loras
- Department of Medicine, Jaume I University of Castellon, 12071 Castellon, Spain; (J.L.G.-A.); (A.L.); (C.M.-C.)
| | - Luis G. Gonzalez-Bonet
- Department of Neurosurgery, Castellon General University Hospital, 12004 Castellon, Spain;
| | - Conrado Martinez-Cadenas
- Department of Medicine, Jaume I University of Castellon, 12071 Castellon, Spain; (J.L.G.-A.); (A.L.); (C.M.-C.)
| | - José M. Estrela
- Scientia BioTech S.L., 46002 Valencia, Spain; (P.M.-M.); (M.O.-C.); (R.L.-B.); (J.M.E.)
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain;
- Department of Physiology, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Spain
| | | |
Collapse
|
12
|
Iv M, Naya L, Sanan S, Van Buskirk SL, Nagpal S, Thomas RP, Recht LD, Patel CB. Tumor treating fields increases blood-brain barrier permeability and relative cerebral blood volume in patients with glioblastoma. Neuroradiol J 2024; 37:107-118. [PMID: 37931176 PMCID: PMC10863570 DOI: 10.1177/19714009231207083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023] Open
Abstract
BACKGROUND AND OBJECTIVE 200 kHz tumor treating fields (TTFields) is clinically approved for newly-diagnosed glioblastoma (nGBM). Because its effects on conventional surveillance MRI brain scans are equivocal, we investigated its effects on perfusion MRI (pMRI) brain scans. METHODS Each patient underwent institutional standard pMRI: dynamic contrast-enhanced (DCE) and dynamic susceptibility contrast (DSC) pMRI at three time points: baseline, 2-, and 6-months on-adjuvant therapy. At each timepoint, the difference between T1 pre- versus post-contrast tumor volume (ΔT1) and these pMRI metrics were evaluated: normalized and standardized relative cerebral blood volume (nRCBV, sRCBV); fractional plasma volume (Vp), volume of extravascular extracellular space (EES) per volume of tissue (Ve), blood-brain barrier (BBB) permeability (Ktrans), and time constant for gadolinium reflux from EES back into the vascular system (Kep). Between-group comparisons were performed using rank-sum analysis, and bootstrapping evaluated likely reproducibility of the results. RESULTS Among 13 pMRI datasets (11 nGBM, 2 recurrent GBM), therapies included temozolomide-only (n = 9) and temozolomide + TTFields (n = 4). No significant differences were found in patient or tumor characteristics. Compared to temozolomide-only, temozolomide + TTFields did not significantly affect the percent-change in pMRI metrics from baseline to 2 months. But during the 2- to 6-month period, temozolomide + TTFields significantly increased the percent-change in nRCBV (+26.9% [interquartile range 55.1%] vs -39.1% [37.0%], p = 0.049), sRCBV (+9.5% [39.7%] vs -30.5% [39.4%], p = 0.049), Ktrans (+54.6% [1768.4%] vs -26.9% [61.2%], p = 0.024), Ve (+111.0% [518.1%] vs -13.0% [22.5%], p = 0.048), and Vp (+98.8% [2172.4%] vs -24.6% [53.3%], p = 0.024) compared to temozolomide-only. CONCLUSION Using pMRI, we provide initial in-human validation of pre-clinical studies regarding the effects of TTFields on tumor blood volume and BBB permeability in GBM.
Collapse
Affiliation(s)
- Michael Iv
- Division of Neuroradiology, Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Lewis Naya
- Stanford Cancer Institute, Stanford, CA, USA
| | - Sajal Sanan
- School of Medicine, University of Washington, Seattle, WA, USA
| | - Samuel L Van Buskirk
- Department of Psychology, University of Texas at San Antonio, San Antonio, TX, USA
| | - Seema Nagpal
- Division of Neuro-Oncology, Department of Neurology, Stanford University School of Medicine, Stanford, CA, USA
| | - Reena P Thomas
- Division of Neuro-Oncology, Department of Neurology, Stanford University School of Medicine, Stanford, CA, USA
| | - Lawrence D Recht
- Division of Neuro-Oncology, Department of Neurology, Stanford University School of Medicine, Stanford, CA, USA
| | - Chirag B Patel
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Cancer Biology Program, The University of Texas MD Anderson Cancer Center, University of Texas at Houston Graduate School of Biomedical Sciences (GSBS), Houston, TX, USA
- Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center-University of Texas at Houston Graduate School of Biomedical Sciences (GSBS), USA
| |
Collapse
|
13
|
Tessmer I, Margison GP. The DNA Alkyltransferase Family of DNA Repair Proteins: Common Mechanisms, Diverse Functions. Int J Mol Sci 2023; 25:463. [PMID: 38203633 PMCID: PMC10779285 DOI: 10.3390/ijms25010463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/22/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
DNA alkyltransferase and alkyltransferase-like family proteins are responsible for the repair of highly mutagenic and cytotoxic O6-alkylguanine and O4-alkylthymine bases in DNA. Their mechanism involves binding to the damaged DNA and flipping the base out of the DNA helix into the active site pocket in the protein. Alkyltransferases then directly and irreversibly transfer the alkyl group from the base to the active site cysteine residue. In contrast, alkyltransferase-like proteins recruit nucleotide excision repair components for O6-alkylguanine elimination. One or more of these proteins are found in all kingdoms of life, and where this has been determined, their overall DNA repair mechanism is strictly conserved between organisms. Nevertheless, between species, subtle as well as more extensive differences that affect target lesion preferences and/or introduce additional protein functions have evolved. Examining these differences and their functional consequences is intricately entwined with understanding the details of their DNA repair mechanism(s) and their biological roles. In this review, we will present and discuss various aspects of the current status of knowledge on this intriguing protein family.
Collapse
Affiliation(s)
- Ingrid Tessmer
- Rudolf Virchow Center, University of Würzburg, Josef-Schneider-Strasse 2, 97080 Würzburg, Germany
| | - Geoffrey P. Margison
- School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK;
| |
Collapse
|
14
|
Zheng J, Zhu H, Guo W, Gao C, Guo J, Sun L, Xu G, Wang Z, Dai B, Gu N, He X. Investigation of sponge medium for efficient concurrent tumor treating fields and radiotherapy for glioblastomas. NANOSCALE 2023; 15:17839-17849. [PMID: 37882243 DOI: 10.1039/d3nr04228f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
Realizing precise therapy for glioblastomas (GBMs), a kind of high-frequency malignant brain tumor, is of great importance in improving the overall survival (OS) of patients. With relentless efforts made in the past few years, a sponge medium has been introduced into concurrent tumor treating fields (TTFields) and radiotherapy to enhance therapy efficacy for GBMs, and some progresses have been witnessed. However, the specific physical and chemical characteristics of the sponge that can be used for GBMs have not been reported as far as we know. Therefore, this study aims to develop a simple yet robust method to select a candidate sponge medium and verify its safety in advanced concurrent TTFields and radiotherapy for GBMs through interdisciplinary investigation among materials science, medical physics, and clinical radiation oncology. Significantly, latex-free polyurethane (PU) sponges with a Hounsfield unit (HU) value lower than -750, which exhibit almost no negative influence on planning computed tomography (CT) imaging and radiotherapy dosimetry, are demonstrated to be available for concurrent TTFields and radiotherapy for GBMs. Moreover, in clinical research, the achieved clear CT images, negligible scalp toxicity, lower residual positioning errors, and high compliant rate of 82% over the selected representative sponge sample corroborate the availability and safety of PU sponges in practical applications for GBM treatment.
Collapse
Affiliation(s)
- Jiajun Zheng
- Jiangsu Cancer Hospital, the Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Institute of Cancer Research, Nanjing 210009, China.
- Key Laboratory for Bio-Electromagnetic Environment and Advanced Medical Theranostics, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing 211166, China.
| | - Huanfeng Zhu
- Jiangsu Cancer Hospital, the Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Institute of Cancer Research, Nanjing 210009, China.
| | - Wenjie Guo
- Jiangsu Cancer Hospital, the Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Institute of Cancer Research, Nanjing 210009, China.
| | - Chenchen Gao
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu Key Laboratory for Biosensors, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China.
| | - Jiahao Guo
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu Key Laboratory for Biosensors, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China.
| | - Li Sun
- Jiangsu Cancer Hospital, the Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Institute of Cancer Research, Nanjing 210009, China.
| | - Geng Xu
- Jiangsu Cancer Hospital, the Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Institute of Cancer Research, Nanjing 210009, China.
| | - Zhi Wang
- The First Affiliated Hospital of Anhui Medical University, Nanjing 230022, China
| | - Baoying Dai
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu Key Laboratory for Biosensors, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China.
| | - Ning Gu
- Key Laboratory for Bio-Electromagnetic Environment and Advanced Medical Theranostics, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing 211166, China.
- Medical School, Nanjing University, Nanjing 210093, China
| | - Xia He
- Jiangsu Cancer Hospital, the Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Institute of Cancer Research, Nanjing 210009, China.
| |
Collapse
|
15
|
Ahsan H, Malik SI, Shah FA, El-Serehy HA, Ullah A, Shah ZA. Celecoxib Suppresses NF-κB p65 (RelA) and TNFα Expression Signaling in Glioblastoma. J Clin Med 2023; 12:6683. [PMID: 37892820 PMCID: PMC10607796 DOI: 10.3390/jcm12206683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/13/2023] [Accepted: 08/03/2023] [Indexed: 10/29/2023] Open
Abstract
BACKGROUND Glioblastoma (GBM) harbors significant genetic heterogeneity, high infiltrative capacity, and patterns of relapse following many therapies. The expression of nuclear factor kappa-B (NF-κB p65 (RelA)) and signaling pathways is constitutively activated in GBM through inflammatory stimulation such as tumor necrosis factor-alpha (TNFα), cell invasion, motility, abnormal physiological stimuli, and inducible chemoresistance. However, the underlying anti-tumor and anti-proliferative mechanisms of NF-κB p65 (RelA) and TNFα are still poorly defined. This study aimed to investigate the expression profiling of NF-κB p65 (RelA) and TNFα as well as the effectiveness of celecoxib along with temozolomide (TMZ) in reducing the growth of the human GBM cell line SF-767. METHODS genome-wide expression profiling, enrichment analysis, immune infiltration, quantitative expression, and the Microculture Tetrazolium Test (MTT) proliferation assay were performed to appraise the effects of celecoxib and TMZ. RESULTS demonstrated the upregulation of NF-κB p65 (RelA) and TNFα and celecoxib reduced the viability of the human glioblastoma cell line SF-767, cell proliferation, and NF-κB p65 (RelA) and TNFα expression in a dose-dependent manner. Overall, these findings demonstrate for the first time how celecoxib therapy could mitigate the invasive characteristics of the human GBM cell line SF-767 by inhibiting the NF-κB mediated stimulation of the inflammatory cascade. CONCLUSION based on current findings, we propose that celecoxib as a drug candidate in combination with temozolomide might dampen the transcriptional and enzymatic activities associated with the aggressiveness of GBM and reduce the expression of GBM-associated NF-κB p65 (RelA) and TNFα inflammatory genes expression.
Collapse
Affiliation(s)
- Hina Ahsan
- Department of Bioinformatics and Biosciences, Faculty of Health and Life Sciences, Capital University of Science and Technology (CUST), Islamabad 44000, Pakistan;
- Riphah Institute of Pharmaceutical Sciences Islamabad, Riphah International University, Islamabad 44000, Pakistan
| | - Shaukat Iqbal Malik
- Department of Bioinformatics and Biosciences, Faculty of Health and Life Sciences, Capital University of Science and Technology (CUST), Islamabad 44000, Pakistan;
| | - Fawad Ali Shah
- Swat College of Pharmaceutical Sciences, Swat 19200, Pakistan;
| | - Hamed A. El-Serehy
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Amin Ullah
- Department of Health and Biological Sciences, Abasyn University Peshawar, Peshawar 25000, Pakistan;
- Institute of Pathology, University Hospital of Cologne, 50923 Cologne, Germany
| | - Zafar Abbas Shah
- Department of Bioinformatics, Hazara University, Mansehra 21120, Pakistan
| |
Collapse
|
16
|
Rocha Pinheiro SL, Lemos FFB, Marques HS, Silva Luz M, de Oliveira Silva LG, Faria Souza Mendes dos Santos C, da Costa Evangelista K, Calmon MS, Sande Loureiro M, Freire de Melo F. Immunotherapy in glioblastoma treatment: Current state and future prospects. World J Clin Oncol 2023; 14:138-159. [PMID: 37124134 PMCID: PMC10134201 DOI: 10.5306/wjco.v14.i4.138] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/06/2023] [Accepted: 04/12/2023] [Indexed: 04/21/2023] Open
Abstract
Glioblastoma remains as the most common and aggressive malignant brain tumor, standing with a poor prognosis and treatment prospective. Despite the aggressive standard care, such as surgical resection and chemoradiation, median survival rates are low. In this regard, immunotherapeutic strategies aim to become more attractive for glioblastoma, considering its recent advances and approaches. In this review, we provide an overview of the current status and progress in immunotherapy for glioblastoma, going through the fundamental knowledge on immune targeting to promising strategies, such as Chimeric antigen receptor T-Cell therapy, immune checkpoint inhibitors, cytokine-based treatment, oncolytic virus and vaccine-based techniques. At last, it is discussed innovative methods to overcome diverse challenges, and future perspectives in this area.
Collapse
Affiliation(s)
- Samuel Luca Rocha Pinheiro
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Fabian Fellipe Bueno Lemos
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Hanna Santos Marques
- Campus Vitória da Conquista, Universidade Estadual do Sudoeste da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Marcel Silva Luz
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | | | | | | | - Mariana Santos Calmon
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Matheus Sande Loureiro
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Fabrício Freire de Melo
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| |
Collapse
|
17
|
Zhou Y, Xing X, Zhou J, Jiang H, Cen P, Jin C, Zhong Y, Zhou R, Wang J, Tian M, Zhang H. Therapeutic potential of tumor treating fields for malignant brain tumors. Cancer Rep (Hoboken) 2023; 6:e1813. [PMID: 36987739 PMCID: PMC10172187 DOI: 10.1002/cnr2.1813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/02/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
BACKGROUND Malignant brain tumors are among the most threatening diseases of the central nervous system, and despite increasingly updated treatments, the prognosis has not been improved. Tumor treating fields (TTFields) are an emerging approach in cancer treatment using intermediate-frequency and low-intensity electric field and can lead to the development of novel therapeutic options. RECENT FINDINGS A series of biological processes induced by TTFields to exert anti-cancer effects have been identified. Recent studies have shown that TTFields can alter the bioelectrical state of macromolecules and organelles involved in cancer biology. Massive alterations in cancer cell proteomics and transcriptomics caused by TTFields were related to cell biological processes as well as multiple organelle structures and activities. This review addresses the mechanisms of TTFields and recent advances in the application of TTFields therapy in malignant brain tumors, especially in glioblastoma (GBM). CONCLUSIONS As a novel therapeutic strategy, TTFields have shown promising results in many clinical trials, especially in GBM, and continue to evolve. A growing number of patients with malignant brain tumors are being enrolled in ongoing clinical studies demonstrating that TTFields-based combination therapies can improve treatment outcomes.
Collapse
Affiliation(s)
- Youyou Zhou
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Xiaoqing Xing
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Jinyun Zhou
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Han Jiang
- Faculty of Science and Technology, Department of Electrical and Computer Engineering, Biomedical Imaging Laboratory (BIG), University of Macau, Taipa, Macau SAR, China
| | - Peili Cen
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Chentao Jin
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Yan Zhong
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Rui Zhou
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Jing Wang
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Mei Tian
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, Zhejiang, China
- Human Phenome Institute, Fudan University, Shanghai, China
| | - Hong Zhang
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, Zhejiang, China
- College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
18
|
Aurora B Kinase Inhibition by AZD1152 Concomitant with Tumor Treating Fields Is Effective in the Treatment of Cultures from Primary and Recurrent Glioblastomas. Int J Mol Sci 2023; 24:ijms24055016. [PMID: 36902447 PMCID: PMC10003311 DOI: 10.3390/ijms24055016] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/24/2023] [Accepted: 02/28/2023] [Indexed: 03/08/2023] Open
Abstract
Tumor Treating Fields (TTFields) were incorporated into the treatment of glioblastoma, the most malignant brain tumor, after showing an effect on progression-free and overall survival in a phase III clinical trial. The combination of TTFields and an antimitotic drug might further improve this approach. Here, we tested the combination of TTFields with AZD1152, an Aurora B kinase inhibitor, in primary cultures of newly diagnosed (ndGBM) and recurrent glioblastoma (rGBM). AZD1152 concentration was titrated for each cell line and 5-30 nM were used alone or in addition to TTFields (1.6 V/cm RMS; 200 kHz) applied for 72 h using the inovitro™ system. Cell morphological changes were visualized by conventional and confocal laser microscopy. The cytotoxic effects were determined by cell viability assays. Primary cultures of ndGBM and rGBM varied in p53 mutational status; ploidy; EGFR expression and MGMT-promoter methylation status. Nevertheless; in all primary cultures; a significant cytotoxic effect was found following TTFields treatment alone and in all but one, a significant effect after treatment with AZD1152 alone was also observed. Moreover, in all primary cultures the combined treatment had the most pronounced cytotoxic effect in parallel with morphological changes. The combined treatment of TTFields and AZD1152 led to a significant reduction in the number of ndGBM and rGBM cells compared to each treatment alone. Further evaluation of this approach, which has to be considered as a proof of concept, is warranted, before entering into early clinical trials.
Collapse
|
19
|
Coronado LM, Stoute JA, Nadovich CT, Cheng J, Correa R, Chaw K, González G, Zambrano M, Gittens RA, Agrawal DK, Jemison WD, Donado Morcillo CA, Spadafora C. Microwaves can kill malaria parasites non-thermally. Front Cell Infect Microbiol 2023; 13:955134. [PMID: 36816585 PMCID: PMC9932958 DOI: 10.3389/fcimb.2023.955134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 01/17/2023] [Indexed: 02/05/2023] Open
Abstract
Malaria, which infected more than 240 million people and killed around six hundred thousand only in 2021, has reclaimed territory after the SARS-CoV-2 pandemic. Together with parasite resistance and a not-yet-optimal vaccine, the need for new approaches has become critical. While earlier, limited, studies have suggested that malaria parasites are affected by electromagnetic energy, the outcomes of this affectation vary and there has not been a study that looks into the mechanism of action behind these responses. In this study, through development and implementation of custom applicators for in vitro experimentation, conditions were generated in which microwave energy (MW) killed more than 90% of the parasites, not by a thermal effect but via a MW energy-induced programmed cell death that does not seem to affect mammalian cell lines. Transmission electron microscopy points to the involvement of the haemozoin-containing food vacuole, which becomes destroyed; while several other experimental approaches demonstrate the involvement of calcium signaling pathways in the resulting effects of exposure to MW. Furthermore, parasites were protected from the effects of MW by calcium channel blockers calmodulin and phosphoinositol. The findings presented here offer a molecular insight into the elusive interactions of oscillating electromagnetic fields with P. falciparum, prove that they are not related to temperature, and present an alternative technology to combat this devastating disease.
Collapse
Affiliation(s)
- Lorena M. Coronado
- Biomedical Physics and Engineering Unit, Center of Cellular and Molecular Biology of Diseases (CBCMe), Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Panama City, Panama,Department of Biotechnology, Acharya Nagarjuna University, Guntur, India,Biomedical Physics and Engineering (BiomedφEngine) Group, Panama City, Panama
| | - José A. Stoute
- Department of Medicine, Division of Infectious Diseases and Epidemiology, Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Christopher T. Nadovich
- Electrical and Computer Engineering, Lafayette College, Easton, PA, United States,Wallace H. Coulter School of Engineering, Clarkson University, Potsdam, NY, United States
| | - Jiping Cheng
- Department of Material Science and Engineering, Pennsylvania State University, University Park, PA, United States
| | - Ricardo Correa
- Biomedical Physics and Engineering Unit, Center of Cellular and Molecular Biology of Diseases (CBCMe), Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Panama City, Panama,Department of Biotechnology, Acharya Nagarjuna University, Guntur, India,Biomedical Physics and Engineering (BiomedφEngine) Group, Panama City, Panama
| | - Kevin Chaw
- Biomedical Physics and Engineering Unit, Center of Cellular and Molecular Biology of Diseases (CBCMe), Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Panama City, Panama,Biomedical Physics and Engineering (BiomedφEngine) Group, Panama City, Panama,School of Technology and Engineering, Universidad Católica Santa María La Antigua, Panama City, Panama
| | - Guadalupe González
- Biomedical Physics and Engineering (BiomedφEngine) Group, Panama City, Panama,School of Electrical Engineering, Universidad Tecnológica de Panamá, Panama City, Panama
| | - Maytee Zambrano
- Biomedical Physics and Engineering (BiomedφEngine) Group, Panama City, Panama,School of Electrical Engineering, Universidad Tecnológica de Panamá, Panama City, Panama
| | - Rolando A. Gittens
- Biomedical Physics and Engineering Unit, Center of Cellular and Molecular Biology of Diseases (CBCMe), Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Panama City, Panama,Biomedical Physics and Engineering (BiomedφEngine) Group, Panama City, Panama
| | - Dinesh K. Agrawal
- Department of Material Science and Engineering, Pennsylvania State University, University Park, PA, United States
| | - William D. Jemison
- Wallace H. Coulter School of Engineering, Clarkson University, Potsdam, NY, United States
| | - Carlos A. Donado Morcillo
- Biomedical Physics and Engineering Unit, Center of Cellular and Molecular Biology of Diseases (CBCMe), Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Panama City, Panama,Biomedical Physics and Engineering (BiomedφEngine) Group, Panama City, Panama,School of Technology and Engineering, Universidad Católica Santa María La Antigua, Panama City, Panama
| | - Carmenza Spadafora
- Biomedical Physics and Engineering Unit, Center of Cellular and Molecular Biology of Diseases (CBCMe), Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Panama City, Panama,Biomedical Physics and Engineering (BiomedφEngine) Group, Panama City, Panama,*Correspondence: Carmenza Spadafora,
| |
Collapse
|
20
|
Varela ML, Comba A, Faisal SM, Argento A, Franson A, Barissi MN, Sachdev S, Castro MG, Lowenstein PR. Gene Therapy for High Grade Glioma: The Clinical Experience. Expert Opin Biol Ther 2023; 23:145-161. [PMID: 36510843 PMCID: PMC9998375 DOI: 10.1080/14712598.2022.2157718] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022]
Abstract
INTRODUCTION High-grade gliomas (HGG) are the most common malignant primary brain tumors in adults, with a median survival of ~18 months. The standard of care (SOC) is maximal safe surgical resection, and radiation therapy with concurrent and adjuvant temozolomide. This protocol remains unchanged since 2005, even though HGG median survival has marginally improved. AREAS COVERED Gene therapy was developed as a promising approach to treat HGG. Here, we review completed and ongoing clinical trials employing viral and non-viral vectors for adult and pediatric HGG, as well as the key supporting preclinical data. EXPERT OPINION These therapies have proven safe, and pre- and post-treatment tissue analyses demonstrated tumor cell lysis, increased immune cell infiltration, and increased systemic immune function. Although viral therapy in clinical trials has not yet significantly extended the survival of HGG, promising strategies are being tested. Oncolytic HSV vectors have shown promising results for both adult and pediatric HGG. A recently published study demonstrated that HG47Δ improved survival in recurrent HGG. Likewise, PVSRIPO has shown survival improvement compared to historical controls. It is likely that further analysis of these trials will stimulate the development of new administration protocols, and new therapeutic combinations that will improve HGG prognosis.
Collapse
Affiliation(s)
- Maria Luisa Varela
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Andrea Comba
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Syed M Faisal
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Anna Argento
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Biomedical Engineering, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Andrea Franson
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Marcus N Barissi
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Sean Sachdev
- Department of Radiation Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL USA
| | - Maria G Castro
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Pedro R Lowenstein
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Biomedical Engineering, University of Michigan Medical School, Ann Arbor, MI, United States
| |
Collapse
|
21
|
Chen C, Xu H, Song K, Zhang Y, Zhang J, Wang Y, Sheng X, Chen L, Qin Z. Tumor Treating Fields Combine with Temozolomide for Newly Diagnosed Glioblastoma: A Retrospective Analysis of Chinese Patients in a Single Center. J Clin Med 2022; 11:jcm11195855. [PMID: 36233722 PMCID: PMC9570572 DOI: 10.3390/jcm11195855] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/05/2022] [Accepted: 09/26/2022] [Indexed: 12/05/2022] Open
Abstract
Introduction: TTFields plus Temozolomide (TTFields/TMZ) extended survival versus TMZ alone in newly diagnosed glioblastoma (GBM) patients in the EF-14 trial. We have reported a retrospective analysis of newly diagnosed Chinese GBM patients who received TTFields/TMZ treatment and TMZ treatment from August 2018 to May 2021 in Huashan hospital in Shanghai. Methods: Overall survival (OS) and progression-free survival (PFS) curves were constructed using the Kaplan−Meier method. A Cox proportional hazards regression model, propensity score matched data, and inverse probability of treatment weighting (IPTW) based on propensity score were used to assess the effect of TTFields and account for confounding factors. Results: In the preliminary analysis, the median PFS in TTFields/TMZ group was 16 months (95% CI, 9.6−24.6) versus 11 months (95% CI, 9−12) in TMZ group (p < 0.05). Median overall survival was 21.8 months (95% CI, 17.4-NA) with TTFields/TMZ versus 15 months (HR = 0.43; 95% CI, 13−18) with TMZ alone. The multivariate analysis identified surgery type, STUPP scheme, IDH status, and TTFields use as favorable prognostic factors. After PSM adjustment, the variate among the groups was similar, except that the methylation rate of MGMT promoter remained high in the TMZ group (12 v 32 months; p = 0.011). Upon IPTW Survival analysis, TTFields was associated with a significantly lower risk of death (HR = 0.19 in OS; 95% CI, 0.09−0.41) and progression (HR = 0.35; 95% CI 0.14−0.9) compared with TMZ group. Conclusion: In the final analysis of our single-center Chinese patients with glioblastoma, adding TTFields to temozolomide chemotherapy resulted in statistically significant improvement in PFS and OS.
Collapse
Affiliation(s)
- Chunjui Chen
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China
- National Center for Neurological Disorders, Shanghai 200040, China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai 200040, China
- Neurosurgical Institute of Fudan University, Shanghai 200040, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai 200040, China
| | - Hao Xu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China
- National Center for Neurological Disorders, Shanghai 200040, China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai 200040, China
- Neurosurgical Institute of Fudan University, Shanghai 200040, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai 200040, China
| | - Kun Song
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China
- National Center for Neurological Disorders, Shanghai 200040, China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai 200040, China
- Neurosurgical Institute of Fudan University, Shanghai 200040, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai 200040, China
| | - Yi Zhang
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China
- National Center for Neurological Disorders, Shanghai 200040, China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai 200040, China
- Neurosurgical Institute of Fudan University, Shanghai 200040, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai 200040, China
| | - Junyan Zhang
- Bothwin Clinical Study Consultant, Shanghai 201702, China
- Branch of Clinical Epidemiology and Evidence-Based Medicine, Shanghai Medical Association, Shanghai 200040, China
| | - Yang Wang
- Department of Radiation Oncology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Xiaofang Sheng
- Department of Radiation Oncology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Lingchao Chen
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China
- National Center for Neurological Disorders, Shanghai 200040, China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai 200040, China
- Neurosurgical Institute of Fudan University, Shanghai 200040, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai 200040, China
- Correspondence: (L.C.); (Z.Q.)
| | - Zhiyong Qin
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China
- National Center for Neurological Disorders, Shanghai 200040, China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai 200040, China
- Neurosurgical Institute of Fudan University, Shanghai 200040, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai 200040, China
- Correspondence: (L.C.); (Z.Q.)
| |
Collapse
|
22
|
Yiyun Li, Wan Y, Yu N, Zhao Y, Li M. Galangin (GLN) Promotes Temozolomide-Induced Apoptosis in Glioma Cells. BIOL BULL+ 2022. [DOI: 10.1134/s1062359022060085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
23
|
McMahon DJ, Gleeson JP, O'Reilly S, Bambury RM. Management of newly diagnosed glioblastoma multiforme: current state of the art and emerging therapeutic approaches. Med Oncol 2022; 39:129. [PMID: 35716200 DOI: 10.1007/s12032-022-01708-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 03/14/2022] [Indexed: 12/21/2022]
Abstract
Glioblastoma multiforme represent > 50% of primary gliomas and have five year survival rates of ~ 5%. Maximal safe surgical resection followed by radiotherapy with concurrent and adjuvant temozolomide remains the standard treatment since published by Stupp et al. (in N Engl J Med 352:987-996, 2005), with additional benefit for patients with MGMT-methylated tumors. We review the current treatment landscape and ongoing efforts to improve these outcomes. An extensive literature search of Pubmed and Google Scholar involving the search terms "glioblastoma," "glioblastoma multiforme," or "GBM" for papers published to July 2021 was conducted and papers evaluated for relevance. As well as current data that informs clinical practice, we review ongoing clinical research in both newly diagnosed and recurrent settings that provides hope for a breakthrough. The Stupp protocol remains standard of care in 2021. Addition of tumor treating fields improved mOS modestly, with benefit seen in MGMT-methylated and unmethylated cohorts and also improved time to cognitive decline but has not been widely adopted. The addition of lomustine to temozolomide, in MGMT-methylated patients, also showed a mOS benefit but further investigation is required. Other promising therapeutic strategies including anti-angiogenic therapy, targeted therapy, and immunotherapy have yet to show a survival advantage. Improvements in the multidisciplinary management, surgical techniques and equipment, early palliative care, carrier support, and psychological support may be responsible for improving survival over time. Despite promising preclinical rationale, immunotherapy and targeted therapy are struggling to impact survival. A number of ongoing clinical trials provide hope for a breakthrough.
Collapse
Affiliation(s)
- D J McMahon
- Cork University Hospital, Cork, Ireland, UK.
| | | | - S O'Reilly
- Cork University Hospital, Cork, Ireland, UK
| | | |
Collapse
|
24
|
Saß B, Zivkovic D, Pojskic M, Nimsky C, Bopp MHA. Navigated Intraoperative 3D Ultrasound in Glioblastoma Surgery: Analysis of Imaging Features and Impact on Extent of Resection. Front Neurosci 2022; 16:883584. [PMID: 35615280 PMCID: PMC9124826 DOI: 10.3389/fnins.2022.883584] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/08/2022] [Indexed: 12/12/2022] Open
Abstract
Background Neuronavigation is routinely used in glioblastoma surgery, but its accuracy decreases during the operative procedure due to brain shift, which can be addressed utilizing intraoperative imaging. Intraoperative ultrasound (iUS) is widely available, offers excellent live imaging, and can be fully integrated into modern navigational systems. Here, we analyze the imaging features of navigated i3D US and its impact on the extent of resection (EOR) in glioblastoma surgery. Methods Datasets of 31 glioblastoma resection procedures were evaluated. Patient registration was established using intraoperative computed tomography (iCT). Pre-operative MRI (pre-MRI) and pre-resectional ultrasound (pre-US) datasets were compared regarding segmented tumor volume, spatial overlap (Dice coefficient), the Euclidean distance of the geometric center of gravity (CoG), and the Hausdorff distance. Post-resectional ultrasound (post-US) and post-operative MRI (post-MRI) tumor volumes were analyzed and categorized into subtotal resection (STR) or gross total resection (GTR) cases. Results The mean patient age was 59.3 ± 11.9 years. There was no significant difference in pre-resectional segmented tumor volumes (pre-MRI: 24.2 ± 22.3 cm3; pre-US: 24.0 ± 21.8 cm3). The Dice coefficient was 0.71 ± 0.21, the Euclidean distance of the CoG was 3.9 ± 3.0 mm, and the Hausdorff distance was 12.2 ± 6.9 mm. A total of 18 cases were categorized as GTR, 10 cases were concordantly classified as STR on MRI and ultrasound, and 3 cases had to be excluded from post-resectional analysis. In four cases, i3D US triggered further resection. Conclusion Navigated i3D US is reliably adjunct in a multimodal navigational setup for glioblastoma resection. Tumor segmentations revealed similar results in i3D US and MRI, demonstrating the capability of i3D US to delineate tumor boundaries. Additionally, i3D US has a positive influence on the EOR, allows live imaging, and depicts brain shift.
Collapse
Affiliation(s)
- Benjamin Saß
- Department of Neurosurgery, University of Marburg, Marburg, Germany
- *Correspondence: Benjamin Saß,
| | - Darko Zivkovic
- Department of Neurosurgery, University of Marburg, Marburg, Germany
| | - Mirza Pojskic
- Department of Neurosurgery, University of Marburg, Marburg, Germany
| | - Christopher Nimsky
- Department of Neurosurgery, University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), Marburg, Germany
| | - Miriam H. A. Bopp
- Department of Neurosurgery, University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), Marburg, Germany
| |
Collapse
|
25
|
Predicting access to postoperative treatment after glioblastoma resection: an analysis of neighborhood-level disadvantage using the Area Deprivation Index (ADI). J Neurooncol 2022; 158:349-357. [PMID: 35503190 DOI: 10.1007/s11060-022-04020-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 04/16/2022] [Indexed: 10/18/2022]
Abstract
PURPOSE Social determinants of health (SDoH)-socioeconomic and environmental factors-impact outcomes. The Area Deprivation Index (ADI), a composite of seventeen SDoH factors, has been correlated with poorer outcomes. We aimed to compare outcomes and treatment access for glioblastoma, a universally fatal malignant brain tumor, in patients more (ADI 34-100%) versus less disadvantaged (ADI 0-33%). METHODS A 5-year retrospective study of Rhode Island Hospital and Mayo Clinic databases was conducted from 2012 to 2017 for patients ≥ 18 years with glioblastoma. Patient addresses were matched to ADI percentiles and grouped into more (top 66% ADI) and less disadvantaged. Adjusted multivariable regressions were used to compare outcomes between groups. RESULTS A total of 434 patients met inclusion; 92.9% were insured, 56.2% were more disadvantaged (n = 244), and the more disadvantaged cohort was younger on average (62 years). After adjustment, the more disadvantaged group had decreased odds of receiving gross total resection (adjusted odds ratio (aOR) 0.43, 95% CI [0.27-0.68]; p < 0.001). This cohort also had decreased odds of undergoing chemotherapy (aOR 0.51[0.26-0.98]), radiation (aOR 0.39[0.20-0.77]), chemoradiation (aOR 0.42[0.23-0.77]), tumor-treating fields (aOR 0.39[0.16-0.93]), and clinical trial participation (aOR 0.47[0.25-0.91]). No differences in length of survival or postoperative Karnofsky Performance Status Scale were observed. CONCLUSION More disadvantaged glioblastoma patients had decreased odds of receiving gross total resection. They also exhibited decreased odds of receiving standard of care like chemoradiation as well as participating in a clinical trial, compared to the less disadvantaged group. More research is needed to identify modifiable SDoH barriers to post-operative treatment in disadvantaged patients with glioblastoma.
Collapse
|
26
|
Dongpo S, Zhengyao Z, Xiaozhuo L, Qing W, Mingming F, Fengqun M, Mei L, Qian H, Tong C. Efficacy and Safety of Bevacizumab Combined with Other Therapeutic Regimens for Treatment of Recurrent Glioblastoma: A Network Meta-analysis. World Neurosurg 2022; 160:e61-e79. [PMID: 34973444 DOI: 10.1016/j.wneu.2021.12.091] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 11/16/2022]
Abstract
BACKGROUND Despite the fact that bevacizumab (Bev) has been approved to treat recurrent glioblastoma, patients have failed to demonstrate a significant overall survival (OS) advantage. In recent years, the advent of more Bev combination regimens seems to bring new hope for patients; nevertheless, there is still a lack of intuitive comparison among these therapies. OBJECTIVE To explore the efficacy and safety of various Bev combination regimens in patients with recurrent glioblastoma and to further explore the differences in the efficacy of each treatment in randomized controlled trials (RCTs) and nonrandomized controlled trials (non-RCTs). METHODS We comprehensively searched the PubMed, Cochrane Library, and OVID databases for relevant RCTs and non-RCTs of Bev in combined regimens for recurrent glioblastoma. The Cochrane quality assessment method was used to assess the quality of RCTs, and the Newcastle-Ottawa scale was used to assess the quality of non-RCTs. Excel software was used to extract data from the literature, and a network meta-analysis was performed using RevMan 5.3 and Stata 16 statistical software. RESULTS In patients with recurrent glioblastoma, the 6-month OS of patients receiving bevacizumab combination therapy was ranked from high to low as follows: Bev + rindopepimut, Bev + lomustine (CCNU), CCNU, tumor treating fields + Bev, Bev, Bev + irinotecan (Iri), Bev + temozolomide (TMZ), Bev + vorinostat, Bev + onartuzumab, Bev + dasatinib, Bev + carboplatin, Bev + trebananib, Bev + VB-111, TMZ, PCV, VB-111, and carboplatin. The 6-month progression-free survival from high to low was ranked as follows: Bev + CCNU, Bev + rindopepimut, Bev + dasatinib, Bev + vorinostat, Bev, Bev + Iri, Bev + TMZ, CCNU, Bev + carboplatin, TMZ, Bev + VB-111, PCV, Bev + trebananib, carboplatin, and VB-111. We compared the total incidence of serious adverse events (≥3) and found that Bev + vorinostat and Bev + trebananib were safer than Bev, while other regimens were not as safe as Bev. A descriptive analysis showed that Bev + rindopepimut also appeared to be safer than Bev. In subgroup analysis, among RCTs, Bev + CCNU therapy had the highest 6-month OS and 6-month progression-free survival. Among non-RCTs, Bev + Iri therapy showed the highest 6-month OS and good 6-month progression-free survival. CONCLUSIONS Both Bev + CCNU and Bev + rindopepimut could be considered as effective therapies for treating the recurrent glioblastoma according to the network meta-analysis results. Among them, Bev + rindopepimut therapy seems to be safer and more effective. Moreover, we found that Bev + Iri also appeared to be an effective therapy in a retrospective study.
Collapse
Affiliation(s)
- Su Dongpo
- Department of Neurosurgery, North China University of Science and Technology Affiliated Hospital, Tangshan, Hebei Province, China
| | - Zuo Zhengyao
- Department of Neurosurgery, North China University of Science and Technology Affiliated Hospital, Tangshan, Hebei Province, China
| | - Liu Xiaozhuo
- Department of Neurosurgery, North China University of Science and Technology Affiliated Hospital, Tangshan, Hebei Province, China
| | - Wang Qing
- Department of Neurosurgery, North China University of Science and Technology Affiliated Hospital, Tangshan, Hebei Province, China
| | - Fan Mingming
- Department of Neurosurgery, North China University of Science and Technology Affiliated Hospital, Tangshan, Hebei Province, China
| | - Mu Fengqun
- Department of Neurology, Gongren Hospital, Tangshan, Hebei Province, China
| | - Li Mei
- Department of Neurosurgery, North China University of Science and Technology Affiliated Hospital, Tangshan, Hebei Province, China
| | - Han Qian
- Department of Neurosurgery, North China University of Science and Technology Affiliated Hospital, Tangshan, Hebei Province, China
| | - Chen Tong
- Department of Neurosurgery, North China University of Science and Technology Affiliated Hospital, Tangshan, Hebei Province, China.
| |
Collapse
|
27
|
Wahyuhadi J, Immadoel Haq IB, Arifianto MR, Sulistyono B, Meizikri R, Rosada A, Sigit Prakoeswa CR, Susilo RI. Active Immunotherapy for Glioblastoma Treatment: A Systematic Review and Meta-Analysis. Cancer Control 2022; 29:10732748221079474. [PMID: 36748348 PMCID: PMC8950026 DOI: 10.1177/10732748221079474] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
INTRODUCTION Glioblastoma multiforme (GBM) makes 60-70% of gliomas and 15% of primary brain tumors. Despite the availability of standard multimodal therapy, 2 years, 3 years, and 5 years survival rate of GBM are still low. Active immunotherapy is a relatively new treatment option for GBM that seems promising. METHODS An electronic database search on PubMed, Cochrane, Scopus, and clinicaltrials.gov was performed to include all relevant studies. This study was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA). Reported parameters are OS, PFS, AEs, post treatment KPS, and 2 year mortality. RESULTS Active immunotherapy provided better OS (HR = .85; 95% CI = .71-1.01; P = .06) and PFS (HS = .83; 95% CI= .66 - 1.03; P = .11) side albeit not statistically significant. Active immunotherapy reduces the risk of 2 year mortality as much as 2.5% compared to control group (NNT and RRR was 56.7078 and 0,0258, respectively). CONCLUSION Active immunotherapy might be beneficial in terms of survival rate in patients with GBM although not statistically significant. It could be a treatment option for GBM in the future.
Collapse
Affiliation(s)
- Joni Wahyuhadi
- Department of Neurosurgery, Dr Soetomo General Academic Hospital, Surabaya, Indonesia,Faculty of Medicine - Universitas Airlangga, Surabaya, Indonesia,Joni Wahyuhadi, Department of Neurosurgery, Dr Soetomo General Academic Hospital, Surabaya, Indonesia. Jl. Mayjen Prof. Dr. Moestopo No.6-8, Gubeng, Surabaya, East Java 60286, Indonesia.
| | - Irwan Barlian Immadoel Haq
- Department of Neurosurgery, Dr Soetomo General Academic Hospital, Surabaya, Indonesia,Faculty of Medicine - Universitas Airlangga, Surabaya, Indonesia
| | - Muhammad Reza Arifianto
- Department of Neurosurgery, Dr Soetomo General Academic Hospital, Surabaya, Indonesia,Faculty of Medicine - Universitas Airlangga, Surabaya, Indonesia
| | - Bagus Sulistyono
- Department of Neurosurgery, Dr Soetomo General Academic Hospital, Surabaya, Indonesia,Faculty of Medicine - Universitas Airlangga, Surabaya, Indonesia
| | - Rizki Meizikri
- Department of Neurosurgery, Dr Soetomo General Academic Hospital, Surabaya, Indonesia,Faculty of Medicine - Universitas Airlangga, Surabaya, Indonesia
| | - Atika Rosada
- Department of Neurosurgery, Dr Soetomo General Academic Hospital, Surabaya, Indonesia,Faculty of Medicine - Universitas Airlangga, Surabaya, Indonesia
| | - Cita Rosita Sigit Prakoeswa
- Department of Dermatology and Venereology, Dr Soetomo General Academic Hospital, Surabaya, Indonesia,Faculty of Medicine - Universitas Airlangga, Surabaya, Indonesia
| | - Rahadian Indarto Susilo
- Department of Neurosurgery, Dr Soetomo General Academic Hospital, Surabaya, Indonesia,Faculty of Medicine - Universitas Airlangga, Surabaya, Indonesia
| |
Collapse
|
28
|
Li C, Guan X, Jing H, Xiao X, Jin H, Xiong J, Ai S, Wang Y, Su T, Sun G, Fu T, Wang Y, Guo S, Liang P. Circular RNA circBFAR promotes glioblastoma progression by regulating a miR-548b/FoxM1 axis. FASEB J 2022; 36:e22183. [PMID: 35202487 DOI: 10.1096/fj.202101307r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 12/30/2021] [Accepted: 01/18/2022] [Indexed: 01/04/2023]
Abstract
Glioblastoma multiforme (GBM) is the most common and aggressive type of tumor of the primary nervous system. Treatment options for GBM include surgery, chemotherapy, and radiation therapy; however, the clinical outcomes are poor, with a high rate of recurrence. An increasing number of studies have shown that circular RNAs (circRNAs) serve important roles in several types of cancer. Gene Expression Omnibus (GEO) database was utilized to identify the differentially expressed circRNAs and their biological functions. Then, we detected the circular RNA bifunctional apoptosis regulator (circBFAR) was significantly increased in three GEO datasets. However, the role of circBFAR has not been reported in GBM. In this study, the expression of circBFAR was significantly increased both in GBM tissues or cell lines and was negatively correlated with overall survival in patients with GBM. Knockdown of circBFAR inhibited proliferation and invasion both in vitro and in vivo. Increased expression of circBFAR resulted in a reduction of miR-548b expression in glioma cells. A luciferase reporter and RIP assay indicated that miR-548b was a direct target of circBFAR, and miR-548b may negatively regulate the expression of FoxM1. Rescue experiments showed that overexpression of FoxM1 could counter the effect of circBFAR silencing on the proliferation and invasion of glioma cell lines. Moreover, we identified that circBFAR regulates FoxM1 by interacting with miR-548b in glioma cells. In conclusion, the present study demonstrated that a circBFAR/miR-548b/FoxM1 axis regulates the development of GBM and highlights potentially novel therapeutic targets for the treatment of GBM.
Collapse
Affiliation(s)
- Chenlong Li
- Department of Neurosurgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xue Guan
- Animal Laboratory Center, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hanguang Jing
- Breast Surgery, Lin Yi Famous Doctor Studio, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, China
| | - Xu Xiao
- Department of Neurosurgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Hua Jin
- Department of Neurosurgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Jinsheng Xiong
- Department of Neurosurgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Siqi Ai
- Department of Neurosurgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yingjie Wang
- Department of Neurosurgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Tianqi Su
- Department of Neurosurgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Guiyin Sun
- Department of Neurosurgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Tianjiao Fu
- Department of Neurosurgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yujie Wang
- Department of Neurosurgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Shouli Guo
- Animal Experiment Center, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Peng Liang
- Department of Neurosurgery, Harbin Medical University Cancer Hospital, Harbin, China
| |
Collapse
|
29
|
Bagley SJ, Kothari S, Rahman R, Lee EQ, Dunn GP, Galanis E, Chang SM, Burt Nabors L, Ahluwalia MS, Stupp R, Mehta MP, Reardon DA, Grossman SA, Sulman EP, Sampson JH, Khagi S, Weller M, Cloughesy TF, Wen PY, Khasraw M. Glioblastoma Clinical Trials: Current Landscape and Opportunities for Improvement. Clin Cancer Res 2022; 28:594-602. [PMID: 34561269 PMCID: PMC9044253 DOI: 10.1158/1078-0432.ccr-21-2750] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/29/2021] [Accepted: 09/14/2021] [Indexed: 11/16/2022]
Abstract
Therapeutic advances for glioblastoma have been minimal over the past 2 decades. In light of the multitude of recent phase III trials that have failed to meet their primary endpoints following promising preclinical and early-phase programs, a Society for Neuro-Oncology Think Tank was held in November 2020 to prioritize areas for improvement in the conduct of glioblastoma clinical trials. Here, we review the literature, identify challenges related to clinical trial eligibility criteria and trial design in glioblastoma, and provide recommendations from the Think Tank. In addition, we provide a data-driven context with which to frame this discussion by analyzing key study design features of adult glioblastoma clinical trials listed on ClinicalTrials.gov as "recruiting" or "not yet recruiting" as of February 2021.
Collapse
Affiliation(s)
- Stephen J. Bagley
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Shawn Kothari
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Rifaquat Rahman
- Department of Radiation Oncology, Dana-Farber/Brigham and Women’s Cancer Center, Harvard Medical School, Boston, Massachusetts
| | - Eudocia Q. Lee
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Gavin P. Dunn
- Department of Neurological Surgery, Washington University School of Medicine, St Louis, Missouri
| | | | - Susan M. Chang
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California
| | - Louis Burt Nabors
- Division of Neuro-oncology, Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Manmeet S. Ahluwalia
- Department of Medical Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, Florida
| | - Roger Stupp
- Department of Medicine, Northwestern University, Chicago, Illinois
| | - Minesh P. Mehta
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, Florida
| | - David A. Reardon
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Stuart A. Grossman
- Department of Oncology, Johns Hopkins Kimmel Cancer Center, Baltimore, Maryland
| | - Erik P. Sulman
- Department of Radiation Oncology, NYU Grossman School of Medicine, New York, New York
| | - John H. Sampson
- Preston Robert Tisch Brain Tumor Center, Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina
| | - Simon Khagi
- Division of Hematology/Oncology, Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Michael Weller
- Department of Neurology and Brain Tumor Center, University Hospital and University of Zurich, Zurich, Switzerland
| | - Timothy F. Cloughesy
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Patrick Y. Wen
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Mustafa Khasraw
- Preston Robert Tisch Brain Tumor Center, Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina
| |
Collapse
|
30
|
Wu W, Klockow JL, Zhang M, Lafortune F, Chang E, Jin L, Wu Y, Daldrup-Link HE. Glioblastoma multiforme (GBM): An overview of current therapies and mechanisms of resistance. Pharmacol Res 2021; 171:105780. [PMID: 34302977 PMCID: PMC8384724 DOI: 10.1016/j.phrs.2021.105780] [Citation(s) in RCA: 342] [Impact Index Per Article: 85.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 07/18/2021] [Accepted: 07/19/2021] [Indexed: 12/21/2022]
Abstract
Glioblastoma multiforme (GBM) is a WHO grade IV glioma and the most common malignant, primary brain tumor with a 5-year survival of 7.2%. Its highly infiltrative nature, genetic heterogeneity, and protection by the blood brain barrier (BBB) have posed great treatment challenges. The standard treatment for GBMs is surgical resection followed by chemoradiotherapy. The robust DNA repair and self-renewing capabilities of glioblastoma cells and glioma initiating cells (GICs), respectively, promote resistance against all current treatment modalities. Thus, durable GBM management will require the invention of innovative treatment strategies. In this review, we will describe biological and molecular targets for GBM therapy, the current status of pharmacologic therapy, prominent mechanisms of resistance, and new treatment approaches. To date, medical imaging is primarily used to determine the location, size and macroscopic morphology of GBM before, during, and after therapy. In the future, molecular and cellular imaging approaches will more dynamically monitor the expression of molecular targets and/or immune responses in the tumor, thereby enabling more immediate adaptation of tumor-tailored, targeted therapies.
Collapse
Affiliation(s)
- Wei Wu
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, CA 94305, USA
| | - Jessica L Klockow
- Department of Radiation Oncology, Stanford University, Stanford, CA 94305, USA
| | - Michael Zhang
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, CA 94305, USA; Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA
| | - Famyrah Lafortune
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, CA 94305, USA
| | - Edwin Chang
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, CA 94305, USA
| | - Linchun Jin
- Lillian S. Wells Department of Neurosurgery, University of Florida, Gainesville, FL 32611, USA
| | - Yang Wu
- Department of Neuropathology, Institute of Pathology, Technical University of Munich, Munich, Bayern 81675, Germany
| | - Heike E Daldrup-Link
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
31
|
Jenkins EPW, Finch A, Gerigk M, Triantis IF, Watts C, Malliaras GG. Electrotherapies for Glioblastoma. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2100978. [PMID: 34292672 PMCID: PMC8456216 DOI: 10.1002/advs.202100978] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/20/2021] [Indexed: 05/08/2023]
Abstract
Non-thermal, intermediate frequency (100-500 kHz) electrotherapies present a unique therapeutic strategy to treat malignant neoplasms. Here, pulsed electric fields (PEFs) which induce reversible or irreversible electroporation (IRE) and tumour-treating fields (TTFs) are reviewed highlighting the foundations, advances, and considerations of each method when applied to glioblastoma (GBM). Several biological aspects of GBM that contribute to treatment complexity (heterogeneity, recurrence, resistance, and blood-brain barrier(BBB)) and electrophysiological traits which are suggested to promote glioma progression are described. Particularly, the biological responses at the cellular and molecular level to specific parameters of the electrical stimuli are discussed offering ways to compare these parameters despite the lack of a universally adopted physical description. Reviewing the literature, a disconnect is found between electrotherapy techniques and how they target the biological complexities of GBM that make treatment difficult in the first place. An attempt is made to bridge the interdisciplinary gap by mapping biological characteristics to different methods of electrotherapy, suggesting important future research topics and directions in both understanding and treating GBM. To the authors' knowledge, this is the first paper that attempts an in-tandem assessment of the biological effects of different aspects of intermediate frequency electrotherapy methods, thus offering possible strategies toward GBM treatment.
Collapse
Affiliation(s)
- Elise P. W. Jenkins
- Division of Electrical EngineeringDepartment of EngineeringUniversity of CambridgeCambridgeCB3 0FAUK
| | - Alina Finch
- Institute of Cancer and Genomic ScienceUniversity of BirminghamBirminghamB15 2TTUK
| | - Magda Gerigk
- Division of Electrical EngineeringDepartment of EngineeringUniversity of CambridgeCambridgeCB3 0FAUK
| | - Iasonas F. Triantis
- Department of Electrical and Electronic EngineeringCity, University of LondonLondonEC1V 0HBUK
| | - Colin Watts
- Institute of Cancer and Genomic ScienceUniversity of BirminghamBirminghamB15 2TTUK
| | - George G. Malliaras
- Division of Electrical EngineeringDepartment of EngineeringUniversity of CambridgeCambridgeCB3 0FAUK
| |
Collapse
|
32
|
Huang YH, Wu ZF, Lee MS, Lou YS, Wu KL, Cheng KI, Lai HC. Propofol-based total intravenous anesthesia is associated with better survival than desflurane anesthesia in glioblastoma surgery. PLoS One 2021; 16:e0255627. [PMID: 34351978 PMCID: PMC8341516 DOI: 10.1371/journal.pone.0255627] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 07/19/2021] [Indexed: 11/23/2022] Open
Abstract
Background Previous research has shown that anesthetic techniques can influence patient outcomes following cancer surgery. However, the effects of anesthesia in patients undergoing glioblastoma surgery are still not known. We studied the relationship between the type of anesthesia and patient outcomes following elective glioblastoma surgery. Methods This was a retrospective cohort study of patients who underwent elective glioblastoma surgery between January 2008 and December 2018. Patients were grouped according to the anesthesia they received, desflurane or propofol. A Kaplan-Meier analysis was conducted, and survival curves were presented from the date of surgery to death. Univariable and multivariable Cox regression models were used to compare hazard ratios for death after propensity matching. Results A total of 50 patients (45 deaths, 90.0%) under desflurane anesthesia and 53 patients (38 deaths, 72.0%) under propofol anesthesia were included. Thirty-eight patients remained in each group after propensity matching. Propofol anesthesia was associated with improved survival (hazard ratio, 0.51; 95% confidence interval, 0.30–0.85; P = 0.011) in a matched analysis. Furthermore, patients under propofol anesthesia exhibited less postoperative recurrence than those under desflurane anesthesia (hazard ratio, 0.60; 95% confidence interval, 0.37–0.98; P = 0.040) in a matched analysis. Conclusions In this limited sample size, we observed that propofol anesthesia was associated with improved survival and less postoperative recurrence in glioblastoma surgery than desflurane anesthesia. Further investigations are needed to examine the influence of propofol anesthesia on patient outcomes following glioblastoma surgery.
Collapse
Affiliation(s)
- Yi-Hsuan Huang
- Department of Anesthesiology, Tri-Service General Hospital and National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Zhi-Fu Wu
- Department of Anesthesiology, Tri-Service General Hospital and National Defense Medical Center, Taipei, Taiwan, Republic of China.,Department of Anesthesiology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan, Republic of China.,Department of Anesthesiology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan, Republic of China
| | - Meei-Shyuan Lee
- School of Public Health, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Yu-Sheng Lou
- Graduate Institutes of Life Sciences, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Ke-Li Wu
- Postgraduate Year of Medicine Residency Training, Tri-Service General Hospital and National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Kuang-I Cheng
- Department of Anesthesiology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan, Republic of China
| | - Hou-Chuan Lai
- Department of Anesthesiology, Tri-Service General Hospital and National Defense Medical Center, Taipei, Taiwan, Republic of China
| |
Collapse
|
33
|
Xu W, Che DD, Liu Q, Pan YW, Lv SQ, Chen BD. The inhibitory effect of miR-345 on glioma progression is closely related to circRNA-hsa_circ_0073237 and HDGF. Cells Tissues Organs 2021; 210:368-379. [PMID: 34348265 DOI: 10.1159/000518667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 07/21/2021] [Indexed: 11/19/2022] Open
Affiliation(s)
- Wu Xu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Department of Neurosurgery, The Affiliated Hospital of Jiujiang University, Jiujiang, China
| | - Dan-Dan Che
- Department of Intensive Care Unit, The Third People's Hospital of Shenzhen, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Qing Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Ya-Wen Pan
- Department of Neurosurgery, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Sheng-Qing Lv
- Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Bao-Dong Chen
- Department of Neurosurgery, Shenzhen Hospital, Peking University, Shenzhen, China
| |
Collapse
|
34
|
Li J, Wang W, Wang J, Cao Y, Wang S, Zhao J. Viral Gene Therapy for Glioblastoma Multiforme: A Promising Hope for the Current Dilemma. Front Oncol 2021; 11:678226. [PMID: 34055646 PMCID: PMC8155537 DOI: 10.3389/fonc.2021.678226] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 04/29/2021] [Indexed: 12/23/2022] Open
Abstract
Glioblastoma multiforme (GBM), as one of the most common malignant brain tumors, was limited in its treatment effectiveness with current options. Its invasive and infiltrative features led to tumor recurrence and poor prognosis. Effective treatment and survival improvement have always been a challenge. With the exploration of genetic mutations and molecular pathways in neuro-oncology, gene therapy is becoming a promising therapeutic approach. Therapeutic genes are delivered into target cells with viral vectors to act specific antitumor effects, which can be used in gene delivery, play an oncolysis effect, and induce host immune response. The application of engineering technology makes the virus vector used in genetics a more prospective future. Recent advances in viral gene therapy offer hope for treating brain tumors. In this review, we discuss the types and designs of viruses as well as their study progress and potential applications in the treatment of GBM. Although still under research, viral gene therapy is promising to be a new therapeutic approach for GBM treatment in the future.
Collapse
Affiliation(s)
- Junsheng Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China.,Beijing Translational Engineering Center for 3D Printer in Clinical Neuroscience, Beijing, China
| | - Wen Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China.,Beijing Translational Engineering Center for 3D Printer in Clinical Neuroscience, Beijing, China
| | - Jia Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China.,Beijing Translational Engineering Center for 3D Printer in Clinical Neuroscience, Beijing, China
| | - Yong Cao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China.,Beijing Translational Engineering Center for 3D Printer in Clinical Neuroscience, Beijing, China
| | - Shuo Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China.,Beijing Translational Engineering Center for 3D Printer in Clinical Neuroscience, Beijing, China
| | - Jizong Zhao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China.,Beijing Translational Engineering Center for 3D Printer in Clinical Neuroscience, Beijing, China.,Savaid Medical School, University of the Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
35
|
Lee EQ, Weller M, Sul J, Bagley SJ, Sahebjam S, van den Bent M, Ahluwalia M, Campian JL, Galanis E, Gilbert MR, Holdhoff M, Lesser GJ, Lieberman FS, Mehta MP, Penas-Prado M, Schreck KC, Strowd RE, Vogelbaum MA, Walbert T, Chang SM, Nabors LB, Grossman S, Reardon DA, Wen PY. Optimizing eligibility criteria and clinical trial conduct to enhance clinical trial participation for primary brain tumor patients. Neuro Oncol 2021; 22:601-612. [PMID: 31974566 DOI: 10.1093/neuonc/noaa015] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Building on an initiative to enhance clinical trial participation involving the Society for Neuro-Oncology, the Response Assessment in Neuro-Oncology Working Group, patient advocacy groups, clinical trial cooperative groups, and other partners, we evaluate the impact of eligibility criteria and trial conduct on neuro-oncology clinical trial participation. Clinical trials often carry forward eligibility criteria from prior studies that may be overly restrictive and unnecessary and needlessly limit patient accrual. Inclusion and exclusion criteria should be evaluated based on the goals and design of the study and whether they impact patient safety and/or treatment efficacy. In addition, we evaluate clinical trial conduct as a barrier to accrual and discuss strategies to minimize such barriers for neuro-oncology trials.
Collapse
Affiliation(s)
- Eudocia Q Lee
- Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| | - Michael Weller
- University Hospital and University of Zurich, Zurich, Switzerland
| | - Joohee Sul
- Office of Hematology and Oncology Products, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Stephen J Bagley
- Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | | - Mark R Gilbert
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Matthias Holdhoff
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland, USA
| | - Glenn J Lesser
- Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, North Carolina, USA
| | | | | | - Marta Penas-Prado
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Karisa C Schreck
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland, USA
| | - Roy E Strowd
- Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, North Carolina, USA
| | | | | | - Susan M Chang
- University of California San Francisco, San Francisco, California, USA
| | - L Burt Nabors
- University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Stuart Grossman
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland, USA
| | - David A Reardon
- Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| | - Patrick Y Wen
- Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
36
|
Nguyen HM, Guz-Montgomery K, Lowe DB, Saha D. Pathogenetic Features and Current Management of Glioblastoma. Cancers (Basel) 2021; 13:cancers13040856. [PMID: 33670551 PMCID: PMC7922739 DOI: 10.3390/cancers13040856] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/09/2021] [Accepted: 02/16/2021] [Indexed: 02/06/2023] Open
Abstract
Glioblastoma (GBM) is the most common form of primary malignant brain tumor with a devastatingly poor prognosis. The disease does not discriminate, affecting adults and children of both sexes, and has an average overall survival of 12-15 months, despite advances in diagnosis and rigorous treatment with chemotherapy, radiation therapy, and surgical resection. In addition, most survivors will eventually experience tumor recurrence that only imparts survival of a few months. GBM is highly heterogenous, invasive, vascularized, and almost always inaccessible for treatment. Based on all these outstanding obstacles, there have been tremendous efforts to develop alternative treatment options that allow for more efficient targeting of the tumor including small molecule drugs and immunotherapies. A number of other strategies in development include therapies based on nanoparticles, light, extracellular vesicles, and micro-RNA, and vessel co-option. Advances in these potential approaches shed a promising outlook on the future of GBM treatment. In this review, we briefly discuss the current understanding of adult GBM's pathogenetic features that promote treatment resistance. We also outline novel and promising targeted agents currently under development for GBM patients during the last few years with their current clinical status.
Collapse
|
37
|
Li Z, Yang F, Xu C, Ma C, Zhao Y. Clinical value of neuronavigation combined with a fluorescent staining technique during microsurgery for treating supratentorial glioma: A case-control observational study. GLIOMA 2021. [DOI: 10.4103/glioma.glioma_27_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
38
|
Siasi E, Moniri E. The effect of extremely low frequency electromagnetic fields following on upregulation of miR-21 and miR-29 in gastric cancer cell line. GASTROENTEROLOGY AND HEPATOLOGY FROM BED TO BENCH 2021; 14:67-76. [PMID: 33868612 PMCID: PMC8035540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 12/22/2020] [Indexed: 11/03/2022]
Abstract
AIM Extremely low frequency electromagnetic fields affect miRNAs expression in cancer cell. In this study, electromagnetic fields exposed to low frequency were used to compare miR-21 and miR-29 expressions in a gastric cancer cell line. BACKGROUND It has been recently suggested that the low frequency electromagnetic fields probably function as a treatment for cancers. METHODS A cultured cell line of gastric cancer was exposed to an electromagnetic radiation system. The cell line was assigned to 4 groups under continuous and discontinuous radiations of 0.25 and 2.5 ml Tesla field strength. Then, the groups were compared with a non-radiation control group. Later, RNA extraction and cDNA synthesis were prepared for miR-21 and miR-29. Real Time PCR method was used to determine how expressions of these two microRNAs differ. Finally, the results were statistically analyzed. RESULTS The percentage of cell viability in the electromagnetic field radiation experienced a significant decrease compared to that of the control group. In addition, expression of miRNA-21 and miRNA-29 had a significant increase as the strength of the electromagnetic field radiations was on an upward trend. Similarly, the percentage of cell viability saw a significant decline in the upregulation of miRNA-21 and miRNA-29 regardless of radiation types. CONCLUSION Findings of this study showed the therapeutic effect of low frequency electromagnetic fields on the gastric cancer cell line. They also indicated that novel biomarkers (miRNA-21 and miRNA-29) could be proposed as potential treatments of gastric cancer, but the results are required to be well established by future studies.
Collapse
Affiliation(s)
- Elham Siasi
- Department of Genetic, Collage of Sciences, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Elaheh Moniri
- Department of Genetic, Collage of Sciences, North Tehran Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
39
|
LNX1 Modulates Notch1 Signaling to Promote Expansion of the Glioma Stem Cell Population during Temozolomide Therapy in Glioblastoma. Cancers (Basel) 2020; 12:cancers12123505. [PMID: 33255632 PMCID: PMC7759984 DOI: 10.3390/cancers12123505] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/05/2020] [Accepted: 10/12/2020] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Glioblastoma is the most common adult malignant brain tumor. It is an aggressive tumor that returns even after surgical removal and temozolomide-based chemotherapy and radiation. Our goal was to understand what genes are altered by temozolomide and how those genes may contribute to tumor return. Our work shows that one of the genes altered is LNX1, which increases the expression of Notch1, a gene important for glioblastoma progression. We further showed that the elevation of LNX1 and Notch1 results in an increase in the tumor stem cell population, a subpopulation of cells thought to help propagate a more aggressive tumor. Finally, we showed that forced reduction in LNX1 expression results in increased survival of animals implanted with glioblastoma. Together, these results suggest that LNX1 may be a novel therapeutic target that would allow modulation of Notch1 activity and the stem cell population, potentially resulting in increased patient survival. Abstract Glioblastoma (GBM) is the most common primary brain malignancy in adults, with a 100% recurrence rate and 21-month median survival. Our lab and others have shown that GBM contains a subpopulation of glioma stem cells (GSCs) that expand during chemotherapy and may contribute to therapeutic resistance and recurrence in GBM. To investigate the mechanism behind this expansion, we applied gene set expression analysis (GSEA) to patient-derived xenograft (PDX) cells in response to temozolomide (TMZ), the most commonly used chemotherapy against GBM. Results showed significant enrichment of cancer stem cell and cell cycle pathways (False Discovery Rate (FDR) < 0.25). The ligand of numb protein 1 (LNX1), a known regulator of Notch signaling by targeting negative regulator Numb, is strongly upregulated after TMZ therapy (p < 0.0001) and is negatively correlated with survival of GBM patients. LNX1 is also upregulated after TMZ therapy in multiple PDX lines with concomitant downregulations in Numb and upregulations in intracellular Notch1 (NICD). Overexpression of LNX1 results in Notch1 signaling activation and increased GSC populations. In contrast, knocking down LNX1 reverses these changes, causing a significant downregulation of NICD, reduction in stemness after TMZ therapy, and resulting in more prolonged median survival in a mouse model. Based on this, we propose that during anti-GBM chemotherapy, LNX1-regulated Notch1 signaling promotes stemness and contributes to therapeutic resistance.
Collapse
|
40
|
A systematic review of tumor treating fields therapy for high-grade gliomas. J Neurooncol 2020; 148:433-443. [DOI: 10.1007/s11060-020-03563-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 06/15/2020] [Indexed: 01/18/2023]
|
41
|
Luo C, Xu S, Dai G, Xiao Z, Chen L, Liu Z. Tumor treating fields for high-grade gliomas. Biomed Pharmacother 2020; 127:110193. [PMID: 32407989 DOI: 10.1016/j.biopha.2020.110193] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/13/2020] [Accepted: 04/21/2020] [Indexed: 12/12/2022] Open
Abstract
High-grade gliomas (HGG) are the most common malignant intracranial tumors with poor prognosis. Current treatments have not yielded optimal remission rates; there are no standard treatments for recurrent and drug-resistant gliomas. Tumor treating fields, which was recently approved by the Food and Drug Administration (FDA), could significantly improve progression free survival and the overall survival of glioma patients. In this review, we elaborate on the mechanism of tumor treating fields in tumor cells and detail various preclinical and clinical studies on gliomas. Tumor treating fields could be a promising option for patients with malignant tumors for which there are no standard treatment plans. Moreover, we identify several potential problems for the practical application of tumor treating fields and predict future directions for further studies. Tumor treating fields may be a potential therapy with high efficacy, fewer adverse effects, and high cost-effectiveness.
Collapse
Affiliation(s)
- Chengke Luo
- Department of Neurosurgery, Xiangya Hospital of Central South University, Changsha 410008, Hunan, China
| | - Shengchao Xu
- Department of Neurosurgery, Xiangya Hospital of Central South University, Changsha 410008, Hunan, China
| | - Gan Dai
- Department of Microbiology, Xiangya School of Medicine, Central South University, Changsha 410008, Hunan, China
| | - Zhiqiang Xiao
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital of Central South University, Changsha, Hunan, China.
| | - Ling Chen
- Department of Neurosurgery, Chinese People's Liberation Army of China (PLA) General Hospital, Medical School of Chinese PLA, Institute of Neurosurgery of Chinese PLA, Beijing, 100853, China.
| | - Zhixiong Liu
- Department of Neurosurgery, Xiangya Hospital of Central South University, Changsha 410008, Hunan, China.
| |
Collapse
|
42
|
Generation and Profiling of Tumor-Homing Induced Neural Stem Cells from the Skin of Cancer Patients. Mol Ther 2020; 28:1614-1627. [PMID: 32402245 DOI: 10.1016/j.ymthe.2020.04.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 03/13/2020] [Accepted: 04/23/2020] [Indexed: 12/22/2022] Open
Abstract
The conversion of human fibroblasts into personalized induced neural stem cells (iNSCs) that actively seek out tumors and deliver cytotoxic agents is a highly promising approach for treating various types of cancer. However, the ability to generate iNSCs from the skin of cancer patients has not been explored. Here, we take an important step toward clinical application by generating iNSCs from skin biopsies of human patients undergoing treatment for the aggressive brain cancer, glioblastoma (GBM). We then utilized a panel of functional and genomic studies to investigate the efficacy and tumor-homing capacity of these patient-derived cells, as well as genomic analysis, to characterize the impact of interpatient variability on this personalized cell therapy. From the skin-tissue biopsies, we established fibroblasts and transdifferentiated the cells into iNSCs. Genomic and functional testing revealed marked variability in growth rates, therapeutic agent production, and gene expression during fibroblast-to-iNSC conversion among patient lines. In vivo testing showed patient-derived iNSCs home to tumors, yet rates and expression of homing-related pathways varied among patients. With the use of surgical-resection mouse models of invasive human cluster of differentiation 133+ (CD133+) GBM cells and serial kinetic imaging, we found that "high-performing" patient-derived iNSC lines reduced the volume of GBM cells 60-fold and extended survival from 28 to 45 days. Treatment with "low-performing" patient lines had minimal effect on tumor growth, but the anti-tumor effect could be rescued by increasing the intracavity dose. Together, these data show, for the first time, that tumor-homing iNSCs can be generated from the skin of cancer patients and efficaciously suppress tumor growth. We also begin to define genetic markers that could be used to identify cells that will contain the most effective attributes for tumor homing and kill in human patients, including high gene expression of the semaphorin-3B (SEMA3B), which is known to be involved in neuronal cell migration. These studies should serve as an important guide toward clinical GBM therapy, where the personalized nature of optimized iNSC therapy has the potential to avoid transplant rejection and maximize treatment durability.
Collapse
|
43
|
Dupommier D, Muller C, Comoy C, Mazerbourg S, Bordessa A, Piquard E, Pawlak M, Piquard F, Martin H, De Fays E, Grandemange S, Flament S, Boisbrun M. New desulfured troglitazone derivatives: Improved synthesis and biological evaluation. Eur J Med Chem 2020; 187:111939. [PMID: 31838327 DOI: 10.1016/j.ejmech.2019.111939] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 11/29/2019] [Accepted: 12/01/2019] [Indexed: 02/07/2023]
Abstract
Breast cancer is a major medical threat which cannot be sufficiently addressed by current therapies because of spontaneous or acquired treatment resistance. Besides, triple-negative breast cancer (TNBC) tumors do not respond to targeted therapies, thus new therapeutic strategies are needed. In this context, we designed and prepared new desulfured troglitazone (TGZ)-derived molecules and evaluated them in vitro for their anti-proliferative activity, with a special focus on triple-negative breast cancer cell lines. Optimization of the synthetic strategies and deracemization of the lead compound were performed to give highly active compound 10 with low-micromolar potency. Further studies revealed that this compound triggers apoptosis rather than cell cycle arrest as observed with TGZ.
Collapse
Affiliation(s)
| | - Claire Muller
- Université de Lorraine, CNRS, CRAN, F-54000, Nancy, France
| | - Corinne Comoy
- Université de Lorraine, CNRS, L2CM, F-54000, Nancy, France
| | | | | | - Eline Piquard
- Université de Lorraine, CNRS, L2CM, F-54000, Nancy, France
| | - Manon Pawlak
- Université de Lorraine, CNRS, L2CM, F-54000, Nancy, France
| | | | - Hélène Martin
- PEPITE EA4267, Univ. Bourgogne Franche-Comté, F-25000, Besançon, France
| | - Elia De Fays
- Université de Lorraine, CNRS, CRAN, F-54000, Nancy, France
| | | | | | | |
Collapse
|
44
|
Zhou L, Tang H, Wang F, Ou S, Wu T, Fang Y, Xu J, Guo K. Cyclovirobuxine D inhibits cell proliferation and migration and induces apoptosis in human glioblastoma multiforme and low‑grade glioma. Oncol Rep 2020; 43:807-816. [PMID: 32020219 PMCID: PMC7041125 DOI: 10.3892/or.2020.7459] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 12/09/2019] [Indexed: 01/17/2023] Open
Abstract
Gliomas are the most common neoplasm of the human central nervous system. Glioblastoma multiforme (GBM) is one of the most serious types of gliomas. Although considerable progress has been made in the development of cancer therapeutic agents, several antineoplastic drugs fail to penetrate the blood-brain barrier (BBB), resulting in a low survival rate of glioma patients. Recent studies have revealed that the traditional Chinese medicine Buxus microphylla contains the main active component Cyclovirobuxine D (CVB-D), which can cross the BBB with a novel delivery system. However, it remains unclear whether CVB-D exerts anticancer effects against GBM and low-grade glioma (LGG). The aim of the present study was to explore the feasibility of CVB-D as a new effective agent in the treatment of GBM and LGG. The ability of CVB-D to inhibit GBM and LGG cell proliferation was detected by CCK8 assay. Flow cytometry was used to detect cell cycle progression and apoptosis induction by Annexin V-FITC/PI assay. The expression levels of the apoptosis-associated proteins, namely cleaved caspase-3 and Bax/Bcl-2, were detected by western blot analysis. The mitochondrial membrane potential (ΔΨm) was detected by Rh123 dyed fluorescence micrograph. Hoechst staining was used to observe the morphological characteristics of the apoptotic cells. The scratch test was used to evaluate the migration of GBM and LGG cells. The results indicated that CVB-D reduced cell viability of T98G and Hs683 cells. Flow cytometry demonstrated that CVB-D-treated cells were arrested at the S phase of their cell cycle. The expression levels of the apoptosis-associated proteins were increased in CVB-D-treated cells. Rh123 and Hoechst staining indicated morphological changes and mitochondrial membrane potential changes of the cells undergoing apoptosis. The data confirmed that CVB-D inhibited cell proliferation by arresting the cell cycle of GBM and LLG cells and that it promoted the induction of cell apoptosis by altering the mitochondrial membrane potential. The findings of the present study indicate the potential value of CVB-D in the treatment of glioma.
Collapse
Affiliation(s)
- Lingqi Zhou
- Department of Anatomy and Neurobiology, Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Hai Tang
- Guangdong Jiangmen Chinese Medical College, Jiangmen, Guangdong 529000, P.R. China
| | - Fang Wang
- Department of Molecular Diagnostics, Sun Yat‑sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China
| | - Shanshan Ou
- Department of Anatomy and Neurobiology, Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Tong Wu
- Department of Anatomy and Neurobiology, Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Yinchao Fang
- Department of Anatomy and Neurobiology, Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Jie Xu
- Department of Anatomy and Neurobiology, Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Kaihua Guo
- Department of Anatomy and Neurobiology, Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| |
Collapse
|
45
|
Li Z, Li F, Ma C, Xu C, Pan Z. Advancement of clinical therapeutic research on glioma: A narrative review. GLIOMA 2020. [DOI: 10.4103/glioma.glioma_18_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
46
|
Mattsson MO, Simkó M. Emerging medical applications based on non-ionizing electromagnetic fields from 0 Hz to 10 THz. MEDICAL DEVICES-EVIDENCE AND RESEARCH 2019; 12:347-368. [PMID: 31565000 PMCID: PMC6746309 DOI: 10.2147/mder.s214152] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 08/23/2019] [Indexed: 12/13/2022] Open
Abstract
The potential for using non-ionizing electromagnetic fields (EMF; at frequencies from 0 Hz up to the THz range) for medical purposes has been of interest since many decades. A number of established and familiar methods are in use all over the world. This review, however, provides an overview of applications that already play some clinical role or are in earlier stages of development. The covered methods include modalities used for bone healing, cancer treatment, neurological conditions, and diathermy. In addition, certain other potential clinical areas are touched upon. Most of the reviewed technologies deal with therapy, whereas just a few diagnostic approaches are mentioned. None of the discussed methods are having such a strong impact in their field of use that they would be expected to replace conventional methods. Partly this is due to a knowledge base that lacks mechanistic explanations for EMF effects at low-intensity levels, which often are used in the applications. Thus, the possible optimal use of EMF approaches is restricted. Other reasons for the limited impact include a scarcity of well-performed randomized clinical trials that convincingly show the efficacy of the methods and that standardized user protocols are mostly lacking. Presently, it seems that some EMF-based methods can have a niche role in treatment and diagnostics of certain conditions, mostly as a complement to or in combination with other, more established, methods. Further development and a stronger impact of these technologies need a better understanding of the interaction mechanisms between EMF and biological systems at lower intensity levels. The importance of the different physical parameters of the EMF exposure needs also further investigations.
Collapse
Affiliation(s)
- Mats-Olof Mattsson
- SciProof International AB, Östersund, Sweden
- Strömstad Akademi, Institute for Advanced Studies, Strömstad, Sweden
| | - Myrtill Simkó
- SciProof International AB, Östersund, Sweden
- Strömstad Akademi, Institute for Advanced Studies, Strömstad, Sweden
| |
Collapse
|
47
|
Lowe S, Bhat KP, Olar A. Current clinical management of patients with glioblastoma. Cancer Rep (Hoboken) 2019; 2:e1216. [PMID: 32721125 DOI: 10.1002/cnr2.1216] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 04/11/2019] [Accepted: 04/29/2019] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Glioblastoma (GB) is the most aggressive primary brain tumor, historically resistant to treatment, and with overall fatal outcome. RECENT FINDINGS Recently, several molecular subgroups and rare genetic alterations have been described in GB. In this review article, we will describe the current clinical management of patients with GB in the United States, discuss selected next-generation molecular-targeted therapies in GB, and present ongoing clinical trials for patients with GB. This review is intended for clinical and preclinical researchers who conduct work on GB and would like to understand more about the current standard of treatment of GB patients, historical perspectives, current challenges, and ongoing and upcoming clinical trials. CONCLUSIONS GB is an extremely complex disease, and despite recent progress and advanced therapeutic strategies, the overall patient's prognosis remains dismal. Innovative strategies and integrative ways of approach to disease are urgently needed.
Collapse
Affiliation(s)
- Stephen Lowe
- Department of Neurosurgery, Medical University of South Carolina, Charleston, South Carolina
| | - Krishna P Bhat
- Deparment of Translational Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Adriana Olar
- Department of Neurosurgery, Medical University of South Carolina, Charleston, South Carolina.,Departments of Pathology and Laboratory Medicine, Medical University of South Carolina & Hollings Cancer Center, Charleston, South Carolina
| |
Collapse
|
48
|
Hayes MJ, Prasad V. Association between conflict of interest and published position on tumor-treating fields for the treatment of glioblastoma. J Cancer Policy 2019. [DOI: 10.1016/j.jcpo.2019.100189] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
49
|
Chen Z, Xu N, Zhao C, Xue T, Wu X, Wang Z. Bevacizumab combined with chemotherapy vs single-agent therapy in recurrent glioblastoma: evidence from randomized controlled trials. Cancer Manag Res 2018; 10:2193-2205. [PMID: 30087578 PMCID: PMC6061394 DOI: 10.2147/cmar.s173323] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Background Recent studies showed inconsistent results of bevacizumab combined with chemotherapy vs single-agent therapy in terms of their safety and efficacy for the treatment of recurrent glioblastoma. Therefore, we performed a meta-analysis to explore the value of bevacizumab combined with chemotherapy and single-agent therapy in recurrent glioblastoma treatment. Methods Databases such as MEDLINE, Embase, and Cochrane Library were searched for randomized controlled trials (RCTs) related to the topic of bevacizumab combined with chemotherapy and single-agent therapy as treatments for recurrent glioblastoma from January 1980 to April 2018. Subsequent articles were then sorted, evaluated, and analyzed. Results We pooled 1,169 patient cases from seven RCTs. Bevacizumab combined with chemotherapy showed a significantly improved progression-free survival (PFS) (HR=0.65; 95% CI 0.57-0.74; P<0.001) compared to single-agent therapy. In addition, the overall survival (OS) rate showed insignificant differences between the two groups (HR=0.96; 95% CI 0.83-1.12; P=0.622). Simultaneously, we found that bevacizumab combined with chemotherapy had a higher objective response rate (ORR) (OR=2.10; 95% CI 1.32-3.33; P=0.002), but also higher incidence of adverse events (AEs) (OR=1.85; 95% CI 1.26-2.71; P=0.002). However, in subgroup analysis, we found that AEs showed insignificant differences between the two treatment methods when bevacizumab was used as the single-agent therapy subgroup (P=0.058). In addition, in the subgroup with low corticosteroid use rate at baseline (N<50%), ORR (P=0.108) and AEs (P=0.134) showed insignificant differences between the two groups. Conclusion Bevacizumab combined with chemotherapy can significantly improve PFS and ORR, but did not prolong OS in these studies, and can even lead to higher odds of AEs. In addition, bevacizumab may play a dominant role and corticosteroid may be an unfavorable factor in the combination therapy of recurrent glioblastoma.
Collapse
Affiliation(s)
- Zhouqing Chen
- Department of Neurosurgery, The First Affiliated Hospital of Soochow Unicersity, Suzhou, Jiangsu Province 215006, China,
| | - Na Xu
- State Key Laboratory of Medical Neurobiology, Institute of Brain Sciences and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Chongshun Zhao
- Department of Neurosurgery, The First Affiliated Hospital of Soochow Unicersity, Suzhou, Jiangsu Province 215006, China,
| | - Tao Xue
- Department of Neurosurgery, The First Affiliated Hospital of Soochow Unicersity, Suzhou, Jiangsu Province 215006, China,
| | - Xin Wu
- Department of Neurosurgery, The First Affiliated Hospital of Soochow Unicersity, Suzhou, Jiangsu Province 215006, China,
| | - Zhong Wang
- Department of Neurosurgery, The First Affiliated Hospital of Soochow Unicersity, Suzhou, Jiangsu Province 215006, China,
| |
Collapse
|