1
|
Indihar DF, Jones JJ, Ochsenbauer C, Kappes JC. Highly Sensitive Analysis of Cervical Mucosal HIV-1 Infection Using Reporter Viruses Expressing Secreted Nanoluciferase. Methods Mol Biol 2024; 2807:299-323. [PMID: 38743237 DOI: 10.1007/978-1-0716-3862-0_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Ex vivo cervical tissue explant models offer a physiologically relevant approach for studying virus-host interactions that underlie mucosal HIV-1 transmission to women. However, the utility of cervical explant tissue (CET) models has been limited for both practical and technical reasons. These include assay variation, inadequate sensitivity for assessing HIV-1 infection and replication in tissue, and constraints imposed by the requirement for using multiple replica samples of CET to test each experimental variable and assay parameter. Here, we describe an experimental approach that employs secreted nanoluciferase (sNLuc) and current HIV-1 reporter virus technologies to overcome certain limitations of earlier ex vivo CET models. This method augments application of the CET model for investigating important questions involving mucosal HIV-1 transmission.
Collapse
Affiliation(s)
- Dana F Indihar
- Division of Hematology/Oncology, Department of Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jennifer J Jones
- Division of Hematology/Oncology, Department of Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Christina Ochsenbauer
- Division of Hematology/Oncology, Department of Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - John C Kappes
- Division of Hematology/Oncology, Department of Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.
- Birmingham VA Health Care System, Research Service, Birmingham, AL, USA.
| |
Collapse
|
2
|
Lei Y, Yong Z, Junzhi W. Development and application of potency assays based on genetically modified cells for biological products. J Pharm Biomed Anal 2023; 230:115397. [PMID: 37079933 DOI: 10.1016/j.jpba.2023.115397] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/04/2023] [Accepted: 04/13/2023] [Indexed: 04/22/2023]
Abstract
Potency assays are key to the development, registration, and quality control of biological products. Although previously preferred for clinical relevance, in vivo bioassays have greatly diminished with the advent of dependent cell lines as well as due to ethical concerns. However, for some products, the development of in vitro cell-based assay is challenging, or existing method has limitations such as tedious procedure or low sensitivity. The generation of genetically modified (GM) cell line with improved response to the analyte provides a scientific and promising solution. Potency assays based on GM cell lines are currently used for the quality control of biological products including cytokines, hormones, therapeutic antibodies, vaccines and gene therapy products. In this review, we have discussed the general principles of designing and developing GM cells-based potency assays, including identification of cellular signaling pathways and detectable biological effects, generation of responsive cell lines and constitution of test systems, based on the current research progress. In addition, the applications of some novel technologies and the common concerns regarding GM cells have also been discussed. The research presented in this review provides insights for the development and application of novel GM cells-based potency assays for biological products.
Collapse
Affiliation(s)
- Yu Lei
- Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products, National Institutes for Food and Drug Control, No. 2, Tiantan Xili, Dongcheng District, Beijing 100050, China
| | - Zhou Yong
- Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products, National Institutes for Food and Drug Control, No. 2, Tiantan Xili, Dongcheng District, Beijing 100050, China
| | - Wang Junzhi
- Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products, National Institutes for Food and Drug Control, No. 2, Tiantan Xili, Dongcheng District, Beijing 100050, China.
| |
Collapse
|
3
|
Incomplete Downregulation of CD4 Expression Affects HIV-1 Env Conformation and Antibody-Dependent Cellular Cytotoxicity Responses. J Virol 2018; 92:JVI.00484-18. [PMID: 29669829 PMCID: PMC6002730 DOI: 10.1128/jvi.00484-18] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 04/11/2018] [Indexed: 12/13/2022] Open
Abstract
HIV-1-infected cells expressing envelope glycoproteins (Env) in the CD4-bound conformation on their surfaces are targeted by antibody-dependent cellular cytotoxicity (ADCC) mediated by CD4-induced (CD4i) antibodies and sera from HIV-1-infected individuals (HIV+ sera). By downregulating the surface expression of CD4, Nef prevents Env-CD4 interaction, thus protecting HIV-1-infected cells from ADCC. HIV-1 infectious molecular clones (IMCs) are widely used to measure ADCC. In order to facilitate the identification of infected cells and high-throughput ADCC analysis, reporter genes (e.g., the Renilla luciferase [LucR] gene) are often introduced into IMC constructs. We evaluated the susceptibility of HIV-1-infected CD4+ T lymphocytes to ADCC using a panel of parental IMCs and derivatives that expressed the LucR reporter gene, utilizing different molecular strategies, including one specifically designed to retain Nef expression. We found that in some of these constructs, Nef expression in CD4+ T cells was suboptimal, and consequently, CD4 downregulation was incomplete. CD4 molecules remaining on the cell surface resulted in the exposure of ADCC-mediating CD4i epitopes on Env and a dramatic increase in the susceptibility of the infected cells to ADCC. Strikingly, protection from ADCC was observed when cells were infected with the parental IMC, which exhibited strong CD4 downregulation. This discrepancy between the parental and Nef-impaired viruses was independent of the strains of Env expressed, but rather, it was correlated with the levels of CD4 surface expression. Overall, our results indicate that caution should be taken when selecting IMCs for ADCC measurements and that CD4 downregulation needs to be carefully monitored when drawing conclusions about the nature and magnitude of ADCC. IMPORTANCE In-depth understanding of the susceptibility of HIV-1-infected cells to ADCC might help establish correlates of vaccine protection and guide the development of HIV-1 vaccine strategies. Different ADCC assays have been developed, including those using infectious molecular clones (IMCs) carrying a LucR reporter gene that greatly facilitates large-scale quantitative analysis. We previously reported different molecular strategies for introducing LucR while maintaining Nef expression and function and, consequently, CD4 surface downregulation. Here, we demonstrate that utilizing IMCs that exhibit impaired Nef expression can have undesirable consequences due to incomplete CD4 downregulation. CD4 molecules remaining on the cell surface resulted in the exposure of ADCC-mediating CD4i epitopes on Env and a dramatic increase in the susceptibility of the infected cells to ADCC. Overall, our results indicate that CD4 downregulation needs to be carefully monitored when drawing conclusions about the nature and magnitude of ADCC.
Collapse
|
4
|
T-Cell Receptor (TCR) Clonotype-Specific Differences in Inhibitory Activity of HIV-1 Cytotoxic T-Cell Clones Is Not Mediated by TCR Alone. J Virol 2017; 91:JVI.02412-16. [PMID: 28077649 DOI: 10.1128/jvi.02412-16] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 12/27/2016] [Indexed: 01/11/2023] Open
Abstract
Functional analysis of T-cell responses in HIV-infected individuals has indicated that virus-specific CD8+ T cells with superior antiviral efficacy are well represented in HIV-1 controllers but are rare or absent in HIV-1 progressors. To define the role of individual T-cell receptor (TCR) clonotypes in differential antiviral CD8+ T-cell function, we performed detailed functional and mass cytometric cluster analysis of multiple CD8+ T-cell clones recognizing the identical HLA-B*2705-restricted HIV-1 epitope KK10 (KRWIILGLNK). Effective and ineffective CD8+ T-cell clones segregated based on responses to HIV-1-infected and peptide-loaded target cells. Following cognate peptide stimulation, effective HIV-specific clones displayed significantly more rapid TCR signal propagation, more efficient initial lytic granule release, and more sustained nonlytic cytokine and chemokine secretion than ineffective clones. To evaluate the TCR clonotype contribution to CD8+ T-cell function, we cloned the TCR α and β chain genes from one effective and two ineffective CD8+ T-cell clones from an elite controller into TCR-expressing lentivectors. We show that Jurkat/MA cells and primary CD8+ T cells transduced with lentivirus expressing TCR from one of the ineffective clones exhibited a level of activation by cognate peptide and inhibition of in vitro HIV-1 infection, respectively, that were comparable to those of the effective clonotype. Taken together, these data suggest that the potent antiviral capacity of some HIV-specific CD8+ T cells is a consequence of factors in addition to TCR sequence that modulate functionality and contribute to the increased antiviral capacity of HIV-specific CD8+ T cells in elite controllers to inhibit HIV infection.IMPORTANCE The greater ex vivo antiviral inhibitory activity of CD8+ T cells from elite controllers than from HIV-1 progressors supports the crucial role of effective HIV-specific CD8+ T cells in controlling HIV-1 replication. The contribution of TCR clonotype to inhibitory potency was investigated by delineating the responsiveness of effective and ineffective CD8+ T-cell clones recognizing the identical HLA-B*2705-restricted HIV-1 Gag-derived peptide, KK10 (KRWIILGLNK). KK10-stimulated "effective" CD8+ T-cell clones displayed significantly more rapid TCR signal propagation, more efficient initial lytic granule release, and more sustained cytokine and chemokine secretion than "ineffective" CD8+ T-cell clones. However, TCRs cloned from an effective and one of two ineffective clones conferred upon primary CD8+ T cells the equivalent potent capacity to inhibit HIV-1 infection. Taken together, these data suggest that other factors aside from intrinsic TCR-peptide-major histocompatibility complex (TCR-peptide-MHC) reactivity can contribute to the potent antiviral capacity of some HIV-specific CD8+ T-cell clones.
Collapse
|
5
|
Robinson TO, Zhang M, Ochsenbauer C, Smythies LE, Cron RQ. CD4 regulatory T cells augment HIV-1 expression of polarized M1 and M2 monocyte derived macrophages. Virology 2017; 504:79-87. [PMID: 28157548 DOI: 10.1016/j.virol.2017.01.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 01/22/2017] [Accepted: 01/23/2017] [Indexed: 01/08/2023]
Abstract
Previous in vitro studies have shown that the HIV-1 virus can alter the cytokine/chemokine profile of polarized macrophages which may lead to their increased susceptibility to viral infection. Here, we found that M2 monocyte derived macrophages (MDM) were significantly more permissive to productive infection by R5-tropic HIV-1 strains, including transmitted founder (T/F) viruses, than M1 MDM. Previous in vitro studies by our lab showed that regulatory T cells (Tregs) suppress HIV-1 infection in non-Treg CD4 T cells. Here, we investigated potential inhibitory effects of Tregs on HIV-1 infection of polarized MDM. We found that Tregs significantly increased HIV-1 infection in M1 and M2 MDM via a mechanism that was cell contact dependent. These findings suggest a potential role for Tregs in HIV-1 infection of tissue resident macrophages of M1 and M2 phenotype, which may contribute to the establishment and pathogenesis of HIV-1 disease.
Collapse
Affiliation(s)
- Tanya O Robinson
- Department of Pediatrics, University of Alabama at Birmingham, Children's Hospital of Alabama, Children's Park Place, Suite 210, 1601 4th Avenue South, Birmingham, Alabama 35233, United States
| | - Mingce Zhang
- Department of Pediatrics, University of Alabama at Birmingham, Children's Hospital of Alabama, Children's Park Place, Suite 210, 1601 4th Avenue South, Birmingham, Alabama 35233, United States
| | - Christina Ochsenbauer
- Department of Medicine, University of Alabama at Birmingham, 1720 2nd Avenue South, Birmingham, Alabama 35294, United States; Center for AIDS Research, University of Alabama at Birmingham, 1720 2nd Avenue South, Birmingham, Alabama 35294, United States
| | - Lesley E Smythies
- Department of Medicine, University of Alabama at Birmingham, 1720 2nd Avenue South, Birmingham, Alabama 35294, United States
| | - Randall Q Cron
- Department of Pediatrics, University of Alabama at Birmingham, Children's Hospital of Alabama, Children's Park Place, Suite 210, 1601 4th Avenue South, Birmingham, Alabama 35233, United States.
| |
Collapse
|
6
|
Terrasse R, Memmi M, Palle S, Heyndrickx L, Vanham G, Pozzetto B, Bourlet T. Visualization of X4- and R5-Tropic HIV-1 Viruses Expressing Fluorescent Proteins in Human Endometrial Cells: Application to Tropism Study. PLoS One 2017; 12:e0169453. [PMID: 28060897 PMCID: PMC5218496 DOI: 10.1371/journal.pone.0169453] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 12/16/2016] [Indexed: 12/12/2022] Open
Abstract
Worldwide most HIV infections occur through heterosexual transmission, involving complex interactions of cell-free and cell-associated particles with cells of the female genital tract mucosa. The ability of HIV-1 to "infect" epithelial cells remains poorly understood. To address this question, replicative-competent chimeric constructs expressing fluorescent proteins and harboring the envelope of X4- or R5-tropic HIV-1 strains were used to "infect" endometrial HEC1-A cells. The virus-cell interactions were visualized using confocal microscopy (CM) at various times post infection. Combined with quantification of viral RNA and total HIV DNA in infected cells, the CM pictures suggest that epithelial cells do not support a complete viral replication cycle: X4-tropic viruses are imported into the nucleus in a non-productive way, whereas R5-tropic viruses transit through the cytoplasm without replication and are preferentially transmitted to susceptible activated peripheral blood mononuclear cells. Within the limit of experiments conducted in vitro on a continued cell line, these results indicate that the epithelial mucosa may participate to the selection of HIV-1 strains at the mucosal level.
Collapse
Affiliation(s)
- Rachel Terrasse
- Groupe Immunité des Muqueuses et Agents Pathogènes EA3064, University of Lyon, Faculté de Médecine Jacques Lisfranc de Saint-Etienne, Saint-Etienne cedex 02, France
| | - Meriam Memmi
- Groupe Immunité des Muqueuses et Agents Pathogènes EA3064, University of Lyon, Faculté de Médecine Jacques Lisfranc de Saint-Etienne, Saint-Etienne cedex 02, France
| | - Sabine Palle
- Centre de Microscopie Confocale Multiphotonique, Université Jean Monnet, Pôle Optique et Vision, Saint-Etienne cedex 2, France
| | - Leo Heyndrickx
- Virology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Guido Vanham
- Virology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
- Faculty of Biomedical, Pharmaceutical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | - Bruno Pozzetto
- Groupe Immunité des Muqueuses et Agents Pathogènes EA3064, University of Lyon, Faculté de Médecine Jacques Lisfranc de Saint-Etienne, Saint-Etienne cedex 02, France
| | - Thomas Bourlet
- Groupe Immunité des Muqueuses et Agents Pathogènes EA3064, University of Lyon, Faculté de Médecine Jacques Lisfranc de Saint-Etienne, Saint-Etienne cedex 02, France
| |
Collapse
|
7
|
Characterization of Simian Immunodeficiency Virus Variants Anatomically Compartmentalized in Plasma and Milk in Chronically Infected African Green Monkeys. J Virol 2016; 90:8795-808. [PMID: 27466415 PMCID: PMC5021398 DOI: 10.1128/jvi.00701-16] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 07/02/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Unlike human immunodeficiency virus type 1 (HIV-1)-infected humans, African-origin, natural simian immunodeficiency virus (SIV) hosts, such as African green monkeys (AGMs), sustain nonpathogenic SIV infections and rarely vertically transmit SIV to their infants. Interestingly, chronically SIV-infected AGMs have anatomically compartmentalized SIV variants in plasma and milk, whereas humans and SIV-infected rhesus monkeys (RMs), Asian-origin nonnatural SIV hosts, do not exhibit this compartmentalization. Thus, it is possible that AGM SIV populations in milk have unique phenotypic features that contribute to the low postnatal transmission rates observed in this natural host species. In this study, we explored this possibility by characterizing the infectivity, tropism, and neutralization susceptibility of plasma and milk SIVsab env variants isolated from chronically SIVsab92018ivTF-infected AGMs. AGM plasma and milk SIVsab env pseudovirus variants exhibited similar infectivities, neutralization susceptibilities to autologous and heterologous plasma, and chemokine coreceptor usages for cell entry, suggesting similar abilities to initiate infection in a new host. We also assessed the cytokine milieu in SIV-infected AGM milk and compared it to that of SIV-infected RMs. MIP-1β, granulocyte colony-stimulating factor (G-CSF), interleukin-12/23 (IL-12/23), and IL-13 trended significantly higher in SIV-infected AGM milk than in that of RMs, while IL-18 and IL-6 trended significantly higher in SIV-infected RM milk than in that of AGMs. Taken together, our findings imply that nonviral maternal factors, such as the cytokine milieu, rather than unique characteristics of SIV populations in the milk contribute to the low postnatal transmission rates observed in AGMs. IMPORTANCE Due to the ongoing global incidence of pediatric HIV-1 infections, including many that occur via breastfeeding, development of effective vaccine strategies capable of preventing vertical HIV transmission through breastfeeding remains an important goal. Unlike HIV-1-infected humans, African green monkeys (AGMs), the natural SIV host species, sustain nonpathogenic SIV infections, rarely transmit the virus postnatally to their infants, and exhibit anatomically compartmentalized SIV populations in milk and plasma. Identifying unique features of the anatomically compartmentalized milk SIV populations could enhance our understanding of how AGMs may have evolved to avoid transmission through breastfeeding. While this study identified limited phenotypic distinctions between AGM plasma and milk SIV populations, potential differences in milk cytokine profiles of natural and nonnatural SIV hosts were observed. These findings imply the potential importance of nonviral factors in natural SIV host species, such as innate SIV/HIV immune factors in milk, as a means of naturally preventing vertical transmission.
Collapse
|
8
|
Mitsuki YY, Yamamoto T, Mizukoshi F, Momota M, Terahara K, Yoshimura K, Harada S, Tsunetsugu-Yokota Y. A novel dual luciferase assay for the simultaneous monitoring of HIV infection and cell viability. J Virol Methods 2016; 231:25-33. [PMID: 26898957 DOI: 10.1016/j.jviromet.2016.02.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 02/11/2016] [Accepted: 02/11/2016] [Indexed: 12/26/2022]
Abstract
Human immunodeficiency virus type 1 (HIV-1) reporter cell lines are critical tools for drug development. However, one disadvantage of HIV-1 reporter cell lines is that reductions in reporter gene activity need to be normalized to cytotoxicity, i.e., live cell numbers. Here, we developed a dual luciferase assay based on a R. reniformis luciferase (hRLuc)-expressing R5-type HIV-1 (NLAD8-hRLuc) and a CEM cell line expressing CCR5 and firefly luciferase (R5CEM-FiLuc). The NLAD8-hRLuc reporter virus was replication competent in peripheral blood mononuclear cells. The level of hRLuc was correlated with p24 antigen levels (p<0.001, R=0.862). The target cell line, R5CEM-FiLuc, stably expressed the firefly luciferase (FiLuc) reporter gene and allowed the simultaneous monitoring of compound cytotoxicity. The dual reporter assay combining a NLAD8-hRLuc virus with R5CEM-FiLuc cells permitted the accurate determination of drug susceptibility for entry, reverse transcriptase, integrase, and protease inhibitors at different multiplicities of infection. This dual reporter assay provides a rapid and direct method for the simultaneous monitoring of HIV infection and cell viability.
Collapse
Affiliation(s)
- Yu-Ya Mitsuki
- Department of Immunology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku, Tokyo, Japan; AIDS Research Center, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku, Tokyo 162-8640, Japan; Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mt. Sinai, One Gustave Levy Place, Box 1090, New York, NY 10029, USA
| | - Takuya Yamamoto
- Laboratory of Adjuvant Innovation, National Institute of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito-Asagi, Ibaraki, Osaka 567-0085, Japan; Laboratory of Vaccine Science, World Premier International Immunology Frontier Research Center (IFReC), Osaka University, 6F IFReC Research Building, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan; Center for AIDS Research, Kumamoto University, 2-2-1 Honjo, Chuo, Kumamoto 860-0811, Japan
| | - Fuminori Mizukoshi
- Department of Immunology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku, Tokyo, Japan
| | - Masatoshi Momota
- Laboratory of Adjuvant Innovation, National Institute of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito-Asagi, Ibaraki, Osaka 567-0085, Japan; Laboratory of Vaccine Science, World Premier International Immunology Frontier Research Center (IFReC), Osaka University, 6F IFReC Research Building, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Kazutaka Terahara
- Department of Immunology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku, Tokyo, Japan
| | - Kazuhisa Yoshimura
- AIDS Research Center, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku, Tokyo 162-8640, Japan; Center for AIDS Research, Kumamoto University, 2-2-1 Honjo, Chuo, Kumamoto 860-0811, Japan
| | - Shigeyoshi Harada
- AIDS Research Center, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku, Tokyo 162-8640, Japan.
| | - Yasuko Tsunetsugu-Yokota
- Department of Immunology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku, Tokyo, Japan.
| |
Collapse
|
9
|
Thomas T, Seay K, Zheng JH, Zhang C, Ochsenbauer C, Kappes JC, Goldstein H. High-Throughput Humanized Mouse Models for Evaluation of HIV-1 Therapeutics and Pathogenesis. Methods Mol Biol 2016; 1354:221-35. [PMID: 26714715 DOI: 10.1007/978-1-4939-3046-3_15] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mice cannot be used as a model to evaluate HIV-1 therapeutics because they do not become infected by HIV-1 due to structural differences between several human and mouse proteins required for HIV-1 replication. This has limited their use for in vivo assessment of anti-HIV-1 therapeutics and the mechanism by which cofactors, such as illicit drug use accelerate HIV-1 replication and disease course in substance abusers. Here, we describe the development and application of two in vivo humanized mouse models that are highly sensitive and useful models for the in vivo evaluation of candidate anti-HIV therapeutics. The first model, hu-spl-PBMC-NSG mice, uses NOD-SCID IL2rγ(-/-) (NSG) mice intrasplenically injected with human peripheral blood mononuclear cells (PBMC) which develop productive splenic HIV-1 infection after intrasplenic inoculation with a replication-competent HIV-1 expressing Renilla reniformis luciferase (HIV-LucR) and enables investigators to use bioluminescence to visualize and quantitate the temporal effects of therapeutics on HIV-1 infection. The second model, hCD4/R5/cT1 mice, consists of transgenic mice carrying human CD4, CCR5 and cyclin T1 genes, which enables murine CD4-expressing cells to support HIV-1 entry, Tat-mediated LTR transcription and consequently develop productive infection. The hCD4/R5/cT1 mice develop disseminated infection of tissues including the spleen, small intestine, lymph nodes and lungs after intravenous injection with HIV-1-LucR. Because these mice can be infected with HIV-LucR expressing transmitted/founder and clade A/E and C Envs, these mouse models can also be used to evaluate the in vivo efficacy of broadly neutralizing antibodies and antibodies induced by candidate HIV-1 vaccines. Furthermore, because hCD4/R5/cT1 mice can be infected by vaginal inoculation with replication-competent HIV-1 expressing NanoLuc (HIV-nLucR)-, this mouse model can be used to evaluate the mechanisms by which substance abuse and other factors enhance mucosal transmission of HIV-1.
Collapse
Affiliation(s)
- Tynisha Thomas
- Departments of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Kieran Seay
- Departments of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Jian Hua Zheng
- Departments of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Cong Zhang
- Departments of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Christina Ochsenbauer
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - John C Kappes
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.,Birmingham Veterans Affairs Medical Center, Research Service, Birmingham, AL, 35294, USA
| | - Harris Goldstein
- Departments of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA. .,Departments of Pediatrics, Albert Einstein College of Medicine, Forchheimer Building, Room 408, 1300 Morris Park Avenue, Bronx, NY, 10461, USA.
| |
Collapse
|
10
|
Alberti MO, Jones JJ, Miglietta R, Ding H, Bakshi RK, Edmonds TG, Kappes JC, Ochsenbauer C. Optimized Replicating Renilla Luciferase Reporter HIV-1 Utilizing Novel Internal Ribosome Entry Site Elements for Native Nef Expression and Function. AIDS Res Hum Retroviruses 2015; 31:1278-96. [PMID: 26101895 DOI: 10.1089/aid.2015.0074] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
We previously developed replication-competent reporter HIV-1 (referred to herein as LucR.T2A reporter viruses), utilizing a "ribosome skipping" T2A peptide strategy to link Renilla luciferase (LucR) with Nef expression. The demonstrated utility for HIV-1 vaccine and transmission study applications included measurement of neutralizing antibody (NAb) activity in vaccine sera, improved cell-mediated virus inhibition assays, such as T cell-mediated virus inhibition and antibody-dependent cell-mediated cytotoxicity (ADCC) assays, and humanized mouse models. Herein, we extend our prior work and introduce reporter virus technology for applications that require fully functional Nef. We demonstrate that in CD4(+) T cells productively infected with LucR.T2A reporter viruses, T2A peptide-driven Nef expression and function, such as down-regulation of surface CD4 and MHC-I, were impaired. We overcame this limitation of LucR.T2A reporter viruses and achieved physiological Nef expression and function by engineering novel LucR reporter HIV-1 comprising 11 different internal ribosome entry site (IRES) elements chosen for size and relative activity. A range of Nef expression was observed in 293T cells transfected with the different LucR.IRES reporter virus constructs. Iteratively, we identified IRES reporter genomes that expressed Nef closest to physiological levels and produced virus with infectivity, titers, and replication kinetics similar to nonreporter viruses. Our results demonstrated that LucR reporter activity was stable over multiple replication cycles in peripheral blood mononuclear cells (PBMCs). Furthermore, we analyzed Nef functionality, i.e., down-modulation of MHC-I and CD4, following infection of T cell lines and PBMCs. Unlike LucR.T2A reporter virus, one of the redesigned LucR.IRES reporter viruses [containing the modified encephalomyocarditis virus (EMCV) 6ATR IRES element, "6ATRi"] demonstrated Nef expression and function similar to parental "nonreporter" virus. In a previously validated (nef-independent) T cell-based NAb neutralization assay, LucR.6ATRi reporter virus performed indistinguishably from LucR.T2A reporter virus. In summary, reporter viruses comprising the "6ATRi" element promise to augment HIV-1 vaccine and transmission research approaches requiring a sensitive reporter readout combined with wild-type Nef function.
Collapse
Affiliation(s)
- Michael O. Alberti
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Jennifer J. Jones
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Riccardo Miglietta
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Haitao Ding
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Rakesh K. Bakshi
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Tara G. Edmonds
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - John C. Kappes
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama
- Center for AIDS Research, University of Alabama at Birmingham, Birmingham, Alabama
- Birmingham Veterans Affairs Medical Center, Research Service, Birmingham, Alabama
| | - Christina Ochsenbauer
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
- Center for AIDS Research, University of Alabama at Birmingham, Birmingham, Alabama
- Birmingham Veterans Affairs Medical Center, Research Service, Birmingham, Alabama
| |
Collapse
|
11
|
Raska M, Czernekova L, Moldoveanu Z, Zachova K, Elliott MC, Novak Z, Hall S, Hoelscher M, Maboko L, Brown R, Smith PD, Mestecky J, Novak J. Differential glycosylation of envelope gp120 is associated with differential recognition of HIV-1 by virus-specific antibodies and cell infection. AIDS Res Ther 2014; 11:23. [PMID: 25120578 PMCID: PMC4130436 DOI: 10.1186/1742-6405-11-23] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 07/26/2014] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND HIV-1 entry into host cells is mediated by interactions between the virus envelope glycoprotein (gp120/gp41) and host-cell receptors. N-glycans represent approximately 50% of the molecular mass of gp120 and serve as potential antigenic determinants and/or as a shield against immune recognition. We previously reported that N-glycosylation of recombinant gp120 varied, depending on the producer cells, and the glycosylation variability affected gp120 recognition by serum antibodies from persons infected with HIV-1 subtype B. However, the impact of gp120 differential glycosylation on recognition by broadly neutralizing monoclonal antibodies or by polyclonal antibodies of individuals infected with other HIV-1 subtypes is unknown. METHODS Recombinant multimerizing gp120 antigens were expressed in different cells, HEK 293T, T-cell, rhabdomyosarcoma, hepatocellular carcinoma, and Chinese hamster ovary cell lines. Binding of broadly neutralizing monoclonal antibodies and polyclonal antibodies from sera of subtype A/C HIV-1-infected subjects with individual gp120 glycoforms was assessed by ELISA. In addition, immunodetection was performed using Western and dot blot assays. Recombinant gp120 glycoforms were tested for inhibition of infection of reporter cells by SF162 and YU.2 Env-pseudotyped R5 viruses. RESULTS We demonstrated, using ELISA, that gp120 glycans sterically adjacent to the V3 loop only moderately contribute to differential recognition of a short apex motif GPGRA and GPGR by monoclonal antibodies F425 B4e8 and 447-52D, respectively. The binding of antibodies recognizing longer peptide motifs overlapping with GPGR epitope (268 D4, 257 D4, 19b) was significantly altered. Recognition of gp120 glycoforms by monoclonal antibodies specific for other than V3-loop epitopes was significantly affected by cell types used for gp120 expression. These epitopes included CD4-binding site (VRC03, VRC01, b12), discontinuous epitope involving V1/V2 loop with the associated glycans (PG9, PG16), and an epitope including V3-base-, N332 oligomannose-, and surrounding glycans-containing epitope (PGT 121). Moreover, the different gp120 glycoforms variably inhibited HIV-1 infection of reporter cells. CONCLUSION Our data support the hypothesis that the glycosylation machinery of different cells shapes gp120 glycosylation and, consequently, impacts envelope recognition by specific antibodies as well as the interaction of HIV-1 gp120 with cellular receptors. These findings underscore the importance of selection of appropriately glycosylated HIV-1 envelope as a vaccine antigen.
Collapse
|
12
|
Sarzotti-Kelsoe M, Daniell X, Todd CA, Bilska M, Martelli A, LaBranche C, Perez LG, Ochsenbauer C, Kappes JC, Rountree W, Denny TN, Montefiori DC. Optimization and validation of a neutralizing antibody assay for HIV-1 in A3R5 cells. J Immunol Methods 2014; 409:147-60. [PMID: 24607608 DOI: 10.1016/j.jim.2014.02.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 01/22/2014] [Accepted: 02/26/2014] [Indexed: 12/20/2022]
Abstract
A3R5 is a human CD4(+) lymphoblastoid cell line that was engineered to express CCR5 and is useful for the detection of weak neutralizing antibody responses against tier 2 strains of HIV-1. Here we describe the optimization and validation of the HIV-1 neutralizing antibody assay that utilizes A3R5 cells, performed in compliance with Good Clinical Laboratory Practice (GCLP) guidelines. The assay utilizes Renilla luciferase-expressing replication competent infectious molecular clones (IMC) encoding heterologous env genes from different HIV-1 clades. Key assay validation parameters tested included specificity, accuracy, precision, limit of detection and quantitation, specificity, linearity and range, and robustness. Plasma samples demonstrated higher non-specific activity than serum samples in the A3R5 assay. This assay can tolerate a wide range of virus input but is more sensitive to cell concentration. The higher sensitivity of the A3R5 assay in neutralization responses to tier 2 strains of HIV-1 makes it complementary to, but not a substitute for the TZM-bl assay. The validated A3R5 assay is employed as an endpoint immunogenicity test for vaccine-elicited neutralizing antibodies against tier 2 strains of HIV-1, and to identify correlates of protection in HIV-1 vaccine trials conducted globally.
Collapse
Affiliation(s)
- Marcella Sarzotti-Kelsoe
- Department of Immunology, Duke University Medical Center, Durham, NC, USA; Department of Surgery, Duke University Medical Center, Durham, NC, USA; Duke Human Vaccine Institute, Durham, NC, USA.
| | - Xiaoju Daniell
- Department of Surgery, Duke University Medical Center, Durham, NC, USA
| | | | - Miroslawa Bilska
- Department of Surgery, Duke University Medical Center, Durham, NC, USA
| | - Amanda Martelli
- Department of Surgery, Duke University Medical Center, Durham, NC, USA
| | - Celia LaBranche
- Department of Surgery, Duke University Medical Center, Durham, NC, USA
| | - Lautaro G Perez
- Department of Surgery, Duke University Medical Center, Durham, NC, USA
| | | | - John C Kappes
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | | | | |
Collapse
|
13
|
Seay K, Qi X, Zheng JH, Zhang C, Chen K, Dutta M, Deneroff K, Ochsenbauer C, Kappes JC, Littman DR, Goldstein H. Mice transgenic for CD4-specific human CD4, CCR5 and cyclin T1 expression: a new model for investigating HIV-1 transmission and treatment efficacy. PLoS One 2013; 8:e63537. [PMID: 23691059 PMCID: PMC3655194 DOI: 10.1371/journal.pone.0063537] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Accepted: 04/03/2013] [Indexed: 12/16/2022] Open
Abstract
Mice cannot be used to evaluate HIV-1 therapeutics and vaccines because they are not infectible by HIV-1 due to structural differences between several human and mouse proteins required for HIV-1 entry and replication including CD4, CCR5 and cyclin T1. We overcame this limitation by constructing mice with CD4 enhancer/promoter-regulated human CD4, CCR5 and cyclin T1 genes integrated as tightly linked transgenes (hCD4/R5/cT1 mice) promoting their efficient co-transmission and enabling the murine CD4-expressing cells to support HIV-1 entry and Tat-mediated LTR transcription. All of the hCD4/R5/cT1 mice developed disseminated infection of tissues that included the spleen, small intestine, lymph nodes and lungs after intravenous injection with an HIV-1 infectious molecular clone (HIV-IMC) expressing Renilla reniformis luciferase (LucR). Furthermore, localized infection of cervical-vaginal mucosal leukocytes developed after intravaginal inoculation of hCD4/R5/cT1 mice with the LucR-expressing HIV-IMC. hCD4/R5/cT1 mice reproducibly developed in vivo infection after inoculation with LucR-expressing HIV-IMC which could be bioluminescently quantified and visualized with a high sensitivity and specificity which enabled them to be used to evaluate the efficacy of HIV-1 therapeutics. Treatment with highly active anti-retroviral therapy or one dose of VRC01, a broadly neutralizing anti-HIV-1 antibody, almost completed inhibited acute systemic HIV-1 infection of the hCD4/R5/cT1 mice. hCD4/R5/cT1 mice could also be used to evaluate the capacity of therapies delivered by gene therapy to inhibit in vivo HIV infection. VRC01 secreted in vivo by primary B cells transduced with a VRC01-encoding lentivirus transplanted into hCD4/R5/cT1 mice markedly inhibited infection after intravenous challenge with LucR-expressing HIV-IMC. The reproducible infection of CD4/R5/cT1 mice with LucR-expressing HIV-IMC after intravenous or mucosal inoculation combined with the availability of LucR-expressing HIV-IMC expressing transmitted/founder and clade A/E and C Envs will provide researchers with a highly accessible pre-clinical in vivo HIV-1-infection model to study HIV-1 acquisition, treatment, and prevention.
Collapse
Affiliation(s)
- Kieran Seay
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Xiaohua Qi
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Jian Hua Zheng
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Cong Zhang
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Ken Chen
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Monica Dutta
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Kathryn Deneroff
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Christina Ochsenbauer
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - John C. Kappes
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Birmingham Veterans Affairs Medical Center, Research Service, Birmingham, Alabama, United States of America
| | - Dan R. Littman
- Molecular Pathogenesis Program, Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, New York, United States of America
- Howard Hughes Medical Institute, Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, New York, United States of America
| | - Harris Goldstein
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, New York, United States of America
- * E-mail:
| |
Collapse
|
14
|
Almeida DV, Morgado MG, Côrtes FH, Guimarães ML, Mendonça-Lima L, Pilotto JH, Grinsztejn B, Veloso VG, Bongertz V. Short communication: neutralizing antibodies in HIV-1-infected Brazilian individuals. AIDS Res Hum Retroviruses 2013; 29:488-92. [PMID: 23145941 DOI: 10.1089/aid.2012.0052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Tests for the detection of the humoral immune response to HIV-1 have to be standardized and established, demanding regional efforts. For this purpose the neutralizing antibody (NAb) assay for HIV-1 in TZM-bl cells was introduced in Brazil. Twenty plasma samples from HIV-1-infected individuals were assayed: 10 progressors and 10 long-term nonprogressors. These were tested against eight env-pseudotyped viruses (psVs) in the TZM-bl NAb assay and against HIV-1 strain HTLV/IIIB (HIV-1 IIIB) in primary lymphocytes. Forty-four percent of the samples showed neutralizing titers for psVs and 55% for HIV-1 IIIB. Plasma from progressors showed a broader neutralization and a higher potency. The introduction of these reference reagents encourages the participation of Brazil in future comparative assessments of anti-HIV-1 antibodies.
Collapse
Affiliation(s)
| | - Mariza Gonçalvez Morgado
- AIDS and Molecular Immunology Laboratory, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro, Brazil
| | - Fernanda Heloise Côrtes
- AIDS and Molecular Immunology Laboratory, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro, Brazil
| | | | - Leila Mendonça-Lima
- Functional Genomics and Bioinformatics Laboratory, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro, Brazil
| | - Jose Henrique Pilotto
- AIDS and Molecular Immunology Laboratory, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro, Brazil
| | - Beatriz Grinsztejn
- Evandro Chagas Clinical Research Institute, Fiocruz, Rio de Janeiro, Brazil
| | | | - Vera Bongertz
- AIDS and Molecular Immunology Laboratory, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro, Brazil
| |
Collapse
|
15
|
Antibody-dependent cellular cytotoxicity against primary HIV-infected CD4+ T cells is directly associated with the magnitude of surface IgG binding. J Virol 2012; 86:8672-80. [PMID: 22674985 DOI: 10.1128/jvi.00287-12] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Antibody (Ab)-dependent cellular cytotoxicity (ADCC) is thought to potentially play a role in vaccine-induced protection from HIV-1. The characteristics of such antibodies remain incompletely understood. Furthermore, correlates between ADCC and HIV-1 immune status are not clearly defined. We screened the sera of 20 HIV-1-positive (HIV-1(+)) patients for ADCC. Normal human peripheral blood mononuclear cells were used to derive HIV-infected CD4(+) T cell targets and autologous, freshly isolated, natural killer (NK) cells in a novel assay that measures granzyme B (GrB) and HIV-1-infected CD4(+) T cell elimination (ICE) by flow cytometry. We observed that complex sera mediated greater levels of ADCC than anti-HIV-1 envelope glycoprotein (Env)-specific monoclonal antibodies and serum-mediated ADCC correlated with the amount of IgG and IgG1 bound to HIV-1-infected CD4(+) T cells. No correlation between ADCC and viral load, CD4(+) T cell count, or neutralization of HIV-1(SF162) or other primary viral isolates was detected. Sera pooled from clade B HIV-1(+) individuals exhibited breadth in killing targets infected with HIV-1 from clades A/E, B, and C. Taken together, these data suggest that the total amount of IgG bound to an HIV-1-infected cell is an important determinant of ADCC and that polyvalent antigen-specific Abs are required for a robust ADCC response. In addition, Abs elicited by a vaccine formulated with immunogens from a single clade may generate a protective ADCC response in vivo against a variety of HIV-1 species. Increased understanding of the parameters that dictate ADCC against HIV-1-infected cells will inform efforts to stimulate ADCC activity and improve its potency in vaccinees.
Collapse
|
16
|
Brown BK, Wieczorek L, Kijak G, Lombardi K, Currier J, Wesberry M, Kappes JC, Ngauy V, Marovich M, Michael N, Ochsenbauer C, Montefiori DC, Polonis VR. The role of natural killer (NK) cells and NK cell receptor polymorphisms in the assessment of HIV-1 neutralization. PLoS One 2012; 7:e29454. [PMID: 22509241 PMCID: PMC3324450 DOI: 10.1371/journal.pone.0029454] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Accepted: 11/29/2011] [Indexed: 11/18/2022] Open
Abstract
The importance of innate immune cells in HIV-1 pathogenesis and protection has been highlighted by the role of natural killer (NK) cells in the containment of viral replication. Use of peripheral blood mononuclear cells (PBMC) in immunologic studies provides both HIV-1 target cells (ie. CD4+ T cells), as well as anti-HIV-1 effector cells, such as NK cells. In this study, NK and other immune cell populations were analyzed in HIV-negative donor PBMC for an impact on the anti-HIV activity of polyclonal and monoclonal antibodies. NK cell percentages were significantly higher in donor PBMC that supported lower levels of viral replication. While the percentage of NK cells was not directly associated with neutralization titers, NK cell-depletion significantly diminished the antiviral antibody activity by up to three logs, and polymorphisms in NK killer immunoglobulin receptor (KIR) and FcγRIIIa alleles appear to be associated with this affect. These findings demonstrate that NK cells and NK cell receptor polymorphisms may influence assessment of traditional HIV-1 neutralization in a platform where antibody is continuously present. This format appears to simultaneously assess conventional entry inhibition (neutralization) and non-neutralizing antibody-dependent HIV inhibition, which may provide the opportunity to delineate the dominant antibody function(s) in polyclonal vaccine responses.
Collapse
MESH Headings
- Antibodies, Neutralizing/immunology
- Genotype
- HIV-1/immunology
- HIV-1/physiology
- Host-Pathogen Interactions
- Humans
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Killer Cells, Natural/virology
- Leukocytes, Mononuclear/immunology
- Leukocytes, Mononuclear/virology
- Neutralization Tests
- Polymorphism, Genetic
- Receptors, IgG/genetics
- Receptors, KIR3DS1/genetics
- Receptors, Natural Killer Cell/genetics
Collapse
Affiliation(s)
- Bruce K. Brown
- Military HIV Research Program (MHRP), Rockville, Maryland, United States of America
- The Henry M. Jackson Foundation, Rockville, Maryland, United States of America
| | - Lindsay Wieczorek
- Military HIV Research Program (MHRP), Rockville, Maryland, United States of America
- The Henry M. Jackson Foundation, Rockville, Maryland, United States of America
| | - Gustavo Kijak
- Military HIV Research Program (MHRP), Rockville, Maryland, United States of America
- The Henry M. Jackson Foundation, Rockville, Maryland, United States of America
| | - Kara Lombardi
- Military HIV Research Program (MHRP), Rockville, Maryland, United States of America
- The Henry M. Jackson Foundation, Rockville, Maryland, United States of America
| | - Jeffrey Currier
- Military HIV Research Program (MHRP), Rockville, Maryland, United States of America
- The Henry M. Jackson Foundation, Rockville, Maryland, United States of America
| | - Maggie Wesberry
- Military HIV Research Program (MHRP), Rockville, Maryland, United States of America
- The Henry M. Jackson Foundation, Rockville, Maryland, United States of America
| | - John C. Kappes
- University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Viseth Ngauy
- Military HIV Research Program (MHRP), Rockville, Maryland, United States of America
- Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Mary Marovich
- Military HIV Research Program (MHRP), Rockville, Maryland, United States of America
- Walter Reed Army Institute of Research, Rockville, Maryland, United States of America
| | - Nelson Michael
- Military HIV Research Program (MHRP), Rockville, Maryland, United States of America
- Walter Reed Army Institute of Research, Rockville, Maryland, United States of America
| | | | | | - Victoria R. Polonis
- Military HIV Research Program (MHRP), Rockville, Maryland, United States of America
- Walter Reed Army Institute of Research, Rockville, Maryland, United States of America
- * E-mail:
| |
Collapse
|
17
|
Abstract
Vaccines are the most effective tools to prevent infectious diseases and to minimize their impact on humans or animals. Despite the successful development of vaccines that are able to elicit potent and protective immune responses, the majority of vaccines have been so far developed empirically and mechanistic events leading to protective immune responses are often poorly understood. This hampers the development of new prophylactic as well as therapeutic vaccines for infectious diseases and cancer. Biological correlates of immune‐mediated protection are currently based on standard readout such as antibody titres and ELISPOT assays. The development of successful vaccines for difficult settings, such as infectious agents leading to chronic infection (HIV, HCV. . .) or cancer, calls for novel ‘readout systems’ or ‘correlates’ of immune‐mediated protection that would reliably predict immune responses to novel vaccines in vivo. Systems biology offers a new approach to vaccine design that is based upon understanding the molecular network mobilized by vaccination. Systems vaccinology approaches investigate more global correlates of successful vaccination, beyond the specific immune response to the antigens administered, providing new methods for measuring early vaccine efficacy and ultimately generating hypotheses for understanding the mechanisms that underlie successful immunogenicity. Using functional genomics, specific molecular signatures of individual vaccine can be identified and used as predictors of vaccination efficiency. The immune response to vaccination involves the coordinated induction of master transcription factors that leads to the development of a broad, polyfunctional and persistent immune response integrating all effector cells of the immune systems.
Collapse
Affiliation(s)
- Adrien Six
- UPMC Univ Paris 06, UMR 7211, F-75013 Paris, France.
| | | | | | | |
Collapse
|
18
|
Balla-Jhagjhoorsingh SS, Willems B, Heyndrickx L, Heyndrickx L, Vereecken K, Janssens W, Seaman MS, Corti D, Lanzavecchia A, Davis D, Vanham G. Characterization of neutralizing profiles in HIV-1 infected patients from whom the HJ16, HGN194 and HK20 mAbs were obtained. PLoS One 2011; 6:e25488. [PMID: 22016769 PMCID: PMC3189917 DOI: 10.1371/journal.pone.0025488] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Accepted: 09/06/2011] [Indexed: 11/18/2022] Open
Abstract
Several new human monoclonal antibodies (mAbs) with a neutralizing potential across different subtypes have recently been described. Three mAbs, HJ16, HGN194 and HK20, were obtained from patients within the HIV-1 cohort of the Institute of Tropical Medicine (ITM). Our aim was to generate immunization antibodies equivalent to those seen in plasma. Here, we describe the selection and characterization of patient plasma and their mAbs, using a range of neutralization assays, including several peripheral blood mononuclear cell (PBMC) based assays and replicating primary viruses as well as cell line based assays and pseudoviruses (PV). The principal criterion for selection of patient plasma was the activity in an 'extended incubation phase' PBMC assay. Neutralizing Abs, derived from their memory B cells, were then selected by ELISA with envelope proteins as solid phase. MAbs were subsequently tested in a high-throughput HOS-PV assay to assess functional neutralization. The present study indicates that the strong profiles in the patients' plasma were not solely due to antibodies represented by the newly isolated mAbs. Although results from the various assays were divergent, they by and large indicate that neutralizing Abs to other epitopes of the HIV-1 envelope are present in the plasma and synergy between Abs may be important. Thus, the spectrum of the obtained mAbs does not cover the range of cross-reactivity seen in plasma in these carefully selected patients irrespective of which neutralization assay is used. Nevertheless, these mAbs are relevant for immunogen discovery because they bind to the recombinant glycoproteins to which the immune response needs to be targeted in vivo. Our observations illustrate the remaining challenges required for successful immunogen design and development.
Collapse
|
19
|
Wang Z, Zhang M, Wang Y, Jiao Y, Zhang L, Li L, Huang Z, Wu H, Li J, Lu S, Wang S. A versatile vector for the production of pseudotyped viruses expressing gp120 antigens from different clades of primary HIV-1 isolates. J Virol Methods 2011; 171:183-9. [PMID: 21034776 PMCID: PMC3011055 DOI: 10.1016/j.jviromet.2010.10.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Revised: 10/19/2010] [Accepted: 10/21/2010] [Indexed: 10/18/2022]
Abstract
A novel HIV-1 Env expression vector (SF162-Z) was developed by introducing two new cloning sites on the backbone of an existing vector that produces a full length Env from HIV-1 SF162 isolate. These sites facilitate the swapping of the gp120 portion of the SF162 Env with matching gp120 antigens from HIV-1 isolates of different genetic clades. Final production of functional pseudotyped viruses will express chimeric Env antigens, including gp41 of the parental SF162 and gp120 from other primary isolates. This system is useful for testing the neutralizing sensitivity of partial env gene products frequently identified in viral quasi species in patients infected with HIV or when only partial gp120 gene products are available.
Collapse
Affiliation(s)
- Zheng Wang
- Laboratory of Nucleic Acid Vaccines, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01655, USA
- Department of HIV/AIDS Research, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Mingshun Zhang
- China-USA Vaccine Research Center and Jiangsu Province Key Laboratory in Infectious Disease, Department of Infectious Diseases, the First Affiliated Hospital, Nanjing Medical University, Nanjing 210029, China
| | - Yan Wang
- Laboratory of Nucleic Acid Vaccines, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Yanmei Jiao
- Department of Infectious Diseases, Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Lu Zhang
- China-USA Vaccine Research Center and Jiangsu Province Key Laboratory in Infectious Disease, Department of Infectious Diseases, the First Affiliated Hospital, Nanjing Medical University, Nanjing 210029, China
| | - Lin Li
- Department of HIV/AIDS Research, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Zuhu Huang
- China-USA Vaccine Research Center and Jiangsu Province Key Laboratory in Infectious Disease, Department of Infectious Diseases, the First Affiliated Hospital, Nanjing Medical University, Nanjing 210029, China
| | - Hao Wu
- Department of Infectious Diseases, Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Jingyun Li
- Department of HIV/AIDS Research, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Shan Lu
- Laboratory of Nucleic Acid Vaccines, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01655, USA
- China-USA Vaccine Research Center and Jiangsu Province Key Laboratory in Infectious Disease, Department of Infectious Diseases, the First Affiliated Hospital, Nanjing Medical University, Nanjing 210029, China
| | - Shixia Wang
- Laboratory of Nucleic Acid Vaccines, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01655, USA
- China-USA Vaccine Research Center and Jiangsu Province Key Laboratory in Infectious Disease, Department of Infectious Diseases, the First Affiliated Hospital, Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|
20
|
Ochiel DO, Ochsenbauer C, Kappes JC, Ghosh M, Fahey JV, Wira CR. Uterine epithelial cell regulation of DC-SIGN expression inhibits transmitted/founder HIV-1 trans infection by immature dendritic cells. PLoS One 2010; 5:e14306. [PMID: 21179465 PMCID: PMC3001862 DOI: 10.1371/journal.pone.0014306] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Accepted: 11/19/2010] [Indexed: 01/10/2023] Open
Abstract
Background Sexual transmission accounts for the majority of HIV-1 infections. In over 75% of cases, infection is initiated by a single variant (transmitted/founder virus). However, the determinants of virus selection during transmission are unknown. Host cell-cell interactions in the mucosa may be critical in regulating susceptibility to infection. We hypothesized in this study that specific immune modulators secreted by uterine epithelial cells modulate susceptibility of dendritic cells (DC) to infection with HIV-1. Methodology/Principal Findings Here we report that uterine epithelial cell secretions (i.e. conditioned medium, CM) decreased DC-SIGN expression on immature dendritic cells via a transforming growth factor beta (TGF-β) mechanism. Further, CM inhibited dendritic cell-mediated trans infection of HIV-1 expressing envelope proteins of prototypic reference. Similarly, CM inhibited trans infection of HIV-1 constructs expressing envelopes of transmitted/founder viruses, variants that are selected during sexual transmission. In contrast, whereas recombinant TGF- β1 inhibited trans infection of prototypic reference HIV-1 by dendritic cells, TGF-β1 had a minimal effect on trans infection of transmitted/founder variants irrespective of the reporter system used to measure trans infection. Conclusions/Significance Our results provide the first direct evidence for uterine epithelial cell regulation of dendritic cell transmission of infection with reference and transmitted/founder HIV-1 variants. These findings have immediate implications for designing strategies to prevent sexual transmission of HIV-1.
Collapse
Affiliation(s)
- Daniel O Ochiel
- Department of Physiology, Dartmouth Medical School, Lebanon, New Hampshire, United States of America.
| | | | | | | | | | | |
Collapse
|
21
|
In vivo mechanisms of vaccine-induced protection against HPV infection. Cell Host Microbe 2010; 8:260-70. [PMID: 20833377 DOI: 10.1016/j.chom.2010.08.003] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2010] [Revised: 06/16/2010] [Accepted: 07/06/2010] [Indexed: 12/11/2022]
Abstract
Using a human papillomavirus (HPV) cervicovaginal murine challenge model, we microscopically examined the in vivo mechanisms of L1 virus-like particle (VLP) and L2 vaccine-induced inhibition of infection. In vivo HPV infection requires an initial association with the acellular basement membrane (BM) to induce conformational changes in the virion that permit its association with the keratinocyte cell surface. By passive transfer of immune serum, we determined that anti-L1 antibodies can interfere with infection at two stages. Similarly to active VLP immunization, transfer of high L1 antibody concentrations prevented BM binding. However, in the presence of low concentrations of anti-L1, virions associated with the BM, but to the epithelial cell surface was not detected. Regardless of the concentration, L2 vaccine-induced antibodies allow BM association but prevent association with the cell surface. Thus, we have revealed distinct mechanisms of vaccine-induced inhibition of virus infection in vivo.
Collapse
|
22
|
Edmonds TG, Ding H, Yuan X, Wei Q, Smith KS, Conway JA, Wieczorek L, Brown B, Polonis V, West JT, Montefiori DC, Kappes JC, Ochsenbauer C. Replication competent molecular clones of HIV-1 expressing Renilla luciferase facilitate the analysis of antibody inhibition in PBMC. Virology 2010; 408:1-13. [PMID: 20863545 DOI: 10.1016/j.virol.2010.08.028] [Citation(s) in RCA: 158] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Revised: 07/28/2010] [Accepted: 08/22/2010] [Indexed: 01/28/2023]
Abstract
Effective vaccine development for human immunodeficiency virus type 1 (HIV-1) will require assays that ascertain the capacity of vaccine immunogens to elicit neutralizing antibodies (NAb) to diverse HIV-1 strains. To facilitate NAb assessment in peripheral blood mononuclear cell (PBMC)-based assays, we developed an assay-adaptable platform based on a Renilla luciferase (LucR) expressing HIV-1 proviral backbone. LucR was inserted into pNL4-3 DNA, preserving all viral open reading frames. The proviral genome was engineered to facilitate expression of diverse HIV-1 env sequences, allowing analysis in an isogenic background. The resulting Env-IMC-LucR viruses are infectious, and LucR is stably expressed over multiple replications in PBMC. HIV-1 neutralization, targeting TZM-bl cells, was highly correlative comparing virus (LucR) and cell (firefly luciferase) readouts. In PBMC, NAb activity can be analyzed either within a single or multiple cycles of replication. These results represent advancement toward a standardizable PBMC-based neutralization assay for assessing HIV-1 vaccine immunogen efficacy.
Collapse
Affiliation(s)
- Tara G Edmonds
- Department of Molecular and Cellular Pathology, University of Alabama at Birmingham, 701 19th Street South, Birmingham, AL 35294, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Moody MA, Liao HX, Alam SM, Scearce RM, Plonk MK, Kozink DM, Drinker MS, Zhang R, Xia SM, Sutherland LL, Tomaras GD, Giles IP, Kappes JC, Ochsenbauer-Jambor C, Edmonds TG, Soares M, Barbero G, Forthal DN, Landucci G, Chang C, King SW, Kavlie A, Denny TN, Hwang KK, Chen PP, Thorpe PE, Montefiori DC, Haynes BF. Anti-phospholipid human monoclonal antibodies inhibit CCR5-tropic HIV-1 and induce beta-chemokines. ACTA ACUST UNITED AC 2010; 207:763-76. [PMID: 20368576 PMCID: PMC2856026 DOI: 10.1084/jem.20091281] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Traditional antibody-mediated neutralization of HIV-1 infection is thought to result from the binding of antibodies to virions, thus preventing virus entry. However, antibodies that broadly neutralize HIV-1 are rare and are not induced by current vaccines. We report that four human anti-phospholipid monoclonal antibodies (mAbs) (PGN632, P1, IS4, and CL1) inhibit HIV-1 CCR5-tropic (R5) primary isolate infection of peripheral blood mononuclear cells (PBMCs) with 80% inhibitory concentrations of <0.02 to ∼10 µg/ml. Anti-phospholipid mAbs inhibited PBMC HIV-1 infection in vitro by mechanisms involving binding to monocytes and triggering the release of MIP-1α and MIP-1β. The release of these β-chemokines explains both the specificity for R5 HIV-1 and the activity of these mAbs in PBMC cultures containing both primary lymphocytes and monocytes.
Collapse
Affiliation(s)
- M Anthony Moody
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Geonnotti AR, Bilska M, Yuan X, Ochsenbauer C, Edmonds TG, Kappes JC, Liao HX, Haynes BF, Montefiori DC. Differential inhibition of human immunodeficiency virus type 1 in peripheral blood mononuclear cells and TZM-bl cells by endotoxin-mediated chemokine and gamma interferon production. AIDS Res Hum Retroviruses 2010; 26:279-91. [PMID: 20218881 PMCID: PMC2864054 DOI: 10.1089/aid.2009.0186] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Bacterial lipopolysaccharide (endotoxin) is a frequent contaminant of biological specimens and is also known to be a potent inducer of beta-chemokines and other soluble factors that inhibit HIV-1 infection in vitro. Though lipopolysaccharide (LPS) has been shown to stimulate the production of soluble HIV-1 inhibitors in cultures of monocyte-derived macrophages, the ability of LPS to induce similar inhibitors in other cell types is poorly characterized. Here we show that LPS exhibits potent anti-HIV activity in phytohemagglutinin-stimulated peripheral blood mononuclear cells (PBMCs) but has no detectable anti-HIV-1 activity in TZM-bl cells. The anti-HIV-1 activity of LPS in PBMCs was strongly associated with the production of beta-chemokines from CD14-positive monocytes. Culture supernatants from LPS-stimulated PBMCs exhibited potent anti-HIV-1 activity when added to TZM-bl cells but, in this case, the antiviral activity appeared to be related to IFN-gamma rather than to beta-chemokines. These observations indicate that LPS stimulates PBMCs to produce a complex array of soluble HIV-1 inhibitors, including beta-chemokines and IFN-gamma, that differentially inhibit HIV-1 depending on the target cell type. The results also highlight the need to use endotoxin-free specimens to avoid artifacts when assessing HIV-1-specific neutralizing antibodies in PBMC-based assays.
Collapse
Affiliation(s)
- Anthony R Geonnotti
- Department of Surgery, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | | | | | | | | | | | |
Collapse
|