1
|
Knörnschild F, Zhang EJ, Ghosh Biswas R, Kobus M, Chen J, Zhou JX, Rao A, Sun J, Wang X, Li W, Muti IH, Habbel P, Nowak J, Xie Z, Zhang Y, Cheng LL. Correlations of blood and brain NMR metabolomics with Alzheimer's disease mouse models. Transl Psychiatry 2025; 15:87. [PMID: 40102403 PMCID: PMC11920067 DOI: 10.1038/s41398-025-03293-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 12/14/2024] [Accepted: 02/19/2025] [Indexed: 03/20/2025] Open
Abstract
Alzheimer's disease (AD) is a complex, progressive neurodegenerative disorder, impacting millions of geriatric patients globally. Unfortunately, AD can only be diagnosed post-mortem, through the analysis of autopsied brain tissue in human patients. This renders early detection and countering disease progression difficult. As AD progresses, the metabolomic profile of the brain and other organs can change. These alterations can be detected in peripheral systems (i.e., blood) such that biomarkers of the disease can be identified and monitored with minimal invasion. In this work, High-Resolution Magic Angle Spinning (HRMAS) Nuclear Magnetic Resonance (NMR) spectroscopy is used to correlate biochemical changes in mouse brain tissues, from the cortex and hippocampus, with blood plasma. Ten micrograms of each brain tissue and ten microliters of blood plasma were obtained from 5XFAD Tg AD mice models (n = 15, 8 female, 7 male) and female C57/BL6 wild-type mice (n = 8). Spectral regions-of-interest (ROI, n = 51) were identified, and 121 potential metabolites were assigned using the Human Metabolome Database and tabulated according to their trends (increase/decrease, false discovery rate significance). This work identified several metabolites that impact glucose oxidation (lactic acid, pyruvate, glucose-6-phosphate), allude to oxidative stress resulting in brain dysfunction (L-cysteine, galactitol, propionic acid), as well as those interacting with other neural pathways (taurine, dimethylamine). This work also suggests correlated metabolomic changes within blood plasma, proposing an avenue for biomarker detection, ideally leading to improved patient diagnosis and prognosis in the future.
Collapse
Affiliation(s)
- Franz Knörnschild
- Departments of Radiology and Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ella J Zhang
- Departments of Radiology and Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Rajshree Ghosh Biswas
- Departments of Radiology and Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Marta Kobus
- Departments of Radiology and Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Jiashang Chen
- Departments of Radiology and Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Jonathan X Zhou
- Departments of Radiology and Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Angela Rao
- Departments of Radiology and Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Joseph Sun
- Departments of Radiology and Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Xiaoyu Wang
- Departments of Radiology and Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Wei Li
- Department of Anesthesia, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Isabella H Muti
- Departments of Radiology and Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Piet Habbel
- Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Johannes Nowak
- SRH Poliklinik Gera GmbH, Radiology Gotha, Gotha, Germany
- SRH University of Applied Health Sciences, Gera, Germany
| | - Zhongcong Xie
- Department of Anesthesia, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Yiying Zhang
- Department of Anesthesia, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Leo L Cheng
- Departments of Radiology and Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| |
Collapse
|
2
|
Verma A, Goyal A. Plumbagin's Healing Effect on Motor Impairment in Rotenone-toxified Rodents. Curr Neurovasc Res 2025; 21:434-446. [PMID: 39229982 DOI: 10.2174/0115672026349500240826100531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/08/2024] [Accepted: 09/10/2024] [Indexed: 09/05/2024]
Abstract
BACKGROUND Parkinson's disease is an illness marked by a gradual mitigation of dopamine neurons within the substantia nigra, which eventually leads to a deficiency of dopamine that further gives rise to mobility as well as cognitive impairments. Through long-established traditions, a wide array of Traditional Chinese Medicines (TCM) have undergone testing and are employed to avoid neurodegenerative disorders. Plumbagin is the primary active component of a medication called Baihua Dan or Plumbago zeylanica L., which is clinically used in China. OBJECTIVES This study investigated plumbagin-induced alterations in a Parkinson's disease rat model instigated by subcutaneous rotenone injection. METHODS Male rats were administered subcutaneous injections of rotenone at a dosage of 1.5 mg/kg, followed by the treatment with varying doses of plumbagin (10, 20, and 40 mg/kg) through the oral route. The rats underwent various motor ability tests, including the actophotometer, rotarod, open field, beam walk, gait evaluation, ability to grip, and catalepsy bar tests. Furthermore, the brain dopamine level was then estimated for the extracted tissues. Also, through molecular docking, the binding effectiveness of plumbagin was assessed for human MAO-B. After that, plumbagin was put through 100 ns of molecular dynamic simulations to examine the stability of its conformational binding to the target protein. Furthermore, ADMET tests were used to verify Plumbagin's druggability. RESULTS Plumbagin was found to alleviate rotenone-induced motor abnormalities and restore brain dopamine levels. Furthermore, plumbagin showed excellent interactions with MAO-B (monoamine oxidase-B) when compared with selegiline (a standard drug for Parkinson's disease). CONCLUSION These findings underscore the potential therapeutic efficacy of plumbagin in mitigating behavioural deficits in rotenone-induced rodents. Considering this, plumbagin might be a feasible pharmacological strategy for the control of rotenone-triggered behavioural impairment in rats (in vivo), and it might display interesting interactions with MAO-B (in silico).
Collapse
Affiliation(s)
- Aanchal Verma
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Ahsas Goyal
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| |
Collapse
|
3
|
Zhang ZR, Li YZ, Wu XQ, Chen WJ, Xu J, Zhao WH, Gong XY. Postoperative cognitive dysfunction in elderly postcardiac surgery patients: progress in rehabilitation application research. FRONTIERS IN REHABILITATION SCIENCES 2024; 5:1525813. [PMID: 39741908 PMCID: PMC11686598 DOI: 10.3389/fresc.2024.1525813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Accepted: 11/28/2024] [Indexed: 01/03/2025]
Abstract
Postoperative cognitive dysfunction (POCD) is a prevalent complication of the central nervous system in elderly patients following cardiac surgery. This review aims to provide an overview of the etiology, risk factors, diagnostic assessment, and rehabilitation strategies for cognitive dysfunction occurring after cardiac surgery. The pathogenesis of POCD after cardiac surgery includes cerebral microembolism, neuroinflammation, and cryptogenic strokes. Risk factors are associated with advanced age, diminished preoperative cognitive status, and anesthesia. Cognitive function screening tools used for pre- and postoperative assessments can detect changes in patients' cognitive levels in a timely manner. The timely provision of appropriate rehabilitation methods, including cognitive function training, exercise training, transcranial direct current stimulation, and perioperative acupuncture, is crucial, with emerging technologies such as virtual reality playing an increasingly significant role. In conclusion, POCD is a common postoperative complication in elderly cardiac surgery patients, with age and reduced preoperative cognitive function being the primary risk factors. A comprehensive rehabilitation strategy can more effectively address postoperative cognitive dysfunction in patients.
Collapse
Affiliation(s)
- Zhen-Rong Zhang
- Department of Rehabilitation Medicine, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yang-Zheng Li
- Department of Rehabilitation Medicine, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiao-Qing Wu
- Department of Rehabilitation Medicine, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wen-Jun Chen
- Department of Rehabilitation Medicine, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jian Xu
- Department of Rehabilitation Medicine, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wei-Hua Zhao
- Department of Rehabilitation Medicine, The First People’s Hospital of Shizuishan, Shizuishan, Ningxia, China
| | - Xiao-Yan Gong
- Nursing Department, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
4
|
An X, He J, Bi B, Wu G, Xu J, Yu W, Ren Z. The role of astrocytes in Alzheimer's disease: a bibliometric analysis. Front Aging Neurosci 2024; 16:1481748. [PMID: 39665038 PMCID: PMC11632101 DOI: 10.3389/fnagi.2024.1481748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 11/11/2024] [Indexed: 12/13/2024] Open
Abstract
Background Alzheimer's disease (AD) is a neurodegenerative disorder marked by cognitive decline and memory loss. Recent research underscores the crucial role of astrocytes in AD. This study reviews research trends and contributions on astrocytes in AD from 2000 to 2024, shedding light on the evolving research landscape. Methods We conducted a bibliometric analysis using data from the Web of Science Core Collection, covering publications from January 1, 2000, to July 6, 2024, on "Alzheimer's disease" and "astrocytes." We identified 5,252 relevant English articles and reviews. For data visualization and analysis, we used VOSviewer, CiteSpace, and the R package "bibliometrix," examining collaboration networks, co-citation networks, keyword co-occurrence, and thematic evolution. Results Between 2000 and 2024, 5,252 publications were identified, including 4,125 original research articles and 1,127 review articles. Publications increased significantly after 2016. The United States had the most contributions (1,468), followed by China (836). Major institutions were the University of California system (517) and Harvard University (402). The Journal of Alzheimer's Disease published the most articles (215). Verkhratsky A was the top author with 51 papers and 1,585 co-citations. Conclusion Our extensive bibliometric analysis indicates a significant increase in research on astrocytes in AD over the past 20 years. This study emphasizes the growing acknowledgment of astrocytes' crucial role in AD pathogenesis and points to future research on their mechanisms and therapeutic potential.
Collapse
Affiliation(s)
- Xiaoqiong An
- Department of Laboratory Medicine, The Second People's Hospital of Guizhou Province, Guiyang, China
| | - Jun He
- Department of Laboratory Medicine, The Second People's Hospital of Guizhou Province, Guiyang, China
- Key Laboratory of Molecular Biology, Guizhou Medical University, Guiyang, Guizhou, China
| | - Bin Bi
- Key Laboratory of Human Brain Bank for Functions and Diseases of Department of Education of Guizhou Province, Guizhou Medical University, Guiyang, Guizhou, China
| | - Gang Wu
- Key Laboratory of Human Brain Bank for Functions and Diseases of Department of Education of Guizhou Province, Guizhou Medical University, Guiyang, Guizhou, China
| | - Jianwei Xu
- Guizhou Provincial Center for Clinical Laboratory, Guiyang, China
- Center for Tissue Engineering and Stem Cell Research, Guizhou Medical University, Guiyang, China
| | - Wenfeng Yu
- Psychosomatic Department, The Second People's Hospital of Guizhou Province, Guiyang, China
- Department of Pharmacology, School of Basic Medicine, Guizhou Medical University, Guiyang, China
| | - Zhenkui Ren
- Department of Laboratory Medicine, The Second People's Hospital of Guizhou Province, Guiyang, China
| |
Collapse
|
5
|
Khalil I, Sayad R, Kedwany AM, Sayed HH, Caprara ALF, Rissardo JP. Cardiovascular dysautonomia and cognitive impairment in Parkinson's disease (Review). MEDICINE INTERNATIONAL 2024; 4:70. [PMID: 39355336 PMCID: PMC11443310 DOI: 10.3892/mi.2024.194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 09/03/2024] [Indexed: 10/03/2024]
Abstract
Cognitive impairment is a prevalent non-motor symptom of Parkinson's disease (PD), which can result in significant disability and distress for patients and caregivers. There is a marked variation in the timing, characteristics and rate at which cognitive decline occurs in patients with PD. This decline can vary from normal cognition to mild cognitive impairment and dementia. Cognitive impairment is associated with several pathophysiological mechanisms, including the accumulation of β-amyloid and tau in the brain, oxidative stress and neuroinflammation. Cardiovascular autonomic dysfunctions are commonly observed in patients with PD. These dysfunctions play a role in the progression of cognitive impairment, the incidents of falls and even in mortality. The majority of symptoms of dysautonomia arise from changes in the peripheral autonomic nervous system, including both the sympathetic and parasympathetic nervous systems. Cardiovascular changes, including orthostatic hypotension, supine hypertension and abnormal nocturnal blood pressure (BP), can occur in both the early and advanced stages of PD. These changes tend to increase as the disease advances. The present review aimed to describe the cognitive changes in the setting of cardiovascular dysautonomia and to discuss strategies through which these changes can be modified and managed. It is a multifactorial process usually involving decreased blood flow to the brain, resulting in the development of cerebral ischemic lesions, an increased presence of abnormal white matter signals in the brain, and a potential influence on the process of neurodegeneration in PD. Another possible explanation is this association being independent observations of PD progression. Patients with clinical symptoms of dysautonomia should undergo 24-h ambulatory BP monitoring, as they are frequently subtle and underdiagnosed.
Collapse
Affiliation(s)
- Ibrahim Khalil
- Faculty of Medicine, Alexandria University, Alexandria 5372066, Egypt
| | - Reem Sayad
- Faculty of Medicine, Assiut University, Assiut 71515, Egypt
| | | | - Hager Hamdy Sayed
- Department of Nuclear Medicine, Assuit University, Assuit 71515, Egypt
| | | | | |
Collapse
|
6
|
Mir RA, Tyagi A, Hussain SJ, Almalki MA, Zeyad MT, Deshmukh R, Ali S. Saffron, a Potential Bridge between Nutrition and Disease Therapeutics: Global Health Challenges and Therapeutic Opportunities. PLANTS (BASEL, SWITZERLAND) 2024; 13:1467. [PMID: 38891276 PMCID: PMC11174376 DOI: 10.3390/plants13111467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/12/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024]
Abstract
Plants are an important source of essential bioactive compounds that not only have a beneficial role in human health and nutrition but also act as drivers for shaping gut microbiome. However, the mechanism of their functional attributes is not fully understood despite their significance. One such important plant is Crocus sativus, also known as saffron, which possesses huge medicinal, nutritional, and industrial applications like food and cosmetics. The importance of this plant is grossly attributed to its incredible bioactive constituents such as crocins, crocetin, safranal, picrocrocin, and glycosides. These bioactive compounds possess a wide range of therapeutic activities against multiple human ailments. Since a huge number of studies have revealed negative unwanted side effects of modern-day drugs, the scientific communities at the global level are investigating a large number of medicinal plants to explore natural products as the best alternatives. Taken into consideration, the available research findings indicate that saffron has a huge scope to be further explored to establish alternative natural-product-based drugs for health benefits. In this review, we are providing an update on the role of bioactive compounds of saffron as therapeutic agents (human disorders and antimicrobial activity) and its nutritional values. We also highlighted the role of omics and metabolic engineering tools for increasing the content of key saffron bioactive molecules for its mass production. Finally, pre-clinical and clinical studies seem to be necessary to establish its therapeutic potential against human diseases.
Collapse
Affiliation(s)
- Rakeeb Ahmad Mir
- Department of Biotechnology, School of Life Sciences, Central University of Kashmir, Ganderbal 191201, India
| | - Anshika Tyagi
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| | - Sofi Javed Hussain
- Department of Botany, Central University of Kashmir, Ganderbal 191201, India;
| | - Mohammed A. Almalki
- Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Mohammad Tarique Zeyad
- Department of Agricultural Microbiology, Faculty of Agriculture Sciences, Aligarh Muslim University, Aligarh 202002, India;
| | - Rupesh Deshmukh
- Department of Biotechnology, Central University of Haryana, Mahendragarh 123031, India;
| | - Sajad Ali
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| |
Collapse
|
7
|
Bortolozzi A, Fico G, Berk M, Solmi M, Fornaro M, Quevedo J, Zarate CA, Kessing LV, Vieta E, Carvalho AF. New Advances in the Pharmacology and Toxicology of Lithium: A Neurobiologically Oriented Overview. Pharmacol Rev 2024; 76:323-357. [PMID: 38697859 PMCID: PMC11068842 DOI: 10.1124/pharmrev.120.000007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 02/02/2024] [Accepted: 02/05/2024] [Indexed: 05/05/2024] Open
Abstract
Over the last six decades, lithium has been considered the gold standard treatment for the long-term management of bipolar disorder due to its efficacy in preventing both manic and depressive episodes as well as suicidal behaviors. Nevertheless, despite numerous observed effects on various cellular pathways and biologic systems, the precise mechanism through which lithium stabilizes mood remains elusive. Furthermore, there is recent support for the therapeutic potential of lithium in other brain diseases. This review offers a comprehensive examination of contemporary understanding and predominant theories concerning the diverse mechanisms underlying lithium's effects. These findings are based on investigations utilizing cellular and animal models of neurodegenerative and psychiatric disorders. Recent studies have provided additional support for the significance of glycogen synthase kinase-3 (GSK3) inhibition as a crucial mechanism. Furthermore, research has shed more light on the interconnections between GSK3-mediated neuroprotective, antioxidant, and neuroplasticity processes. Moreover, recent advancements in animal and human models have provided valuable insights into how lithium-induced modifications at the homeostatic synaptic plasticity level may play a pivotal role in its clinical effectiveness. We focused on findings from translational studies suggesting that lithium may interface with microRNA expression. Finally, we are exploring the repurposing potential of lithium beyond bipolar disorder. These recent findings on the therapeutic mechanisms of lithium have provided important clues toward developing predictive models of response to lithium treatment and identifying new biologic targets. SIGNIFICANCE STATEMENT: Lithium is the drug of choice for the treatment of bipolar disorder, but its mechanism of action in stabilizing mood remains elusive. This review presents the latest evidence on lithium's various mechanisms of action. Recent evidence has strengthened glycogen synthase kinase-3 (GSK3) inhibition, changes at the level of homeostatic synaptic plasticity, and regulation of microRNA expression as key mechanisms, providing an intriguing perspective that may help bridge the mechanistic gap between molecular functions and its clinical efficacy as a mood stabilizer.
Collapse
Affiliation(s)
- Analia Bortolozzi
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Spanish National Research Council (CSIC), Barcelona, Spain (A.B.); Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain (A.B., G.F., E.V.); Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Madrid, Spain (A.B., G.F., E.V.); Hospital Clinic, Institute of Neuroscience, University of Barcelona, Barcelona, Spain (G.F., E.V.); IMPACT - The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, Victoria, Australia (M.B., A.F.C.); Department of Psychiatry, University of Ottawa, Ontario, Canada (M.S.); The Champlain First Episode Psychosis Program, Department of Mental Health, The Ottawa Hospital, Ontario, Canada (M.S.); Department of Child and Adolescent Psychiatry, Charité Universitätsmedizin, Berlin, Germany (M.S.); Section of Psychiatry, Department of Neuroscience, Reproductive Science and Odontostomatology, Federico II University of Naples, Naples, Italy (M.F.); Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UT Health), Houston, Texas (J.Q.); Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland (C.A.Z.); Copenhagen Affective Disorders Research Centre (CADIC), Psychiatric Center Copenhagen, Rigshospitalet, Denmark (L.V.K.); and Department of Clinical Medicine, University of Copenhagen, Denmark (L.V.K.)
| | - Giovanna Fico
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Spanish National Research Council (CSIC), Barcelona, Spain (A.B.); Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain (A.B., G.F., E.V.); Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Madrid, Spain (A.B., G.F., E.V.); Hospital Clinic, Institute of Neuroscience, University of Barcelona, Barcelona, Spain (G.F., E.V.); IMPACT - The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, Victoria, Australia (M.B., A.F.C.); Department of Psychiatry, University of Ottawa, Ontario, Canada (M.S.); The Champlain First Episode Psychosis Program, Department of Mental Health, The Ottawa Hospital, Ontario, Canada (M.S.); Department of Child and Adolescent Psychiatry, Charité Universitätsmedizin, Berlin, Germany (M.S.); Section of Psychiatry, Department of Neuroscience, Reproductive Science and Odontostomatology, Federico II University of Naples, Naples, Italy (M.F.); Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UT Health), Houston, Texas (J.Q.); Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland (C.A.Z.); Copenhagen Affective Disorders Research Centre (CADIC), Psychiatric Center Copenhagen, Rigshospitalet, Denmark (L.V.K.); and Department of Clinical Medicine, University of Copenhagen, Denmark (L.V.K.)
| | - Michael Berk
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Spanish National Research Council (CSIC), Barcelona, Spain (A.B.); Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain (A.B., G.F., E.V.); Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Madrid, Spain (A.B., G.F., E.V.); Hospital Clinic, Institute of Neuroscience, University of Barcelona, Barcelona, Spain (G.F., E.V.); IMPACT - The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, Victoria, Australia (M.B., A.F.C.); Department of Psychiatry, University of Ottawa, Ontario, Canada (M.S.); The Champlain First Episode Psychosis Program, Department of Mental Health, The Ottawa Hospital, Ontario, Canada (M.S.); Department of Child and Adolescent Psychiatry, Charité Universitätsmedizin, Berlin, Germany (M.S.); Section of Psychiatry, Department of Neuroscience, Reproductive Science and Odontostomatology, Federico II University of Naples, Naples, Italy (M.F.); Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UT Health), Houston, Texas (J.Q.); Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland (C.A.Z.); Copenhagen Affective Disorders Research Centre (CADIC), Psychiatric Center Copenhagen, Rigshospitalet, Denmark (L.V.K.); and Department of Clinical Medicine, University of Copenhagen, Denmark (L.V.K.)
| | - Marco Solmi
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Spanish National Research Council (CSIC), Barcelona, Spain (A.B.); Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain (A.B., G.F., E.V.); Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Madrid, Spain (A.B., G.F., E.V.); Hospital Clinic, Institute of Neuroscience, University of Barcelona, Barcelona, Spain (G.F., E.V.); IMPACT - The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, Victoria, Australia (M.B., A.F.C.); Department of Psychiatry, University of Ottawa, Ontario, Canada (M.S.); The Champlain First Episode Psychosis Program, Department of Mental Health, The Ottawa Hospital, Ontario, Canada (M.S.); Department of Child and Adolescent Psychiatry, Charité Universitätsmedizin, Berlin, Germany (M.S.); Section of Psychiatry, Department of Neuroscience, Reproductive Science and Odontostomatology, Federico II University of Naples, Naples, Italy (M.F.); Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UT Health), Houston, Texas (J.Q.); Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland (C.A.Z.); Copenhagen Affective Disorders Research Centre (CADIC), Psychiatric Center Copenhagen, Rigshospitalet, Denmark (L.V.K.); and Department of Clinical Medicine, University of Copenhagen, Denmark (L.V.K.)
| | - Michele Fornaro
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Spanish National Research Council (CSIC), Barcelona, Spain (A.B.); Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain (A.B., G.F., E.V.); Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Madrid, Spain (A.B., G.F., E.V.); Hospital Clinic, Institute of Neuroscience, University of Barcelona, Barcelona, Spain (G.F., E.V.); IMPACT - The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, Victoria, Australia (M.B., A.F.C.); Department of Psychiatry, University of Ottawa, Ontario, Canada (M.S.); The Champlain First Episode Psychosis Program, Department of Mental Health, The Ottawa Hospital, Ontario, Canada (M.S.); Department of Child and Adolescent Psychiatry, Charité Universitätsmedizin, Berlin, Germany (M.S.); Section of Psychiatry, Department of Neuroscience, Reproductive Science and Odontostomatology, Federico II University of Naples, Naples, Italy (M.F.); Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UT Health), Houston, Texas (J.Q.); Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland (C.A.Z.); Copenhagen Affective Disorders Research Centre (CADIC), Psychiatric Center Copenhagen, Rigshospitalet, Denmark (L.V.K.); and Department of Clinical Medicine, University of Copenhagen, Denmark (L.V.K.)
| | - Joao Quevedo
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Spanish National Research Council (CSIC), Barcelona, Spain (A.B.); Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain (A.B., G.F., E.V.); Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Madrid, Spain (A.B., G.F., E.V.); Hospital Clinic, Institute of Neuroscience, University of Barcelona, Barcelona, Spain (G.F., E.V.); IMPACT - The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, Victoria, Australia (M.B., A.F.C.); Department of Psychiatry, University of Ottawa, Ontario, Canada (M.S.); The Champlain First Episode Psychosis Program, Department of Mental Health, The Ottawa Hospital, Ontario, Canada (M.S.); Department of Child and Adolescent Psychiatry, Charité Universitätsmedizin, Berlin, Germany (M.S.); Section of Psychiatry, Department of Neuroscience, Reproductive Science and Odontostomatology, Federico II University of Naples, Naples, Italy (M.F.); Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UT Health), Houston, Texas (J.Q.); Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland (C.A.Z.); Copenhagen Affective Disorders Research Centre (CADIC), Psychiatric Center Copenhagen, Rigshospitalet, Denmark (L.V.K.); and Department of Clinical Medicine, University of Copenhagen, Denmark (L.V.K.)
| | - Carlos A Zarate
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Spanish National Research Council (CSIC), Barcelona, Spain (A.B.); Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain (A.B., G.F., E.V.); Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Madrid, Spain (A.B., G.F., E.V.); Hospital Clinic, Institute of Neuroscience, University of Barcelona, Barcelona, Spain (G.F., E.V.); IMPACT - The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, Victoria, Australia (M.B., A.F.C.); Department of Psychiatry, University of Ottawa, Ontario, Canada (M.S.); The Champlain First Episode Psychosis Program, Department of Mental Health, The Ottawa Hospital, Ontario, Canada (M.S.); Department of Child and Adolescent Psychiatry, Charité Universitätsmedizin, Berlin, Germany (M.S.); Section of Psychiatry, Department of Neuroscience, Reproductive Science and Odontostomatology, Federico II University of Naples, Naples, Italy (M.F.); Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UT Health), Houston, Texas (J.Q.); Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland (C.A.Z.); Copenhagen Affective Disorders Research Centre (CADIC), Psychiatric Center Copenhagen, Rigshospitalet, Denmark (L.V.K.); and Department of Clinical Medicine, University of Copenhagen, Denmark (L.V.K.)
| | - Lars V Kessing
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Spanish National Research Council (CSIC), Barcelona, Spain (A.B.); Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain (A.B., G.F., E.V.); Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Madrid, Spain (A.B., G.F., E.V.); Hospital Clinic, Institute of Neuroscience, University of Barcelona, Barcelona, Spain (G.F., E.V.); IMPACT - The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, Victoria, Australia (M.B., A.F.C.); Department of Psychiatry, University of Ottawa, Ontario, Canada (M.S.); The Champlain First Episode Psychosis Program, Department of Mental Health, The Ottawa Hospital, Ontario, Canada (M.S.); Department of Child and Adolescent Psychiatry, Charité Universitätsmedizin, Berlin, Germany (M.S.); Section of Psychiatry, Department of Neuroscience, Reproductive Science and Odontostomatology, Federico II University of Naples, Naples, Italy (M.F.); Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UT Health), Houston, Texas (J.Q.); Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland (C.A.Z.); Copenhagen Affective Disorders Research Centre (CADIC), Psychiatric Center Copenhagen, Rigshospitalet, Denmark (L.V.K.); and Department of Clinical Medicine, University of Copenhagen, Denmark (L.V.K.)
| | - Eduard Vieta
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Spanish National Research Council (CSIC), Barcelona, Spain (A.B.); Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain (A.B., G.F., E.V.); Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Madrid, Spain (A.B., G.F., E.V.); Hospital Clinic, Institute of Neuroscience, University of Barcelona, Barcelona, Spain (G.F., E.V.); IMPACT - The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, Victoria, Australia (M.B., A.F.C.); Department of Psychiatry, University of Ottawa, Ontario, Canada (M.S.); The Champlain First Episode Psychosis Program, Department of Mental Health, The Ottawa Hospital, Ontario, Canada (M.S.); Department of Child and Adolescent Psychiatry, Charité Universitätsmedizin, Berlin, Germany (M.S.); Section of Psychiatry, Department of Neuroscience, Reproductive Science and Odontostomatology, Federico II University of Naples, Naples, Italy (M.F.); Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UT Health), Houston, Texas (J.Q.); Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland (C.A.Z.); Copenhagen Affective Disorders Research Centre (CADIC), Psychiatric Center Copenhagen, Rigshospitalet, Denmark (L.V.K.); and Department of Clinical Medicine, University of Copenhagen, Denmark (L.V.K.)
| | - Andre F Carvalho
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Spanish National Research Council (CSIC), Barcelona, Spain (A.B.); Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain (A.B., G.F., E.V.); Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Madrid, Spain (A.B., G.F., E.V.); Hospital Clinic, Institute of Neuroscience, University of Barcelona, Barcelona, Spain (G.F., E.V.); IMPACT - The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, Victoria, Australia (M.B., A.F.C.); Department of Psychiatry, University of Ottawa, Ontario, Canada (M.S.); The Champlain First Episode Psychosis Program, Department of Mental Health, The Ottawa Hospital, Ontario, Canada (M.S.); Department of Child and Adolescent Psychiatry, Charité Universitätsmedizin, Berlin, Germany (M.S.); Section of Psychiatry, Department of Neuroscience, Reproductive Science and Odontostomatology, Federico II University of Naples, Naples, Italy (M.F.); Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UT Health), Houston, Texas (J.Q.); Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland (C.A.Z.); Copenhagen Affective Disorders Research Centre (CADIC), Psychiatric Center Copenhagen, Rigshospitalet, Denmark (L.V.K.); and Department of Clinical Medicine, University of Copenhagen, Denmark (L.V.K.)
| |
Collapse
|
8
|
Abstract
Over 2.6 million adults over the age of 65 develop delirium each year in the United States (US). Delirium is associated with a significant increase in mortality and the US health care costs associated with delirium are estimated at over $164 billion annually. Despite the prevalence of the condition, the molecular pathophysiology of delirium remains unexplained, limiting the development of pharmacotherapies. Delirious patients can be identified by prominent impairments in attention and working memory (WM), two cognitive domains that localize to the dorsolateral prefrontal cortex (dlPFC). The dlPFC is also a key site for Alzheimer's disease (AD) pathology, and given the high risk of delirium in AD patients, suggests that efforts at understanding delirium might focus on the dlPFC as a final common endpoint for cognitive changes. Preclinical studies of the dlPFC reproduce many of the pharmacological observations made of delirious patients, including sensitivity to anticholinergics and an 'inverted U' pattern of dependence on monoaminergic input, with diminished performance outside a narrow range of signaling. Medications like guanfacine, which influence the dlPFC in the context of attention-deficit/hyperactivity disorder (ADHD), have emerged as therapies for delirium and motivate a detailed understanding of the influence of α-2 agonists on WM. In this review, I will discuss the neural circuitry and molecular mechanisms underlying WM and the function of the dlPFC. Localizing the cognitive deficits that are commonly seen in delirious patients may help identify new molecular targets for this highly prevalent disease.
Collapse
Affiliation(s)
- Kyle A. Lyman
- Department of Neurology, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
9
|
Wang H, Lu F, Tian Y, Zhang S, Han S, Fu Y, Li J, Feng P, Shi Z, Chen H, Hou H. Evaluation of toxicity of heated tobacco products aerosol and cigarette smoke to BEAS-2B cells based on 3D biomimetic chip model. Toxicol In Vitro 2024; 94:105708. [PMID: 37806364 DOI: 10.1016/j.tiv.2023.105708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/28/2023] [Accepted: 10/03/2023] [Indexed: 10/10/2023]
Abstract
It is still a controversial topic about evaluating whether heated tobacco products (HTP) really reduce harm, which involves the choice of an experimental model. Here, a three-dimensional (3D) biomimetic chip model was used to evaluate the toxicity of aerosols came from HTP and smoke produced by cigarettes (Cig). Based on cell-related experiments, we found that the toxicity of Cig smoke extract diluted four times was also much higher than that of undiluted HTP, showing higher oxidative stress response and cause mitochondrial dysfunction. Meanwhile, both tobacco products all affect the tricarboxylic acid cycle (TCA), which is manifested by a significant decrease in the mRNA expression of TCA key rate-limiting enzymes. Summarily, 3D Biomimetic chip technology can be used as an ideal model to evaluate HTP. It can provide important data for tobacco risk assessment when 3D chip model was used. Our experimental results showed that HTP may be less harmful than tobacco cigarettes, but it does show significant cytotoxicity with the increase of dose. Therefore, the potential clinical effects of HTP on targeted organs such as lung should be further studied.
Collapse
Affiliation(s)
- Hongjuan Wang
- China National Tobacco Quality Supervision &Test Center, Zhengzhou, China; Key Laboratory of Tobacco Biological Effects, Zhengzhou, China; Beijing Institute of Life Science and Technology, Beijing, China; Key Labortory of Tobacco Biological Effects and Biosynthesis, Beijing, China
| | - Fengjun Lu
- China National Tobacco Quality Supervision &Test Center, Zhengzhou, China; Key Laboratory of Tobacco Biological Effects, Zhengzhou, China
| | - Yushan Tian
- China National Tobacco Quality Supervision &Test Center, Zhengzhou, China; Key Laboratory of Tobacco Biological Effects, Zhengzhou, China; Beijing Institute of Life Science and Technology, Beijing, China; Key Labortory of Tobacco Biological Effects and Biosynthesis, Beijing, China
| | - Sen Zhang
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Xi'an 710069, China
| | - Shulei Han
- China National Tobacco Quality Supervision &Test Center, Zhengzhou, China; Key Laboratory of Tobacco Biological Effects, Zhengzhou, China; Beijing Institute of Life Science and Technology, Beijing, China; Key Labortory of Tobacco Biological Effects and Biosynthesis, Beijing, China
| | - Yaning Fu
- China National Tobacco Quality Supervision &Test Center, Zhengzhou, China; Key Laboratory of Tobacco Biological Effects, Zhengzhou, China; Beijing Institute of Life Science and Technology, Beijing, China; Key Labortory of Tobacco Biological Effects and Biosynthesis, Beijing, China
| | - Jun Li
- China National Tobacco Quality Supervision &Test Center, Zhengzhou, China; Key Laboratory of Tobacco Biological Effects, Zhengzhou, China; Beijing Institute of Life Science and Technology, Beijing, China; Key Labortory of Tobacco Biological Effects and Biosynthesis, Beijing, China
| | - Pengxia Feng
- China National Tobacco Quality Supervision &Test Center, Zhengzhou, China; Key Laboratory of Tobacco Biological Effects, Zhengzhou, China
| | - Zhihao Shi
- China National Tobacco Quality Supervision &Test Center, Zhengzhou, China; Key Laboratory of Tobacco Biological Effects, Zhengzhou, China
| | - Huan Chen
- China National Tobacco Quality Supervision &Test Center, Zhengzhou, China; Key Laboratory of Tobacco Biological Effects, Zhengzhou, China; Beijing Institute of Life Science and Technology, Beijing, China; Key Labortory of Tobacco Biological Effects and Biosynthesis, Beijing, China.
| | - Hongwei Hou
- China National Tobacco Quality Supervision &Test Center, Zhengzhou, China; Key Laboratory of Tobacco Biological Effects, Zhengzhou, China; Beijing Institute of Life Science and Technology, Beijing, China; Key Labortory of Tobacco Biological Effects and Biosynthesis, Beijing, China.
| |
Collapse
|
10
|
Goyal A, Agrawal A, Dubey N, Verma A. High Mobility Group Box 1 Protein: A Plausible Therapeutic Molecular Target in Parkinson's Disease. Curr Pharm Biotechnol 2024; 25:937-943. [PMID: 37670710 DOI: 10.2174/1389201025666230905092218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/25/2023] [Accepted: 08/03/2023] [Indexed: 09/07/2023]
Abstract
Parkinson's disease (PD) is a widespread neurodegenerative disorder that exerts a broad variety of detrimental effects on people's health. Accumulating evidence suggests that mitochondrial dysfunction, neuroinflammation, α-synuclein aggregation and autophagy dysfunction may all play a role in the development of PD. However, the molecular mechanisms behind these pathophysiological processes remain unknown. Currently, research in PD has focussed on high mobility group box 1 (HMGB1), and different laboratory approaches have shown promising outcomes to some level for blocking HMGB1. Given that HMGB1 regulates mitochondrial dysfunction, participates in neuroinflammation, and modulates autophagy and apoptosis, it is hypothesised that HMGB1 has significance in the onset of PD. In the current review, research targeting multiple roles of HMGB1 in PD pathology was integrated, and the issues that need future attention for targeted therapeutic approaches are mentioned.
Collapse
Affiliation(s)
- Ahsas Goyal
- Department of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Anant Agrawal
- Department of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Nandini Dubey
- Department of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Aanchal Verma
- Department of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| |
Collapse
|
11
|
Goyal A, Dubey N, Agrawal A, Sharma R, Verma A. An Insight into the Promising Therapeutic Potential of Chicoric Acid. Curr Pharm Biotechnol 2024; 25:1708-1718. [PMID: 38083896 DOI: 10.2174/0113892010280616231127075921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/09/2023] [Accepted: 11/21/2023] [Indexed: 09/04/2024]
Abstract
The pharmacological treatments that are now recommended for the therapy of chronic illnesses are examined in a great number of studies to determine whether or not they are both safe and effective. Therefore, it is important to investigate various alternative therapeutic assistance, such as natural remedies derived from medicinal plants. In this context, chicoric acid, classified as a hydroxycinnamic acid, has been documented to exhibit a range of health advantages. These include antiviral, antioxidant, anti-inflammatory, obesity-preventing, and neuroprotective effects. Due to its considerable pharmacological properties, chicoric acid has found extensive applications in food, pharmaceuticals, animal husbandry, and various other commercial sectors. This article provides a comprehensive overview of in vitro and in vivo investigations on chicoric acid, highlighting its beneficial effects and therapeutic activity when used as a preventative and management aid for public health conditions, including diabetes, cardiovascular disease, and hepatic illnesses like non-alcoholic steatohepatitis. Moreover, further investigation of this compound can lead to its development as a potential phytopharmaceutical candidate.
Collapse
Affiliation(s)
- Ahsas Goyal
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Nandini Dubey
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Anant Agrawal
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Rashmi Sharma
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Aanchal Verma
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| |
Collapse
|
12
|
Calarco CA, Keppetipola SM, Kumar G, Shipper AG, Lobo MK. Whole blood mitochondrial copy number in clinical populations with mood disorders: A meta-analysis: Blood mitochondrial copy number and mood disorders. Psychiatry Res 2024; 331:115662. [PMID: 38118327 DOI: 10.1016/j.psychres.2023.115662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/01/2023] [Accepted: 12/02/2023] [Indexed: 12/22/2023]
Abstract
Major depressive disorder (MDD) and bipolar disorder (BD), are globally prevalent, contributing to significant disease burden and adverse health outcomes. These mood disorders are associated with changes in many aspects of brain reward pathways, yet cellular and molecular changes in the brain are not readily available in clinical populations. Therefore, the use of biomarkers as proxies for changes in the brain are necessary. The proliferation of mitochondria in blood has emerged as a potentially useful biomarker, yet a clear consensus on how these mood disorders impact mitochondrial DNA copy number (mtDNAcn) has not been reached. To determine the current available consensus on the relationship of mood disorder diagnosis and blood mtDNcn, we performed a meta-analysis of available literature measuring this biomarker. Following PRISMA guidelines for a systematic search, 22 papers met inclusion criteria for meta-analysis (10 MDD, 10 BD, 2 both MDD and BD). We extracted demographic, disorder, and methodological information with mtDNAcn. Using the metafor package for R, calculated effect sizes were used in random effects or meta regression models for MDD and BD. Overall, our data suggest blood mtDNAcn may be a useful biomarker for mood disorders, with MDD and BD Type II associated with higher mtDNAcn, and BD Type I associated with lower mtDNAcn. Initially, we observed a trending increase in mtDNAcn in patients with MDD, which reached significance when one study with outlying demographic characteristics was excluded. Subgroup and meta-regression analysis indicated the relationship between mtDNAcn and diagnosis in patients with BD is dependent on BD type, while no relationship is detectable when BD types are mixed. Further study of blood mtDNAcn could predict downstream health outcomes or treatment responsivity in individuals with mood disorders.
Collapse
Affiliation(s)
- Cali A Calarco
- Department of Neurobiology, University of Maryland, 20 Penn Street, Baltimore, MD 21201 USA
| | | | - Gautam Kumar
- Department of Neurobiology, University of Maryland, 20 Penn Street, Baltimore, MD 21201 USA
| | - Andrea G Shipper
- Health Sciences and Human Services Library, University of Maryland, 601W. Lombard Street, Baltimore, MD 21201, USA
| | - Mary Kay Lobo
- Department of Neurobiology, University of Maryland, 20 Penn Street, Baltimore, MD 21201 USA.
| |
Collapse
|
13
|
Zhang Y, Sun M, Zhao H, Wang Z, Shi Y, Dong J, Wang K, Wang X, Li X, Qi H, Zhao X. Neuroprotective Effects and Therapeutic Potential of Dichloroacetate: Targeting Metabolic Disorders in Nervous System Diseases. Int J Nanomedicine 2023; 18:7559-7581. [PMID: 38106446 PMCID: PMC10725694 DOI: 10.2147/ijn.s439728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/28/2023] [Indexed: 12/19/2023] Open
Abstract
Dichloroacetate (DCA) is an investigational drug used to treat lactic acidosis and malignant tumours. It works by inhibiting pyruvate dehydrogenase kinase and increasing the rate of glucose oxidation. Some studies have documented the neuroprotective benefits of DCA. By reviewing these studies, this paper shows that DCA has multiple pharmacological activities, including regulating metabolism, ameliorating oxidative stress, attenuating neuroinflammation, inhibiting apoptosis, decreasing autophagy, protecting the blood‒brain barrier, improving the function of endothelial progenitor cells, improving mitochondrial dynamics, and decreasing amyloid β-protein. In addition, DCA inhibits the enzyme that metabolizes it, which leads to peripheral neurotoxicity due to drug accumulation that may be solved by individualized drug delivery and nanovesicle delivery. In summary, in this review, we analyse the mechanisms of neuroprotection by DCA in different diseases and discuss the causes of and solutions to its adverse effects.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, People’s Republic of China
- Laboratory of Anesthesia and Critical Care Medicine in Colleges and Universities of Shandong Province, School of Anesthesiology, Weifang Medical University, Weifang, Shandong Province, People’s Republic of China
| | - Meiyan Sun
- Laboratory of Anesthesia and Critical Care Medicine in Colleges and Universities of Shandong Province, School of Anesthesiology, Weifang Medical University, Weifang, Shandong Province, People’s Republic of China
| | - Hongxiang Zhao
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, People’s Republic of China
- Laboratory of Anesthesia and Critical Care Medicine in Colleges and Universities of Shandong Province, School of Anesthesiology, Weifang Medical University, Weifang, Shandong Province, People’s Republic of China
| | - Zhengyan Wang
- Laboratory of Anesthesia and Critical Care Medicine in Colleges and Universities of Shandong Province, School of Anesthesiology, Weifang Medical University, Weifang, Shandong Province, People’s Republic of China
| | - Yanan Shi
- Laboratory of Anesthesia and Critical Care Medicine in Colleges and Universities of Shandong Province, School of Anesthesiology, Weifang Medical University, Weifang, Shandong Province, People’s Republic of China
| | - Jianxin Dong
- Laboratory of Anesthesia and Critical Care Medicine in Colleges and Universities of Shandong Province, School of Anesthesiology, Weifang Medical University, Weifang, Shandong Province, People’s Republic of China
| | - Kaifang Wang
- Department of Anesthesia, Tangdu Hospital, Fourth Military Medical University, Xian, Shanxi Province, People’s Republic of China
| | - Xi Wang
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, People’s Republic of China
| | - Xingyue Li
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, People’s Republic of China
| | - Haiyan Qi
- Department of Anesthesiology, Jinan Maternity and Child Care Hospital Affiliated to Shandong First Medical University, Jinan, Shandong Province, People’s Republic of China
| | - Xiaoyong Zhao
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, People’s Republic of China
- Laboratory of Anesthesia and Critical Care Medicine in Colleges and Universities of Shandong Province, School of Anesthesiology, Weifang Medical University, Weifang, Shandong Province, People’s Republic of China
- Department of Anesthesiology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong Province, People’s Republic of China
| |
Collapse
|
14
|
Calarco CA, Keppetipola SM, Kumar G, Shipper AG, Lobo MK. Whole blood mitochondrial copy number in clinical populations with mood disorders: a meta-analysis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.13.557572. [PMID: 37745411 PMCID: PMC10515896 DOI: 10.1101/2023.09.13.557572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Background Major depressive disorder (MDD) and bipolar disorder (BD), are globally prevalent, contributing to significant disease burden and adverse health outcomes. These mood disorders are associated with changes in many aspects of brain reward pathways, yet cellular and molecular changes in the brain are not readily available in clinical populations. Therefore, the use of biomarkers as proxies for changes in the brain are necessary. The proliferation of mitochondria in blood has emerged as a potentially useful biomarker, yet a clear consensus on how these mood disorders impact mitochondrial DNA copy number (mtDNAcn) has not been reached. Methods Following PRISMA guidelines for a systematic search, 22 papers met inclusion criteria for meta-analysis (10 MDD, 10 BD, 2 both MDD and BD). We extracted demographic, disorder, and methodological information with mtDNAcn. Using the metafor package for R, calculated effect sizes were used in random effects or meta regression models for MDD and BD. Results Our results show a trending increase in mtDNAcn in patients with MDD, which reaches significance when one study with outlying demographic characteristics is excluded. Overall, there was no effect of BD on mtDNAcn, however, further subgroup and meta-regression analysis indicated the effects on mtDNAcn are dependent on BD type. Conclusions Together our data suggest whole blood/leukocyte mtDNAcn may be a useful biomarker for mood disorders, with MDD and BD Type II associated with higher mtDNAcn, and BD Type I associated with lower mtDNAcn. Further study of blood mtDNAcn could predict downstream health outcomes or treatment responsivity in individuals with mood disorders.
Collapse
|
15
|
Jia D, Wang F, Yu H. Systemic alterations of tricarboxylic acid cycle enzymes in Alzheimer's disease. Front Neurosci 2023; 17:1206688. [PMID: 37575300 PMCID: PMC10413568 DOI: 10.3389/fnins.2023.1206688] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 07/10/2023] [Indexed: 08/15/2023] Open
Abstract
Mitochondrial dysfunction, especially tricarboxylic acid (TCA) cycle arrest, is strongly associated with Alzheimer's disease (AD), however, its systemic alterations in the central and peripheral of AD patients are not well defined. Here, we performed an integrated analysis of AD brain and peripheral blood cells transcriptomics to reveal the expression levels of nine TCA cycle enzymes involving 35 genes. The results showed that TCA cycle related genes were consistently down-regulated in the AD brain, whereas 11 genes were increased and 16 genes were decreased in the peripheral system. Pearson analysis of the TCA cycle genes with Aβ, Tau and mini-mental state examination (MMSE) revealed several significant correlated genes, including pyruvate dehydrogenase complex subunit (PDHB), isocitrate dehydrogenase subunits (IDH3B, IDH3G), 2-oxoglutarate dehydrogenase complex subunit (DLD), succinyl-CoA synthetase subunit (SUCLA2), malate dehydrogenase subunit (MDH1). In addition, SUCLA2, MDH1, and PDHB were also uniformly down-regulated in peripheral blood cells, suggesting that they may be candidate biomarkers for the early diagnosis of AD. Taken together, TCA cycle enzymes were systemically altered in AD progression, PDHB, SUCLA2, and MDH1 may be potential diagnostic and therapeutic targets.
Collapse
Affiliation(s)
- Dongdong Jia
- The Affiliated Mental Health Center of Jiangnan University, Wuxi Central Rehabilitation Hospital, Wuxi, Jiangsu, China
| | - Fangzhou Wang
- Department of Fundamental Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Haitao Yu
- The Affiliated Mental Health Center of Jiangnan University, Wuxi Central Rehabilitation Hospital, Wuxi, Jiangsu, China
- Department of Fundamental Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
16
|
Zagmutt S, Mera P, González-García I, Ibeas K, Romero MDM, Obri A, Martin B, Esteve-Codina A, Soler-Vázquez MC, Bastias-Pérez M, Cañes L, Augé E, Pelegri C, Vilaplana J, Ariza X, García J, Martinez-González J, Casals N, López M, Palmiter R, Sanz E, Quintana A, Herrero L, Serra D. CPT1A in AgRP neurons is required for sex-dependent regulation of feeding and thirst. Biol Sex Differ 2023; 14:14. [PMID: 36966335 PMCID: PMC10040140 DOI: 10.1186/s13293-023-00498-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 03/10/2023] [Indexed: 03/27/2023] Open
Abstract
BACKGROUND Fatty acid metabolism in the hypothalamus has an important role in food intake, but its specific role in AgRP neurons is poorly understood. Here, we examined whether carnitinea palmitoyltransferase 1A (CPT1A), a key enzyme in mitochondrial fatty acid oxidation, affects energy balance. METHODS To obtain Cpt1aKO mice and their control littermates, Cpt1a(flox/flox) mice were crossed with tamoxifen-inducible AgRPCreERT2 mice. Food intake and body weight were analyzed weekly in both males and females. At 12 weeks of age, metabolic flexibility was determined by ghrelin-induced food intake and fasting-refeeding satiety tests. Energy expenditure was analyzed by calorimetric system and thermogenic activity of brown adipose tissue. To study fluid balance the analysis of urine and water intake volumes; osmolality of urine and plasma; as well as serum levels of angiotensin and components of RAAS (renin-angiotensin-aldosterone system) were measured. At the central level, changes in AgRP neurons were determined by: (1) analyzing specific AgRP gene expression in RiboTag-Cpt1aKO mice obtained by crossing Cpt1aKO mice with RiboTag mice; (2) measuring presynaptic terminal formation in the AgRP neurons with the injection of the AAV1-EF1a-DIO-synaptophysin-GFP in the arcuate nucleus of the hypothalamus; (3) analyzing AgRP neuronal viability and spine formations by the injection AAV9-EF1a-DIO-mCherry in the arcuate nucleus of the hypothalamus; (4) analyzing in situ the specific AgRP mitochondria in the ZsGreen-Cpt1aKO obtained by breeding ZsGreen mice with Cpt1aKO mice. Two-way ANOVA analyses were performed to determine the contributions of the effect of lack of CPT1A in AgRP neurons in the sex. RESULTS Changes in food intake were just seen in male Cpt1aKO mice while only female Cpt1aKO mice increased energy expenditure. The lack of Cpt1a in the AgRP neurons enhanced brown adipose tissue activity, mainly in females, and induced a substantial reduction in fat deposits and body weight. Strikingly, both male and female Cpt1aKO mice showed polydipsia and polyuria, with more reduced serum vasopressin levels in females and without osmolality alterations, indicating a direct involvement of Cpt1a in AgRP neurons in fluid balance. AgRP neurons from Cpt1aKO mice showed a sex-dependent gene expression pattern, reduced mitochondria and decreased presynaptic innervation to the paraventricular nucleus, without neuronal viability alterations. CONCLUSIONS Our results highlight that fatty acid metabolism and CPT1A in AgRP neurons show marked sex differences and play a relevant role in the neuronal processes necessary for the maintenance of whole-body fluid and energy balance.
Collapse
Affiliation(s)
- Sebastián Zagmutt
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Universitat de Barcelona, Av. Joan XXIII, 27-31, 08028, Barcelona, Spain
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona, Spain
| | - Paula Mera
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Universitat de Barcelona, Av. Joan XXIII, 27-31, 08028, Barcelona, Spain
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Ismael González-García
- NeurObesity Group, Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
| | - Kevin Ibeas
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Universitat de Barcelona, Av. Joan XXIII, 27-31, 08028, Barcelona, Spain
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona, Spain
| | - María Del Mar Romero
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Universitat de Barcelona, Av. Joan XXIII, 27-31, 08028, Barcelona, Spain
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Arnaud Obri
- Neuronal Control of Metabolism Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Beatriz Martin
- CNAG-CRG, Centre for Genomic Regulation, Barcelona Institute of Science and Technology, 08028, Barcelona, Spain
| | - Anna Esteve-Codina
- CNAG-CRG, Centre for Genomic Regulation, Barcelona Institute of Science and Technology, 08028, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - M Carmen Soler-Vázquez
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Universitat de Barcelona, Av. Joan XXIII, 27-31, 08028, Barcelona, Spain
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona, Spain
| | - Marianela Bastias-Pérez
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Universitat de Barcelona, Av. Joan XXIII, 27-31, 08028, Barcelona, Spain
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona, Spain
| | - Laia Cañes
- Instituto de Investigaciones Biomédicas de Barcelona (IIBB-CSIC), Barcelona, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
- Instituto de Investigación Biomédica Sant Pau (IIB-Sant Pau), Barcelona, Spain
| | - Elisabeth Augé
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Universitat de Barcelona, Av. Joan XXIII, 27-31, 08028, Barcelona, Spain
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Carme Pelegri
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Universitat de Barcelona, Av. Joan XXIII, 27-31, 08028, Barcelona, Spain
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
- Institute of Neurosciences of the Universitat de Barcelona, Barcelona, Spain
| | - Jordi Vilaplana
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Universitat de Barcelona, Av. Joan XXIII, 27-31, 08028, Barcelona, Spain
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
- Institute of Neurosciences of the Universitat de Barcelona, Barcelona, Spain
| | - Xavier Ariza
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- Department of Inorganic & Organic Chemistry, Faculty of Chemistry, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona, Spain
| | - Jordi García
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- Department of Inorganic & Organic Chemistry, Faculty of Chemistry, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona, Spain
| | - José Martinez-González
- Instituto de Investigaciones Biomédicas de Barcelona (IIBB-CSIC), Barcelona, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
- Instituto de Investigación Biomédica Sant Pau (IIB-Sant Pau), Barcelona, Spain
| | - Núria Casals
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- Department of Basic Sciences, Faculty of Medicine & Health Sciences, Universitat Internacional de Catalunya, Sant Cugat del Vallès, Spain
| | - Miguel López
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- NeurObesity Group, Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
| | - Richard Palmiter
- Department of Biochemistry, Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
| | - Elisenda Sanz
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Albert Quintana
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Laura Herrero
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Universitat de Barcelona, Av. Joan XXIII, 27-31, 08028, Barcelona, Spain
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Dolors Serra
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Universitat de Barcelona, Av. Joan XXIII, 27-31, 08028, Barcelona, Spain.
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
17
|
Goyal A, Verma A, Agrawal A, Dubey N, Kumar A, Behl T. Therapeutic implications of crocin in Parkinson's disease: A review of preclinical research. Chem Biol Drug Des 2023; 101:1229-1240. [PMID: 36752710 DOI: 10.1111/cbdd.14210] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/13/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023]
Abstract
Parkinson's disease is among the most common forms of neurodegenerative illness, with present treatment being primarily symptomatic and frequently coming with substantial adverse effects. Neuronal degeneration may arise due to a variety of pathological events, like inflammatory responses, neurotransmitter dysregulation, oxidative damage, mitochondrial malfunction, apoptosis, and genetic factors. The health issue and financial burden brought on by Parkinson's disease can worsen as the population ages. In the search for new and secure therapeutic agents for Parkinson's disease, several natural compounds have been shown to exert considerable neuroprotective benefits. Crocin, a naturally occurring carotenoid molecule, was found to have neuroprotective potential in the therapy of this disorder. Taking into account, the outcomes of various studies and the restorative actions of crocin, the present study emphasized the protective ability of crocin in this disease. Given the strong evidence supporting the neuroprotective ability of crocin, it is inferred that crocin inhibits inflammatory, apoptotic, and antioxidant processes through multiple mechanisms. Therefore, this compound is considered a safe and effective therapeutic choice for neurodegenerative illnesses like Parkinson's disease. However, more research on its efficacy as a treatment of Parkinson's disease is needed, specifically examining its mechanisms and the results obtained in clinical trials.
Collapse
Affiliation(s)
- Ahsas Goyal
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Aanchal Verma
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Anant Agrawal
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Nandini Dubey
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Abhay Kumar
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Tapan Behl
- School of Health Sciences and Technology, University of Petroleum and Energy Studies, Bidohli, Uttarakhand, India
| |
Collapse
|
18
|
Goyal A, Agrawal A, Verma A, Dubey N. The PI3K-AKT pathway: A plausible therapeutic target in Parkinson's disease. Exp Mol Pathol 2023; 129:104846. [PMID: 36436571 DOI: 10.1016/j.yexmp.2022.104846] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/14/2022] [Accepted: 11/19/2022] [Indexed: 11/27/2022]
Abstract
Parkinson's disease is a common progressive and multifactorial neurodegenerative disease, characterized by the loss of midbrain dopaminergic neurons. Numerous pathological processes including, inflammation, oxidative stress, mitochondrial dysfunction, neurotransmitter imbalance, and apoptosis as well as genetic factors may lead to neuronal degeneration. With the emergence of aging population, the health problem and economic burden caused by PD also increase. Phosphatidylinositol 3-kinases-protein kinase B (PI3K-AKT) signaling pathway regulates signal transduction and biological processes such as cell proliferation, apoptosis and metabolism. According to reports, it regulates neurotoxicity and mediates the survival of neurons. Accumulating evidences indicate that some natural products can play a neuroprotective role by activating PI3K-AKT pathway, providing an effective resource for the discovery of potential therapeutic drugs. The current review provides an overview of the PI3K-AKT signaling pathway and review the relationship between this signaling pathway and PD.
Collapse
Affiliation(s)
- Ahsas Goyal
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India.
| | - Anant Agrawal
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Aanchal Verma
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Nandini Dubey
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| |
Collapse
|
19
|
Bernal‐Chico A, Tepavcevic V, Manterola A, Utrilla C, Matute C, Mato S. Endocannabinoid signaling in brain diseases: Emerging relevance of glial cells. Glia 2023; 71:103-126. [PMID: 35353392 PMCID: PMC9790551 DOI: 10.1002/glia.24172] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/15/2022] [Accepted: 03/17/2022] [Indexed: 02/06/2023]
Abstract
The discovery of cannabinoid receptors as the primary molecular targets of psychotropic cannabinoid Δ9 -tetrahydrocannabinol (Δ9 -THC) in late 1980s paved the way for investigations on the effects of cannabis-based therapeutics in brain pathology. Ever since, a wealth of results obtained from studies on human tissue samples and animal models have highlighted a promising therapeutic potential of cannabinoids and endocannabinoids in a variety of neurological disorders. However, clinical success has been limited and major questions concerning endocannabinoid signaling need to be satisfactorily addressed, particularly with regard to their role as modulators of glial cells in neurodegenerative diseases. Indeed, recent studies have brought into the limelight diverse, often unexpected functions of astrocytes, oligodendrocytes, and microglia in brain injury and disease, thus providing scientific basis for targeting glial cells to treat brain disorders. This Review summarizes the current knowledge on the molecular and cellular hallmarks of endocannabinoid signaling in glial cells and its clinical relevance in neurodegenerative and chronic inflammatory disorders.
Collapse
Affiliation(s)
- Ana Bernal‐Chico
- Department of NeurosciencesUniversity of the Basque Country UPV/EHULeioaSpain,Achucarro Basque Center for NeuroscienceLeioaSpain,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)MadridSpain,Neuroimmunology UnitBiocruces BizkaiaBarakaldoSpain
| | | | - Andrea Manterola
- Department of NeurosciencesUniversity of the Basque Country UPV/EHULeioaSpain,Achucarro Basque Center for NeuroscienceLeioaSpain,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)MadridSpain,Present address:
Parque Científico y Tecnológico de GuipuzkoaViralgenSan SebastianSpain
| | | | - Carlos Matute
- Department of NeurosciencesUniversity of the Basque Country UPV/EHULeioaSpain,Achucarro Basque Center for NeuroscienceLeioaSpain,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)MadridSpain
| | - Susana Mato
- Department of NeurosciencesUniversity of the Basque Country UPV/EHULeioaSpain,Achucarro Basque Center for NeuroscienceLeioaSpain,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)MadridSpain,Neuroimmunology UnitBiocruces BizkaiaBarakaldoSpain
| |
Collapse
|
20
|
Lee SH, Choi BY, Kho AR, Hong DK, Kang BS, Park MK, Lee SH, Choi HC, Song HK, Suh SW. Combined Treatment of Dichloroacetic Acid and Pyruvate Increased Neuronal Survival after Seizure. Nutrients 2022; 14:4804. [PMID: 36432491 PMCID: PMC9698956 DOI: 10.3390/nu14224804] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/09/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022] Open
Abstract
During seizure activity, glucose and Adenosine triphosphate (ATP) levels are significantly decreased in the brain, which is a contributing factor to seizure-induced neuronal death. Dichloroacetic acid (DCA) has been shown to prevent cell death. DCA is also known to be involved in adenosine triphosphate (ATP) production by activating pyruvate dehydrogenase (PDH), a gatekeeper of glucose oxidation, as a pyruvate dehydrogenase kinase (PDK) inhibitor. To confirm these findings, in this study, rats were given a per oral (P.O.) injection of DCA (100 mg/kg) with pyruvate (50 mg/kg) once per day for 1 week starting 2 h after the onset of seizures induced by pilocarpine administration. Neuronal death and oxidative stress were assessed 1 week after seizure to determine if the combined treatment of pyruvate and DCA increased neuronal survival and reduced oxidative damage in the hippocampus. We found that the combined treatment of pyruvate and DCA showed protective effects against seizure-associated hippocampal neuronal cell death compared to the vehicle-treated group. Treatment with combined pyruvate and DCA after seizure may have a therapeutic effect by increasing the proportion of pyruvate converted to ATP. Thus, the current research demonstrates that the combined treatment of pyruvate and DCA may have therapeutic potential in seizure-induced neuronal death.
Collapse
Affiliation(s)
- Song Hee Lee
- Department of Physiology, College of Medicine, Hallym University, Chuncheon 24252, Korea
| | - Bo Young Choi
- Department of Physical Education, Hallym University, Chuncheon 24252, Korea
- Institute of Sports Science, Hallym University, Chuncheon 24252, Korea
| | - A Ra Kho
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Dae Ki Hong
- Department of Physiology, College of Medicine, Hallym University, Chuncheon 24252, Korea
| | - Beom Seok Kang
- Department of Physiology, College of Medicine, Hallym University, Chuncheon 24252, Korea
| | - Min Kyu Park
- Department of Physiology, College of Medicine, Hallym University, Chuncheon 24252, Korea
| | - Si Hyun Lee
- Department of Physiology, College of Medicine, Hallym University, Chuncheon 24252, Korea
| | - Hui Chul Choi
- College of Medicine, Neurology, Hallym University, Chuncheon 24252, Korea
- Hallym Institute of Epilepsy Research, Hallym University, Chuncheon 24252, Korea
| | - Hong Ki Song
- College of Medicine, Neurology, Hallym University, Chuncheon 24252, Korea
- Hallym Institute of Epilepsy Research, Hallym University, Chuncheon 24252, Korea
| | - Sang Won Suh
- Department of Physiology, College of Medicine, Hallym University, Chuncheon 24252, Korea
- Hallym Institute of Epilepsy Research, Hallym University, Chuncheon 24252, Korea
| |
Collapse
|
21
|
Fiore NJ, Tamer-Mahoney JD, Beheshti A, Nieland TJF, Kaplan DL. 3D biocomposite culture enhances differentiation of dopamine-like neurons from SH-SY5Y cells: A model for studying Parkinson's disease phenotypes. Biomaterials 2022; 290:121858. [PMID: 36272218 DOI: 10.1016/j.biomaterials.2022.121858] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 09/30/2022] [Accepted: 10/09/2022] [Indexed: 01/01/2023]
Abstract
Studies of underlying neurodegenerative processes in Parkinson's Disease (PD) have traditionally utilized cell cultures grown on two-dimensional (2D) surfaces. Biomimetic three-dimensional (3D) cell culture platforms have been developed to better emulate features of the brain's natural microenvironment. We here use our bioengineered brain-like tissue model, composed of a silk-hydrogel composite, to study the 3D microenvironment's contributions on the development and performance of dopaminergic-like neurons (DLNs). Compared with 2D culture, SH-SY5Y cells differentiated in 3D microenvironments were enriched for DLNs concomitant with a reduction in proliferative capacity during the neurodevelopmental process. Additionally, the 3D DLN cultures were more sensitive to oxidative stresses elicited by the PD-related neurotoxin 1-methyl-4-phenylpyridinium (MPP). MPP induced transcriptomic profile changes specific to 3D-differentiated DLN cultures, replicating the dysfunction of neuronal signaling pathways and mitochondrial dynamics implicated in PD. Overall, this physiologically-relevant 3D platform resembles a useful tool for studying dopamine neuron biology and interrogating molecular mechanisms underlying neurodegeneration in PD.
Collapse
Affiliation(s)
- Nicholas J Fiore
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA.
| | | | - Afshin Beheshti
- KBR, NASA Ames Research Center, Moffett Field, CA, 94035, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.
| | | | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA.
| |
Collapse
|
22
|
Luo J, Chen L, Huang X, Xie J, Zou C, Pan M, Mo J, Zou D. REPS1 as a Potential Biomarker in Alzheimer’s Disease and Vascular Dementia. Front Aging Neurosci 2022; 14:894824. [PMID: 35813961 PMCID: PMC9257827 DOI: 10.3389/fnagi.2022.894824] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 06/07/2022] [Indexed: 12/31/2022] Open
Abstract
Vascular dementia (VD) and Alzheimer’s disease (AD) are common types of dementia for which no curative therapies are known. In this study, we identified hub genes associated with AD and VD in order to explore new potential therapeutic targets. Genes differentially expressed in VD and AD in all three datasets (GSE122063, GSE132903, and GSE5281) were identified and used to construct a protein–protein interaction network. We identified 10 modules containing 427 module genes in AD and VD. Module genes showing an area under the diagnostic curve > 0.60 for AD or VD were used to construct a least absolute shrinkage and selection operator model and were entered into a support vector machine-recursive feature elimination algorithm, which identified REPS1 as a hub gene in AD and VD. Furthermore, REPS1 was associated with activation of pyruvate metabolism and inhibition of Ras signaling pathway. Module genes, together with differentially expressed microRNAs from the dataset GSE46579, were used to construct a regulatory network. REPS1 was predicted to bind to the microRNA hsa_miR_5701. Single-sample gene set enrichment analysis was used to explore immune cell infiltration, which suggested a negative correlation between REPS1 expression and infiltration by plasmacytoid dendritic cells in AD and VD. In conclusion, our results suggest core pathways involved in both AD and VD, and they identify REPS1 as a potential biomarker of both diseases. This protein may aid in early diagnosis, monitoring of treatment response, and even efforts to prevent these debilitating disorders.
Collapse
Affiliation(s)
- Jiefeng Luo
- Department of Neurology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Liechun Chen
- Department of Neurology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xiaohua Huang
- Department of Neurology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Jieqiong Xie
- Department of Neurology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Chun Zou
- Department of Neurology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Mika Pan
- Department of Neurology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jingjia Mo
- Department of General Medicine, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
- Jingjia Mo,
| | - Donghua Zou
- Department of Neurology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
- *Correspondence: Donghua Zou,
| |
Collapse
|
23
|
Bogár F, Fülöp L, Penke B. Novel Therapeutic Target for Prevention of Neurodegenerative Diseases: Modulation of Neuroinflammation with Sig-1R Ligands. Biomolecules 2022; 12:363. [PMID: 35327555 PMCID: PMC8945408 DOI: 10.3390/biom12030363] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/20/2022] [Accepted: 02/23/2022] [Indexed: 12/13/2022] Open
Abstract
Neurodegenerative diseases (NDDs) are characterized by progressive deterioration of the structure and function of cells and their networks in the nervous system. There are currently no drugs or other treatments that can stop the progression of NDDs. NDDs have many similarities and common pathways, e.g., formation of misfolded amyloid proteins, intra- and extracellular amyloid deposits, and chronic inflammation. Initially, the inflammation process has a cytoprotective function; however, an elevated and prolonged immune response has damaging effects and causes cell death. Neuroinflammation has been a target of drug development for treating and curing NDDs. Treatment of different NDDs with non-steroid anti-inflammatory drugs (NSAIDs) has failed or has given inconsistent results. The use of NSAIDs in diagnosed Alzheimer's disease is currently not recommended. Sigma-1 receptor (Sig-1R) is a novel target for NDD drug development. Sig-1R plays a key role in cellular stress signaling, and it regulates endoplasmic reticulum stress and unfolded protein response. Activation of Sig-1R provides neuroprotection in cell cultures and animal studies. Clinical trials demonstrated that several Sig-1R agonists (pridopidine, ANAVEX3-71, fluvoxamine, dextrometorphan) and their combinations have a neuroprotective effect and slow down the progression of distinct NDDs.
Collapse
Affiliation(s)
- Ferenc Bogár
- MTA-SZTE Biomimetic Systems Research Group, Eötvös Loránd Research Network (ELKH), Dóm Square 8, H-6720 Szeged, Hungary;
- Department of Medical Chemistry, University of Szeged, Dóm Square 8, H-6720 Szeged, Hungary;
| | - Lívia Fülöp
- Department of Medical Chemistry, University of Szeged, Dóm Square 8, H-6720 Szeged, Hungary;
| | - Botond Penke
- Department of Medical Chemistry, University of Szeged, Dóm Square 8, H-6720 Szeged, Hungary;
| |
Collapse
|
24
|
Zhang M, Wu Y, Gao R, Chen X, Chen R, Chen Z. Glucagon-like peptide-1 analogs mitigate neuroinflammation in Alzheimer's disease by suppressing NLRP2 activation in astrocytes. Mol Cell Endocrinol 2022; 542:111529. [PMID: 34906628 DOI: 10.1016/j.mce.2021.111529] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 11/30/2021] [Accepted: 12/03/2021] [Indexed: 01/15/2023]
Abstract
Neuroinflammation is closely linked to the pathogenesis of Alzheimer's disease (AD). Glucagon-like peptide-1 (GLP-1) analogs exhibit anti-inflammatory and neuroprotective effects; hence, we investigated whether they reduce cognitive impairment and protect astrocytes from oxidative stress. We found that 5 × FAD transgenic mice treated with the synthetic GLP-1 receptor agonist exenatide had improved cognitive function per the Morris water maze test. Immunohistochemistry, western blotting, and ELISAs used to detect inflammatory factors revealed reduced neuroinflammation in extracted piriform cortexes of exenatide-treated mice as well as lower amyloid β1-42-induced oxidative stress and inflammation in astrocytes treated with exendin-4 (the natural analog of exenatide). Adenovirus-mediated overexpression of nucleotide-binding oligomerization domain, leucine-rich repeat, and pyrin domain containing 2 (NLRP2) revealed that exenatide/exendin-4 function may be attributed to NLRP2 inflammasome inhibition. Collectively, our results indicate that GLP-1 analogs improve cognitive dysfunction in vivo and protect astrocytes in vitro, potentially via the downregulation of the NLRP2 inflammasome.
Collapse
Affiliation(s)
- Mengjun Zhang
- Department of Clinical Pharmacy and Pharmacy Administration, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, Fujian, China
| | - Yubin Wu
- Department of Endocrinology, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, China
| | - Ruonan Gao
- Department of Endocrinology, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, China
| | - Xinwei Chen
- Graduate School of Fujian Medical University, Fuzhou, 350122, Fujian, China
| | - Ruiyu Chen
- Department of Clinical Pharmacy and Pharmacy Administration, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, Fujian, China
| | - Zhou Chen
- Department of Clinical Pharmacy and Pharmacy Administration, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, Fujian, China; Fujian Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University, Fuzhou, 350122, China.
| |
Collapse
|
25
|
Solana-Manrique C, Sanz FJ, Torregrosa I, Palomino-Schätzlein M, Hernández-Oliver C, Pineda-Lucena A, Paricio N. Metabolic Alterations in a Drosophila Model of Parkinson's Disease Based on DJ-1 Deficiency. Cells 2022; 11:cells11030331. [PMID: 35159141 PMCID: PMC8834223 DOI: 10.3390/cells11030331] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 12/13/2022] Open
Abstract
Parkinson’s disease (PD) is the second-most common neurodegenerative disorder, whose physiopathology is still unclear. Moreover, there is an urgent need to discover new biomarkers and therapeutic targets to facilitate its diagnosis and treatment. Previous studies performed in PD models and samples from PD patients already demonstrated that metabolic alterations are associated with this disease. In this context, the aim of this study is to provide a better understanding of metabolic disturbances underlying PD pathogenesis. To achieve this goal, we used a Drosophila PD model based on inactivation of the DJ-1β gene (ortholog of human DJ-1). Metabolomic analyses were performed in 1-day-old and 15-day-old DJ-1β mutants and control flies using 1H nuclear magnetic resonance spectroscopy, combined with expression and enzymatic activity assays of proteins implicated in altered pathways. Our results showed that the PD model flies exhibited protein metabolism alterations, a shift fromthe tricarboxylic acid cycle to glycolytic pathway to obtain ATP, together with an increase in the expression of some urea cycle enzymes. Thus, these metabolic changes could contribute to PD pathogenesis and might constitute possible therapeutic targets and/or biomarkers for this disease.
Collapse
Affiliation(s)
- Cristina Solana-Manrique
- Departamento de Genética, Facultad CC Biológicas, Instituto Universitario de Biotecnología y Biomedicina (BIOTECMED), Universidad de Valencia, 46100 Burjassot, Spain; (C.S.-M.); (F.J.S.); (I.T.)
| | - Francisco José Sanz
- Departamento de Genética, Facultad CC Biológicas, Instituto Universitario de Biotecnología y Biomedicina (BIOTECMED), Universidad de Valencia, 46100 Burjassot, Spain; (C.S.-M.); (F.J.S.); (I.T.)
| | - Isabel Torregrosa
- Departamento de Genética, Facultad CC Biológicas, Instituto Universitario de Biotecnología y Biomedicina (BIOTECMED), Universidad de Valencia, 46100 Burjassot, Spain; (C.S.-M.); (F.J.S.); (I.T.)
| | | | - Carolina Hernández-Oliver
- Instituto de Investigación Sanitaria La Fe, Hospital Universitario y Politécnico La Fe, 46026 Valencia, Spain; (C.H.-O.); (A.P.-L.)
| | - Antonio Pineda-Lucena
- Instituto de Investigación Sanitaria La Fe, Hospital Universitario y Politécnico La Fe, 46026 Valencia, Spain; (C.H.-O.); (A.P.-L.)
- Programa de Terapias Moleculares, Centro de Investigación Médica Aplicada, Universidad de Navarra, 31008 Pamplona, Spain
| | - Nuria Paricio
- Departamento de Genética, Facultad CC Biológicas, Instituto Universitario de Biotecnología y Biomedicina (BIOTECMED), Universidad de Valencia, 46100 Burjassot, Spain; (C.S.-M.); (F.J.S.); (I.T.)
- Correspondence: ; Tel.: +34-96-354-3005; Fax: +34-96-354-3029
| |
Collapse
|
26
|
Elsadany M, Elghaish RA, Khalil AS, Ahmed AS, Mansour RH, Badr E, Elserafy M. Transcriptional Analysis of Nuclear-Encoded Mitochondrial Genes in Eight Neurodegenerative Disorders: The Analysis of Seven Diseases in Reference to Friedreich’s Ataxia. Front Genet 2021; 12:749792. [PMID: 34987545 PMCID: PMC8721009 DOI: 10.3389/fgene.2021.749792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 10/20/2021] [Indexed: 11/25/2022] Open
Abstract
Neurodegenerative diseases (NDDs) are challenging to understand, diagnose, and treat. Revealing the genomic and transcriptomic changes in NDDs contributes greatly to the understanding of the diseases, their causes, and development. Moreover, it enables more precise genetic diagnosis and novel drug target identification that could potentially treat the diseases or at least ease the symptoms. In this study, we analyzed the transcriptional changes of nuclear-encoded mitochondrial (NEM) genes in eight NDDs to specifically address the association of these genes with the diseases. Previous studies show strong links between defects in NEM genes and neurodegeneration, yet connecting specific genes with NDDs is not well studied. Friedreich’s ataxia (FRDA) is an NDD that cannot be treated effectively; therefore, we focused first on FRDA and compared the outcome with seven other NDDs, including Alzheimer’s disease, amyotrophic lateral sclerosis, Creutzfeldt–Jakob disease, frontotemporal dementia, Huntington’s disease, multiple sclerosis, and Parkinson’s disease. First, weighted correlation network analysis was performed on an FRDA RNA-Seq data set, focusing only on NEM genes. We then carried out differential gene expression analysis and pathway enrichment analysis to pinpoint differentially expressed genes that are potentially associated with one or more of the analyzed NDDs. Our findings propose a strong link between NEM genes and NDDs and suggest that our identified candidate genes can be potentially used as diagnostic markers and therapeutic targets.
Collapse
Affiliation(s)
- Muhammad Elsadany
- University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt
| | - Reem A. Elghaish
- University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt
| | - Aya S. Khalil
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt
| | - Alaa S. Ahmed
- University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt
| | - Rana H. Mansour
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt
| | - Eman Badr
- University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt
- Faculty of Computers and Artificial Intelligence, Cairo University, Giza, Egypt
- *Correspondence: Eman Badr, ; Menattallah Elserafy,
| | - Menattallah Elserafy
- University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt
- *Correspondence: Eman Badr, ; Menattallah Elserafy,
| |
Collapse
|
27
|
Arora S, Dharavath RN, Bansal Y, Bishnoi M, Kondepudi KK, Chopra K. Neurobehavioral alterations in a mouse model of chronic partial sleep deprivation. Metab Brain Dis 2021; 36:1315-1330. [PMID: 33740181 DOI: 10.1007/s11011-021-00693-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 02/12/2021] [Indexed: 12/23/2022]
Abstract
The night shift paradigm induces a state of chronic partial sleep deprivation (CPSD) and enhances the vulnerability to neuronal dysfunction. However, the specific neuronal impact of CPSD has not been thoroughly explored to date. In the current study, the night shift condition was mimicked in female Swiss albino mice. The classical sleep deprivation model, i.e., Modified Multiple Platform (MMP) method, was used for 8 h/day from Monday to Friday with Saturday and Sunday as a weekend off for nine weeks. Following nine weeks of night shift schedule, their neurobehavioral profile and physiological parameters were assessed along with the activity of the mitochondrial complexes, oxidative stress, serotonin levels, and inflammatory markers in the brain. Mice showed an overall hyperactive behavioral profile including hyperlocomotion, aggression, and stereotyped behavior accompanied by decreased activity of mitochondrial enzymes and serotonin levels, increased oxidative stress and inflammatory markers in whole brain homogenates. Collectively, the study points towards the occurrence of a hyperactive behavioral profile akin to mania and psychosis as a potential consequence of CPSD.
Collapse
Affiliation(s)
- Shiyana Arora
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Sector 14, 160014, Chandigarh, India
| | - Ravinder Naik Dharavath
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Sector 14, 160014, Chandigarh, India
| | - Yashika Bansal
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Sector 14, 160014, Chandigarh, India
| | - Mahendra Bishnoi
- Food and Nutritional Biotechnology Laboratory, National Agri-Food Biotechnology Institute, SAS Nagar, Punjab, 140306, India
| | - Kanthi Kiran Kondepudi
- Food and Nutritional Biotechnology Laboratory, National Agri-Food Biotechnology Institute, SAS Nagar, Punjab, 140306, India
| | - Kanwaljit Chopra
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Sector 14, 160014, Chandigarh, India.
| |
Collapse
|
28
|
Salucci S, Bartoletti Stella A, Battistelli M, Burattini S, Bavelloni A, Cocco LI, Gobbi P, Faenza I. How Inflammation Pathways Contribute to Cell Death in Neuro-Muscular Disorders. Biomolecules 2021; 11:1109. [PMID: 34439778 PMCID: PMC8391499 DOI: 10.3390/biom11081109] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/22/2021] [Accepted: 07/26/2021] [Indexed: 12/13/2022] Open
Abstract
Neuro-muscular disorders include a variety of diseases induced by genetic mutations resulting in muscle weakness and waste, swallowing and breathing difficulties. However, muscle alterations and nerve depletions involve specific molecular and cellular mechanisms which lead to the loss of motor-nerve or skeletal-muscle function, often due to an excessive cell death. Morphological and molecular studies demonstrated that a high number of these disorders seem characterized by an upregulated apoptosis which significantly contributes to the pathology. Cell death involvement is the consequence of some cellular processes that occur during diseases, including mitochondrial dysfunction, protein aggregation, free radical generation, excitotoxicity and inflammation. The latter represents an important mediator of disease progression, which, in the central nervous system, is known as neuroinflammation, characterized by reactive microglia and astroglia, as well the infiltration of peripheral monocytes and lymphocytes. Some of the mechanisms underlying inflammation have been linked to reactive oxygen species accumulation, which trigger mitochondrial genomic and respiratory chain instability, autophagy impairment and finally neuron or muscle cell death. This review discusses the main inflammatory pathways contributing to cell death in neuro-muscular disorders by highlighting the main mechanisms, the knowledge of which appears essential in developing therapeutic strategies to prevent the consequent neuron loss and muscle wasting.
Collapse
Affiliation(s)
- Sara Salucci
- Department of Biomolecular Sciences (DiSB), Urbino University Carlo Bo, 61029 Urbino, Italy; (M.B.); (S.B.); (P.G.)
- Cellular Signalling Laboratory, Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, 40126 Bologna, Italy; (L.I.C.); (I.F.)
| | - Anna Bartoletti Stella
- Department of Diagnostic Experimental and Specialty Medicine (DIMES), University of Bologna, 40126 Bologna, Italy;
| | - Michela Battistelli
- Department of Biomolecular Sciences (DiSB), Urbino University Carlo Bo, 61029 Urbino, Italy; (M.B.); (S.B.); (P.G.)
| | - Sabrina Burattini
- Department of Biomolecular Sciences (DiSB), Urbino University Carlo Bo, 61029 Urbino, Italy; (M.B.); (S.B.); (P.G.)
| | - Alberto Bavelloni
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy;
| | - Lucio Ildebrando Cocco
- Cellular Signalling Laboratory, Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, 40126 Bologna, Italy; (L.I.C.); (I.F.)
| | - Pietro Gobbi
- Department of Biomolecular Sciences (DiSB), Urbino University Carlo Bo, 61029 Urbino, Italy; (M.B.); (S.B.); (P.G.)
| | - Irene Faenza
- Cellular Signalling Laboratory, Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, 40126 Bologna, Italy; (L.I.C.); (I.F.)
| |
Collapse
|
29
|
Gonzalez-Latapi P, Bayram E, Litvan I, Marras C. Cognitive Impairment in Parkinson's Disease: Epidemiology, Clinical Profile, Protective and Risk Factors. Behav Sci (Basel) 2021; 11:bs11050074. [PMID: 34068064 PMCID: PMC8152515 DOI: 10.3390/bs11050074] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/07/2021] [Accepted: 05/08/2021] [Indexed: 02/07/2023] Open
Abstract
Cognitive impairment is a common non-motor symptom in Parkinson's Disease (PD) and an important source of patient disability and caregiver burden. The timing, profile and rate of cognitive decline varies widely among individuals with PD and can range from normal cognition to mild cognitive impairment (PD-MCI) and dementia (PDD). Beta-amyloid and tau brain accumulation, oxidative stress and neuroinflammation are reported risk factors for cognitive impairment. Traumatic brain injury and pesticide and tobacco exposure have also been described. Genetic risk factors including genes such as COMT, APOE, MAPT and BDNF may also play a role. Less is known about protective factors, although the Mediterranean diet and exercise may fall in this category. Nonetheless, there is conflicting evidence for most of the factors that have been studied. The use of inconsistent criteria and lack of comprehensive assessment in many studies are important methodological issues. Timing of exposure also plays a crucial role, although identification of the correct time window has been historically difficult in PD. Our understanding of the mechanism behind these factors, as well as the interactions between gene and environment as determinants of disease phenotype and the identification of modifiable risk factors will be paramount, as this will allow for potential interventions even in established PD.
Collapse
Affiliation(s)
- Paulina Gonzalez-Latapi
- Edmond J. Safra Program in Parkinson’s Disease and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, University Health Network, Toronto, ON M5T2S8, Canada;
| | - Ece Bayram
- Parkinson and Other Movement Disorders Center, Department of Neurosciences, University of California San Diego, La Jolla, CA 92093, USA; (E.B.); (I.L.)
| | - Irene Litvan
- Parkinson and Other Movement Disorders Center, Department of Neurosciences, University of California San Diego, La Jolla, CA 92093, USA; (E.B.); (I.L.)
| | - Connie Marras
- Edmond J. Safra Program in Parkinson’s Disease and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, University Health Network, Toronto, ON M5T2S8, Canada;
- Correspondence:
| |
Collapse
|
30
|
Kumar R, Chhikara BS, Gulia K, Chhillar M. Review of nanotheranostics for molecular mechanisms underlying psychiatric disorders and commensurate nanotherapeutics for neuropsychiatry: The mind knockout. Nanotheranostics 2021; 5:288-308. [PMID: 33732601 PMCID: PMC7961125 DOI: 10.7150/ntno.49619] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 12/22/2020] [Indexed: 12/12/2022] Open
Abstract
Bio-neuronal led psychiatric abnormalities transpired by the loss of neuronal structure and function (neurodegeneration), pro-inflammatory cytokines, microglial dysfunction, altered neurotransmission, toxicants, serotonin deficiency, kynurenine pathway, and excessively produced neurotoxic substances. These uncontrolled happenings in the etiology of psychiatric disorders initiate further changes in neurotransmitter metabolism, pathologic microglial, cell activation, and impaired neuroplasticity. Inflammatory cytokines, the outcome of dysfunctional mitochondria, dysregulation of the immune system, and under stress functions of the brain are leading biochemical factors for depression and anxiety. Nanoscale drug delivery platforms, inexpensive diagnostics using nanomaterials, nano-scale imaging technologies, and ligand-conjugated nanocrystals used for elucidating the molecular mechanisms and foremost cellular communications liable for such disorders are highly capable features to study for efficient diagnosis and therapy of the mental illness. These theranostic tools made up of multifunctional nanomaterials have the potential for effective and accurate diagnosis, imaging of psychiatric disorders, and are at the forefront of leading technologies in nanotheranostics openings field as they can collectively and efficiently target the stimulated territories of the cerebellum (cells and tissues) through molecular-scale interactions with higher bioavailability, and bio-accessibility. Specifically, the nanoplatforms based neurological changes are playing a significant role in the diagnosis of psychiatric disorders and portraying the routes of functional restoration of mental disorders by newer imaging tools at nano-level in all directions. Because of these nanotherapeutic platforms, the molecules of nanomedicine can penetrate the Blood-Brain Barrier with an increased half-life of drug molecules. The discoveries in nanotheranostics and nanotherapeutics inbuilt unique multi-functionalities are providing the best multiplicities of novel nanotherapeutic potentialities with no toxicity concerns at the level of nano range.
Collapse
Affiliation(s)
- Rajiv Kumar
- NIET, National Institute of Medical Science, India
| | - Bhupender S Chhikara
- Department of Chemistry, Aditi Mahavidyalaya, University of Delhi. Delhi, 110039, India
| | - Kiran Gulia
- Materials and Manufacturing, School of Engineering, University of Wolverhampton, England, TF2 9NN, UK
| | - Mitrabasu Chhillar
- Institute of Nuclear Medicine and Allied Sciences (INMAS) Brig. S. K. Mazumdar Marg Delhi 110054, India
| |
Collapse
|
31
|
Inflammation-Related Changes in Mood Disorders and the Immunomodulatory Role of Lithium. Int J Mol Sci 2021; 22:ijms22041532. [PMID: 33546417 PMCID: PMC7913492 DOI: 10.3390/ijms22041532] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 01/28/2021] [Accepted: 02/01/2021] [Indexed: 12/11/2022] Open
Abstract
Mood disorders are chronic, recurrent diseases characterized by changes in mood and emotions. The most common are major depressive disorder (MDD) and bipolar disorder (BD). Molecular biology studies have indicated an involvement of the immune system in the pathogenesis of mood disorders, and showed their correlation with altered levels of inflammatory markers and energy metabolism. Previous reports, including meta-analyses, also suggested the role of microglia activation in the M1 polarized macrophages, reflecting the pro-inflammatory phenotype. Lithium is an effective mood stabilizer used to treat both manic and depressive episodes in bipolar disorder, and as an augmentation of the antidepressant treatment of depression with a multidimensional mode of action. This review aims to summarize the molecular studies regarding inflammation, microglia activation and energy metabolism changes in mood disorders. We also aimed to outline the impact of lithium on these changes and discuss its immunomodulatory effect in mood disorders.
Collapse
|
32
|
Zhang RR, Hu RD, Lu XY, Ding XY, Huang GY, Duan LX, Zhang SJ. Polyphenols from the flower of Hibiscus syriacus Linn ameliorate neuroinflammation in LPS-treated SH-SY5Y cell. Biomed Pharmacother 2020; 130:110517. [PMID: 32688141 DOI: 10.1016/j.biopha.2020.110517] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 06/30/2020] [Accepted: 07/07/2020] [Indexed: 12/22/2022] Open
Abstract
The flower of Hibiscus syriacus Linn is a well-known traditional Chinese medicine (TCM) and health food in China, which has been used to treat dysentery, vaginal discharge, and hemorrhoids. In this study, five polyphenols (compounds 1-5) and five fatty acids (compounds 6-10) were isolated from the ethanol extract of the flower of H. syriacus. The isolated compounds were characterized by spectroscopic techniques. Polyphenols, an important type of natural product, have variety of biological activities. Here, we employed LPS or H2O2-treated SH-SY5Y cell models to test the neuroprotective effect of compounds 1-10. Results found compounds 1-5 (concentration range was around 20 μM on LPS model, concentration range was around 13 μM on H2O2 model), not compounds 6-10, exhibited neuroprotective effect in LPS or H2O2-treated SH-SY5Y cell. PCR analysis showed that compounds 1-5 can effectively improve the mRNA expression of synapse-related gene and neurotrophic factors (Syp, NGF and BDNF) in LPS-treated SH-SY5Y cell. In addition, compounds 1-5 decreased the levels of ROS and MDA and increased the activities of SOD, GSH-Px and CAT in LPS-treated SH-SY5Y cell. Furthermore, compounds 1-5 inhibited neuroinflammation (TNF-α, IL-1β and IL-6) in LPS-treated SH-SY5Y cell. In conclusion, the polyphenols in the flower of H. syriacus could be a promising candidate for preventive effect of neuroinflammation.
Collapse
Affiliation(s)
- Rong-Rong Zhang
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Rui-Dan Hu
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xin-Yi Lu
- Biological Resource Center, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiao-Ying Ding
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Guo-Yong Huang
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Li-Xin Duan
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shi-Jie Zhang
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
33
|
Bai JH, Zheng YL, Yu YP. Urinary kynurenine as a biomarker for Parkinson's disease. Neurol Sci 2020; 42:697-703. [PMID: 32661882 DOI: 10.1007/s10072-020-04589-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 07/08/2020] [Indexed: 11/28/2022]
Abstract
OBJECTIVE To examine whether urine kynurenine (KYN) levels were associated with early-stage Parkinson's disease (PD), as well as the value of urine KYN as a potential biomarker in early-stage PD. METHOD Eighty-two participants including 41 PD patients and 41 healthy controls were enrolled into this study. Urine KYN levels were measured with a KYN enzyme-linked immunoassay kit. In order to explore the correlation between some clinical parameters and urine KYN, the clinical parameters for these participants were recorded. Diagnostic value and clinical relevance of urine KYN were assessed by using receiver operator characteristic (ROC) curve and correlation analysis. RESULTS Urine KYN levels were significantly higher in the PD group than in the healthy group (891.95 ± 276.65 pg/ml vs. 640.11 ± 122.37 pg/ml, p = 0.000). The correlations between urine KYN levels and clinical parameters are as follows: Hoehn-Yahr stage (r = 0.676, p = 0.000), disease duration (r = 0.772, p = 0.000), Mini-Mental State Examination scores (r = -0.434, p = 0.005). There was no statistically significant correlation between urine KYN with age, low-density cholesterol (LDL), triglycerides (TG), cholesterol (TC), homocysteine (HCY), uric acid (UA), and glomerular filtration rate (GFR). The ROC analysis showed that urine KYN optimal cutoff value of 751.88 pg/ml had a sensitivity of 65.9% and a specificity of 90.2% for distinguishing between PD and controls, with an area under the curve (AUC) of 0.776. CONCLUSION Urine KYN were significantly associated with PD severity and mild cognitive impairment. Urine KYN may be a new biomarker for early-stage PD.
Collapse
Affiliation(s)
- Jia-He Bai
- Yu Yongpeng Innovation Studio and Department of Neurology, Weihai Central Hospital, Qingdao University, Weihai, 264400, China
| | - Ya-Li Zheng
- Yu Yongpeng Innovation Studio and Department of Neurology, Weihai Central Hospital, Qingdao University, Weihai, 264400, China
| | - Yong-Peng Yu
- Yu Yongpeng Innovation Studio and Department of Neurology, Weihai Central Hospital, Qingdao University, Weihai, 264400, China. .,Department of Neurology, Weihai Central Hospital, Weifang Medical college, Weihai, 264400, China.
| |
Collapse
|