1
|
Ahmed S, Nilofar, Cvetanović Kljakić A, Stupar A, Lončar B, Božunović J, Gašić U, Yıldıztugay E, Ferrante C, Zengin G. Exploring traditional and modern approaches for extracting bioactive compounds from Ferulago trachycarpa. Prep Biochem Biotechnol 2024; 54:1306-1319. [PMID: 38756105 DOI: 10.1080/10826068.2024.2349937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
For more than two millennia, Ferulago species have been revered as therapeutic herbs, maintaining their significance in present-day folk medicine practices. Therefore, the present study was conducted to investigate the phytochemical composition, inhibitory effects on metabolic enzymes, and possible therapeutic applications of F. trachycarpa, specifically focusing on its efficacy in diabetes management, anticholinergic effects, and antioxidant capabilities. The current investigation comprised an evaluation of a range of extracts acquired via conventional and modern methodologies, such as soxhlet (SOX), maceration (MAC) accelerated solvent extraction (ASE), homogenizer-assisted extraction (HAE), supercritical fluid extraction (SFE), microwave-assisted extraction (MW), and ultrasound-assisted extraction (UAE). Various techniques were employed to assess their antioxidant capacity and enzyme inhibition. Furthermore, the research utilized ultra-high performance liquid chromatography-MS/MS (UHPLC-MS/MS) to ascertain the principal phenolic compounds that are responsible for the antioxidant capacity observed in the various F. trachycarpa extracts. Among these, extracts from HAE, ASE, and MW revealed the most promise across all methodologies tested for their antioxidant potential. Furthermore, SFE and MAC extracts inhibited the most enzymes, including cholinesterases, tyrosinase, α -amylase, and α -glycosidase, indicating their potential as efficient natural treatments for several health-related issues.
Collapse
Affiliation(s)
- Shakeel Ahmed
- Foodomics Laboratory, Instituto de Investigación en Ciencias de la Alimentación, CSIC-UAM, Madrid, Spain
| | - Nilofar
- Physiology and Biochemistry Laboratory, Department of Biology, Science Faculty, Selcuk University, Konya, Turkey
- Department of Pharmacy, Botanic Garden "Giardino dei Semplici", Università degli Studi "Gabriele d'Annunzio", Chieti, Italy
| | | | - Alena Stupar
- Institute of Food Technology, University of Novi Sad, Novi Sad, Serbia
| | - Biljana Lončar
- Faculty of Technology, University of Novi Sad, Novi Sad, Serbia
| | - Jelena Božunović
- Department of Plant Physiology, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Uroš Gašić
- Department of Plant Physiology, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Evren Yıldıztugay
- Department of Biotechnology, Science Faculty, Selcuk University, Konya, Turkey
| | - Claudio Ferrante
- Department of Pharmacy, Botanic Garden "Giardino dei Semplici", Università degli Studi "Gabriele d'Annunzio", Chieti, Italy
| | - Gokhan Zengin
- Physiology and Biochemistry Laboratory, Department of Biology, Science Faculty, Selcuk University, Konya, Turkey
| |
Collapse
|
2
|
Dassamiour S, Bensaad MS, Ghebache W. Utility of phenolic acids in neurological disorders. ADVANCEMENT OF PHENOLIC ACIDS IN DRUG DISCOVERY 2024:295-344. [DOI: 10.1016/b978-0-443-18538-0.00015-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
3
|
Grabska-Kobyłecka I, Szpakowski P, Król A, Książek-Winiarek D, Kobyłecki A, Głąbiński A, Nowak D. Polyphenols and Their Impact on the Prevention of Neurodegenerative Diseases and Development. Nutrients 2023; 15:3454. [PMID: 37571391 PMCID: PMC10420887 DOI: 10.3390/nu15153454] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/13/2023] [Accepted: 07/18/2023] [Indexed: 08/13/2023] Open
Abstract
It is well known that neurodegenerative diseases' development and progression are accelerated due to oxidative stress and inflammation, which result in impairment of mitochondrial function, cellular damage, and dysfunction of DNA repair systems. The increased consumption of antioxidants can postpone the development of these disorders and improve the quality of patients' lives who have already been diagnosed with neurodegenerative diseases. Prolonging life span in developed countries contributes to an increase in the incidence ratio of chronic age-related neurodegenerative disorders, such as PD (Parkinson's disease), AD (Alzheimer's disease), or numerous forms of age-related dementias. Dietary supplementation with neuroprotective plant-derived polyphenols might be considered an important element of healthy aging. Some polyphenols improve cognition, mood, visual functions, language, and verbal memory functions. Polyphenols bioavailability differs greatly from one compound to another and is determined by solubility, degree of polymerization, conjugation, or glycosylation resulting from chemical structure. It is still unclear which polyphenols are beneficial because their potential depends on efficient transport across the BBB (blood-brain barrier), bioavailability, and stability in the CNS (central nervous system). Polyphenols improve brain functions by having a direct impact on cells and processes in the CNS. For a direct effect, polyphenolic compounds must be able to overcome the BBB and accumulate in brain tissue. In this review, the latest achievements in studies (animal models and clinical trials) on the effect of polyphenols on brain activity and function are described. The beneficial impact of plant polyphenols on the brain may be summarized by their role in increasing brain plasticity and related cognition improvement. As reversible MAO (monoamine oxidase) inhibitors, polyphenols are mood modulators and improve neuronal self-being through an increase in dopamine, serotonin, and noradrenaline amounts in the brain tissue. After analyzing the prohealth effects of various eating patterns, it was postulated that their beneficial effects result from synergistic interactions between individual dietary components. Polyphenols act on the brain endothelial cells and improve the BBB's integrity and reduce inflammation, thus protecting the brain from additional injury during stroke or autoimmune diseases. Polyphenolic compounds are capable of lowering blood pressure and improving cerebral blood flow. Many studies have revealed that a nutritional model based on increased consumption of antioxidants has the potential to ameliorate the cognitive impairment associated with neurodegenerative disorders. Randomized clinical trials have also shown that the improvement of cognitive functions resulting from the consumption of foods rich in flavonoids is independent of age and health conditions. For therapeutic use, sufficient quantities of polyphenols must cross the BBB and reach the brain tissue in active form. An important issue in the direct action of polyphenols on the CNS is not only their penetration through the BBB, but also their brain metabolism and localization. The bioavailability of polyphenols is low. The most usual oral administration also conflicts with bioavailability. The main factors that limit this process and have an effect on therapeutic efficacy are: selective permeability across BBB, gastrointestinal transformations, poor absorption, rapid hepatic and colonic metabolism, and systemic elimination. Thus, phenolic compounds have inadequate bioavailability for human applications to have any beneficial effects. In recent years, new strategies have been attempted in order to exert cognitive benefits and neuroprotective effects. Converting polyphenols into nanostructures is one of the theories proposed to enhance their bioavailability. The following nanoscale delivery systems can be used to encapsulate polyphenols: nanocapsules, nanospheres, micelles, cyclodextrins, solid lipid nanoparticles, and liposomes. It results in great expectations for the wide-scale and effective use of polyphenols in the prevention of neurodegenerative diseases. Thus far, only natural polyphenols have been studied as neuroprotectors. Perhaps some modification of the chemical structure of a given polyphenol may increase its neuroprotective activity and transportation through the BBB. However, numerous questions should be answered before developing neuroprotective medications based on plant polyphenols.
Collapse
Affiliation(s)
- Izabela Grabska-Kobyłecka
- Department of Clinical Physiology, Medical University of Lodz, Mazowiecka 6/8 Street, 92-215 Łódź, Poland
| | - Piotr Szpakowski
- Department of Neurology and Stroke, Medical University of Lodz, Zeromskiego 113 Street, 90-549 Łódź, Poland; (P.S.); (D.K.-W.); (A.G.)
| | - Aleksandra Król
- Department of Experimental Physiology, Medical University of Lodz, Mazowiecka 6/8 Street, 92-215 Łódź, Poland;
| | - Dominika Książek-Winiarek
- Department of Neurology and Stroke, Medical University of Lodz, Zeromskiego 113 Street, 90-549 Łódź, Poland; (P.S.); (D.K.-W.); (A.G.)
| | - Andrzej Kobyłecki
- Interventional Cardiology Lab, Copernicus Hospital, Pabianicka Str. 62, 93-513 Łódź, Poland;
| | - Andrzej Głąbiński
- Department of Neurology and Stroke, Medical University of Lodz, Zeromskiego 113 Street, 90-549 Łódź, Poland; (P.S.); (D.K.-W.); (A.G.)
| | - Dariusz Nowak
- Department of Clinical Physiology, Medical University of Lodz, Mazowiecka 6/8 Street, 92-215 Łódź, Poland
| |
Collapse
|
4
|
Fernandes MYD, Lopes JP, Silva HB, Andrade GM, Cunha RA, Tomé AR. Caffeic acid recovers ischemia-induced synaptic dysfunction without direct effects on excitatory synaptic transmission and plasticity in mouse hippocampal slices. Neurosci Lett 2023; 808:137292. [PMID: 37156440 DOI: 10.1016/j.neulet.2023.137292] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 04/20/2023] [Accepted: 05/03/2023] [Indexed: 05/10/2023]
Abstract
Caffeic acid is a polyphenolic compound present in a vast array of dietary components. We previously showed that caffeic acid reduces the burden of brain ischemia joining evidence by others that it can attenuate different brain diseases. However, it is unknown if caffeic acid affects information processing in neuronal networks. Thus, we now used electrophysiological recordings in mouse hippocampal slices to test if caffeic acid directly affected synaptic transmission, plasticity and dysfunction caused by oxygen-glucose deprivation (OGD), an in vitro ischemia model. Caffeic acid (1-10 μM) was devoid of effect on synaptic transmission and paired-pulse facilitation in Schaffer collaterals-CA1 pyramidal synapses. Also, the magnitude of either hippocampal long-term potentiation (LTP) or the subsequent depotentiation were not significantly modified by 10 μM caffeic acid. However, caffeic acid (10 μM) increased the recovery of synaptic transmission upon re-oxygenation following 7 minutes of OGD. Furthermore, caffeic acid (10 μM) also recovered plasticity after OGD, as heralded by the increased magnitude of LTP after exposure. These findings show that caffeic acid does not directly affect synaptic transmission and plasticity but can indirectly affect other cellular targets to correct synaptic dysfunction. Unraveling the molecular mechanisms of action of caffeic acid may allow the design of hitherto unrecognized novel neuroprotective strategies.
Collapse
Affiliation(s)
- Mara Yone D Fernandes
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Portugal; Department of Physiology and Pharmacology, Faculty of Medicine, Center for Research and Drug Development (NPDM), Federal University of Ceará, Fortaleza, Brazil
| | - João Pedro Lopes
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Portugal
| | - Henrique B Silva
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Portugal
| | - Geanne M Andrade
- Department of Physiology and Pharmacology, Faculty of Medicine, Center for Research and Drug Development (NPDM), Federal University of Ceará, Fortaleza, Brazil
| | - Rodrigo A Cunha
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Portugal; Faculty of Medicine, University of Coimbra, Coimbra, Portugal.
| | - Angelo R Tomé
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Portugal; Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
5
|
Castro MFV, Assmann CE, Stefanello N, Reichert KP, Palma TV, da Silva AD, Miron VV, Mostardeiro VB, Morsch VMM, Schetinger MRC. Caffeic acid attenuates neuroinflammation and cognitive impairment in streptozotocin-induced diabetic rats: Pivotal role of the cholinergic and purinergic signaling pathways. J Nutr Biochem 2023; 115:109280. [PMID: 36796549 DOI: 10.1016/j.jnutbio.2023.109280] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 01/30/2023] [Accepted: 02/03/2023] [Indexed: 02/16/2023]
Abstract
The present study evaluated the effect of caffeic acid (CA) on behavioral learning and memory tasks in the diabetic state. We also evaluated the effect of this phenolic acid on the enzymatic activities of acetylcholinesterase, ecto-nucleoside triphosphate diphosphohydrolase, ecto-5-nucleotidase and adenosine deaminase as well as on the density of M1R, α7nAChR, P2×7R, A1R, A2AR, and inflammatory parameters in the cortex and hippocampus of diabetic rats. Diabetes was induced by a single intraperitoneal dose of streptozotocin (55 mg/kg). The animals were divided into six groups: control/vehicle; control/CA 10 and 50 mg/kg; diabetic/vehicle; diabetic/CA 10 and 50 mg/kg, treated by gavage. The results showed that CA improved learning and memory deficits in diabetic rats. Also, CA reversed the increase in acetylcholinesterase and adenosine deaminase activities and reduced ATP and ADP hydrolysis. Moreover, CA increased the density of M1R, α7nAChR, and A1R receptors and reversed the increase in P2×7R and A2AR density in both evaluated structures. In addition, CA treatment attenuated the increase in NLRP3, caspase 1, and interleukin 1β density in the diabetic state; moreover, it increased the density of interleukin-10 in the diabetic/CA 10 mg/kg group. The results indicated that CA treatment positively modified the activities of cholinergic and purinergic enzymes and the density of receptors, and improved the inflammatory parameters of diabetic animals. Thus, the outcomes suggest that this phenolic acid could improve the cognitive deficit linked to cholinergic and purinergic signaling in the diabetic state.
Collapse
Affiliation(s)
- Milagros Fanny Vera Castro
- Post-Graduate Program in Biological Sciences: Toxicological Biochemistry, Center for Natural and Exact Sciences, Federal University of Santa Maria, University Campus, Santa Maria, RS, Brazil.
| | - Charles Elias Assmann
- Post-Graduate Program in Biological Sciences: Toxicological Biochemistry, Center for Natural and Exact Sciences, Federal University of Santa Maria, University Campus, Santa Maria, RS, Brazil
| | - Naiara Stefanello
- Post-Graduate Program in Biological Sciences: Toxicological Biochemistry, Center for Natural and Exact Sciences, Federal University of Santa Maria, University Campus, Santa Maria, RS, Brazil
| | - Karine Paula Reichert
- Post-Graduate Program in Biological Sciences: Toxicological Biochemistry, Center for Natural and Exact Sciences, Federal University of Santa Maria, University Campus, Santa Maria, RS, Brazil
| | - Taís Vidal Palma
- Post-Graduate Program in Biological Sciences: Toxicological Biochemistry, Center for Natural and Exact Sciences, Federal University of Santa Maria, University Campus, Santa Maria, RS, Brazil
| | - Aniélen Dutra da Silva
- Post-Graduate Program in Biological Sciences: Toxicological Biochemistry, Center for Natural and Exact Sciences, Federal University of Santa Maria, University Campus, Santa Maria, RS, Brazil
| | - Vanessa Valéria Miron
- Post-Graduate Program in Biological Sciences: Toxicological Biochemistry, Center for Natural and Exact Sciences, Federal University of Santa Maria, University Campus, Santa Maria, RS, Brazil
| | - Vitor Bastianello Mostardeiro
- Post-Graduate Program in Biological Sciences: Toxicological Biochemistry, Center for Natural and Exact Sciences, Federal University of Santa Maria, University Campus, Santa Maria, RS, Brazil
| | - Vera Maria Melchiors Morsch
- Post-Graduate Program in Biological Sciences: Toxicological Biochemistry, Center for Natural and Exact Sciences, Federal University of Santa Maria, University Campus, Santa Maria, RS, Brazil
| | - Maria Rosa Chitolina Schetinger
- Post-Graduate Program in Biological Sciences: Toxicological Biochemistry, Center for Natural and Exact Sciences, Federal University of Santa Maria, University Campus, Santa Maria, RS, Brazil.
| |
Collapse
|
6
|
Alam M, Ahmed S, Elasbali AM, Adnan M, Alam S, Hassan MI, Pasupuleti VR. Therapeutic Implications of Caffeic Acid in Cancer and Neurological Diseases. Front Oncol 2022; 12:860508. [PMID: 35359383 PMCID: PMC8960963 DOI: 10.3389/fonc.2022.860508] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 02/04/2022] [Indexed: 12/12/2022] Open
Abstract
Caffeic acid (CA) is found abundantly in fruits, vegetables, tea, coffee, oils, and more. CA and its derivatives have been used for many centuries due to their natural healing and medicinal properties. CA possesses various biological and pharmacological activities, including antioxidant, anti-inflammatory, anticancer, and neuroprotective effects. The potential therapeutic effects of CA are mediated via repression and inhibition of transcription and growth factors. CA possesses potential anticancer and neuroprotective effects in human cell cultures and animal models. However, the biomolecular interactions and pathways of CA have been described highlighting the target binding proteins and signaling molecules. The current review focuses on CA's chemical, physical, and pharmacological properties, including antioxidant, anti-inflammatory, anticancer, and neuroprotective effects. We further described CA's characteristics and therapeutic potential and its future directions.
Collapse
Affiliation(s)
- Manzar Alam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Sarfraz Ahmed
- Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | - Abdelbaset Mohamed Elasbali
- Department of Clinical Laboratory Science, College of Applied Sciences-Qurayyat, Jouf University, Sakakah, Saudi Arabia
| | - Mohd Adnan
- Department of Biology, College of Science, University of Hail, Hail, Saudi Arabia
| | - Shoaib Alam
- Department of Biotechnology, Jamia Millia Islamia, New Delhi, India
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Visweswara Rao Pasupuleti
- Department of Biomedical Sciences and Therapeutics, Faculty of Medicine & Health Sciences, University Malaysia Sabah, Kota Kinabalu, Malaysia
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Abdurrab University, Pekanbaru, Indonesia
- Centre for International Collaboration and Research, Reva University, Rukmini Knowledge Park, Kattigenahalli, Bangalore, India
| |
Collapse
|
7
|
Magaña AA, Kamimura N, Soumyanath A, Stevens JF, Maier CS. Caffeoylquinic acids: chemistry, biosynthesis, occurrence, analytical challenges, and bioactivity. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:1299-1319. [PMID: 34171156 PMCID: PMC9084498 DOI: 10.1111/tpj.15390] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 06/15/2021] [Accepted: 06/19/2021] [Indexed: 05/02/2023]
Abstract
Caffeoylquinic acids (CQAs) are specialized plant metabolites we encounter in our daily life. Humans consume CQAs in mg-to-gram quantities through dietary consumption of plant products. CQAs are considered beneficial for human health, mainly due to their anti-inflammatory and antioxidant properties. Recently, new biosynthetic pathways via a peroxidase-type p-coumaric acid 3-hydroxylase enzyme were discovered. More recently, a new GDSL lipase-like enzyme able to transform monoCQAs into diCQA was identified in Ipomoea batatas. CQAs were recently linked to memory improvement; they seem to be strong indirect antioxidants via Nrf2 activation. However, there is a prevalent confusion in the designation and nomenclature of different CQA isomers. Such inconsistencies are critical and complicate bioactivity assessment since different isomers differ in bioactivity and potency. A detailed explanation regarding the origin of such confusion is provided, and a recommendation to unify nomenclature is suggested. Furthermore, for studies on CQA bioactivity, plant-based laboratory animal diets contain CQAs, which makes it difficult to include proper control groups for comparison. Therefore, a synthetic diet free of CQAs is advised to avoid interferences since some CQAs may produce bioactivity even at nanomolar levels. Biotransformation of CQAs by gut microbiota, the discovery of new enzymatic biosynthetic and metabolic pathways, dietary assessment, and assessment of biological properties with potential for drug development are areas of active, ongoing research. This review is focused on the chemistry, biosynthesis, occurrence, analytical challenges, and bioactivity recently reported for mono-, di-, tri-, and tetraCQAs.
Collapse
Affiliation(s)
- Armando Alcázar Magaña
- Department of Chemistry, Oregon State University, Corvallis, OR, USA
- Linus Pauling Institute, Oregon State University, Corvallis, OR, USA
- BENFRA Botanical Dietary Supplements Research Center, Oregon Health and Science University, Portland, OR, USA
| | - Naofumi Kamimura
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata, Japan
| | - Amala Soumyanath
- BENFRA Botanical Dietary Supplements Research Center, Oregon Health and Science University, Portland, OR, USA
- Department of Neurology, Oregon Health and Science University, Portland, OR, USA
| | - Jan F. Stevens
- Linus Pauling Institute, Oregon State University, Corvallis, OR, USA
- BENFRA Botanical Dietary Supplements Research Center, Oregon Health and Science University, Portland, OR, USA
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR, USA
| | - Claudia S. Maier
- Department of Chemistry, Oregon State University, Corvallis, OR, USA
- Linus Pauling Institute, Oregon State University, Corvallis, OR, USA
- BENFRA Botanical Dietary Supplements Research Center, Oregon Health and Science University, Portland, OR, USA
| |
Collapse
|
8
|
Yan M, Zhang S, Li C, Liu Y, Zhao J, Wang Y, Yang Y, Zhang L. 5-Lipoxygenase as an emerging target against age-related brain disorders. Ageing Res Rev 2021; 69:101359. [PMID: 33984528 DOI: 10.1016/j.arr.2021.101359] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 03/30/2021] [Accepted: 05/07/2021] [Indexed: 12/15/2022]
Abstract
Neuroinflammation is a common feature of age-related brain disorders including Alzheimer's disease (AD), Parkinson's disease (PD) and cerebral ischemia. 5-lipoxygenase (5-LOX), a proinflammatory enzyme, modulates inflammation by generating leukotrienes. Abnormal activation of 5-LOX and excessive production of leukotrienes have been detected in the development of age-related brain pathology. In this review, we provide an update on the current understanding of 5-LOX activation and several groups of functionally related inhibitors. In addition, the modulatory roles of 5-LOX in the pathogenesis and progression of the age-related brain disorders have been comprehensively highlighted and discussed. Inhibition of 5-LOX activation may represent a promising therapeutic strategy for AD, PD and cerebral ischemia.
Collapse
|
9
|
Fernandes MYD, Dobrachinski F, Silva HB, Lopes JP, Gonçalves FQ, Soares FAA, Porciúncula LO, Andrade GM, Cunha RA, Tomé AR. Neuromodulation and neuroprotective effects of chlorogenic acids in excitatory synapses of mouse hippocampal slices. Sci Rep 2021; 11:10488. [PMID: 34006978 PMCID: PMC8131611 DOI: 10.1038/s41598-021-89964-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/28/2021] [Indexed: 12/04/2022] Open
Abstract
The increased healthspan afforded by coffee intake provides novel opportunities to identify new therapeutic strategies. Caffeine has been proposed to afford benefits through adenosine A2A receptors, which can control synaptic dysfunction underlying some brain disease. However, decaffeinated coffee and other main components of coffee such as chlorogenic acids, also attenuate brain dysfunction, although it is unknown if they control synaptic function. We now used electrophysiological recordings in mouse hippocampal slices to test if realistic concentrations of chlorogenic acids directly affect synaptic transmission and plasticity. 3-(3,4-dihydroxycinnamoyl)quinic acid (CA, 1-10 μM) and 5-O-(trans-3,4-dihydroxycinnamoyl)-D-quinic acid (NCA, 1-10 μM) were devoid of effect on synaptic transmission, paired-pulse facilitation or long-term potentiation (LTP) and long-term depression (LTD) in Schaffer collaterals-CA1 pyramidal synapses. However, CA and NCA increased the recovery of synaptic transmission upon re-oxygenation following 7 min of oxygen/glucose deprivation, an in vitro ischemia model. Also, CA and NCA attenuated the shift of LTD into LTP observed in hippocampal slices from animals with hippocampal-dependent memory deterioration after exposure to β-amyloid 1-42 (2 nmol, icv), in the context of Alzheimer's disease. These findings show that chlorogenic acids do not directly affect synaptic transmission and plasticity but can indirectly affect other cellular targets to correct synaptic dysfunction. Unraveling the molecular mechanisms of action of chlorogenic acids will allow the design of hitherto unrecognized novel neuroprotective strategies.
Collapse
Affiliation(s)
- Mara Yone D Fernandes
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Department of Physiology and Pharmacology, Faculty of Medicine, Center for Research and Drug Development (NPDM), Federal University of Ceará, Fortaleza, Brazil
| | - Fernando Dobrachinski
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Centro de Ciências Naturais E Exatas, Departamento de Bioquímica E Biologia Molecular, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Henrique B Silva
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - João Pedro Lopes
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Francisco Q Gonçalves
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Felix A A Soares
- Centro de Ciências Naturais E Exatas, Departamento de Bioquímica E Biologia Molecular, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Lisiane O Porciúncula
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Geanne M Andrade
- Department of Physiology and Pharmacology, Faculty of Medicine, Center for Research and Drug Development (NPDM), Federal University of Ceará, Fortaleza, Brazil
| | - Rodrigo A Cunha
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal.
| | - Angelo R Tomé
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
10
|
Xu H, Wang E, Chen F, Xiao J, Wang M. Neuroprotective Phytochemicals in Experimental Ischemic Stroke: Mechanisms and Potential Clinical Applications. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6687386. [PMID: 34007405 PMCID: PMC8102108 DOI: 10.1155/2021/6687386] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/10/2021] [Accepted: 03/29/2021] [Indexed: 02/06/2023]
Abstract
Ischemic stroke is a challenging disease with high mortality and disability rates, causing a great economic and social burden worldwide. During ischemic stroke, ionic imbalance and excitotoxicity, oxidative stress, and inflammation are developed in a relatively certain order, which then activate the cell death pathways directly or indirectly via the promotion of organelle dysfunction. Neuroprotection, a therapy that is aimed at inhibiting this damaging cascade, is therefore an important therapeutic strategy for ischemic stroke. Notably, phytochemicals showed great neuroprotective potential in preclinical research via various strategies including modulation of calcium levels and antiexcitotoxicity, antioxidation, anti-inflammation and BBB protection, mitochondrial protection and antiapoptosis, autophagy/mitophagy regulation, and regulation of neurotrophin release. In this review, we summarize the research works that report the neuroprotective activity of phytochemicals in the past 10 years and discuss the neuroprotective mechanisms and potential clinical applications of 148 phytochemicals that belong to the categories of flavonoids, stilbenoids, other phenols, terpenoids, and alkaloids. Among them, scutellarin, pinocembrin, puerarin, hydroxysafflor yellow A, salvianolic acids, rosmarinic acid, borneol, bilobalide, ginkgolides, ginsenoside Rd, and vinpocetine show great potential in clinical ischemic stroke treatment. This review will serve as a powerful reference for the screening of phytochemicals with potential clinical applications in ischemic stroke or the synthesis of new neuroprotective agents that take phytochemicals as leading compounds.
Collapse
Affiliation(s)
- Hui Xu
- Institute for Advanced Study, Shenzhen University, Shenzhen 508060, China
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | | | - Feng Chen
- Institute for Advanced Study, Shenzhen University, Shenzhen 508060, China
| | - Jianbo Xiao
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
| | - Mingfu Wang
- Institute for Advanced Study, Shenzhen University, Shenzhen 508060, China
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| |
Collapse
|
11
|
Castro MFV, Stefanello N, Assmann CE, Baldissarelli J, Bagatini MD, da Silva AD, da Costa P, Borba L, da Cruz IBM, Morsch VM, Schetinger MRC. Modulatory effects of caffeic acid on purinergic and cholinergic systems and oxi-inflammatory parameters of streptozotocin-induced diabetic rats. Life Sci 2021; 277:119421. [PMID: 33785337 DOI: 10.1016/j.lfs.2021.119421] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 03/15/2021] [Accepted: 03/23/2021] [Indexed: 12/20/2022]
Abstract
Diabetes mellitus (DM) is a metabolic disorder characterized by a chronic hyperglycemia state, increased oxidative stress parameters, and inflammatory processes. AIMS To evaluate the effect of caffeic acid (CA) on ecto-nucleoside triphosphate diphosphohydrolase (E-NTPDase) and adenosine deaminase (ADA) enzymatic activity and expression of the A2A receptor of the purinergic system, acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) enzymatic activity and expression of the α7nAChR receptor of the cholinergic system as well as inflammatory and oxidative parameters in diabetic rats. METHODS Diabetes was induced by a single dose intraperitoneally of streptozotocin (STZ, 55 mg/kg). Animals were divided into six groups (n = 10): control/oil; control/CA 10 mg/kg; control/CA 50 mg/kg; diabetic/oil; diabetic/CA 10 mg/kg; and diabetic/CA 50 mg/kg treated for thirty days by gavage. RESULTS CA treatment reduced ATP and ADP hydrolysis (lymphocytes) and ATP levels (serum), and reversed the increase in ADA and AChE (lymphocytes), BuChE (serum), and myeloperoxidase (MPO, plasma) activities in diabetic rats. CA treatment did not attenuate the increase in IL-1β and IL-6 gene expression (lymphocytes) in the diabetic state; however, it increased IL-10 and A2A gene expression, regardless of the animals' condition (healthy or diabetic), and α7nAChR gene expression. Additionally, CA attenuated the increase in oxidative stress markers and reversed the decrease in antioxidant parameters of diabetic animals. CONCLUSION Overall, our findings indicated that CA treatment positively modulated purinergic and cholinergic enzyme activities and receptor expression, and improved oxi-inflammatory parameters, thus suggesting that this phenolic acid could improve redox homeostasis dysregulation and purinergic and cholinergic signaling in the diabetic state.
Collapse
Affiliation(s)
- Milagros Fanny Vera Castro
- Post-Graduate Program in Biological Sciences: Toxicological Biochemistry, Center for Natural and Exact Sciences, Federal University of Santa Maria, University Campus, Camobi District, 97105-900 Santa Maria, RS, Brazil.
| | - Naiara Stefanello
- Post-Graduate Program in Biological Sciences: Toxicological Biochemistry, Center for Natural and Exact Sciences, Federal University of Santa Maria, University Campus, Camobi District, 97105-900 Santa Maria, RS, Brazil
| | - Charles Elias Assmann
- Post-Graduate Program in Biological Sciences: Toxicological Biochemistry, Center for Natural and Exact Sciences, Federal University of Santa Maria, University Campus, Camobi District, 97105-900 Santa Maria, RS, Brazil
| | - Jucimara Baldissarelli
- Post-Graduate Program in Biological Sciences: Toxicological Biochemistry, Center for Natural and Exact Sciences, Federal University of Santa Maria, University Campus, Camobi District, 97105-900 Santa Maria, RS, Brazil
| | - Margarete Dulce Bagatini
- Post-Graduate Program in Biological Sciences: Toxicological Biochemistry, Center for Natural and Exact Sciences, Federal University of Santa Maria, University Campus, Camobi District, 97105-900 Santa Maria, RS, Brazil
| | - Aniélen Dutra da Silva
- Post-Graduate Program in Biological Sciences: Toxicological Biochemistry, Center for Natural and Exact Sciences, Federal University of Santa Maria, University Campus, Camobi District, 97105-900 Santa Maria, RS, Brazil
| | - Pauline da Costa
- Post-Graduate Program in Biological Sciences: Toxicological Biochemistry, Center for Natural and Exact Sciences, Federal University of Santa Maria, University Campus, Camobi District, 97105-900 Santa Maria, RS, Brazil
| | - Loren Borba
- Post-Graduate Program in Biological Sciences: Toxicological Biochemistry, Center for Natural and Exact Sciences, Federal University of Santa Maria, University Campus, Camobi District, 97105-900 Santa Maria, RS, Brazil
| | - Ivana Beatrice Mânica da Cruz
- Post-Graduate Program in Pharmacology, Center of Health Sciences, Federal University of Santa Maria, University Campus, Camobi District, 97105-900 Santa Maria, RS, Brazil
| | - Vera Maria Morsch
- Post-Graduate Program in Biological Sciences: Toxicological Biochemistry, Center for Natural and Exact Sciences, Federal University of Santa Maria, University Campus, Camobi District, 97105-900 Santa Maria, RS, Brazil
| | - Maria Rosa Chitolina Schetinger
- Post-Graduate Program in Biological Sciences: Toxicological Biochemistry, Center for Natural and Exact Sciences, Federal University of Santa Maria, University Campus, Camobi District, 97105-900 Santa Maria, RS, Brazil.
| |
Collapse
|
12
|
Neuroprotective Effects of Coffee Bioactive Compounds: A Review. Int J Mol Sci 2020; 22:ijms22010107. [PMID: 33374338 PMCID: PMC7795778 DOI: 10.3390/ijms22010107] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/18/2020] [Accepted: 12/22/2020] [Indexed: 02/06/2023] Open
Abstract
Coffee is one of the most widely consumed beverages worldwide. It is usually identified as a stimulant because of a high content of caffeine. However, caffeine is not the only coffee bioactive component. The coffee beverage is in fact a mixture of a number of bioactive compounds such as polyphenols, especially chlorogenic acids (in green beans) and caffeic acid (in roasted coffee beans), alkaloids (caffeine and trigonelline), and the diterpenes (cafestol and kahweol). Extensive research shows that coffee consumption appears to have beneficial effects on human health. Regular coffee intake may protect from many chronic disorders, including cardiovascular disease, type 2 diabetes, obesity, and some types of cancer. Importantly, coffee consumption seems to be also correlated with a decreased risk of developing some neurodegenerative conditions such as Alzheimer's disease, Parkinson's disease, and dementia. Regular coffee intake may also reduce the risk of stroke. The mechanism underlying these effects is, however, still poorly understood. This review summarizes the current knowledge on the neuroprotective potential of the main bioactive coffee components, i.e., caffeine, chlorogenic acid, caffeic acid, trigonelline, kahweol, and cafestol. Data from both in vitro and in vivo preclinical experiments, including their potential therapeutic applications, are reviewed and discussed. Epidemiological studies and clinical reports on this matter are also described. Moreover, potential molecular mechanism(s) by which coffee bioactive components may provide neuroprotection are reviewed.
Collapse
|
13
|
Asgharian S, Hojjati MR, Ahrari M, Bijad E, Deris F, Lorigooini Z. Ruta graveolens and rutin, as its major compound: investigating their effect on spatial memory and passive avoidance memory in rats. PHARMACEUTICAL BIOLOGY 2020; 58:447-453. [PMID: 32432948 PMCID: PMC7301720 DOI: 10.1080/13880209.2020.1762669] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 04/22/2020] [Accepted: 04/24/2020] [Indexed: 05/03/2023]
Abstract
Context: There are numerous pharmacological activities for Ruta graveolens and its bioactive constituent, rutin, on learning and memory.Objective: This study aimed to examine the effect of R. graveolens and rutin on memory in rats.Materials and methods: In this study animals were treated with the hydroalcholic extract of R. graveolens and rutin by IP injection for 10 days. Behavioural and biochemical tests as well as HPLC analysis and antioxidant activity of extract have been evaluated.Results: R. graveolens extract and rutin significantly increased learning and improved spatial memory, as well as secondary latency; moreover, there were significant increases in the serum and brain antioxidant capacity as well as the level of TBARS in serum and brain tissues. Results also showed that R. graveolens has significant DPPH radical scavenging effect (IC50: 159.17 ± 1.56 μg/mL). The HPLC analysis of extract showed that caffeic acid (19.92 ± 0.01), rutin (40.15 ± 0.01), and apigenin (0.84 ± 0.01) mg/g of dry extract are the main components of the extract.Discussion and conclusion: Regarding the effects of R. graveolens extract and rutin on animal brain cells, memory function, and learning, additional studies, including clinical trials, might be beneficial in producing natural supplementary drugs from this herb.
Collapse
Affiliation(s)
- Shirin Asgharian
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mohammad Reza Hojjati
- Department of Physiology, Medical Faculty, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mohsen Ahrari
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Elham Bijad
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Fatemeh Deris
- Department of Epidemiology and Biostatistics, School of Health, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Zahra Lorigooini
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
14
|
Huang Y, Zheng H, Tan K, Sun X, Ye J, Zhang Y. Circulating metabolomics profiling reveals novel pathways associated with cognitive decline in patients with hypertension. Ther Adv Neurol Disord 2020; 13:1756286420947973. [PMID: 32952614 PMCID: PMC7476355 DOI: 10.1177/1756286420947973] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 07/16/2020] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Hypertension is a significant risk factor for cardiovascular disease, and it is associated with dementia, including Alzheimer's disease (AD). Although it may be correlated with AD in terms of symptoms, the link between hypertension and AD pathological biomarkers, and the potential underlying mechanism of hypertension with cognitive decline, are still not well understood. METHODS The Mini-Mental State Examination (MMSE) scores were used to evaluate cognitive function. Enzyme-linked immunosorbent assays were used to examine plasma amyloid-beta (Aβ)40, Aβ42, and tau concentration in hypertensive patients. Metabolomics and metagenomics were performed to identify the significantly changed circulating metabolites and microbiota between healthy individuals and hypertensive patients. Pearson's correlation was used to examine the association between cognitive indicators and differential metabolites. RESULTS We found significantly decreased MMSE scores, elevated plasma Aβ40, and decreased Aβ42/Aβ40 ratio in hypertensive patients, which are critically associated with AD pathology. Based on metabolomics, we found that significantly altered metabolites in the plasma of hypertensive patients were enriched in the benzoate degradation and phenylpropanoid biosynthesis pathways, and they were also correlated with changes in MMSE scores and Aβ42/Aβ40 ratio. In addition, metabolomics signaling pathway analysis suggested that microbial metabolism was altered in hypertensive patients. We also identified altered blood microbiota in hypertensive patients compared with the controls. CONCLUSIONS Our study provides a novel metabolic and microbial mechanism, which may underlie the cognitive impairment in hypertensive patients.
Collapse
Affiliation(s)
- Yuli Huang
- Department of Cardiology, Shunde Hospital, Southern Medical University (The First People’s Hospital of Shunde Foshan), Foshan, China
| | - Haoxiao Zheng
- Department of Cardiology, Shunde Hospital, Southern Medical University (The First People’s Hospital of Shunde Foshan), Foshan, China
| | - Kuan Tan
- Department of Cardiology, Shunde Hospital, Southern Medical University (The First People’s Hospital of Shunde Foshan), Foshan, China
| | - Xiangdong Sun
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| | - Jinshao Ye
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 510632, China
| | - Yunlong Zhang
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Panyu District, Xinzao, Guangzhou, 510260, China
| |
Collapse
|
15
|
Medicinal Plant Polyphenols Attenuate Oxidative Stress and Improve Inflammatory and Vasoactive Markers in Cerebral Endothelial Cells during Hyperglycemic Condition. Antioxidants (Basel) 2020; 9:antiox9070573. [PMID: 32630636 PMCID: PMC7402133 DOI: 10.3390/antiox9070573] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/25/2020] [Accepted: 06/30/2020] [Indexed: 02/07/2023] Open
Abstract
Blood-brain barrier endothelial cells are the main targets of diabetes-related hyperglycemia that alters endothelial functions and brain homeostasis. Hyperglycemia-mediated oxidative stress may play a causal role. This study evaluated the protective effects of characterized polyphenol-rich medicinal plant extracts on redox, inflammatory and vasoactive markers on murine bEnd3 cerebral endothelial cells exposed to high glucose concentration. The results show that hyperglycemic condition promoted oxidative stress through increased reactive oxygen species (ROS) levels, deregulated antioxidant superoxide dismutase (SOD) activity, and altered expression of genes encoding Cu/ZnSOD, MnSOD, catalase, glutathione peroxidase (GPx), heme oxygenase-1 (HO-1), NADPH oxidase 4 (Nox4), and nuclear factor erythroid 2-related factor 2 (Nrf2) redox factors. Cell preconditioning with inhibitors of signaling pathways highlights a causal role of nuclear factor kappa B (NFκB), while a protective action of AMP-activated protein kinase (AMPK) on redox changes. The hyperglycemic condition induced a pro-inflammatory response by elevating NFκB gene expression and interleukin-6 (IL-6) secretion, and deregulated the production of endothelin-1 (ET-1), endothelial nitric oxide synthase (eNOS), and nitric oxide (NO) vasoactive markers. Importantly, polyphenolic extracts from Antirhea borbonica, Ayapana triplinervis, Dodonaea viscosa, and Terminalia bentzoe French medicinal plants, counteracted high glucose deleterious effects by exhibiting antioxidant and anti-inflammatory properties. In an innovative way, quercetin, caffeic, chlorogenic and gallic acids identified as predominant plant polyphenols, and six related circulating metabolites were found to exert similar benefits. Collectively, these findings demonstrate polyphenol protective action on cerebral endothelial cells during hyperglycemic condition.
Collapse
|
16
|
Arcambal A, Taïlé J, Couret D, Planesse C, Veeren B, Diotel N, Gauvin-Bialecki A, Meilhac O, Gonthier MP. Protective Effects of Antioxidant Polyphenols against Hyperglycemia-Mediated Alterations in Cerebral Endothelial Cells and a Mouse Stroke Model. Mol Nutr Food Res 2020; 64:e1900779. [PMID: 32447828 DOI: 10.1002/mnfr.201900779] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 03/08/2020] [Indexed: 12/15/2022]
Abstract
SCOPE Hyperglycemia alters cerebral endothelial cell and blood-brain barrier functions, aggravating cerebrovascular complications such as stroke during diabetes. Redox and inflammatory changes play a causal role. This study evaluates polyphenol protective effects in cerebral endothelial cells and a mouse stroke model during hyperglycemia. METHODS AND RESULTS Murine bEnd.3 cerebral endothelial cells and a mouse stroke model are exposed to a characterized, polyphenol-rich extract of Antirhea borbonica or its predominant constituent caffeic acid, during hyperglycemia. Polyphenol effects on redox, inflammatory and vasoactive markers, infarct volume, and hemorrhagic transformation are determined. In vitro, polyphenols improve reactive oxygen species levels, Cu/Zn superoxide dismutase activity, and both NAPDH oxidase 4 and nuclear factor erythroid 2-related factor 2 (Nrf2) gene expression deregulated by high glucose. Polyphenols reduce Nrf2 nuclear translocation and counteract nuclear factor-ĸappa B activation, interleukin-6 secretion, and the altered production of vasoactive markers mediated by high glucose. In vivo, polyphenols reduce cerebral infarct volume and hemorrhagic transformation aggravated by hyperglycemia. Polyphenols attenuate redox changes, increase vascular endothelial-Cadherin production, and decrease neuro-inflammation in the infarcted hemisphere. CONCLUSION Polyphenols protect against hyperglycemia-mediated alterations in cerebral endothelial cells and a mouse stroke model. It is relevant to assess polyphenol benefits to improve cerebrovascular damages during diabetes.
Collapse
Affiliation(s)
- Angélique Arcambal
- Université de La Réunion, INSERM, UMR 1188 Diabète athérothrombose, Thérapies Réunion Océan Indien (DéTROI), Saint-Denis, La Réunion, 97490, France
| | - Janice Taïlé
- Université de La Réunion, INSERM, UMR 1188 Diabète athérothrombose, Thérapies Réunion Océan Indien (DéTROI), Saint-Denis, La Réunion, 97490, France
| | - David Couret
- Université de La Réunion, INSERM, UMR 1188 Diabète athérothrombose, Thérapies Réunion Océan Indien (DéTROI), Saint-Denis, La Réunion, 97490, France.,CHU de La Réunion, Saint-Pierre, La Réunion, 97410, France
| | - Cynthia Planesse
- Université de La Réunion, INSERM, UMR 1188 Diabète athérothrombose, Thérapies Réunion Océan Indien (DéTROI), Saint-Denis, La Réunion, 97490, France
| | - Bryan Veeren
- Université de La Réunion, INSERM, UMR 1188 Diabète athérothrombose, Thérapies Réunion Océan Indien (DéTROI), Saint-Denis, La Réunion, 97490, France
| | - Nicolas Diotel
- Université de La Réunion, INSERM, UMR 1188 Diabète athérothrombose, Thérapies Réunion Océan Indien (DéTROI), Saint-Denis, La Réunion, 97490, France
| | - Anne Gauvin-Bialecki
- Université de La Réunion, EA 2212 Laboratoire de Chimie des Substances Naturelles et des Sciences des Aliments (LCSNSA), Saint-Denis, La Réunion, 97490, France
| | - Olivier Meilhac
- Université de La Réunion, INSERM, UMR 1188 Diabète athérothrombose, Thérapies Réunion Océan Indien (DéTROI), Saint-Denis, La Réunion, 97490, France.,CHU de La Réunion, Saint-Pierre, La Réunion, 97410, France
| | - Marie-Paule Gonthier
- Université de La Réunion, INSERM, UMR 1188 Diabète athérothrombose, Thérapies Réunion Océan Indien (DéTROI), Saint-Denis, La Réunion, 97490, France
| |
Collapse
|
17
|
The Presence of Caffeic Acid in Cerebrospinal Fluid: Evidence That Dietary Polyphenols Can Cross the Blood-Brain Barrier in Humans. Nutrients 2020; 12:nu12051531. [PMID: 32466115 PMCID: PMC7284697 DOI: 10.3390/nu12051531] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 05/16/2020] [Accepted: 05/19/2020] [Indexed: 01/03/2023] Open
Abstract
Epidemiological data indicate that a diet rich in plant polyphenols has a positive effect on brain functions, improving memory and cognition in humans. Direct activity of ingested phenolics on brain neurons may be one of plausible mechanisms explaining these data. This also suggests that some phenolics can cross the blood-brain barrier and be present in the brain or cerebrospinal fluid. We measured 12 phenolics (a combination of the solid-phase extraction technique with high-performance liquid chromatography) in cerebrospinal fluid and matched plasma samples from 28 patients undergoing diagnostic lumbar puncture due to neurological disorders. Homovanillic acid, 3-hydroxyphenyl acetic acid and caffeic acid were detectable in cerebrospinal fluid reaching concentrations (median; interquartile range) 0.18; 0.14 µmol/L, 4.35; 7.36 µmol/L and 0.02; 0.01 µmol/L, respectively. Plasma concentrations of caffeic acid (0.03; 0.01 µmol/L) did not correlate with those in cerebrospinal fluid (ρ = −0.109, p = 0.58). Because food (fruits and vegetables) is the only source of caffeic acid in human body fluids, our results indicate that the same dietary phenolics can cross blood-brain barrier in humans, and that transportation of caffeic acid through this barrier is not the result of simple or facilitated diffusion.
Collapse
|
18
|
Rashmi HB, Negi PS. Phenolic acids from vegetables: A review on processing stability and health benefits. Food Res Int 2020; 136:109298. [PMID: 32846511 DOI: 10.1016/j.foodres.2020.109298] [Citation(s) in RCA: 182] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 04/22/2020] [Accepted: 05/04/2020] [Indexed: 01/14/2023]
Abstract
Phenolic acids are the most prominent group of bioactive compounds present in various plant sources. Hydroxybenzoic acids and hydroxycinnamic acids, the aromatic secondary metabolites imparting typical organoleptic characteristics to food are the major phenolic acids, and they are linked to several health benefits. Fruit and beverage crops being the richer sources of phenolic acids have been studied in depth, but phenolic acids from vegetables are largely overlooked. Though lesser in quantity in many vegetables, there is a need to explore the health benefits of the phenolic acids present in them. In this review, the importance of vegetables as a significant source of phenolic acids is emphasized. Vegetables being easily accessible throughout the year and consumed in larger quantities compared to fruits in our daily diet will probably contribute to significant health benefits. Since vegetables are often processed before consumption, the changes in phenolic acids as influenced by processing methods are highlighted. Best processing methods, pre-treatments and storage conditions for higher retention of phenolic acids have been highlighted to minimize their losses. The phenolic acids in vegetables and their health benefits have been cluster mapped, which may facilitate further research for nutraceutical development for specific health concerns. The processing stability of phenolic acids coupled with higher consumption indicates that they may be a potential source of phenolic acids in the diet. It is expected that the popularization of vegetables as a source of phenolic acids in daily diet will help in ameliorating the adverse effect of some of the lifestyle diseases.
Collapse
Affiliation(s)
- Havalli Bommegowda Rashmi
- Department of Fruit and Vegetable Technology, CSIR-Central Food Technological Research Institute, Mysore 570 020, India
| | - Pradeep Singh Negi
- Department of Fruit and Vegetable Technology, CSIR-Central Food Technological Research Institute, Mysore 570 020, India.
| |
Collapse
|
19
|
Coman V, Vodnar DC. Hydroxycinnamic acids and human health: recent advances. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:483-499. [PMID: 31472019 DOI: 10.1002/jsfa.10010] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 07/25/2019] [Accepted: 08/27/2019] [Indexed: 05/15/2023]
Abstract
There is an urgent need to improve human diet globally. Compelling evidence gathered over the past several decades suggests that a suboptimal diet is associated with many chronic diseases and may be responsible for more deaths than any other risks worldwide. The main components in our diet that need higher intake are whole grains, fruit and vegetables, and nuts and seeds; all of these are important sources of dietary fiber and polyphenols. The health benefits of dietary fiber and polyphenols are also supported by several decades of valuable research. However, the conclusions drawn from interventional human trials are not straightforward and the action mechanisms in improving human health are not fully understood. Moreover, there is a great inter-individual variation caused by different individual capabilities of processing, absorbing and using these compounds effectively. Data on the bioavailability and bioefficacy of hydroxycinnamic acids (HCAs) are limited when compared to other classes of polyphenols (e.g. anthocyanins). This review aims to summarize the latest research advances related to HCA bioavailability and their biological effects revealed by epidemiological data, pre-clinical and clinical studies. Moreover, we aim to review the effects of HCAs on gut microbiota diversity and function and its respective influence on host health. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Vasile Coman
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
| | - Dan C Vodnar
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
| |
Collapse
|
20
|
Zhang Y, Wu Q, Zhang L, Wang Q, Yang Z, Liu J, Feng L. Caffeic acid reduces A53T α-synuclein by activating JNK/Bcl-2-mediated autophagy in vitro and improves behaviour and protects dopaminergic neurons in a mouse model of Parkinson's disease. Pharmacol Res 2019; 150:104538. [PMID: 31707034 DOI: 10.1016/j.phrs.2019.104538] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/30/2019] [Accepted: 11/05/2019] [Indexed: 01/08/2023]
Abstract
The human A53T mutant of α-synuclein tends to aggregate and leads to neurotoxicity in familial Parkinson's disease (PD). The aggregation of α-synuclein is also found in sporadic PD. Thus, targeting α-synuclein clearance could be used as a drug-discovery strategy for PD treatment. Caffeic acid (CA) has shown neuroprotection in Alzheimer's disease or cerebral ischaemia; however, it is unclear whether CA confers neuroprotection in α-synuclein-induced PD models. Here we focus on whether and how A53T α-synuclein is affected by CA. We assessed the effect of CA on cell viability in SH-SY5Y cells overexpressing A53T α-synuclein. Pathway-related inhibitors were used to identify the autophagy mechanisms. Seven-month-old A53T α-synuclein transgenic mice (A53T Tg mice) received CA daily for eight consecutive weeks. Behaviour tests including the buried food pellet test, the pole test, the Rotarod test, open field analysis, and gait analysis were used to evaluate the neuroprotective effect of CA. Tyrosine hydroxylase and α-synuclein were assessed by immunohistochemistry or western blot in the substantia nigra (SN). We found that CA alleviated the cell damage induced by overexpressing A53T α-synuclein and that CA reduced A53T α-synuclein by activating the JNK/Bcl-2-mediated autophagy pathway. The efficacy of CA on A53T α-synuclein degradation was reversed by the autophagy inhibitor bafilomycin A1 and the JNK inhibitor SP600125. In A53T Tg mice, CA improved behavioural impairments, attenuated loss of dopaminergic neurons, enhanced autophagy and reduced α-synuclein in the SN. Thus, the results provide scientific evidence for the neuroprotective effect of CA in PD. Our work lays the foundation for CA clinical trials to treat PD in the future.
Collapse
Affiliation(s)
- Yu Zhang
- CAS Key Laboratory of Receptor Research, Department of Neuropharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China; School of Pharmacy, University of Chinese Academy of Sciences, No.19A Yuquan road, Beijing, 100049, China
| | - Qimei Wu
- CAS Key Laboratory of Receptor Research, Department of Neuropharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China; School of Pharmacy, University of Chinese Academy of Sciences, No.19A Yuquan road, Beijing, 100049, China
| | - Lei Zhang
- CAS Key Laboratory of Receptor Research, Department of Neuropharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China; School of Pharmacy, University of Chinese Academy of Sciences, No.19A Yuquan road, Beijing, 100049, China
| | - Qing Wang
- CAS Key Laboratory of Receptor Research, Department of Neuropharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China; School of Pharmacy, University of Chinese Academy of Sciences, No.19A Yuquan road, Beijing, 100049, China
| | - Zexian Yang
- CAS Key Laboratory of Receptor Research, Department of Neuropharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China; School of Pharmacy, University of Chinese Academy of Sciences, No.19A Yuquan road, Beijing, 100049, China
| | - Jia Liu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China
| | - Linyin Feng
- CAS Key Laboratory of Receptor Research, Department of Neuropharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China; School of Pharmacy, University of Chinese Academy of Sciences, No.19A Yuquan road, Beijing, 100049, China.
| |
Collapse
|
21
|
Wang L, Wang R, Chen Z, Zhao H, Luo Y. Xinnao Shutong Modulates the Neuronal Plasticity Through Regulation of Microglia/Macrophage Polarization Following Chronic Cerebral Hypoperfusion in Rats. Front Physiol 2018; 9:529. [PMID: 29867570 PMCID: PMC5962670 DOI: 10.3389/fphys.2018.00529] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 04/24/2018] [Indexed: 01/17/2023] Open
Abstract
Xinnao shutong (XNST) capsules have been clinically used in China to treat cerebrovascular diseases. Previous studies have demonstrated that XNST has significant neuroprotective effects against acute cerebral ischemic stroke. The present study investigated the effects and mechanisms of XNST treatment following chronic cerebral hypoperfusion. Thirty-six adult male Sprague-Dawley rats were treated with XNST or vehicle following permanent bilateral common carotid artery (BCCA) ligation. Body weight was recorded on days 0, 3, 7, 14, 28, and 42 post-surgery. The Morris water maze (MWM) test was used to assess cognitive function in rats. Immunofluorescent staining and western blot were used to assess the severity of neuronal plasticity, white matter injury, and the numbers and/or phenotypic changes incurred to microglia. Protein levels of p-AKT (Thr308) and p-ERK (Thr202/Tyr204) were detected 42 days after BCCA ligation was performed. The results indicate that XNST treatment significantly reduced escape latency, decreased the frequency of platform crossing compared to the vehicle group. Synaptophysin, protein levels improved and white matter injury ameliorated following XNST treatment. Meanwhile, XNST reduced the number of M1 microglia and increased the number of M2 microglia. Furthermore, p-AKT (Thr308) and p-ERK (Thr202/Tyr204) levels were increased 42 days following BCCA ligation. In summary, our results suggest that XNST mitigates memory impairments by restoration of neuronal plasticity and by modulation of microglial polarization following chronic cerebral hypoperfusion in rats.
Collapse
Affiliation(s)
- Liye Wang
- Cerebrovascular Diseases Research Institute, Xuanwu Hospital, Capital Medical University, Beijing, China.,Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Rongliang Wang
- Cerebrovascular Diseases Research Institute, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Zhigang Chen
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Haiping Zhao
- Cerebrovascular Diseases Research Institute, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yumin Luo
- Cerebrovascular Diseases Research Institute, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
22
|
Gray NE, Alcazar Magana A, Lak P, Wright KM, Quinn J, Stevens JF, Maier CS, Soumyanath A. Centella asiatica - Phytochemistry and mechanisms of neuroprotection and cognitive enhancement. PHYTOCHEMISTRY REVIEWS : PROCEEDINGS OF THE PHYTOCHEMICAL SOCIETY OF EUROPE 2018; 17:161-194. [PMID: 31736679 PMCID: PMC6857646 DOI: 10.1007/s11101-017-9528-y] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 08/17/2017] [Indexed: 05/18/2023]
Abstract
This review describes in detail the phytochemistry and neurological effects of the medicinal herb Centella asiatica (L.) Urban. C. asiatica is a small perennial plant that grows in moist, tropical and sub-tropical regions throughout the world. Phytochemicals identified from C. asiatica to date include isoprenoids (sesquiterpenes, plant sterols, pentacyclic triterpenoids and saponins) and phenylpropanoid derivatives (eugenol derivatives, caffeoylquinic acids, and flavonoids). Contemporary methods for fingerprinting and characterization of compounds in C. asiatica extracts include liquid chromatography and/or ion mobility spectrometry in conjunction with high-resolution mass spectrometry. Multiple studies in rodent models, and a limited number of human studies support C. asiatica's traditional reputation as a cognitive enhancer, as well as its anxiolytic and anticonvulsant effects. Neuroprotective effects of C.asiatica are seen in several in vitro models, for example against beta amyloid toxicity, and appear to be associated with increased mitochondrial activity, improved antioxidant status, and/or inhibition of the pro-inflammatory enzyme, phospholipase A2. Neurotropic effects of C. asiatica include increased dendritic arborization and synaptogenesis, and may be due to modulations of signal transduction pathways such as ERK1/2 and Akt. Many of these neurotropic and neuroprotective properties of C.asiatica have been associated with the triterpene compounds asiatic acid, asiaticoside and madecassoside. More recently, caffeoylquinic acids are emerging as a second important group of active compounds in C. asiatica, with the potential of enhancing the Nrf2-antioxidant response pathway. The absorption, distribution, metabolism and excretion of the triterpenes, caffeoylquinic acids and flavonoids found in C. asiatica have been studied in humans and animal models, and the compounds or their metabolites found in the brain. This review highlights the remarkable potential for C. asiatica extracts and derivatives to be used in the treatment of neurological conditions, and considers the further research needed to actualize this possibility.
Collapse
Affiliation(s)
- Nora E. Gray
- Department of Neurology, Oregon Health and Science University, Portland, Oregon 97239
| | | | - Parnian Lak
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331
| | - Kirsten M. Wright
- Department of Neurology, Oregon Health and Science University, Portland, Oregon 97239
| | - Joseph Quinn
- Department of Neurology, Oregon Health and Science University, Portland, Oregon 97239
- Department of Neurology and Parkinson’s Disease Research Education and Clinical Care Center (PADRECC),
Portland Veterans Affairs Medical Center, Portland, OR, USA 97239
| | - Jan F. Stevens
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, Oregon 97331
- Linus Pauling Institute, Oregon State University, Corvallis, Oregon 97331
| | - Claudia S. Maier
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, Oregon 97331
- Linus Pauling Institute, Oregon State University, Corvallis, Oregon 97331
| | - Amala Soumyanath
- Department of Neurology, Oregon Health and Science University, Portland, Oregon 97239
| |
Collapse
|
23
|
Abstract
Inflammation plays a pivotal role in the development of ischemic brain damage. Astrocyte activation promotes the production of several proinflammatory mediators, such as TNF-α and iNOS. Eventually, neuronal death occurs, leading to the development of motor and memory deficits in patients. Boldine is the main alkaloid in the leaves and bark of the Peumus boldus Molina, and has anti-inflammatory and antioxidant properties. The aim of this work was to investigate the neuroprotective effect of boldine on neuroinflammation and memory deficits induced by permanent middle cerebral artery occlusion (pMCAO) in mice. Thirty minutes before pMCAO and during the next 5 days, animals received vehicle (0.025 µmol/l HCl) or boldine (8, 16 and 25 mg/kg, intraperitoneally). The extension of the infarct area, neurological scores, and myeloperoxidase activity were evaluated 24 h after pMCAO. Locomotor activity, working, and aversive memory were evaluated 72 h after pMCAO, object recognition memory was tested 96 h after pMCAO, and spatial memory was tested 120 h after pMCAO. Cresyl violet, Fluoro-Jade C staining, and immunohistochemical for GFAP, TNF-α, and iNOS were also carried out. The treatment with boldine significantly decreased the infarct area, improved the neurological scores, and increased cell viability. The vertical exploratory activity and aversive, spatial, object recognition, and working memory deficits induced by pMCAO were prevented by boldine. Moreover, myeloperoxidase activity and GFAP, TNF-α, and iNOS immunoreactivity were decreased significantly by boldine. Although various mechanisms such as its antioxidant activity should be considered, these results suggest that the neuroprotective effect of boldine might be related in part to its anti-inflammatory properties.
Collapse
|
24
|
Szwajgier D, Borowiec K, Pustelniak K. The Neuroprotective Effects of Phenolic Acids: Molecular Mechanism of Action. Nutrients 2017; 9:nu9050477. [PMID: 28489058 PMCID: PMC5452207 DOI: 10.3390/nu9050477] [Citation(s) in RCA: 152] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 05/01/2017] [Accepted: 05/04/2017] [Indexed: 12/13/2022] Open
Abstract
The neuroprotective role of phenolic acids from food has previously been reported by many authors. In this review, the role of phenolic acids in ameliorating depression, ischemia/reperfusion injury, neuroinflammation, apoptosis, glutamate-induced toxicity, epilepsy, imbalance after traumatic brain injury, hyperinsulinemia-induced memory impairment, hearing and vision disturbances, Parkinson’s disease, Huntington’s disease, anti-amyotrophic lateral sclerosis, Chagas disease and other less distributed diseases is discussed. This review covers the in vitro, ex vivo and in vivo studies concerning the prevention and treatment of neurological disorders (on the biochemical and gene expression levels) by phenolic acids.
Collapse
Affiliation(s)
- Dominik Szwajgier
- Department of Biotechnology, Human Nutrition and the Science of Food Commodities, University of Life Sciences in Lublin, Lublin 20704, Poland.
| | - Kamila Borowiec
- Department of Biotechnology, Human Nutrition and the Science of Food Commodities, University of Life Sciences in Lublin, Lublin 20704, Poland.
| | - Katarzyna Pustelniak
- Department of Biotechnology, Human Nutrition and the Science of Food Commodities, University of Life Sciences in Lublin, Lublin 20704, Poland.
| |
Collapse
|
25
|
Mao HF, Xie J, Chen JQ, Tang CF, Chen W, Zhou BC, Chen R, Qu HL, Wu CZ. Aerobic exercise combined with huwentoxin-I mitigates chronic cerebral ischemia injury. Neural Regen Res 2017; 12:596-602. [PMID: 28553340 PMCID: PMC5436358 DOI: 10.4103/1673-5374.205099] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Ca2+ channel blockers have been shown to protect neurons from ischemia, and aerobic exercise has significant protective effects on a variety of chronic diseases. The present study injected huwentoxin-I (HWTX-I), a spider peptide toxin that blocks Ca2+ channels, into the caudal vein of a chronic cerebral ischemia mouse model, once every 2 days, for a total of 15 injections. During this time, a subgroup of mice was subjected to treadmill exercise for 5 weeks. Results showed amelioration of cortical injury and improved neurological function in mice with chronic cerebral ischemia in the HWTX-I + aerobic exercise group. The combined effects of HWTX-I and exercise were superior to HWTX-I or aerobic exercise alone. HWTX-I effectively activated the Notch signal transduction pathway in brain tissue. Aerobic exercise up-regulated synaptophysin mRNA expression. These results demonstrated that aerobic exercise, in combination with HWTX-I, effectively relieved neuronal injury induced by chronic cerebral ischemia via the Notch signaling pathway and promoting synaptic regeneration.
Collapse
Affiliation(s)
- Hai-Feng Mao
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, Hunan Normal University, Changsha, Hunan Province, China.,College of Physical Education, Yichun University, Yichun, Jiangxi Province, China
| | - Jun Xie
- College of Physical Education, Yichun University, Yichun, Jiangxi Province, China
| | - Jia-Qin Chen
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, Hunan Normal University, Changsha, Hunan Province, China
| | - Chang-Fa Tang
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, Hunan Normal University, Changsha, Hunan Province, China
| | - Wei Chen
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, Hunan Normal University, Changsha, Hunan Province, China
| | - Bo-Cun Zhou
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, Hunan Normal University, Changsha, Hunan Province, China
| | - Rui Chen
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, Hunan Normal University, Changsha, Hunan Province, China
| | - Hong-Lin Qu
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, Hunan Normal University, Changsha, Hunan Province, China.,College of Physical Education, Yichun University, Yichun, Jiangxi Province, China
| | - Chu-Zu Wu
- College of Physical Education, Yichun University, Yichun, Jiangxi Province, China
| |
Collapse
|
26
|
Wang Y, Wang Y, Li J, Hua L, Han B, Zhang Y, Yang X, Zeng Z, Bai H, Yin H, Lou J. Effects of caffeic acid on learning deficits in a model of Alzheimer's disease. Int J Mol Med 2016; 38:869-75. [DOI: 10.3892/ijmm.2016.2683] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 05/24/2016] [Indexed: 11/05/2022] Open
|
27
|
Ferreira EDO, Fernandes MYSD, Lima NMRD, Neves KRT, Carmo MRSD, Lima FAV, Fonteles AA, Menezes APF, Andrade GMD. Neuroinflammatory response to experimental stroke is inhibited by eriodictyol. Behav Brain Res 2016; 312:321-32. [PMID: 27353856 DOI: 10.1016/j.bbr.2016.06.046] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Revised: 06/21/2016] [Accepted: 06/24/2016] [Indexed: 11/30/2022]
Abstract
BACKGROUND Cerebral ischemia is a common disease and one of the most common causes of death and disability worldwide. The lack of glucose and oxygen in neuronal tissue leads to a series of inflammatory events, culminating in neuronal death. Eriodictyol is a flavonoid isolated from the Chinese herb Dracocephalum rupestre that has been proven to have anti-inflammatory properties. HYPOTHESIS/PURPOSE Thus, the present study was designed to explore whether eriodictyol has neuroprotective effects against the neuronal damage, motor and memory deficits induced by permanent middle cerebral artery occlusion (pMCAO) in mice. STUDY DESIGN Animals were orally treated with eriodictyol (1, 2 and 4mg/kg) or vehicle (saline) 30min before pMCAO, 2h after, and then once daily for the following five days. METHODS The parameters studied were neuronal viability, brain infarcted area; sensorimotor deficits; exploratory activity; working and aversive memory; myeloperoxidase (MPO) activity; TNFα, iNOS and GFAP immunoreactivity. RESULTS The treatment with eriodictyol prevented neuronal death, reduced infarct area and improved neurological and memory deficits induced by brain ischemia. The increase of MPO activity and TNF-α, iNOS and GFAP expression were also reduced by eriodictyol treatment. CONCLUSION These findings demonstrate that eriodictyol exhibit promising neuroprotection effects against the permanent focal ischemia cerebral injury in the mice experimental model and the underlying mechanisms might be mediated through inhibition of neuroinflammation.
Collapse
Affiliation(s)
- Emerson de Oliveira Ferreira
- Post-Graduate Programme in Medical Sciences, Department of Clinical Medicine, Faculty of Medicine, Federal University of Ceará, Brazil.
| | - Mara Yone Soares Dias Fernandes
- Post-Graduate Programme in Pharmacology, Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Brazil.
| | - Neila Maria Rocha de Lima
- Post-Graduate Programme in Medical Sciences, Department of Clinical Medicine, Faculty of Medicine, Federal University of Ceará, Brazil.
| | - Kelly Rose Tavares Neves
- Post-Graduate Programme in Pharmacology, Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Brazil.
| | - Marta Regina Santos do Carmo
- Post-Graduate Programme in Pharmacology, Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Brazil.
| | - Francisco Arnaldo Viana Lima
- Post-Graduate Programme in Pharmacology, Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Brazil.
| | - Analu Aragão Fonteles
- Post-Graduate Programme in Pharmacology, Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Brazil.
| | - Ana Paula Fontenele Menezes
- Post-Graduate Programme in Medical Sciences, Department of Clinical Medicine, Faculty of Medicine, Federal University of Ceará, Brazil.
| | - Geanne Matos de Andrade
- Post-Graduate Programme in Medical Sciences, Department of Clinical Medicine, Faculty of Medicine, Federal University of Ceará, Brazil; Post-Graduate Programme in Pharmacology, Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Brazil; Institute of Biomedicine of Brazilian Semi-arid, Brazil.
| |
Collapse
|
28
|
Ozarowski M, Mikolajczak PL, Piasecka A, Kachlicki P, Kujawski R, Bogacz A, Bartkowiak-Wieczorek J, Szulc M, Kaminska E, Kujawska M, Jodynis-Liebert J, Gryszczynska A, Opala B, Lowicki Z, Seremak-Mrozikiewicz A, Czerny B. Influence of the Melissa officinalis Leaf Extract on Long-Term Memory in Scopolamine Animal Model with Assessment of Mechanism of Action. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2016; 2016:9729818. [PMID: 27239217 PMCID: PMC4864554 DOI: 10.1155/2016/9729818] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 12/03/2015] [Indexed: 01/19/2023]
Abstract
Melissa officinalis (MO, English: lemon balm, Lamiaceae), one of the oldest and still most popular aromatic medicinal plants, is used in phytomedicine for the prevention and treatment of nervous disturbances. The aim of our study was to assess the effect of subchronic (28-fold) administration of a 50% ethanol extract of MO leaves (200 mg/kg, p.o.) compared with rosmarinic acid (RA, 10 mg/kg, p.o.) and huperzine A (HU, 0.5 mg/kg, p.o.) on behavioral and cognitive responses in scopolamine-induced rats. The results were linked with acetylcholinesterase (AChE), butyrylcholinesterase (BuChE), and beta-secretase (BACE-1) mRNA levels and AChE and BuChE activities in the hippocampus and frontal cortex of rats. In our study, MO and HU, but not RA, showed an improvement in long-term memory. The results were in line with mRNA levels, since MO produced a decrease of AChE mRNA level by 52% in the cortex and caused a strong significant inhibition of BACE1 mRNA transcription (64% in the frontal cortex; 50% in the hippocampus). However, the extract produced only an insignificant inhibition of AChE activity in the frontal cortex. The mechanisms of MO action are probably more complicated, since its role as a modulator of beta-secretase activity should be taken into consideration.
Collapse
Affiliation(s)
- Marcin Ozarowski
- Department of Pharmaceutical Botany and Plant Biotechnology, Poznan University of Medical Sciences, Sw. Marii Magdaleny 14, 61-861 Poznan, Poland
- Department of Pharmacology and Phytochemistry, Institute of Natural Fibres and Medicinal Plants, Wojska Polskiego 71b, 60-630 Poznan, Poland
| | - Przemyslaw L. Mikolajczak
- Department of Pharmacology and Phytochemistry, Institute of Natural Fibres and Medicinal Plants, Wojska Polskiego 71b, 60-630 Poznan, Poland
- Department of Pharmacology, University of Medical Sciences, Rokietnicka 5a, 60-806 Poznan, Poland
| | - Anna Piasecka
- Department of Pathogen Genetics and Plant Resistance, Metabolomics Team, Institute of Plant Genetics of the Polish Academy of Science, Strzeszynska 34, 60-479 Poznan, Poland
| | - Piotr Kachlicki
- Department of Pathogen Genetics and Plant Resistance, Metabolomics Team, Institute of Plant Genetics of the Polish Academy of Science, Strzeszynska 34, 60-479 Poznan, Poland
| | - Radoslaw Kujawski
- Department of Pharmacology and Phytochemistry, Institute of Natural Fibres and Medicinal Plants, Wojska Polskiego 71b, 60-630 Poznan, Poland
| | - Anna Bogacz
- Laboratory of Experimental Pharmacogenetics, Department of Clinical Pharmacy and Biopharmacy, University of Medical Sciences, 14 Sw. Marii Magdaleny, 61-861 Poznan, Poland
- Department of Stem Cells and Regenerative Medicine, Institute of Natural Fibres and Medicinal Plants, Wojska Polskiego 71b, 60-630 Poznan, Poland
| | - Joanna Bartkowiak-Wieczorek
- Laboratory of Experimental Pharmacogenetics, Department of Clinical Pharmacy and Biopharmacy, University of Medical Sciences, 14 Sw. Marii Magdaleny, 61-861 Poznan, Poland
| | - Michal Szulc
- Department of Pharmacology, University of Medical Sciences, Rokietnicka 5a, 60-806 Poznan, Poland
| | - Ewa Kaminska
- Department of Pharmacology, University of Medical Sciences, Rokietnicka 5a, 60-806 Poznan, Poland
| | - Malgorzata Kujawska
- Department of Toxicology, Poznan University of Medical Sciences, Dojazd 30, 60-631 Poznan, Poland
| | - Jadwiga Jodynis-Liebert
- Department of Toxicology, Poznan University of Medical Sciences, Dojazd 30, 60-631 Poznan, Poland
| | - Agnieszka Gryszczynska
- Department of Pharmacology and Phytochemistry, Institute of Natural Fibres and Medicinal Plants, Wojska Polskiego 71b, 60-630 Poznan, Poland
| | - Bogna Opala
- Department of Pharmacology and Phytochemistry, Institute of Natural Fibres and Medicinal Plants, Wojska Polskiego 71b, 60-630 Poznan, Poland
| | - Zdzislaw Lowicki
- Department of Pharmacology and Phytochemistry, Institute of Natural Fibres and Medicinal Plants, Wojska Polskiego 71b, 60-630 Poznan, Poland
| | - Agnieszka Seremak-Mrozikiewicz
- Department of Pharmacology and Phytochemistry, Institute of Natural Fibres and Medicinal Plants, Wojska Polskiego 71b, 60-630 Poznan, Poland
- Division of Perinatology and Women's Diseases, Poznan University of Medical Sciences, Polna 33, 60-535 Poznan, Poland
- Laboratory of Molecular Biology, Poznan University of Medical Sciences, Polna 33, 60-535 Poznan, Poland
| | - Boguslaw Czerny
- Department of Stem Cells and Regenerative Medicine, Institute of Natural Fibres and Medicinal Plants, Wojska Polskiego 71b, 60-630 Poznan, Poland
- Department of General Pharmacology and Pharmacoeconomics, Pomeranian Medical University, Zolnierska 48, 70-204 Szczecin, Poland
| |
Collapse
|
29
|
Chen H, Guan B, Shen J. Targeting ONOO -/HMGB1/MMP-9 Signaling Cascades: Potential for Drug Development from Chinese Medicine to Attenuate Ischemic Brain Injury and Hemorrhagic Transformation Induced by Thrombolytic Treatment. ACTA ACUST UNITED AC 2016. [DOI: 10.1159/000442468] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
30
|
Guo C, Wang S, Duan J, Jia N, Zhu Y, Ding Y, Guan Y, Wei G, Yin Y, Xi M, Wen A. Protocatechualdehyde Protects Against Cerebral Ischemia-Reperfusion-Induced Oxidative Injury Via Protein Kinase Cε/Nrf2/HO-1 Pathway. Mol Neurobiol 2016; 54:833-845. [PMID: 26780453 DOI: 10.1007/s12035-016-9690-z] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 01/05/2016] [Indexed: 11/24/2022]
Abstract
Oxidative stress is closely related to the pathogenesis of ischemic stroke. Protocatechualdehyde (PCA) is a phenolic acid compound that has the putative antioxidant activities. The present study was aimed to investigate the molecular mechanisms involved in the antioxidative effect of PCA against cerebral ischemia/reperfusion (I/R) injury. The experiment stroke model was produced in Sprague-Dawley rats via middle cerebral artery occlusion (MCAO). To model ischemia-like conditions in vitro, differentiated SH-SY5Y cells were exposed to transient oxygen and glucose deprivation (OGD). Treatment with PCA significantly improved neurologic score, reduced infarct volume and necrotic neurons, and also decreased reactive oxygen species (ROS) production, 4-hydroxynonenal (4-HNE), and 8-hydroxy-2'-deoxyguanosine (8-OHdG) contents at 24 h after reperfusion. Meanwhile, PCA significantly increased the transcription nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) expressions in the ischemic cerebral cortex as shown by immunofluorescence staining and Western blot analysis. In vitro experiment showed that PCA protected differentiated SH-SY5Y cells against OGD-induced injury. Likewise, PCA also increased markedly the Nrf2 and HO-1 expressions in a dose-dependent manner. The neuroprotection effect of PCA was abolished by knockdown of Nrf2 and HO-1. Moreover, knockdown of protein kinase Cε (PKCε) also blocked PCA-induced Nfr2 nuclear translocation, HO-1 expression, and neuroprotection. Taken together, these results provide evidences that PCA can protect against cerebral ischemia-reperfusion-induced oxidative injury, and the neuroprotective effect involves the PKCε/Nrf2/HO-1 pathway.
Collapse
Affiliation(s)
- Chao Guo
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Shiquan Wang
- Department of Anesthesiology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Jialin Duan
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Na Jia
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Yanrong Zhu
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Yi Ding
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Yue Guan
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Guo Wei
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Ying Yin
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Miaomaio Xi
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, People's Republic of China.
| | - Aidong Wen
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, People's Republic of China.
| |
Collapse
|
31
|
Fonteles AA, de Souza CM, de Sousa Neves JC, Menezes APF, Santos do Carmo MR, Fernandes FDP, de Araújo PR, de Andrade GM. Rosmarinic acid prevents against memory deficits in ischemic mice. Behav Brain Res 2016; 297:91-103. [PMID: 26456521 DOI: 10.1016/j.bbr.2015.09.029] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 09/17/2015] [Accepted: 09/23/2015] [Indexed: 01/21/2023]
Abstract
Polyphenols have neuroprotective effects after brain ischemia. It has been demonstrated that rosmarinic acid (RA), a natural phenolic compound, possesses antioxidant and anti-inflammatory properties. To evaluate the effectiveness of RA against memory deficits induced by permanent middle cerebral artery occlusion (pMCAO) mice were treated with RA (0.1, 1, and 20mg/kg/day, i.p. before ischemia and during 5 days). Animals were evaluated for locomotor activity and working memory 72 h after pMCAO, and spatial and recognition memories 96 h after pMCAO. In addition, in another set of experiments brain infarction, neurological deficit score and myeloperoxidase (MPO) activity were evaluates 24h after the pMCAO. Finally, immunohistochemistry, and western blot, and ELISA assay were used to analyze glial fibrillary acidic protein (GFAP), and synaptophysin (SYP) expression, and BDNF level, respectively. The working, spatial, and recognition memory deficits were significantly improved with RA treatment (20mg/kg). RA reduced infarct size and neurological deficits caused by acute ischemia. The mechanism for RA neuroprotection involved, neuronal loss suppression, and increase of synaptophysin expression, and increase of BDNF. Furthermore, the increase of MPO activity and GFAP immunireactivity were prevented in MCAO group treated with RA. These results suggest that RA exerts memory protective effects probably due to synaptogenic activity and anti-inflammatory action.
Collapse
Affiliation(s)
- Analu Aragão Fonteles
- Post-Graduate Programme in Pharmacology, Department of Physiology and Pharmacology, Fortaleza, Brazil; Institute of Biomedicine of Brazilian Semi-Arid, Fortaleza, Brazil
| | - Carolina Melo de Souza
- Post-Graduate Programme in Medical Sciences, Department of Medicine, Faculty of Medicine, Federal University of Ceará, Fortaleza, Brazil
| | | | - Ana Paula Fontenele Menezes
- Post-Graduate Programme in Medical Sciences, Department of Medicine, Faculty of Medicine, Federal University of Ceará, Fortaleza, Brazil
| | | | - Francisco Diego Pinheiro Fernandes
- Post-Graduate Programme in Medical Sciences, Department of Medicine, Faculty of Medicine, Federal University of Ceará, Fortaleza, Brazil
| | - Patrícia Rodrigues de Araújo
- Post-Graduate Programme in Medical Sciences, Department of Medicine, Faculty of Medicine, Federal University of Ceará, Fortaleza, Brazil
| | - Geanne Matos de Andrade
- Post-Graduate Programme in Pharmacology, Department of Physiology and Pharmacology, Fortaleza, Brazil; Post-Graduate Programme in Medical Sciences, Department of Medicine, Faculty of Medicine, Federal University of Ceará, Fortaleza, Brazil; Institute of Biomedicine of Brazilian Semi-Arid, Fortaleza, Brazil.
| |
Collapse
|
32
|
Cho BO, Yin HH, Fang CZ, Kim SJ, Jeong SI, Jang SI. Hepatoprotective effect of Diospyros lotus leaf extract against acetaminophen-induced acute liver injury in mice. Food Sci Biotechnol 2015. [DOI: 10.1007/s10068-015-0294-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
33
|
Luoyutong Treatment Promotes Functional Recovery and Neuronal Plasticity after Cerebral Ischemia-Reperfusion Injury in Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:369021. [PMID: 26697095 PMCID: PMC4678236 DOI: 10.1155/2015/369021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 11/05/2015] [Accepted: 11/15/2015] [Indexed: 01/02/2023]
Abstract
Luoyutong (LYT) capsule has been used to treat cerebrovascular diseases clinically in China and is now patented and approved by the State Food and Drug Administration. In this retrospective validation study we investigated the ability of LYT to protect against cerebral ischemia-reperfusion injury in rats. Cerebral ischemia-reperfusion injury was induced by middle cerebral artery occlusion followed by reperfusion. Capsule containing LYT (high dose and medium dose) as treatment group and Citicoline Sodium as positive control treatment group were administered daily to rats 30 min after reperfusion. Treatment was continued for either 3 days or 14 days. A saline solution was administered to control animals. Behavior tests were performed after 3 and 14 days of treatment. Our findings revealed that LYT treatment improved the neurological outcome, decreased cerebral infarction volume, and reduced apoptosis. Additionally, LYT improved neural plasticity, as the expression of synaptophysin, microtubule associated protein, and myelin basic protein was upregulated by LYT treatment, while neurofilament 200 expression was reduced. Moreover, levels of brain derived neurotrophic factor and basic fibroblast growth factor were increased. Our results suggest that LYT treatment may protect against ischemic injury and improve neural plasticity.
Collapse
|
34
|
Erenler R, Telci I, Ulutas M, Demirtas I, Gul F, Elmastas M, Kayir O. Chemical Constituents, Quantitative Analysis and Antioxidant Activities of E
chinacea purpurea
(L.) Moench and E
chinacea pallida
(Nutt.) Nutt. J Food Biochem 2015. [DOI: 10.1111/jfbc.12168] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ramazan Erenler
- Department of Chemistry; Faculty of Art and Science; Gaziosmanpasa University; Tokat 60240 Turkey
| | - Isa Telci
- Department of Field Crops; Faculty of Agriculture; Suleyman Demirel University; Isparta Turkey
| | - Musa Ulutas
- Department of Field Crops; Faculty of Agriculture; Gaziosmanpasa University; Tokat 60240 Turkey
| | - Ibrahim Demirtas
- Department of Chemistry; Faculty of Science; Cankiri Karatekin University; Cankiri Turkey
| | - Fatih Gul
- Department of Chemistry; Faculty of Science; Cankiri Karatekin University; Cankiri Turkey
| | - Mahfuz Elmastas
- Department of Chemistry; Faculty of Art and Science; Gaziosmanpasa University; Tokat 60240 Turkey
| | - Omer Kayir
- Department of Chemistry; Faculty of Art and Science; Gaziosmanpasa University; Tokat 60240 Turkey
| |
Collapse
|
35
|
Peppermint antioxidants revisited. Food Chem 2015; 176:72-81. [DOI: 10.1016/j.foodchem.2014.12.028] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 11/10/2014] [Accepted: 12/09/2014] [Indexed: 01/06/2023]
|
36
|
Lu L, Guo Y, Xu L, Qi T, Jin L, Xu L, Xiao M. Galactosylation of caffeic acid by an engineered β-galactosidase. Drug Discov Ther 2015; 9:123-8. [DOI: 10.5582/ddt.2015.01024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Lili Lu
- State Key Lab of Microbial Technology and National Glycoengineering Research Center, Shandong University
| | - Yuchuan Guo
- State Key Lab of Microbial Technology and National Glycoengineering Research Center, Shandong University
| | - Lijuan Xu
- State Key Lab of Microbial Technology and National Glycoengineering Research Center, Shandong University
| | - Tingting Qi
- State Key Lab of Microbial Technology and National Glycoengineering Research Center, Shandong University
| | - Lan Jin
- State Key Lab of Microbial Technology and National Glycoengineering Research Center, Shandong University
| | - Li Xu
- State Key Lab of Microbial Technology and National Glycoengineering Research Center, Shandong University
| | - Min Xiao
- State Key Lab of Microbial Technology and National Glycoengineering Research Center, Shandong University
| |
Collapse
|
37
|
Campos-Bedolla P, Walter FR, Veszelka S, Deli MA. Role of the Blood–Brain Barrier in the Nutrition of the Central Nervous System. Arch Med Res 2014; 45:610-38. [DOI: 10.1016/j.arcmed.2014.11.018] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 11/24/2014] [Indexed: 12/22/2022]
|