1
|
Feng Y, Huang X, Zhao W, Ming Y, Zhou Y, Feng R, Xiao J, Shan X, Kang X, Duan X, Chen H. Association among internalizing problems, white matter integrity, and social difficulties in children with autism spectrum disorder. Prog Neuropsychopharmacol Biol Psychiatry 2024; 135:111109. [PMID: 39074528 DOI: 10.1016/j.pnpbp.2024.111109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/04/2024] [Accepted: 07/24/2024] [Indexed: 07/31/2024]
Abstract
Autism spectrum disorder (ASD) is characterized by social difficulties and often accompanied by internalizing and externalizing problems, which are frequently overlooked. Here, we examined and compared fractional anisotropy (FA) between 79 children with ASD (aged 4-7.8 years) and 70 age-, gender-, and handedness- matched typically developing controls (TDCs, aged 3-7.2 years). We aimed to explore the relationship among social difficulties, internalizing and externalizing problems, and brain structural foundation (characterized by white matter integrity). Compared with the TDCs, the children with ASD exhibited more severe internalizing and externalizing problems, which were positively correlated with social difficulties. Reduced FA values were observed in specific white matter tracts that integrate a fronto-temporal-occipital circuit. In particular, the FA values within this circuit were negatively correlated with internalizing problems and SRS-TOTAL scores. Mediation analysis revealed that internalizing problems mediated the relationship between the FA values in the left middle longitudinal fasciculus (L-MdLF) and corpus callosum forceps major (CCM) and social difficulties in children with ASD. These findings contribute to our understanding of social difficulties, internalizing and externalizing problems, and white matter integrity in children with ASD and highlight internalizing problems as a mediator between social difficulties and white matter integrity.
Collapse
Affiliation(s)
- Yu Feng
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, PR China; MOE Key Lab for Neuro information, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu 610054, PR China
| | - Xinyue Huang
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, PR China; MOE Key Lab for Neuro information, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu 610054, PR China
| | - Weixin Zhao
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, PR China; MOE Key Lab for Neuro information, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu 610054, PR China
| | - Yating Ming
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, PR China; MOE Key Lab for Neuro information, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu 610054, PR China
| | - Yuanyue Zhou
- Department of Medical Psychology, The First Affiliated Hospital, Hainan Medical University, Haikou 571199, Hainan, PR China
| | - Rui Feng
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, PR China; MOE Key Lab for Neuro information, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu 610054, PR China
| | - Jinming Xiao
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, PR China; MOE Key Lab for Neuro information, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu 610054, PR China
| | - Xiaolong Shan
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, PR China; MOE Key Lab for Neuro information, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu 610054, PR China
| | - Xiaodong Kang
- Child Rehabilitation Unit, Affiliated Sichuan Provincial Rehabilitation Hospital of Chengdu University of TCM, Sichuan, Bayi Rehabilitation Center, Chengdu 611135, PR China
| | - Xujun Duan
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, PR China; MOE Key Lab for Neuro information, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu 610054, PR China.
| | - Huafu Chen
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, PR China; MOE Key Lab for Neuro information, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu 610054, PR China.
| |
Collapse
|
2
|
Zhou L, Liu X, He G, Chen M, Zeng S, Sun C. Alteration of fractional anisotropy in preterm-born individuals: a systematic review and meta-analysis. J OBSTET GYNAECOL 2024; 44:2371956. [PMID: 38984803 DOI: 10.1080/01443615.2024.2371956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 05/21/2024] [Indexed: 07/11/2024]
Abstract
BACKGROUD Neurological disorders are common in preterm (PT) born individuals. Diffusion tensor imaging (DTI) studies using tract-based spatial statistics (TBSS) effectively detect microstructural white matter (WM) abnormalities in the brain. We conducted this systematic review to integrate the findings of TBSS studies to determine the most consistent WM alterations in PT born individuals. METHODS PubMed, Embase, Web of Science and Science Direct were searched. DTI studies using TBSS in PT born individuals were screened up to October 2022. The systematic review included studies reporting alterations in FA values for the entire brain in a stereotactic space, with three coordinates (x, y, z), according to the seed-based d mapping method. RESULTS The search strategy identified seventeen studies that fulfilled our inclusion criteria, with a total of 911 PT-born individuals and 563 matched controls were analysed. Of the seventeen studies, eight were dedicated to 650 adults, five to 411 children and four to 413 infants. Ten studies recruited 812 individuals born very prematurely (GA <29 weeks), six studies recruited 386 moderately premature individuals (GA = 29-32 weeks) and one study recruited 276 individuals born late prematurely (GA >32 weeks). This meta-analysis of six studies including 388 individuals highlighted four brain regions in which fractional anisotropy (FA) was lower in PT group than in people born at term. The quantitative meta-analysis found that the most robust WM alterations were located in the corpus callosum (CC), the bilateral thalamus and the left superior longitudinal fasciculus (SLF) II. Significant changes in FA reflect WM abnormalities in PT born individuals from infant to young adulthood. CONCLUSIONS Significant changes in FA reflect WM abnormalities in individuals born PT from infancy to young adulthood. The abnormal development of the CC, bilateral thalamus and left SLF may play a vital role in the neurodevelopment of PT individuals.
Collapse
Affiliation(s)
- Le Zhou
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, P.R. China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Xinghui Liu
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, P.R. China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Guolin He
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, P.R. China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Meng Chen
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, P.R. China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Shuai Zeng
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Center for Healthcare Quality Management in Obstetrics, Peking University Third Hospital, Beijing, China
| | - Chuntang Sun
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, P.R. China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| |
Collapse
|
3
|
Hosoki M, Eidsness MA, Bruckert L, Travis KE, Feldman HM. Associations of behavioral problems with white matter circuits connecting to the frontal lobes in school-aged children born at term and preterm. NEUROIMAGE. REPORTS 2024; 4:100201. [PMID: 39301247 PMCID: PMC11412113 DOI: 10.1016/j.ynirp.2024.100201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Introduction This study investigated whether internalizing and externalizing behavioral problems in children were associated with fractional anisotropy of white matter tracts connecting other brain regions to the frontal lobes. We contrasted patterns of association between children born at term (FT) and very preterm (PT: gestational age at birth =< 32 weeks). Methods Parents completed the Child Behavior Checklist/6-18 questionnaire to quantify behavioral problems when their children were age 8 years (N = 36 FT and 37 PT). Diffusion magnetic resonance scans were collected at the same age and analyzed using probabilistic tractography. Multiple linear regressions investigated the strength of association between age-adjusted T-scores of internalizing and externalizing problems and mean fractional anisotropy (mean-FA) of right and left uncinate, arcuate, anterior thalamic radiations, and dorsal cingulate bundle, controlling for birth group and sex. Results Models predicting internalizing T-scores found significant group-by-tract interactions for left and right arcuate and right uncinate. Internalizing scores were negatively associated with mean-FA of left and right arcuate only in FT children (p left AF = 0.01, p right AF = 0.01). Models predicting externalizing T-scores found significant group-by-tract interactions for the left arcuate and right uncinate. Externalizing scores were negatively associated with mean-FA of right uncinate in FT (p right UF = 0.01) and positively associated in PT children (p right UF preterm = 0.01). Other models were not significant. Conclusions In children with a full range of scores on behavioral problems from normal to significantly elevated, internalizing and externalizing behavioral problems were negatively associated with mean-FA of white matter tracts connecting to frontal lobes in FT children; externalizing behavioral problems were positively associated with mean-FA of the right uncinate in PT children. The different associations by birth group suggest that the neurobiology of behavioral problems differs in the two birth groups.
Collapse
Affiliation(s)
- Machiko Hosoki
- Division of Developmental-Behavioral Pediatrics, Department of Pediatrics, Stanford University School of Medicine, Palo Alto, USA
| | - Margarita Alethea Eidsness
- Division of Developmental-Behavioral Pediatrics, Department of Pediatrics, Stanford University School of Medicine, Palo Alto, USA
| | - Lisa Bruckert
- Division of Developmental-Behavioral Pediatrics, Department of Pediatrics, Stanford University School of Medicine, Palo Alto, USA
| | - Katherine E Travis
- Division of Developmental-Behavioral Pediatrics, Department of Pediatrics, Stanford University School of Medicine, Palo Alto, USA
| | - Heidi M Feldman
- Division of Developmental-Behavioral Pediatrics, Department of Pediatrics, Stanford University School of Medicine, Palo Alto, USA
| |
Collapse
|
4
|
Deferm W, Tang T, Moerkerke M, Daniels N, Steyaert J, Alaerts K, Ortibus E, Naulaers G, Boets B. Subtle microstructural alterations in white matter tracts involved in socio-emotional processing after very preterm birth. Neuroimage Clin 2024; 41:103580. [PMID: 38401459 PMCID: PMC10944182 DOI: 10.1016/j.nicl.2024.103580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/10/2024] [Accepted: 02/10/2024] [Indexed: 02/26/2024]
Abstract
Children born very preterm (VPT, < 32 weeks of gestation) have an increased risk of developing socio-emotional difficulties. Possible neural substrates for these socio-emotional difficulties are alterations in the structural connectivity of the social brain due to premature birth. The objective of the current study was to study microstructural white matter integrity in VPT versus full-term (FT) born school-aged children along twelve white matter tracts involved in socio-emotional processing. Diffusion MRI scans were obtained from a sample of 35 VPT and 38 FT 8-to-12-year-old children. Tractography was performed using TractSeg, a state-of-the-art neural network-based approach, which offers investigation of detailed tract profiles of fractional anisotropy (FA). Group differences in FA along the tracts were investigated using both a traditional and complementary functional data analysis approach. Exploratory correlations were performed between the Social Responsiveness Scale (SRS-2), a parent-report questionnaire assessing difficulties in social functioning, and FA along the tract. Both analyses showed significant reductions in FA for the VPT group along the middle portion of the right SLF I and an anterior portion of the left SLF II. These group differences possibly indicate altered white matter maturation due to premature birth and may contribute to altered functional connectivity in the Theory of Mind network which has been documented in earlier work with VPT samples. Apart from reduced social motivation in the VPT group, there were no significant group differences in reported social functioning, as assessed by SRS-2. We found that in the VPT group higher FA values in segments of the left SLF I and right SLF II were associated with better social functioning. Surprisingly, the opposite was found for segments in the right IFO, where higher FA values were associated with worse reported social functioning. Since no significant correlations were found for the FT group, this relationship may be specific for VPT children. The current study overcomes methodological limitations of previous studies by more accurately segmenting white matter tracts using constrained spherical deconvolution based tractography, by applying complementary tractometry analysis approaches to estimate changes in FA more accurately, and by investigating the FA profile along the three components of the SLF.
Collapse
Affiliation(s)
- Ward Deferm
- Center for Developmental Psychiatry, KU Leuven, Belgium.
| | - Tiffany Tang
- Center for Developmental Psychiatry, KU Leuven, Belgium
| | | | - Nicky Daniels
- Neuromotor Rehabilitation Research Group, KU Leuven, Belgium
| | - Jean Steyaert
- Center for Developmental Psychiatry, KU Leuven, Belgium; Child Psychiatry, UZ Leuven, Belgium
| | - Kaat Alaerts
- Neuromotor Rehabilitation Research Group, KU Leuven, Belgium
| | | | - Gunnar Naulaers
- Neonatal Intensive Care Unit - Neonatology, UZ Leuven, Belgium; UZ Leuven & Center for Developmental Disorders, Belgium
| | - Bart Boets
- Center for Developmental Psychiatry, KU Leuven, Belgium
| |
Collapse
|
5
|
Hosoki M, Eidsness MA, Bruckert L, Travis KE, Feldman HM. Associations of behavioral problems with white matter circuits connecting to the frontal lobes in school-aged children born at term and preterm. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.11.08.23298268. [PMID: 37986772 PMCID: PMC10659456 DOI: 10.1101/2023.11.08.23298268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Introduction This study investigated whether behavioral problems in children were associated with fractional anisotropy (FA) of white matter tracts connecting from other brain regions to right and left frontal lobes. We considered internalizing and externalizing behavioral problems separately and contrasted patterns of associations in children born at term and very preterm. Methods Parents completed the Child Behavior Checklist/6-18 questionnaire to quantify behavioral problems when their children were age 8 years (N=36 FT and 37 PT). Diffusion magnetic resonance scans were collected at the same age and analyzed using probabilistic tractography. We used multiple linear regression to investigate the strength of association between age-adjusted T-scores of internalizing and externalizing problems and mean fractional anisotropy (mean-FA) of right and left uncinate, arcuate, and anterior thalamic radiations, controlling for birth group and sex. Results Regression models predicting internalizing T-scores from mean-FA found significant group-by-tract interactions for the left and right arcuate and right uncinate. Internalizing scores were negatively associated with mean-FA of left and right arcuate only in children born at term (pleft AF =0.01, pright AF =0.01). Regression models predicting externalizing T-scores from mean-FA found significant group-by-tract interactions for the left arcuate and right uncinate. Externalizing scores were negatively associated with mean-FA of right uncinate in children born at term (pright UF =0.01) and positively associated in children born preterm (pright UF preterm =0.01). Other models were not significant. Conclusions In this sample of children with scores for behavioral problems across the full range, internalizing and externalizing behavioral problems were negatively associated with mean-FA of white matter tracts connecting to frontal lobes in children born at term; externalizing behavioral problems were positively associated with mean-FA of the right uncinate in children born preterm. The different associations by birth group suggest that the neurobiology of behavioral problems differs in the two birth groups.
Collapse
Affiliation(s)
- Machiko Hosoki
- Corresponding Author: Machiko Hosoki, Developmental-Behavioral Pediatrics, Stanford University School of Medicine, 3145 Porter Drive, MC 5395, Palo Alto, CA 94304,
| | - Margarita Alethea Eidsness
- Division of Developmental-Behavioral Pediatrics, Department of Pediatrics, Stanford University School of Medicine
| | | | - Katherine E. Travis
- Division of Developmental-Behavioral Pediatrics, Department of Pediatrics, Stanford University School of Medicine
| | - Heidi M Feldman
- Division of Developmental-Behavioral Pediatrics, Department of Pediatrics, Stanford University School of Medicine
| |
Collapse
|
6
|
Retzler C, Hallam G, Johnson S, Retzler J. Person-centred Approaches to Psychopathology in the ABCD Study: Phenotypes and Neurocognitive Correlates. Res Child Adolesc Psychopathol 2023:10.1007/s10802-023-01065-w. [PMID: 37119331 PMCID: PMC10368562 DOI: 10.1007/s10802-023-01065-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2023] [Indexed: 05/01/2023]
Abstract
Issues with classifying psychopathology using narrow diagnostic categories have prompted calls for the use of dimensional approaches. Yet questions remain about how closely dimensional approaches reflect the way symptoms cluster in individuals, whether known risk factors (e.g. preterm birth) produce distinct symptom phenotypes, and whether profiles reflecting symptom clusters are associated with neurocognitive factors. To identify distinct profiles of psychopathology, latent class analysis was applied to the syndrome scales of the parent-reported Child Behaviour Checklist for 11,381 9- and 10- year-olds from the Adolescent Brain Cognitive Development study. Four classes were identified, reflecting different profiles, to which children were assigned probabilistically; Class 1 (88.6%) reflected optimal functioning; Class 2 (7.1%), predominantly internalising; Class 3 (2.4%), predominantly externalising; and Class 4 (1.9%), universal difficulties. To investigate the presence of a possible preterm behavioural phenotype, the proportion of participants allocated to each class was cross-tabulated with gestational age category. No profile was specific to preterm birth. Finally, to assess the neurocognitive factors associated with class membership, elastic net regressions were conducted revealing a relatively distinct set of neurocognitive factors associated with each class. Findings support the use of large datasets to identify psychopathological profiles, explore phenotypes, and identify associated neurocognitive factors.
Collapse
Affiliation(s)
- Chris Retzler
- Department of Psychology, School of Human and Health Sciences, University of Huddersfield, Huddersfield, UK.
| | - Glyn Hallam
- Department of Psychology, School of Human and Health Sciences, University of Huddersfield, Huddersfield, UK
| | - Samantha Johnson
- Department of Health Sciences, University of Leicester, Leicester, UK
| | - Jenny Retzler
- Department of Psychology, School of Human and Health Sciences, University of Huddersfield, Huddersfield, UK
| |
Collapse
|
7
|
Gilchrist CP, Kelly CE, Cumberland A, Dhollander T, Treyvaud K, Lee K, Cheong JLY, Doyle LW, Inder TE, Thompson DK, Tolcos M, Anderson PJ. Fiber-Specific Measures of White Matter Microstructure and Macrostructure Are Associated With Internalizing and Externalizing Symptoms in Children Born Very Preterm and Full-term. Biol Psychiatry 2023; 93:575-585. [PMID: 36481064 DOI: 10.1016/j.biopsych.2022.09.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 09/06/2022] [Accepted: 09/10/2022] [Indexed: 11/02/2022]
Abstract
BACKGROUND Tensor-based investigations suggest that delayed or disrupted white matter development may relate to adverse behavioral outcomes in individuals born very preterm (VP); however, metrics derived from such models lack specificity. Here, we applied a fixel-based analysis framework to examine white matter microstructural and macrostructural correlates of concurrent internalizing and externalizing problems in VP and full-term (FT) children at 7 and 13 years. METHODS Diffusion imaging data were collected in a longitudinal cohort of VP and FT individuals (130 VP and 29 FT at 7 years, 125 VP and 44 FT at 13 years). Fixel-based measures of fiber density, fiber-bundle cross-section, and fiber density and cross-section were extracted from 21 white matter tracts previously implicated in psychopathology. Internalizing and externalizing symptoms were assessed using the Strengths and Difficulties Questionnaire parent report at 7 and 13 years. RESULTS At age 7 years, widespread reductions in fiber-bundle cross-section and fiber density and cross-section and tract-specific reductions in fiber density were related to more internalizing and externalizing symptoms irrespective of birth group. At age 13 years, fixel-based measures were not related to internalizing symptoms, while tract-specific reductions in fiber density, fiber-bundle cross-section, and fiber density and cross-section measures were related to more externalizing symptoms in the FT group only. CONCLUSIONS Age-specific neurobiological markers of internalizing and externalizing problems identified in this study extend previous tensor-based findings to inform pathophysiological models of behavior problems and provide the foundation for investigations into novel preventative and therapeutic interventions to mitigate risk in VP and other high-risk infant populations.
Collapse
Affiliation(s)
- Courtney P Gilchrist
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Victoria, Australia; Victorian Infant Brain Studies, Murdoch Children's Research Institute, Melbourne, Victoria, Australia; Developmental Imaging, Murdoch Children's Research Institute, Melbourne, Victoria, Australia.
| | - Claire E Kelly
- Victorian Infant Brain Studies, Murdoch Children's Research Institute, Melbourne, Victoria, Australia; Developmental Imaging, Murdoch Children's Research Institute, Melbourne, Victoria, Australia; Turner Institute for Brain and Mental Health, School of Psychological Science, Monash University, Melbourne, Victoria, Australia
| | - Angela Cumberland
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Victoria, Australia
| | - Thijs Dhollander
- Developmental Imaging, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Karli Treyvaud
- Victorian Infant Brain Studies, Murdoch Children's Research Institute, Melbourne, Victoria, Australia; Department of Psychology and Counselling, La Trobe University, Melbourne, Victoria, Australia; Newborn Research, Royal Women's Hospital, Melbourne, Victoria, Australia
| | - Katherine Lee
- Victorian Infant Brain Studies, Murdoch Children's Research Institute, Melbourne, Victoria, Australia; Clinical Epidemiology and Biostatistics Unit, Murdoch Children's Research Institute, Melbourne, Victoria, Australia; Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
| | - Jeanie L Y Cheong
- Victorian Infant Brain Studies, Murdoch Children's Research Institute, Melbourne, Victoria, Australia; Newborn Research, Royal Women's Hospital, Melbourne, Victoria, Australia; Department of Obstetrics and Gynaecology, University of Melbourne, Melbourne, Victoria, Australia
| | - Lex W Doyle
- Victorian Infant Brain Studies, Murdoch Children's Research Institute, Melbourne, Victoria, Australia; Newborn Research, Royal Women's Hospital, Melbourne, Victoria, Australia; Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia; Department of Obstetrics and Gynaecology, University of Melbourne, Melbourne, Victoria, Australia
| | - Terrie E Inder
- Victorian Infant Brain Studies, Murdoch Children's Research Institute, Melbourne, Victoria, Australia; Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Deanne K Thompson
- Victorian Infant Brain Studies, Murdoch Children's Research Institute, Melbourne, Victoria, Australia; Developmental Imaging, Murdoch Children's Research Institute, Melbourne, Victoria, Australia; Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
| | - Mary Tolcos
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Victoria, Australia
| | - Peter J Anderson
- Victorian Infant Brain Studies, Murdoch Children's Research Institute, Melbourne, Victoria, Australia; Turner Institute for Brain and Mental Health, School of Psychological Science, Monash University, Melbourne, Victoria, Australia.
| |
Collapse
|
8
|
Unraveling White Matter and Psychopathology After Preterm Birth. Biol Psychiatry 2023; 93:e13-e14. [PMID: 36792304 DOI: 10.1016/j.biopsych.2023.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/05/2023] [Accepted: 01/05/2023] [Indexed: 02/15/2023]
|
9
|
Wylie AC, Short SJ. Environmental Toxicants and the Developing Brain. Biol Psychiatry 2023; 93:921-933. [PMID: 36906498 DOI: 10.1016/j.biopsych.2023.01.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 01/05/2023] [Accepted: 01/11/2023] [Indexed: 01/19/2023]
Abstract
Early life represents the most rapid and foundational period of brain development and a time of vulnerability to environmental insults. Evidence indicates that greater exposure to ubiquitous toxicants like fine particulate matter (PM2.5), manganese, and many phthalates is associated with altered developmental, physical health, and mental health trajectories across the lifespan. Whereas animal models offer evidence of their mechanistic effects on neurological development, there is little research that evaluates how these environmental toxicants are associated with human neurodevelopment using neuroimaging measures in infant and pediatric populations. This review provides an overview of 3 environmental toxicants of interest in neurodevelopment that are prevalent worldwide in the air, soil, food, water, and/or products of everyday life: fine particulate matter (PM2.5), manganese, and phthalates. We summarize mechanistic evidence from animal models for their roles in neurodevelopment, highlight prior research that has examined these toxicants with pediatric developmental and psychiatric outcomes, and provide a narrative review of the limited number of studies that have examined these toxicants using neuroimaging with pediatric populations. We conclude with a discussion of suggested directions that will move this field forward, including the incorporation of environmental toxicant assessment in large, longitudinal, multimodal neuroimaging studies; the use of multidimensional data analysis strategies; and the importance of studying the combined effects of environmental and psychosocial stressors and buffers on neurodevelopment. Collectively, these strategies will improve ecological validity and our understanding of how environmental toxicants affect long-term sequelae via alterations to brain structure and function.
Collapse
Affiliation(s)
- Amanda C Wylie
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Frank Porter Graham Child Development Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Sarah J Short
- Department of Educational Psychology, University of Wisconsin-Madison, Madison, Wisconsin; Center for Health Minds, University of Wisconsin-Madison, Madison, Wisconsin.
| |
Collapse
|
10
|
Vulnerability of the Neonatal Connectome following Postnatal Stress. J Neurosci 2022; 42:8948-8959. [PMID: 36376077 PMCID: PMC9732827 DOI: 10.1523/jneurosci.0176-22.2022] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 06/29/2022] [Accepted: 07/07/2022] [Indexed: 11/16/2022] Open
Abstract
Stress following preterm birth can disrupt the emerging foundation of the neonatal brain. The current study examined how structural brain development is affected by a stressful early environment and whether changes in topological architecture at term-equivalent age could explain the increased vulnerability for behavioral symptoms during early childhood. Longitudinal changes in structural brain connectivity were quantified using diffusion-weighted imaging (DWI) and tractography in preterm born infants (gestational age <28 weeks), imaged at 30 and/or 40 weeks of gestation (N = 145, 43.5% female). A global index of postnatal stress was determined based on the number of invasive procedures during hospitalization (e.g., heel lance). Higher stress levels impaired structural connectivity growth in a subnetwork of 48 connections (p = 0.003), including the amygdala, insula, hippocampus, and posterior cingulate cortex. Findings were replicated in an independent validation sample (N = 123, 39.8% female, n = 91 with follow-up). Classifying infants into vulnerable and resilient based on having more or less internalizing symptoms at two to five years of age (n = 71) revealed lower connectivity in the hippocampus and amygdala for vulnerable relative to resilient infants (p < 0.001). Our findings suggest that higher stress exposure during hospital admission is associated with slower growth of structural connectivity. The preservation of global connectivity of the amygdala and hippocampus might reflect a stress-buffering or resilience-enhancing factor against a stressful early environment and early-childhood internalizing symptoms.SIGNIFICANCE STATEMENT The preterm brain is exposed to various external stimuli following birth. The effects of early chronic stress on neonatal brain networks and the remarkable degree of resilience are not well understood. The current study aims to provide an increased understanding of the impact of postnatal stress on third-trimester brain development and describe the topological architecture of a resilient brain. We observed a sparser neonatal brain network in infants exposed to higher postnatal stress. Limbic regulatory regions, including the hippocampus and amygdala, may play a key role as crucial convergence sites of protective factors. Understanding how stress-induced alterations in early brain development might lead to brain (re)organization may provide essential insights into resilient functioning.
Collapse
|
11
|
Siffredi V, Liverani MC, Freitas LGA, Tadros D, Farouj Y, Borradori Tolsa C, Van De Ville D, Hüppi PS, Ha-Vinh Leuchter R. Large-scale brain network dynamics in very preterm children and relationship with socio-emotional outcomes: an exploratory study. Pediatr Res 2022:10.1038/s41390-022-02342-y. [PMID: 36329223 DOI: 10.1038/s41390-022-02342-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/30/2022] [Accepted: 09/24/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND Children born very preterm (VPT; <32 weeks' gestation) are at high risk of neurodevelopmental and behavioural difficulties associated with atypical brain maturation, including socio-emotional difficulties. The analysis of large-scale brain network dynamics during rest allows us to investigate brain functional connectivity and its association with behavioural outcomes. METHODS Dynamic functional connectivity was extracted by using the innovation-driven co-activation patterns framework in VPT and full-term children aged 6-9 to explore changes in spatial organisation, laterality and temporal dynamics of spontaneous large-scale brain activity (VPT, n = 28; full-term, n = 12). Multivariate analysis was used to explore potential biomarkers for socio-emotional difficulties in VPT children. RESULTS The spatial organisation of the 13 retrieved functional networks was comparable across groups. Dynamic features and lateralisation of network brain activity were also comparable for all brain networks. Multivariate analysis unveiled group differences in associations between dynamical functional connectivity parameters with socio-emotional abilities. CONCLUSION In this exploratory study, the group differences observed might reflect reduced degrees of maturation of functional architecture in the VPT group in regard to socio-emotional abilities. Dynamic features of functional connectivity could represent relevant neuroimaging markers and inform on potential mechanisms through which preterm birth leads to neurodevelopmental and behavioural disorders. IMPACT Spatial organisation of the retrieved resting-state networks was comparable between school-aged very preterm and full-term children. Dynamic features and lateralisation of network brain activity were also comparable across groups. Multivariate pattern analysis revealed different patterns of association between dynamical functional connectivity parameters and socio-emotional abilities in the very preterm and full-term groups. Findings suggest a reduced degree of maturation of the functional architecture in the very preterm group in association with socio-emotional abilities.
Collapse
Affiliation(s)
- Vanessa Siffredi
- Division of Development and Growth, Department of Paediatrics, Gynaecology and Obstetrics, Geneva University Hospitals, Geneva, Switzerland. .,Institute of Bioengineering, Center for Neuroprosthetics, Ecole Polytechnique Fédérale de Lausanne, Écublens, Switzerland. .,Department of Radiology and Medical Informatics, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
| | - Maria Chiara Liverani
- Division of Development and Growth, Department of Paediatrics, Gynaecology and Obstetrics, Geneva University Hospitals, Geneva, Switzerland.,SensoriMotor, Affective and Social Development Laboratory, Faculty of Psychology and Educational Sciences, University of Geneva, Geneva, Switzerland
| | - Lorena G A Freitas
- Division of Development and Growth, Department of Paediatrics, Gynaecology and Obstetrics, Geneva University Hospitals, Geneva, Switzerland.,Institute of Bioengineering, Center for Neuroprosthetics, Ecole Polytechnique Fédérale de Lausanne, Écublens, Switzerland.,Department of Radiology and Medical Informatics, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - D Tadros
- Division of Development and Growth, Department of Paediatrics, Gynaecology and Obstetrics, Geneva University Hospitals, Geneva, Switzerland.,Institute of Bioengineering, Center for Neuroprosthetics, Ecole Polytechnique Fédérale de Lausanne, Écublens, Switzerland.,Department of Radiology and Medical Informatics, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Y Farouj
- Institute of Bioengineering, Center for Neuroprosthetics, Ecole Polytechnique Fédérale de Lausanne, Écublens, Switzerland.,Department of Radiology and Medical Informatics, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Cristina Borradori Tolsa
- Division of Development and Growth, Department of Paediatrics, Gynaecology and Obstetrics, Geneva University Hospitals, Geneva, Switzerland
| | - Dimitri Van De Ville
- Division of Development and Growth, Department of Paediatrics, Gynaecology and Obstetrics, Geneva University Hospitals, Geneva, Switzerland.,Institute of Bioengineering, Center for Neuroprosthetics, Ecole Polytechnique Fédérale de Lausanne, Écublens, Switzerland.,Department of Radiology and Medical Informatics, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Petra Susan Hüppi
- Division of Development and Growth, Department of Paediatrics, Gynaecology and Obstetrics, Geneva University Hospitals, Geneva, Switzerland
| | - Russia Ha-Vinh Leuchter
- Division of Development and Growth, Department of Paediatrics, Gynaecology and Obstetrics, Geneva University Hospitals, Geneva, Switzerland
| |
Collapse
|
12
|
Gire C, Garbi A, Zahed M, Beltran Anzola A, Tosello B, Datin-Dorrière V. Neurobehavioral Phenotype and Dysexecutive Syndrome of Preterm Children: Comorbidity or Trigger? An Update. CHILDREN (BASEL, SWITZERLAND) 2022; 9:239. [PMID: 35204960 PMCID: PMC8870742 DOI: 10.3390/children9020239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 01/29/2022] [Accepted: 02/09/2022] [Indexed: 06/14/2023]
Abstract
Premature birth is a worldwide public health priority. One in ten children is born before 37 weeks of gestational age and, in developed countries, survival rates without major neonatal morbidity are increasing. Although severe sequelae associated with these births have decreased, their neurobehavioral difficulties, often associated in multiple fields, remain stable but still widespread. These neurobehavioral difficulties hamper the normal development of academic achievements and societal integration and intensify the children's needs for rehabilitation during their preschool and academic years. Severe sequelae increase when gestational age decreases. This is even truer if the socio-cultural background is impeded by low income, education and language skills as compared with defined averages. However, moderate and/or minor neurocognitive and/or behavioral difficulties are almost identical for a moderate or a late preterm birth. Obtaining a better clinical description of neurobehavioral characteristics of those pretermly born, once they reach preschool age, is essential to detect behavioral issues as well as early specific cognitive difficulties (working memory, planning, inhibition, language expression and reception, attention and fine motor skills, etc.). Such information would provide a better understanding of the executive functions' role in brain connectivity, neurodevelopment and neuroanatomical correlation with premature encephalopathy.
Collapse
Affiliation(s)
- Catherine Gire
- Department of Neonatology, North Hospital, University Hospital of Marseille, Chemin des Bourrelys, CEDEX 20, 13915 Marseille, France; (C.G.); (A.G.); (M.Z.); (A.B.A.)
- CEReSS—Health Service Research and Quality of Life Center, Faculty of Medicine, Aix-Marseille University, 27 Boulevard Jean Moulin, 13005 Marseille, France
| | - Aurélie Garbi
- Department of Neonatology, North Hospital, University Hospital of Marseille, Chemin des Bourrelys, CEDEX 20, 13915 Marseille, France; (C.G.); (A.G.); (M.Z.); (A.B.A.)
| | - Meriem Zahed
- Department of Neonatology, North Hospital, University Hospital of Marseille, Chemin des Bourrelys, CEDEX 20, 13915 Marseille, France; (C.G.); (A.G.); (M.Z.); (A.B.A.)
| | - Any Beltran Anzola
- Department of Neonatology, North Hospital, University Hospital of Marseille, Chemin des Bourrelys, CEDEX 20, 13915 Marseille, France; (C.G.); (A.G.); (M.Z.); (A.B.A.)
- CEReSS—Health Service Research and Quality of Life Center, Faculty of Medicine, Aix-Marseille University, 27 Boulevard Jean Moulin, 13005 Marseille, France
| | - Barthélémy Tosello
- Department of Neonatology, North Hospital, University Hospital of Marseille, Chemin des Bourrelys, CEDEX 20, 13915 Marseille, France; (C.G.); (A.G.); (M.Z.); (A.B.A.)
- CNRS, EFS, ADES, Aix Marseille Universite, 13915 Marseille, France
| | - Valérie Datin-Dorrière
- Department of Neonatal Medicine, Caen University Hospital, Avenue Cote De Nacre, 14000 Caen, France;
| |
Collapse
|
13
|
The structural connectome and internalizing and externalizing symptoms at 7 and 13 years in individuals born very preterm and full-term. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2021; 7:424-434. [PMID: 34655805 DOI: 10.1016/j.bpsc.2021.10.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 09/15/2021] [Accepted: 10/04/2021] [Indexed: 11/20/2022]
Abstract
BACKGROUND Children born very preterm (VP) are at higher risk of emotional and behavioral problems compared with full-term (FT) children. We investigated the neurobiological basis of internalizing and externalizing symptoms in individuals born VP and FT by applying a graph theory approach. METHODS Structural and diffusion MRI data were combined to generate structural connectomes and calculate measures of network integration and segregation at 7 (VP:72; FT:17) and 13 years (VP:125; FT:44). Internalizing and externalizing were assessed at 7 and 13 years using the Strengths and Difficulties Questionnaire. Linear regression models were used to relate network measures and internalizing and externalizing symptoms concurrently at 7 and 13 years. RESULTS Lower network integration (characteristic path length and global efficiency) was associated with higher internalizing symptoms in VP and FT children at 7 years, but not at 13 years. The association between network integration (characteristic path length) and externalizing symptoms at 7 years was weaker, but there was some evidence for differential associations between groups, with lower integration in the VP and higher integration in the FT group associated with higher externalizing symptoms. At 13 years, there was some evidence that associations between network segregation (average clustering coefficient, transitivity, local efficiency) and externalizing differed between the VP and FT groups, with stronger positive associations in the VP group. CONCLUSIONS This study provides insights into the neurobiological basis of emotional and behavioral problems following preterm birth, highlighting the role of the structural connectome in internalizing and externalizing symptoms in childhood and adolescence.
Collapse
|
14
|
Ginnell L, Boardman JP, Reynolds RM, Fletcher‐Watson S. Attention profiles following preterm birth: A review of methods and findings from infancy to adulthood. INFANT AND CHILD DEVELOPMENT 2021. [DOI: 10.1002/icd.2255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Lorna Ginnell
- Centre for Clinical Brain Sciences The University of Edinburgh Edinburgh UK
| | - James P. Boardman
- MRC Centre for Reproductive Health, The Queen's Medical Research Institute The University of Edinburgh Edinburgh UK
| | - Rebecca M. Reynolds
- Centre for Cardiovascular Science, The Queen's Medical Research Institute The University of Edinburgh Edinburgh UK
| | | |
Collapse
|
15
|
Weiss SJ, Leung C. Maternal depressive symptoms, poverty, and young motherhood increase the odds of early depressive and anxiety disorders for children born prematurely. Infant Ment Health J 2021; 42:586-602. [PMID: 34021614 PMCID: PMC8453766 DOI: 10.1002/imhj.21924] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Children born preterm, compared to term, are at risk for behavioral problems. However, the prevalence and predictors of internalizing disorders among children born preterm are unclear. The purpose of this study was to identify the prevalence of depressive and anxiety disorders at 2 years of age among children born preterm and determine the extent to which poverty, maternal depressive symptoms, or young motherhood increase the likelihood of these disorders. Mothers and their infants (N = 105) were recruited from two neonatal intensive care units affiliated with a major U.S. university. A sociodemographic questionnaire, the Patient Health Questionnaire‐9, and the Diagnostic and Statistical Manual of Mental Disorders, 5th Edition scale scores from the Preschool Child Behavior Checklist were used to measure primary variables. We examined mothers’ family satisfaction and quality of caregiving as well as children's degree of prematurity, morbidity, gender, cognitive functioning, and motor function as covariates. Fifteen percent of children met criteria for an anxiety disorder and another 15% for depression. Maternal depressive symptoms increased the odds of children developing both anxiety and depression, whereas young motherhood was associated with child anxiety and poverty with child depression. Results indicate the need for mental health assessment of children born preterm during their first 2 years of life and the importance of early therapeutic and tangible support to vulnerable mothers and children.
Collapse
Affiliation(s)
- Sandra J. Weiss
- Department of Community Health SystemsUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| | - Cherry Leung
- Department of Community Health SystemsUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| |
Collapse
|
16
|
Johnson A, Bathelt J, Akarca D, Crickmore G, Astle DE. Far and wide: Associations between childhood socio-economic status and brain connectomics. Dev Cogn Neurosci 2021; 48:100888. [PMID: 33453544 PMCID: PMC7811130 DOI: 10.1016/j.dcn.2020.100888] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 11/07/2020] [Accepted: 11/16/2020] [Indexed: 12/30/2022] Open
Abstract
Previous studies have identified localized associations between childhood environment - namely their socio-economic status (SES) - and particular neural structures. The primary aim of the current study was to test whether associations between SES and brain structure are widespread or limited to specific neural pathways. We employed advances in whole-brain structural connectomics to address this. Diffusion tensor imaging was used to construct whole-brain connectomes in 113 6-12 year olds. We then applied an adapted multi-block partial-least squares (PLS) regression to explore how connectome organisation is associated with childhood SES (parental income, education levels, and neighbourhood deprivation). The Fractional Anisotropy (FA) connectome was significantly associated with childhood SES and this effect was widespread. We then pursued a secondary aim, and demonstrated that the connectome mediated the relationship between SES and cognitive ability (matrix reasoning and vocabulary). However, the connectome did not significantly mediate SES relationships with academic ability (maths and reading) or internalising and externalising behavior. This multivariate approach is important for advancing our theoretical understanding of how brain development may be shaped by childhood environment, and the role that it plays in predicting key outcomes. We also discuss the limitations with this new methodological approach.
Collapse
Affiliation(s)
- Amy Johnson
- Medical Research Council Cognition and Brain Sciences Unit, University of Cambridge, United Kingdom
| | - Joe Bathelt
- Department of Psychology, Royal Holloway, University of London, United Kingdom
| | - Danyal Akarca
- Medical Research Council Cognition and Brain Sciences Unit, University of Cambridge, United Kingdom
| | - Gemma Crickmore
- Medical Research Council Cognition and Brain Sciences Unit, University of Cambridge, United Kingdom
| | - Duncan E Astle
- Medical Research Council Cognition and Brain Sciences Unit, University of Cambridge, United Kingdom.
| |
Collapse
|
17
|
Lammertink F, Vinkers CH, Tataranno ML, Benders MJNL. Premature Birth and Developmental Programming: Mechanisms of Resilience and Vulnerability. Front Psychiatry 2021; 11:531571. [PMID: 33488409 PMCID: PMC7820177 DOI: 10.3389/fpsyt.2020.531571] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 12/01/2020] [Indexed: 12/14/2022] Open
Abstract
The third trimester of pregnancy represents a sensitive phase for infant brain plasticity when a series of fast-developing cellular events (synaptogenesis, neuronal migration, and myelination) regulates the development of neural circuits. Throughout this dynamic period of growth and development, the human brain is susceptible to stress. Preterm infants are born with an immature brain and are, while admitted to the neonatal intensive care unit, precociously exposed to stressful procedures. Postnatal stress may contribute to altered programming of the brain, including key systems such as the hypothalamic-pituitary-adrenal axis and the autonomic nervous system. These neurobiological systems are promising markers for the etiology of several affective and social psychopathologies. As preterm birth interferes with early development of stress-regulatory systems, early interventions might strengthen resilience factors and might help reduce the detrimental effects of chronic stress exposure. Here we will review the impact of stress following premature birth on the programming of neurobiological systems and discuss possible stress-related neural circuits and pathways involved in resilience and vulnerability. Finally, we discuss opportunities for early intervention and future studies.
Collapse
Affiliation(s)
- Femke Lammertink
- Department of Neonatology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Christiaan H. Vinkers
- Department of Psychiatry, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Department of Anatomy & Neurosciences, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Maria L. Tataranno
- Department of Neonatology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Manon J. N. L. Benders
- Department of Neonatology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
18
|
Neumann A, Muetzel RL, Lahey BB, Bakermans-Kranenburg MJ, van IJzendoorn MH, Jaddoe VW, Hillegers MHJ, White T, Tiemeier H. White Matter Microstructure and the General Psychopathology Factor in Children. J Am Acad Child Adolesc Psychiatry 2020; 59:1285-1296. [PMID: 31982582 DOI: 10.1016/j.jaac.2019.12.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 11/25/2019] [Accepted: 01/14/2020] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Co-occurrence of behavioral and emotional problems in childhood is widespread, and previous studies have suggested that this reflects vulnerability to experience a range of psychiatric problems, often termed a general psychopathology factor. However, the neurobiological substrate of this general factor is not well understood. We tested the hypothesis that lower overall white matter microstructure is associated with higher levels of the general psychopathology factor in children and less with specific factors. METHOD Global white matter microstructure at age 10 years was related to general and specific psychopathology factors. These factors were estimated using a latent bifactor model with multiple informants and instruments between ages 6 and 10 years in 3,030 children from the population-based birth cohort Generation R. The association of global white matter microstructure and the psychopathology factors was examined with a structural equation model adjusted for sex, age at scan, age at psychopathology assessment, parental education/income, and genetic ancestry. RESULTS A 1-SD increase of the global white matter factor was associated with a β = -0.07SD (standard error [SE] = 0.02, p < .01) decrease in general psychopathology. In contrast, a 1-SD increase of white matter microstructure predicted an increase of β = +0.07 SD (SE = 0.03, p < .01) specific externalizing factor levels. No association was found with the specific internalizing and specific attention factor. CONCLUSION The results suggest that general psychopathology in childhood is related to white matter structure across the brain and not only to specific tracts. Taking into account general psychopathology may also help reveal neurobiological mechanisms behind specific symptoms that are otherwise obscured by comorbidity.
Collapse
Affiliation(s)
- Alexander Neumann
- Erasmus University Medical Center, Rotterdam, the Netherlands; Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
| | - Ryan L Muetzel
- Erasmus University Medical Center, Rotterdam, the Netherlands
| | | | | | | | | | | | - Tonya White
- Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Henning Tiemeier
- Erasmus University Medical Center, Rotterdam, the Netherlands; Harvard TH Chan School of Public Health, Boston, Massachusetts.
| |
Collapse
|
19
|
Fang X, Sun W, Jeon J, Azain M, Kinder H, Ahn J, Chung HC, Mote RS, Filipov NM, Zhao Q, Rayalam S, Park HJ. Perinatal Docosahexaenoic Acid Supplementation Improves Cognition and Alters Brain Functional Organization in Piglets. Nutrients 2020; 12:E2090. [PMID: 32679753 PMCID: PMC7400913 DOI: 10.3390/nu12072090] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/10/2020] [Accepted: 07/11/2020] [Indexed: 12/22/2022] Open
Abstract
Epidemiologic studies associate maternal docosahexaenoic acid (DHA)/DHA-containing seafood intake with enhanced cognitive development; although, it should be noted that interventional trials show inconsistent findings. We examined perinatal DHA supplementation on cognitive performance, brain anatomical and functional organization, and the brain monoamine neurotransmitter status of offspring using a piglet model. Sows were fed a control (CON) or a diet containing DHA (DHA) from late gestation throughout lactation. Piglets underwent an open field test (OFT), an object recognition test (ORT), and magnetic resonance imaging (MRI) to acquire anatomical, diffusion tensor imaging (DTI), and resting-state functional MRI (rs-fMRI) at weaning. Piglets from DHA-fed sows spent 95% more time sniffing the walls than CON in OFT and exhibited an elevated interest in the novel object in ORT, while CON piglets demonstrated no preference. Maternal DHA supplementation increased fiber length and tended to increase fractional anisotropy in the hippocampus of offspring than CON. DHA piglets exhibited increased functional connectivity in the cerebellar, visual, and default mode network and decreased activity in executive control and sensorimotor network compared to CON. The brain monoamine neurotransmitter levels did not differ in healthy offspring. Perinatal DHA supplementation may increase exploratory behaviors, improve recognition memory, enhance fiber tract integrity, and alter brain functional organization in offspring at weaning.
Collapse
Affiliation(s)
- Xi Fang
- Department of Foods and Nutrition, College of Family and Consumer Sciences, University of Georgia, Athens, GA 30602, USA; (X.F.); (J.J.)
| | - Wenwu Sun
- Department of Physics and Astronomy, Franklin College of Arts and Sciences, University of Georgia, Athens, GA 30602, USA; (W.S.); (Q.Z.)
| | - Julie Jeon
- Department of Foods and Nutrition, College of Family and Consumer Sciences, University of Georgia, Athens, GA 30602, USA; (X.F.); (J.J.)
| | - Michael Azain
- Department of Animal and Dairy Science, College of Agricultural & Environmental Sciences, University of Georgia, Athens, GA 30602, USA; (M.A.); (H.K.)
| | - Holly Kinder
- Department of Animal and Dairy Science, College of Agricultural & Environmental Sciences, University of Georgia, Athens, GA 30602, USA; (M.A.); (H.K.)
| | - Jeongyoun Ahn
- Department of Statistics, Franklin College of Arts and Sciences, University of Georgia, Athens, GA 30602, USA; (J.A.); (H.C.C.)
| | - Hee Cheol Chung
- Department of Statistics, Franklin College of Arts and Sciences, University of Georgia, Athens, GA 30602, USA; (J.A.); (H.C.C.)
| | - Ryan S. Mote
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA; (R.S.M.); (N.M.F.)
| | - Nikolay M. Filipov
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA; (R.S.M.); (N.M.F.)
| | - Qun Zhao
- Department of Physics and Astronomy, Franklin College of Arts and Sciences, University of Georgia, Athens, GA 30602, USA; (W.S.); (Q.Z.)
| | - Srujana Rayalam
- Department of Pharmaceutical Sciences, Philadelphia College of Osteopathic Medicine, Suwanee, GA 30024, USA
| | - Hea Jin Park
- Department of Foods and Nutrition, College of Family and Consumer Sciences, University of Georgia, Athens, GA 30602, USA; (X.F.); (J.J.)
| |
Collapse
|
20
|
White matter injury and neurodevelopmental disabilities: A cross-disease (dis)connection. Prog Neurobiol 2020; 193:101845. [PMID: 32505757 DOI: 10.1016/j.pneurobio.2020.101845] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 05/19/2020] [Accepted: 06/01/2020] [Indexed: 12/13/2022]
Abstract
White matter (WM) injury, once known primarily in preterm newborns, is emerging in its non-focal (diffused), non-necrotic form as a critical component of subtle brain injuries in many early-life diseases like prematurity, intrauterine growth restriction, congenital heart defects, and hypoxic-ischemic encephalopathy. While advances in medical techniques have reduced the number of severe outcomes, the incidence of tardive impairments in complex cognitive functions or psychopathology remains high, with lifelong detrimental effects. The importance of WM in coordinating neuronal assemblies firing and neural groups synchronizing within multiple frequency bands through myelination, even mild alterations in WM structure, may interfere with the cognitive performance that increasing social and learning demands would exploit tardively during children growth. This phenomenon may contribute to explaining longitudinally the high incidence of late-appearing impairments that affect children with a history of perinatal insults. Furthermore, WM abnormalities have been highlighted in several neuropsychiatric disorders, such as autism and schizophrenia. In this review, we gather and organize evidence on how diffused WM injuries contribute to neurodevelopmental disorders through different perinatal diseases and insults. An insight into a possible common, cross-disease, mechanism, neuroimaging and monitoring, biomarkers, and neuroprotective strategies will also be presented.
Collapse
|
21
|
Tamm L, Patel M, Peugh J, Kline-Fath BM, Parikh NA. Early brain abnormalities in infants born very preterm predict under-reactive temperament. Early Hum Dev 2020; 144:104985. [PMID: 32163848 PMCID: PMC7577074 DOI: 10.1016/j.earlhumdev.2020.104985] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 01/27/2020] [Accepted: 02/13/2020] [Indexed: 01/03/2023]
Abstract
BACKGROUND Early temperament may mediate the association between brain abnormalities following preterm birth and neurodevelopmental outcomes. AIMS This exploratory study investigated whether brain abnormalities in infants born very preterm predicted temperament. STUDY DESIGN Infants born prematurely underwent structural MRI at term. Mother self-reported depression symptoms at the scanning visit, and the Infant Behavior Questionnaire-Revised-Short (IBQ-R-S) about their infant at 3-months corrected age. SUBJECTS Infants (n = 214) born at ≤32 weeks gestation (M = 29.29, SD = 2.60). Average post-menstrual age at the MRI scan was 42.72 weeks (SD = 1.30). The majority of the infants were male (n = 115), and Caucasian (n = 145) or African American (n = 58). The average birthweight in grams was 1289.75 (SD = 448.5). OUTCOME MEASURES Infant Behavior Questionnaire-Revised-Short (IBQ-R-S) subscales. RESULTS Multivariate regression showed white matter abnormalities predicted lower ratings on High Intensity Pleasure and Vocal Reactivity, grey matter abnormalities predicted lower ratings on High Intensity Pleasure and Cuddliness, and cerebellar abnormalities predicted lower ratings on Fear and Sadness IBQ-R-S subscales adjusting for gestational age and sex. The pattern of results was essentially unchanged when maternal depression and socioeconomic status were included in the model. CONCLUSIONS Early MRI-diagnosed brain abnormalities in infants born very preterm were associated less vocalization and engagement during cuddling, decreased ability to take pleasure in stimulating activities, and lower emotionality in fear and sadness domains. Although replication is warranted, an under-reactive temperament in infants born preterm may have a neurobiological basis.
Collapse
Affiliation(s)
- Leanne Tamm
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, MLC 7039, Cincinnati, OH 45229-3039, United States of America; University of Cincinnati College of Medicine, United States of America.
| | - Meera Patel
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, MLC 7039, Cincinnati, OH 45229-3039, United States of America.
| | - James Peugh
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, MLC 7039, Cincinnati, OH 45229-3039, United States of America; University of Cincinnati College of Medicine, United States of America.
| | - Beth M. Kline-Fath
- University of Cincinnati College of Medicine, United States of America,Department of Radiology, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Ave, MLC 7039, Cincinnati, OH 45229-3039, United States of America
| | - Nehal A. Parikh
- Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Ave, MLC 7039, Cincinnati, OH 45229-3039, United States of America,University of Cincinnati College of Medicine, United States of America,Correspondence to: N.A. Parikh, Perinatal Institute, Cincinnati Children’s Hospital Med. Center, 3333 Burnet Ave, MLC 7009, Cincinnati, OH 45229-3039, United States of America.
| | | |
Collapse
|
22
|
England-Mason G, Grohs MN, Reynolds JE, MacDonald A, Kinniburgh D, Liu J, Martin JW, Lebel C, Dewey D. White matter microstructure mediates the association between prenatal exposure to phthalates and behavior problems in preschool children. ENVIRONMENTAL RESEARCH 2020; 182:109093. [PMID: 32069753 PMCID: PMC7050961 DOI: 10.1016/j.envres.2019.109093] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 11/27/2019] [Accepted: 12/26/2019] [Indexed: 05/30/2023]
Abstract
BACKGROUND Previous research reports associations between prenatal exposure to phthalates and childhood behavior problems; however, the neural mechanisms that may underlie these associations are relatively unexplored. OBJECTIVE This study examined microstructural white matter as a possible mediator of the associations between prenatal phthalate exposure and behavior problems in preschool-aged children. METHODS Data are from a subsample of a prospective pregnancy cohort, the Alberta Pregnancy Outcomes and Nutrition (APrON) study (n = 76). Mother-child pairs were included if mothers provided a second trimester urine sample, if the child completed a successful magnetic resonance imaging (MRI) scan at age 3-5 years, and if the Child Behavior Checklist was completed within 6 months of the MRI scan. Molar sums of high (HMWP) and low molecular weight phthalates (LMWP) were calculated from levels in urine samples. Associations between prenatal phthalate concentrations, fractional anisotropy (FA) and mean diffusivity (MD) in 10 major white matter tracts, and preschool behavior problems were investigated. RESULTS Maternal prenatal phthalate concentrations were associated with MD of the right inferior fronto-occipital fasciculus (IFO), right pyramidal fibers, left and right uncinate fasciculus (UF), and FA of the left inferior longitudinal fasciculus (ILF). Mediation analyses showed that prenatal exposure to HMWP was indirectly associated with Internalizing (path ab = 0.09, CI.95 = 0.02, 0.20) and Externalizing Problems (path ab = 0.09, CI.95 = 0.01, 0.19) through MD of the right IFO, and to Internalizing Problems (path ab = 0.11, CI.95 = 0.01, 0.23) through MD of the right pyramidal fibers. DISCUSSION This study provides the first evidence of childhood neural correlates of prenatal phthalate exposure. Results suggest that prenatal phthalate exposure may be related to microstructural white matter in the IFO, pyramidal fibers, UF, and ILF. Further, MD of the right IFO and pyramidal fibers may transmit childhood risk for behavioral problems.
Collapse
Affiliation(s)
- Gillian England-Mason
- Department of Paediatrics, Cumming School of Medicine, University of Calgary, Calgary, Canada; Owerko Centre, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Canada
| | - Melody N Grohs
- Owerko Centre, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Canada; Department of Neuroscience, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Jess E Reynolds
- Owerko Centre, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Canada; Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, Canada; Hotchkiss Brain Institute, Calgary, Canada
| | - Amy MacDonald
- Alberta Centre for Toxicology, University of Calgary, Calgary, Canada
| | - David Kinniburgh
- Alberta Centre for Toxicology, University of Calgary, Calgary, Canada
| | - Jiaying Liu
- Department of Laboratory Medicine and Pathology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Canada
| | - Jonathan W Martin
- Department of Laboratory Medicine and Pathology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Canada; Science for Life Laboratory, Department of Analytical Chemistry and Environmental Sciences, Stockholm University, Stockholm, Sweden
| | - Catherine Lebel
- Owerko Centre, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Canada; Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, Canada; Hotchkiss Brain Institute, Calgary, Canada
| | - Deborah Dewey
- Department of Paediatrics, Cumming School of Medicine, University of Calgary, Calgary, Canada; Owerko Centre, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Canada; Hotchkiss Brain Institute, Calgary, Canada; Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, Canada.
| |
Collapse
|
23
|
Hou J, Dodd K, Nair VA, Rajan S, Beniwal-Patel P, Saha S, Prabhakaran V. Alterations in brain white matter microstructural properties in patients with Crohn's disease in remission. Sci Rep 2020; 10:2145. [PMID: 32034257 PMCID: PMC7005825 DOI: 10.1038/s41598-020-59098-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 01/13/2020] [Indexed: 12/15/2022] Open
Abstract
Patients with inflammatory bowel disease have been shown to have abnormal brain morphometry or function, which are associated with psychological symptoms such as stress, depression or anxiety. The present work recruited 20 Crohn’s disease patients in remission (CDs) and 20 age-gender-handedness-education matched healthy controls (HCs) and compared their brain white matter microstructural properties using Diffusion Tensor Imaging (DTI). Additionally, we examined the correlations between the microstructural properties and cognition (verbal fluency language task, VF) and affect (anxiety) in both groups as well as disease duration in CDs. Results showed that CDs exhibited significant alterations in microstructural properties compared to HCs in various white matter tracts relevant to language function despite no significant difference in VF scores. Furthermore, CDs’ microstructural changes exhibited correlations with anxiety level and disease duration. These findings suggest that CD patients may experience changes in white matter microstructural properties which may be a biomarker of neuropsychiatric comorbidities of CD.
Collapse
Affiliation(s)
- Jiancheng Hou
- Department of Radiology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, USA
| | - Keith Dodd
- Department of Radiology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, USA
| | - Veena A Nair
- Department of Radiology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, USA
| | - Shruti Rajan
- Department of Radiology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, USA
| | - Poonam Beniwal-Patel
- Department of Medicine, Division of Gastroenterology and Hepatology, Medical College of Wisconsin, Milwaukee, USA
| | - Sumona Saha
- Department of Medicine, Division of Gastroenterology and Hepatology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, USA
| | - Vivek Prabhakaran
- Department of Radiology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, USA.
| |
Collapse
|
24
|
Fitzallen GC, Taylor HG, Bora S. What Do We Know About the Preterm Behavioral Phenotype? A Narrative Review. Front Psychiatry 2020; 11:154. [PMID: 32269532 PMCID: PMC7109291 DOI: 10.3389/fpsyt.2020.00154] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 02/18/2020] [Indexed: 01/15/2023] Open
Abstract
Preterm birth is associated with a significantly increased risk for childhood and adolescent psychopathology relative to full-term birth, with an inverse relationship between gestational age at birth and later risk for psychopathology. The manifestation of symptomatology and comorbidity profiles of emotional and behavioral adjustment problems in this high-risk group have been shown to be distinct from the broader pediatric population. Acknowledging these differences, a preterm behavioral phenotype has been proposed and increasingly recognized, highlighting the unique, frequent co-occurrence of symptomatology associated with attention-deficit/hyperactivity disorder, autism spectrum disorder, and anxiety disorders. The current state-of-the-art review provides a comprehensive characterization of this phenotype to date and further highlights key knowledge gaps primarily regarding the evolution of symptoms, co-occurrence of disorders and/or symptomatology within the phenotype, and associations of the phenotype with chronological age and degree of prematurity.
Collapse
Affiliation(s)
- Grace C Fitzallen
- School of Psychology, Faculty of Health and Behavioural Sciences, The University of Queensland, Brisbane, QLD, Australia.,Mothers, Babies and Women's Health Program, Mater Research Institute, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - H Gerry Taylor
- Biobehavioral Health Centre, Abigail Wexner Research Institute at Nationwide Children's Hospital, and Department of Pediatrics, The Ohio State University, Columbus, OH, United States
| | - Samudragupta Bora
- Mothers, Babies and Women's Health Program, Mater Research Institute, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
25
|
Sa de Almeida J, Lordier L, Zollinger B, Kunz N, Bastiani M, Gui L, Adam-Darque A, Borradori-Tolsa C, Lazeyras F, Hüppi PS. Music enhances structural maturation of emotional processing neural pathways in very preterm infants. Neuroimage 2019; 207:116391. [PMID: 31765804 DOI: 10.1016/j.neuroimage.2019.116391] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 11/18/2019] [Accepted: 11/21/2019] [Indexed: 11/26/2022] Open
Abstract
Prematurity disrupts brain maturation by exposing the developing brain to different noxious stimuli present in the neonatal intensive care unit (NICU) and depriving it from meaningful sensory inputs during a critical period of brain development, leading to later neurodevelopmental impairments. Musicotherapy in the NICU environment has been proposed to promote sensory stimulation, relevant for activity-dependent brain plasticity, but its impact on brain structural maturation is unknown. Neuroimaging studies have demonstrated that music listening triggers neural substrates implied in socio-emotional processing and, thus, it might influence networks formed early in development and known to be affected by prematurity. Using multi-modal MRI, we aimed to evaluate the impact of a specially composed music intervention during NICU stay on preterm infant's brain structure maturation. 30 preterm newborns (out of which 15 were exposed to music during NICU stay and 15 without music intervention) and 15 full-term newborns underwent an MRI examination at term-equivalent age, comprising diffusion tensor imaging (DTI), used to evaluate white matter maturation using both region-of-interest and seed-based tractography approaches, as well as a T2-weighted image, used to perform amygdala volumetric analysis. Overall, WM microstructural maturity measured through DTI metrics was reduced in preterm infants receiving the standard-of-care in comparison to full-term newborns, whereas preterm infants exposed to the music intervention demonstrated significantly improved white matter maturation in acoustic radiations, external capsule/claustrum/extreme capsule and uncinate fasciculus, as well as larger amygdala volumes, in comparison to preterm infants with standard-of-care. These results suggest a structural maturational effect of the proposed music intervention on premature infants' auditory and emotional processing neural pathways during a key period of brain development.
Collapse
Affiliation(s)
- Joana Sa de Almeida
- Division of Development and Growth, Department of Woman, Child and Adolescent, University Hospitals of Geneva, Geneva, Switzerland
| | - Lara Lordier
- Division of Development and Growth, Department of Woman, Child and Adolescent, University Hospitals of Geneva, Geneva, Switzerland
| | | | - Nicolas Kunz
- Center of BioMedical Imaging (CIBM), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Matteo Bastiani
- Sir Peter Mansfield Imaging Centre, School of Medicine, University of Nottingham, UK; NIHR Biomedical Research Centre, University of Nottingham, UK; Wellcome Centre for Integrative Neuroimaging (WIN) - Centre for Functional Magnetic Resonance Imaging of the Brain (FMRIB), University of Oxford, UK
| | - Laura Gui
- Department of Radiology and Medical Informatics, Center of BioMedical Imaging (CIBM), University of Geneva, Geneva, Switzerland
| | - Alexandra Adam-Darque
- Division of Development and Growth, Department of Woman, Child and Adolescent, University Hospitals of Geneva, Geneva, Switzerland
| | - Cristina Borradori-Tolsa
- Division of Development and Growth, Department of Woman, Child and Adolescent, University Hospitals of Geneva, Geneva, Switzerland
| | - François Lazeyras
- Department of Radiology and Medical Informatics, Center of BioMedical Imaging (CIBM), University of Geneva, Geneva, Switzerland
| | - Petra S Hüppi
- Division of Development and Growth, Department of Woman, Child and Adolescent, University Hospitals of Geneva, Geneva, Switzerland.
| |
Collapse
|
26
|
Grohs MN, Reynolds JE, Liu J, Martin JW, Pollock T, Lebel C, Dewey D. Prenatal maternal and childhood bisphenol a exposure and brain structure and behavior of young children. Environ Health 2019; 18:85. [PMID: 31615514 PMCID: PMC6794724 DOI: 10.1186/s12940-019-0528-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 09/25/2019] [Indexed: 05/18/2023]
Abstract
BACKGROUND Bisphenol A (BPA) is commonly used in the manufacture of plastics and epoxy resins. In North America, over 90% of the population has detectable levels of urinary BPA. Human epidemiological studies have reported adverse behavioral outcomes with BPA exposure in children, however, corresponding effects on children's brain structure have not yet been investigated. The current study examined the association between prenatal maternal and childhood BPA exposure and white matter microstructure in children aged 2 to 5 years, and investigated whether brain structure mediated the association between BPA exposure and child behavior. METHODS Participants were 98 mother-child pairs who were recruited between January 2009 and December 2012. Total BPA concentrations in spot urine samples obtained from mothers in the second trimester of pregnancy and from children at 3-4 years of age were analyzed. Children participated in a diffusion magnetic resonance imaging (MRI) scan at age 2-5 years (3.7 ± 0.8 years). Associations between prenatal maternal and childhood BPA and children's fractional anisotropy and mean diffusivity of 10 isolated white matter tracts were investigated, controlling for urinary creatinine, child sex, and age at the time of MRI. Post-hoc analyses examined if alterations in white matter mediated the relationship of BPA and children's scores on the Child Behavior Checklist (CBCL). RESULTS Prenatal maternal urinary BPA was significantly associated with child mean diffusivity in the splenium and right inferior longitudinal fasciculus. Splenium diffusivity mediated the relationship between maternal prenatal BPA levels and children's internalizing behavior (indirect effect: β = 0.213, CI [0.0167, 0.564]). No significant associations were found between childhood BPA and white matter microstructure. CONCLUSIONS This study provides preliminary evidence for the neural correlates of BPA exposure in humans. Our findings suggest that prenatal maternal exposure to BPA may lead to alterations in white matter microstructure in preschool aged children, and that such alterations mediate the relationship between early life exposure to BPA and internalizing problems.
Collapse
Affiliation(s)
- Melody N Grohs
- Department of Neuroscience, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Owerko Centre, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Jess E Reynolds
- Owerko Centre, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Jiaying Liu
- Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Jonathan W Martin
- Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
- Science for Life Laboratory, Department of Environmental Science and Analytical Chemistry, Stockholm University, Stockholm, Sweden
| | - Tyler Pollock
- Owerko Centre, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Catherine Lebel
- Owerko Centre, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Deborah Dewey
- Owerko Centre, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
- Department of Paediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
- Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
- University of Calgary, #397 Owerko Center, Child Development Centre 2500 University Dr. NW, Calgary, Alberta, T2N 1N4, Canada.
| |
Collapse
|
27
|
Tokariev M, Vuontela V, Lönnberg P, Lano A, Perkola J, Wolford E, Andersson S, Metsäranta M, Carlson S. Altered working memory-related brain responses and white matter microstructure in extremely preterm-born children at school age. Brain Cogn 2019; 136:103615. [PMID: 31563082 DOI: 10.1016/j.bandc.2019.103615] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/10/2019] [Accepted: 09/13/2019] [Indexed: 11/28/2022]
Abstract
Preterm birth poses a risk for neurocognitive and behavioral development. Preterm children, who have not been diagnosed with neurological or cognitive deficits, enter normal schools and are expected to succeed as their term-born peers. Here we tested the hypotheses that despite an uneventful development after preterm birth, these children might exhibit subtle abnormalities in brain function and white-matter microstructure at school-age. We recruited 7.5-year-old children born extremely prematurely (<28 weeks' gestation), and age- and gender-matched term-born controls (≥37 weeks' gestation). We applied fMRI during working-memory (WM) tasks, and investigated white-matter microstructure with diffusion tensor imaging. Compared with controls, preterm-born children performed WM tasks less accurately, had reduced activation in several right prefrontal areas, and weaker deactivation of right temporal lobe areas. The weaker prefrontal activation correlated with poorer WM performance. Preterm-born children had higher fractional anisotropy (FA) and lower diffusivity than controls in several white-matter areas, and in the posterior cerebellum, the higher FA associated with poorer visuospatial test scores. In controls, higher FA and lower diffusivity correlated with faster WM performance. Together these findings demonstrate weaker WM-related brain activations and altered white matter microstructure in children born extremely preterm, who had normal global cognitive ability.
Collapse
Affiliation(s)
- Maksym Tokariev
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland; Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Virve Vuontela
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland; Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Piia Lönnberg
- Department of Child Neurology, Children's Hospital, Pediatric Research Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Aulikki Lano
- Department of Child Neurology, Children's Hospital, Pediatric Research Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Jaana Perkola
- Department of Clinical Neurophysiology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Elina Wolford
- Department of Psychology and Logopedics, University of Helsinki, Helsinki, Finland
| | - Sture Andersson
- Department of Pediatrics, Children's Hospital, Pediatric Research Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Marjo Metsäranta
- Department of Pediatrics, Children's Hospital, Pediatric Research Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Synnöve Carlson
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland; Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Advanced Magnetic Imaging Centre, Aalto University School of Science, Espoo, Finland.
| |
Collapse
|
28
|
Loe IM, Adams JN, Feldman HM. Executive Function in Relation to White Matter in Preterm and Full Term Children. Front Pediatr 2019; 6:418. [PMID: 30697535 PMCID: PMC6341022 DOI: 10.3389/fped.2018.00418] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 12/18/2018] [Indexed: 11/13/2022] Open
Abstract
Background: Executive function (EF) refers to cognitive abilities used to guide goal-directed behavior. Diffusion Tensor Imaging (DTI) provides quantitative characterization of white matter tracts in the brain. Children with preterm birth often have EF impairments and white matter injury. Aim: To examine the degree of association between EF scores and white matter fractional anisotropy (FA) as measured by DTI in children born preterm and term Study design: Cross-sectional study Subjects: Participants, 9-16 years of age, born preterm (n = 25; mean gestational age 28.6 weeks; mean birth weight 1,191 grams), and full term (n = 20) Outcome measures: White matter FA analyzed with Tract-Based Spatial Statistics, a technique that generates a skeleton representing the core of white matter tracts throughout the brain. Behavioral scores from EF tasks examining working memory, spatial memory capacity, and multiple skills from the Stockings of Cambridge. Results: The groups performed comparably on all tasks. In both groups, unfavorable working memory strategy scores were associated with lower FA. Other measures of EF were not associated with whole skeleton FA in either group in either direction. Conclusions: Strategy score on a spatial working memory task was associated with FA in preterm and full term children, suggesting common underlying neurobiology in both groups. Associations were found in frontal-parietal connections and other major tracts. Lack of associations between other EF tasks and FA may be due to variation in how children accomplish these EF tasks. Future research is required to fully understand the neurobiology of EF in children born preterm.
Collapse
Affiliation(s)
- Irene M. Loe
- Department of Pediatrics, Stanford University, Stanford, CA, United States
| | - Jenna N. Adams
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, United States
| | - Heidi M. Feldman
- Department of Pediatrics, Stanford University, Stanford, CA, United States
| |
Collapse
|
29
|
Vandewouw MM, Young JM, Shroff MM, Taylor MJ, Sled JG. Altered myelin maturation in four year old children born very preterm. NEUROIMAGE-CLINICAL 2018; 21:101635. [PMID: 30573411 PMCID: PMC6413416 DOI: 10.1016/j.nicl.2018.101635] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 11/25/2018] [Accepted: 12/09/2018] [Indexed: 11/06/2022]
Abstract
Children born very preterm (VPT; <32 weeks gestational age [GA]) are at greater risk for a range of cognitive deficits that typically manifest at school age. Here we examine the hypothesis that these children have altered myelin maturational that can be detected by myelin sensitive MRI measures prior to school age. We included 33 four-year old children born VPT (mean GA; 28.7 weeks) and 23 four-year old full term (FT) children and completed magnetization transfer (MT), T1-weighted (T1-w) and T2-weighted (T1-w) magnetic resonance imaging as well as developmental assessments. Both MT ratio (MTR) and T1-w/T2-w ratio images were calculated, and group differences were probed using tract-based spatial statistics (TBSS) in white matter, and region of interest (ROI) analysis in white, subcortical gray and cortical gray matter. The relations between MTR and T1-w/T2-w ratio, as well as with developmental assessments, were investigated in all three brain divisions. In children born VPT, TBSS and ROI analysis revealed that both MTR and T1-w/T2-w ratio were significantly reduced in white matter compared to children born FT. ROI analysis showed reductions in T1-w/T2-w ratio in VPT children compared to FT children in the thalamus, putamen and amygdala, as well as in the occipital and temporal lobes. Across the VPT and FT children, T1-w/T2-w ratio and MTR were highly correlated across white, subcortical gray and cortical gray matter. Both measures correlated positively with developmental assessments in individual white matter tracts and cortical and subcortical ROIs, suggesting that higher MTR and T1-w/T2-w ratio is related to better cognitive performance. Together these findings are consistent with delayed myelination in VPT born children. Very preterm children have widespread decreased MTR in white matter. T1-w/T2-w ratio measures showed consistent white matter alterations. T1-w/T2-w ratio was also reduced in subcortical, occipital and temporal regions. MTR and T1-w/T2-w were correlated throughout the brain. MTR and T1-w/T2-w correlated with developmental assessments.
Collapse
Affiliation(s)
- Marlee M Vandewouw
- Diagnostic Imaging, Hospital for Sick Children, Toronto, ON, Canada; Neurosciences and Mental Health, SickKids Research Institute, Toronto, ON, Canada.
| | - Julia M Young
- Diagnostic Imaging, Hospital for Sick Children, Toronto, ON, Canada; Neurosciences and Mental Health, SickKids Research Institute, Toronto, ON, Canada; Department of Psychology, University of Toronto, Toronto, ON, Canada
| | - Manohar M Shroff
- Diagnostic Imaging, Hospital for Sick Children, Toronto, ON, Canada; Department of Medical Imaging, University of Toronto, Toronto, ON, Canada
| | - Margot J Taylor
- Diagnostic Imaging, Hospital for Sick Children, Toronto, ON, Canada; Neurosciences and Mental Health, SickKids Research Institute, Toronto, ON, Canada; Department of Psychology, University of Toronto, Toronto, ON, Canada; Department of Medical Imaging, University of Toronto, Toronto, ON, Canada
| | - John G Sled
- Translational Medicine, SickKids Research Institute, Toronto, ON, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
30
|
Faure N, Habersaat S, Harari MM, Müller-Nix C, Borghini A, Ansermet F, Tolsa JF, Urben S. Maternal Sensitivity: a Resilience Factor against Internalizing Symptoms in Early Adolescents Born Very Preterm? JOURNAL OF ABNORMAL CHILD PSYCHOLOGY 2017; 45:671-680. [PMID: 27573689 DOI: 10.1007/s10802-016-0194-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Compared with full-terms, preterm individuals are more at risk from infancy to adulthood for developing internalizing symptoms. Early maternal interactive behavior, especially maternal sensitivity, has been found to be a resilience factor in the developmental outcome of preterm children. The present longitudinal study aimed at examining whether early interactive parenting behaviors have a long term impact on the internalizing symptoms of preterm-born young adolescents. A total sample of 36 very preterm and 22 full-term children participated in an 11-year follow-up study. Maternal interactive behavior was assessed during a mother-infant interaction when the infant was 18 months old. At 11 years, internalizing symptoms were assessed with the Child Behavior Checklist (CBCL). Hierarchical regression analyses revealed that the interaction between groups (preterm/full-term) and maternal sensitivity at 18 months significantly explained CBCL internalizing symptoms at 11 years (β = -0.526; p < 0.05). Specifically, although prematurity was related to internalizing problems, preterm children with higher maternal sensitivity did not differ from their full-term-born peers on the CBCL internalizing problems domain. These results suggest that maternal sensitivity is a long-term resilience factor preventing the development of internalizing problems at early adolescence in very preterm individuals.
Collapse
Affiliation(s)
- Noémie Faure
- Clinic of Neonatology, Department of Pediatrics, University Hospital of Lausanne, Av. Pierre-Decker 2, 1011, Lausanne, Switzerland.
| | - Stéphanie Habersaat
- Department of Child and Adolescent Psychiatry, University Hospital of Lausanne, Lausanne, Switzerland
| | - Mathilde Morisod Harari
- Department of Child and Adolescent Psychiatry, University Hospital of Lausanne, Lausanne, Switzerland
| | - Carole Müller-Nix
- Department of Child and Adolescent Psychiatry, University Hospital of Lausanne, Lausanne, Switzerland
| | - Ayala Borghini
- Department of Child and Adolescent Psychiatry, University Hospital of Lausanne, Lausanne, Switzerland
| | - François Ansermet
- Department of Child and Adolescent Psychiatry, University Hospital, Geneva, Switzerland
| | - Jean-François Tolsa
- Clinic of Neonatology, Department of Pediatrics, University Hospital of Lausanne, Av. Pierre-Decker 2, 1011, Lausanne, Switzerland
| | - Sébastien Urben
- Department of Child and Adolescent Psychiatry, University Hospital of Lausanne, Lausanne, Switzerland
| |
Collapse
|
31
|
Pyhälä R, Wolford E, Kautiainen H, Andersson S, Bartmann P, Baumann N, Brubakk AM, Evensen KAI, Hovi P, Kajantie E, Lahti M, Van Lieshout RJ, Saigal S, Schmidt LA, Indredavik MS, Wolke D, Räikkönen K. Self-Reported Mental Health Problems Among Adults Born Preterm: A Meta-analysis. Pediatrics 2017; 139:peds.2016-2690. [PMID: 28283612 DOI: 10.1542/peds.2016-2690] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/19/2017] [Indexed: 11/24/2022] Open
Abstract
CONTEXT Preterm birth increases the risk for mental disorders in adulthood, yet findings on self-reported or subclinical mental health problems are mixed. OBJECTIVE To study self-reported mental health problems among adults born preterm at very low birth weight (VLBW; ≤1500 g) compared with term controls in an individual participant data meta-analysis. DATA SOURCES Adults Born Preterm International Collaboration. STUDY SELECTION Studies that compared self-reported mental health problems using the Achenbach Young Adult Self Report or Adult Self Report between adults born preterm at VLBW (n = 747) and at term (n = 1512). DATA EXTRACTION We obtained individual participant data from 6 study cohorts and compared preterm and control groups by mixed random coefficient linear and Tobit regression. RESULTS Adults born preterm reported more internalizing (pooled β = .06; 95% confidence interval .01 to .11) and avoidant personality problems (.11; .05 to .17), and less externalizing (-.10; -.15 to -.06), rule breaking (-.10; -.15 to -.05), intrusive behavior (-.14; -.19 to -.09), and antisocial personality problems (-.09; -.14 to -.04) than controls. Group differences did not systematically vary by sex, intrauterine growth pattern, neurosensory impairments, or study cohort. LIMITATIONS Exclusively self-reported data are not confirmed by alternative data sources. CONCLUSIONS Self-reports of adults born preterm at VLBW reveal a heightened risk for internalizing problems and socially avoidant personality traits together with a lowered risk for externalizing problem types. Our findings support the view that preterm birth constitutes an early vulnerability factor with long-term consequences on the individual into adulthood.
Collapse
Affiliation(s)
- Riikka Pyhälä
- Department of Psychology and Logopedics, and .,Folkhälsan Research Centre, Helsinki, Finland
| | | | - Hannu Kautiainen
- Department of General Practice, University of Helsinki, Helsinki, Finland.,Unit of Primary Health Care, Helsinki University Central Hospital, Helsinki, Finland.,Unit of Primary Health Care, Kuopio University Hospital, Kuopio, Finland
| | - Sture Andersson
- Children's Hospital, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Peter Bartmann
- Department of Neonatology, University Hospital Bonn, Bonn, Germany
| | - Nicole Baumann
- Department of Psychology, University of Warwick, Coventry, United Kingdom
| | - Ann-Mari Brubakk
- Department of Laboratory Medicine, Children's and Women's Health
| | - Kari Anne I Evensen
- Department of Laboratory Medicine, Children's and Women's Health.,Department of Public Health and General Practice, and
| | - Petteri Hovi
- Children's Hospital, Helsinki University Hospital and University of Helsinki, Helsinki, Finland.,National Institute for Health and Welfare, Helsinki, Finland
| | - Eero Kajantie
- Children's Hospital, Helsinki University Hospital and University of Helsinki, Helsinki, Finland.,National Institute for Health and Welfare, Helsinki, Finland.,National Institute for Health and Welfare, Oulu, Finland.,PEDEGO Research Unit, Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Marius Lahti
- Department of Psychology and Logopedics, and.,University/British Heart Foundation Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | | | | | - Louis A Schmidt
- National Institute for Health and Welfare, Helsinki, Finland.,Department of Psychology, Neuroscience & Behavior, McMaster University, Hamilton, Ontario, Canada
| | - Marit S Indredavik
- Regional Centre for Child and Youth Mental Health and Child Welfare, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Child and Adolescent Psychiatry, St. Olav's Hospital, Trondheim University Hospital, Norway; and
| | - Dieter Wolke
- Department of Neonatology, University Hospital Bonn, Bonn, Germany.,Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | | |
Collapse
|
32
|
Danks M, Cherry K, Burns YR, Gray PH. Are behaviour problems in extremely low-birthweight children related to their motor ability? Acta Paediatr 2017; 106:568-572. [PMID: 27992071 DOI: 10.1111/apa.13712] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 11/09/2016] [Accepted: 12/12/2016] [Indexed: 12/01/2022]
Abstract
AIM To investigate whether behaviour problems are independently related to mild motor impairment in 11-13-year-old children born preterm with extremely low birthweight (ELBW). METHODS The cross-sectional study included 48 (27 males) non-disabled, otherwise healthy ELBW children (<1000 g) and 55 (28 males) term-born peers. Parents reported behaviour using the Child Behaviour Checklist (CBCL). Children completed the Movement Assessment Battery for Children (Movement ABC). RESULTS Extremely low birthweight children had poorer behaviour scores (CBCL Total Problem T score: mean difference = 5.89, 95% confidence interval = 10.29, 1.49, p = 0.009) and Movement ABC Total Motor Impairment Scores (ELBW group median = 17.5, IQR = 12.3; term-born group median = 7.5, IQR = 9, p < 0.01) than term-born peers. Behaviour was related to motor score (regression coefficient 2.16; 95% confidence interval 0.34, 3.97, p = 0.02) independent of gender, socio-economic factors or birthweight. Motor score had the strongest association with attention (ρ = 0.51; p < 0.01) and social behaviours (ρ = 0.50; p < 0.01). CONCLUSION Behaviour problems of otherwise healthy 11- to 13-year-old ELBW children are not related to prematurity independent of their motor difficulties. Supporting improved motor competence in ELBW preteen children may support improved behaviour, particularly attention and social behaviours.
Collapse
Affiliation(s)
- Marcella Danks
- School of Physiotherapy; Australian Catholic University; Brisbane Qld Australia
- Growth and Development Unit; Mater Mothers’ Hospital; Brisbane Qld Australia
| | - Kate Cherry
- School of Physiotherapy; Australian Catholic University; Brisbane Qld Australia
| | - Yvonne R. Burns
- Growth and Development Unit; Mater Mothers’ Hospital; Brisbane Qld Australia
- School of Health and Rehabilitation; The University of Queensland; Brisbane Qld Australia
| | - Peter H. Gray
- Growth and Development Unit; Mater Mothers’ Hospital; Brisbane Qld Australia
- Mater Research Institute; University of Queensland; Brisbane Qld Australia
| |
Collapse
|
33
|
Kelly CE, Thompson DK, Chen J, Leemans A, Adamson CL, Inder TE, Cheong JLY, Doyle LW, Anderson PJ. Axon density and axon orientation dispersion in children born preterm. Hum Brain Mapp 2016; 37:3080-102. [PMID: 27133221 DOI: 10.1002/hbm.23227] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 04/12/2016] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Very preterm birth (VPT, <32 weeks' gestation) is associated with altered white matter fractional anisotropy (FA), the biological basis of which is uncertain but may relate to changes in axon density and/or dispersion, which can be measured using Neurite Orientation Dispersion and Density Imaging (NODDI). This study aimed to compare whole brain white matter FA, axon dispersion, and axon density between VPT children and controls (born ≥37 weeks' gestation), and to investigate associations with perinatal factors and neurodevelopmental outcomes. METHODS FA, neurite dispersion, and neurite density were estimated from multishell diffusion magnetic resonance images for 145 VPT and 33 control 7-year-olds. Diffusion values were compared between groups and correlated with perinatal factors (gestational age, birthweight, and neonatal brain abnormalities) and neurodevelopmental outcomes (IQ, motor, academic, and behavioral outcomes) using Tract-Based Spatial Statistics. RESULTS Compared with controls, VPT children had lower FA and higher axon dispersion within many major white matter fiber tracts. Neonatal brain abnormalities predicted lower FA and higher axon dispersion in many major tracts in VPT children. Lower FA, higher axon dispersion, and lower axon density in various tracts correlated with poorer neurodevelopmental outcomes in VPT children. CONCLUSIONS FA and NODDI measures distinguished VPT children from controls and were associated with neonatal brain abnormalities and neurodevelopmental outcomes. This study provides a more detailed and biologically meaningful interpretation of white matter microstructure changes associated with prematurity. Hum Brain Mapp 37:3080-3102, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Claire E Kelly
- Murdoch Childrens Research Institute, Melbourne, Australia
| | - Deanne K Thompson
- Murdoch Childrens Research Institute, Melbourne, Australia.,Florey Institute of Neuroscience and Mental Health, Melbourne, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Jian Chen
- Murdoch Childrens Research Institute, Melbourne, Australia.,Department of Medicine, Monash Medical Centre, Monash University, Melbourne, Australia
| | - Alexander Leemans
- Image Sciences Institute, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | | - Jeanie L Y Cheong
- Murdoch Childrens Research Institute, Melbourne, Australia.,Royal Women's Hospital, Melbourne, Australia.,Department of Obstetrics and Gynaecology, University of Melbourne, Melbourne, Australia
| | - Lex W Doyle
- Murdoch Childrens Research Institute, Melbourne, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Australia.,Royal Women's Hospital, Melbourne, Australia.,Department of Obstetrics and Gynaecology, University of Melbourne, Melbourne, Australia
| | - Peter J Anderson
- Murdoch Childrens Research Institute, Melbourne, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Australia
| |
Collapse
|
34
|
Almaas AN, Tamnes CK, Nakstad B, Henriksen C, Grydeland H, Walhovd KB, Fjell AM, Iversen PO, Drevon CA. Diffusion tensor imaging and behavior in premature infants at 8 years of age, a randomized controlled trial with long-chain polyunsaturated fatty acids. Early Hum Dev 2016; 95:41-6. [PMID: 26939082 DOI: 10.1016/j.earlhumdev.2016.01.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 01/22/2016] [Accepted: 01/29/2016] [Indexed: 11/27/2022]
Abstract
BACKGROUND Very low birth weight (VLBW, birth weight<1500 g) children have increased risk of behavioral problems. Diffusion tensor imaging (DTI) of the brain shows reduced white matter maturation. Long-chain polyunsaturated fatty acids are hypothesized to improve both myelination and behavioral outcome. AIMS To test the hypothesis that postnatal supplementation with docosahexaenoic acid (DHA) and arachidonic acid (AA) to very low birth weight infants would influence cerebral white matter measured by DTI and improve behavioral outcome at 8 years of age. STUDY DESIGN Eight-year follow-up of a randomized, double-blinded, placebo-controlled study of postnatal supplementation with DHA and AA to 129 VLBW infants fed human milk. SUBJECTS Ninety-eight children (76%) met for follow-up at 8 years. OUTCOME MEASURES Cerebral white matter measured by DTI. Behavioral outcome measured by Strengths and Difficulties questionnaire and selected scales from the Child Behavior Checklist. RESULTS No significant differences between the intervention group and the control group were found on white matter microstructure or behavioral data. A non-significant finding of higher fractional anisotropy (FA) in a cluster in the corpus callosum of the intervention group is discussed. CONCLUSIONS The present study is the first long-term follow-up of a randomized controlled trial with DHA and AA to human milk fed VLBW infants exploring cerebral white matter microstructure measured by DTI and parent-reported behavioral problems. No effects on white matter microstructure or behavioral outcome were observed at 8 years of age.
Collapse
Affiliation(s)
- Astrid Nylander Almaas
- Akershus University Hospital and Faculty Division AHUS, Institute for Clinical Medicine, University of Oslo, Nordbyhagen, Norway; Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Norway.
| | - Christian K Tamnes
- Research Group for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, Norway.
| | - Britt Nakstad
- Akershus University Hospital and Faculty Division AHUS, Institute for Clinical Medicine, University of Oslo, Nordbyhagen, Norway.
| | - Christine Henriksen
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Norway.
| | - Håkon Grydeland
- Research Group for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, Norway.
| | - Kristine B Walhovd
- Research Group for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, Norway.
| | - Anders M Fjell
- Research Group for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, Norway.
| | - Per Ole Iversen
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Norway.
| | - Christian A Drevon
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Norway.
| |
Collapse
|
35
|
Montagna A, Nosarti C. Socio-Emotional Development Following Very Preterm Birth: Pathways to Psychopathology. Front Psychol 2016; 7:80. [PMID: 26903895 PMCID: PMC4751757 DOI: 10.3389/fpsyg.2016.00080] [Citation(s) in RCA: 150] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 01/14/2016] [Indexed: 01/07/2023] Open
Abstract
Very preterm birth (VPT; < 32 weeks of gestation) has been associated with an increased risk to develop cognitive and socio-emotional problems, as well as with increased vulnerability to psychiatric disorder, both with childhood and adult onset. Socio-emotional impairments that have been described in VPT individuals include diminished social competence and self-esteem, emotional dysregulation, shyness and timidity. However, the etiology of socio-emotional problems in VPT samples and their underlying mechanisms are far from understood. To date, research has focused on the investigation of both biological and environmental risk factors associated with socio-emotional problems, including structural and functional alterations in brain areas involved in processing emotions and social stimuli, perinatal stress and pain and parenting strategies. Considering the complex interplay of the aforementioned variables, the review attempts to elucidate the mechanisms underlying the association between very preterm birth, socio-emotional vulnerability and psychopathology. After a comprehensive overview of the socio-emotional impairments associated with VPT birth, three main models of socio-emotional development are presented and discussed. These focus on biological vulnerability, early life adversities and parenting, respectively. To conclude, a developmental framework is used to consider different pathways linking VPT birth to psychopathology, taking into account the interaction between medical, biological, and psychosocial factors.
Collapse
Affiliation(s)
- Anita Montagna
- Department of Perinatal Imaging and Health, Centre for the Developing Brain, St. Thomas' Hospital, King's College LondonLondon, UK
| | - Chiara Nosarti
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College LondonLondon, UK
| |
Collapse
|
36
|
Abstract
BACKGROUND Neonates cared for in neonatal intensive care units are exposed to many painful and stressful procedures that, cumulatively, could impact later neurodevelopmental outcomes. However, a systematic analysis of these effects is yet to be reported. OBJECTIVES The aim of this research was to review empirical studies examining the association between early neonatal pain experiences of preterm infants and the subsequent developmental outcomes of these children across different ages. METHODS The literature search was performed using the PubMed, PsycINFO, Lilacs, and SciELO databases and included the following key words: "pain," "preterm," and "development." In addition, a complementary search was performed in online journals that published pain and developmental studies to ensure all of the target studies had been found. The data were extracted according to predefined inclusion and exclusion criteria. RESULTS Thirteen studies were analyzed. In infants born extremely preterm (gestational age ≤29 wk) greater numbers of painful procedures were associated with delayed postnatal growth, with poor early neurodevelopment, high cortical activation, and with altered brain development. In toddlers born very preterm (gestational age ≤32 wk) biobehavioral pain reactivity-recovery scores were associated with negative affectivity temperament. Furthermore, greater numbers of neonatal painful experiences were associated with a poor quality of cognitive and motor development at 1 year of age and changes in cortical rhythmicity and cortical thickness in children at 7 years of age. CONCLUSIONS For infants born preterm, neonatal pain-related stress was associated with alterations in both early and in later developmental outcomes. Few longitudinal studies examined the impact of neonatal pain in the long-term development of children born preterm.
Collapse
|
37
|
Wusthoff CJ, Loe IM. Impact of bilirubin-induced neurologic dysfunction on neurodevelopmental outcomes. Semin Fetal Neonatal Med 2015; 20:52-57. [PMID: 25585889 PMCID: PMC4651619 DOI: 10.1016/j.siny.2014.12.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Bilirubin-induced neurologic dysfunction (BIND) is the constellation of neurologic sequelae following milder degrees of neonatal hyperbilirubinemia than are associated with kernicterus. Clinically, BIND may manifest after the neonatal period as developmental delay, cognitive impairment, disordered executive function, and behavioral and psychiatric disorders. However, there is controversy regarding the relative contribution of neonatal hyperbilirubinemia versus other risk factors to the development of later neurodevelopmental disorders in children with BIND. In this review, we focus on the empiric data from the past 25 years regarding neurodevelopmental outcomes and BIND, including specific effects on developmental delay, cognition, speech and language development, executive function, and the neurobehavioral disorders, such as attention deficit/hyperactivity disorder and autism.
Collapse
Affiliation(s)
- Courtney J. Wusthoff
- Division of Child Neurology, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Irene M. Loe
- Division of Neonatal and Developmental Medicine, Stanford University School of Medicine, Palo Alto, CA, USA
| |
Collapse
|
38
|
Rogers CE, Barch DM, Sylvester CM, Pagliaccio D, Harms MP, Botteron KN, Luby JL. Altered gray matter volume and school age anxiety in children born late preterm. J Pediatr 2014; 165:928-35. [PMID: 25108541 PMCID: PMC4252475 DOI: 10.1016/j.jpeds.2014.06.063] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 05/28/2014] [Accepted: 06/27/2014] [Indexed: 01/07/2023]
Abstract
OBJECTIVES To determine if late preterm (LP) children differ from full term (FT) children in volumes of the cortex, hippocampus, corpus callosum, or amygdala and whether these differences are associated with anxiety symptoms at school-age. STUDY DESIGN LP children born between 34 and 36 weeks gestation and FT children born between 39 and 41 weeks gestation from a larger longitudinal cohort had magnetic resonance imaging scans at school-age. Brain volumes, cortical surface area, and thickness measures were obtained. Anxiety symptoms were assessed using a structured diagnostic interview annually beginning at preschool-age and following the magnetic resonance imaging. RESULTS LP children (n = 21) had a smaller percentage of total, right parietal, and right temporal lobe gray matter volume than FT children (n = 87). There were no differences in hippocampal, callosal, or amygdala volumes or cortical thickness. LP children also had a relative decrease in right parietal lobe cortical surface area. LP children had greater anxiety symptoms over all assessments. The relationship between late prematurity and school-age anxiety symptoms was mediated by the relative decrease in right temporal lobe volume. CONCLUSIONS LP children, comprising 70% of preterm children, are also at increased risk for altered brain development particularly in the right temporal and parietal cortices. Alterations in the right temporal lobe cortical volume may underlie the increased rate of anxiety symptoms among these LP children. These findings suggest that LP delivery may disrupt temporal and parietal cortical development that persists until school-age with the right temporal lobe conferring risk for elevated anxiety symptoms.
Collapse
Affiliation(s)
- Cynthia E Rogers
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO; Department of Pediatrics, Washington University School of Medicine, St. Louis, MO.
| | - Deanna M Barch
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO; Department of Radiology, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO; Department of Psychology, Washington University in St. Louis, St. Louis, MO; The Program in Neuroscience, Washington University in St. Louis, St. Louis, MO
| | - Chad M Sylvester
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO
| | - David Pagliaccio
- The Program in Neuroscience, Washington University in St. Louis, St. Louis, MO
| | - Michael P Harms
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO
| | - Kelly N Botteron
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO; Department of Radiology, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO
| | - Joan L Luby
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
39
|
Abstract
There is growing interest in the long-term mental health sequelae of extremely preterm birth. In this paper we review literature relating to mental health outcomes across the lifespan. Studies conducted in the preschool years, school age and adolescence, and adulthood show continuity in outcomes and point to an increased risk for inattention, socio-communicative problems and emotional difficulties in individuals born extremely preterm. Both behavioural and neuroimaging studies also provide evidence of a neurodevelopmental origin for mental health disorders in this population. Here we summarise contemporary evidence and highlight key methodological considerations for carrying out and interpreting studies in this field.
Collapse
|