1
|
Nadi Moghadam N, Torkaman-Boutorabi A, Farhoudian A, Razaghi EM. Effects of acamprosate on alprazolam-induced conditioned place preference in male rats: The role of GABA and NMDA receptor subunits. Eur J Pharmacol 2025; 999:177643. [PMID: 40306538 DOI: 10.1016/j.ejphar.2025.177643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 04/09/2025] [Accepted: 04/17/2025] [Indexed: 05/02/2025]
Abstract
Alprazolam, a commonly prescribed benzodiazepine (BZD), poses a risk for abuse and has been linked to conditioned place preference (CPP). Research indicates that effective long-term treatments for alprazolam misuse are lacking. The mechanisms of tolerance and dependence for BZDs are similar to those seen with alcohol, involving gamma-aminobutyric acid (GABA) and glutamate neurotransmitter systems. Additionally, managing withdrawal symptoms and reducing relapse rates may be identical for both substances. Acamprosate's ability to reduce alcohol cravings and relapse has led this study to explore its potential as a treatment for the extinction and reinstatement of alprazolam-induced CPP. Accordingly, we evaluated the effects of different doses of acamprosate on the extinction period and reinstatement of alprazolam-induced CPP in male rats. We also assessed hippocampal gene expression of GABAA receptor (α1, α5, γ2) subunits and N-methyl-D-aspartate (NMDA) receptor (NR1, NR2A, NR2B) subunits after reinstatement, given alprazolam's action on these receptors. Alprazolam (1.5 mg/kg) could induce CPP in a 14-day paradigm. Acamprosate (20, 50, and 100 mg/kg) attenuated alprazolam-induced extinction period and reinstatement (P < 0.01). At the molecular level, acamprosate reduced the gene expression of α1 (P < 0.05) while increased α5 and γ2 subunits of GABAA receptors (p < 0.01). Besides, the gene expression of NR1, NR2A, and NR2B subunits of NMDA receptors were significantly enhanced by acamprosate (P < 0.001). These findings suggest that acamprosate is able to reduce the duration of extinction and reinstatement of alprazolam-induced CPP in male rats.
Collapse
Affiliation(s)
- Nasim Nadi Moghadam
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Anahita Torkaman-Boutorabi
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran; Research Center for Cognitive and Behavioral Sciences, Tehran University of Medical Sciences, Tehran, Iran.
| | - Ali Farhoudian
- Department of Psychiatry, Tehran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
2
|
Qneibi M, Bdir S, Bdair M, Aldwaik SA, Heeh M, Sandouka D, Idais T. Exploring the role of AMPA receptor auxiliary proteins in synaptic functions and diseases. FEBS J 2024. [PMID: 39394632 DOI: 10.1111/febs.17287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 08/21/2024] [Accepted: 09/20/2024] [Indexed: 10/13/2024]
Abstract
α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) ionotropic glutamate receptors (AMPARs) mediate rapid excitatory synaptic transmission in the mammalian brain, primarily driven by the neurotransmitter glutamate. The modulation of AMPAR activity, particularly calcium-permeable AMPARs (CP-AMPARs), is crucially influenced by various auxiliary subunits. These subunits are integral membrane proteins that bind to the receptor's core and modify its functional properties, including ion channel kinetics and receptor trafficking. This review comprehensively catalogs all known AMPAR auxiliary proteins, providing vital insights into the biochemical mechanisms governing synaptic modulation and the specific impact of CP-AMPARs compared to their calcium-impermeable AMPA receptor (CI-AMPARs). Understanding the complex interplay between AMPARs and their auxiliary subunits in different brain regions is essential for elucidating their roles in cognitive functions such as learning and memory. Importantly, alterations in these auxiliary proteins' expression, function or interactions have been implicated in various neurological disorders. Aberrant signaling through CP-AMPARs, in particular, is associated with severe synaptic dysfunctions across neurodevelopmental, neurodegenerative and psychiatric conditions. Targeting the distinct properties of AMPAR-auxiliary subunit complexes, especially those involving CP-AMPARs, could disclose new therapeutic strategies, potentially allowing for more precise interventions in treating complex neuronal disorders.
Collapse
Affiliation(s)
- Mohammad Qneibi
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Sosana Bdir
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Mohammad Bdair
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Samia Ammar Aldwaik
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | | | - Dana Sandouka
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Tala Idais
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| |
Collapse
|
3
|
Warlick H, Leon L, Patel R, Filoramo S, Knipe R, Joubran E, Levy A, Nguyen H, Rey J. Application of gabapentinoids and novel compounds for the treatment of benzodiazepine dependence: the glutamatergic model. Mol Biol Rep 2023; 50:1765-1784. [PMID: 36456769 DOI: 10.1007/s11033-022-08110-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 11/09/2022] [Indexed: 12/04/2022]
Abstract
BACKGROUND Current approaches for managing benzodiazepine (BZD) withdrawal symptoms are daunting for clinicians and patients, warranting novel treatment and management strategies. This review discusses the pharmacodynamic properties of BZDs, gabapentinoids (GBPs), endozepines, and novel GABAergic compounds associated with potential clinical benefits for BZD-dependent patients. The objective of this study was to review the complex neuromolecular changes occurring within the GABAergic and glutamatergic systems during the BZD tolerance and withdrawal periods while also examining the mechanism by which GBPs and alternative pharmacological therapies may attenuate withdrawal symptoms. METHODS AND RESULTS An elaborative literature review was conducted using multiple platforms, including the National Center for Biotechnology (NCBI), AccessMedicine, ScienceDirect, pharmacology textbooks, clinical trial data, case reports, and PubChem. Our literature analysis revealed that many distinctive neuroadaptive mechanisms are involved in the GABAergic and glutamatergic systems during BZD tolerance and withdrawal. Based on this data, we hypothesize that GBPs may attenuate the overactive glutamatergic system during the withdrawal phase by an indirect presynaptic glutamatergic mechanism dependent on the α2δ1 subunit expression. CONCLUSIONS GBPs may benefit individuals undergoing BZD withdrawal, given that the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor current significantly increases during abrupt BZD withdrawal in animal studies. This may be a conceivable explanation for the effectiveness of GBPs in treating both alcohol withdrawal symptoms and BZD withdrawal symptoms in some recent studies. Finally, natural and synthetic GABAergic compounds with unique pharmacodynamic properties were found to exert potential clinical benefits as BZD substitutes in animal studies, though human studies are lacking.
Collapse
Affiliation(s)
- Halford Warlick
- Dr. Kiran C. Patel College Of Osteopathic Medicine, Nova Southeastern University, Davie, FL, USA.
| | - Lexie Leon
- Dr. Kiran C. Patel College Of Osteopathic Medicine, Nova Southeastern University, Davie, FL, USA
| | - Rudresh Patel
- Dr. Kiran C. Patel College Of Osteopathic Medicine, Nova Southeastern University, Davie, FL, USA
| | - Stefanie Filoramo
- Dr. Kiran C. Patel College Of Osteopathic Medicine, Nova Southeastern University, Davie, FL, USA
| | - Ryan Knipe
- Dr. Kiran C. Patel College Of Osteopathic Medicine, Nova Southeastern University, Davie, FL, USA
| | - Ernesto Joubran
- Dr. Kiran C. Patel College Of Osteopathic Medicine, Nova Southeastern University, Davie, FL, USA
| | - Arkene Levy
- Dr. Kiran C. Patel College of Allopathic Medicine, Nova Southeastern University, Davie, FL, USA
| | - Hoang Nguyen
- Dr. Kiran C. Patel College Of Osteopathic Medicine, Nova Southeastern University, Davie, FL, USA
| | - Jose Rey
- College of Pharmacy, Nova Southeastern University, Davie, FL, USA
| |
Collapse
|
4
|
Engin E. GABA A receptor subtypes and benzodiazepine use, misuse, and abuse. Front Psychiatry 2023; 13:1060949. [PMID: 36713896 PMCID: PMC9879605 DOI: 10.3389/fpsyt.2022.1060949] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 12/29/2022] [Indexed: 01/14/2023] Open
Abstract
Benzodiazepines have been in use for over half a century. While they remain highly prescribed, their unfavorable side-effect profile and abuse liability motivated a search for alternatives. Most of these efforts focused on the development of benzodiazepine-like drugs that are selective for specific GABAA receptor subtypes. While there is ample evidence that subtype-selective GABAA receptor ligands have great potential for providing symptom relief without typical benzodiazepine side-effects, it is less clear whether subtype-selective targeting strategies can also reduce misuse and abuse potential. This review focuses on the three benzodiazepine properties that are relevant to the DSM-5-TR criteria for Sedative, Hypnotic, or Anxiolytic Use Disorder, namely, reinforcing properties of benzodiazepines, maladaptive behaviors related to benzodiazepine use, and benzodiazepine tolerance and dependence. We review existing evidence regarding the involvement of different GABAA receptor subtypes in each of these areas. The reviewed studies suggest that α1-containing GABAA receptors play an integral role in benzodiazepine-induced plasticity in reward-related brain areas and might be involved in the development of tolerance and dependence to benzodiazepines. However, a systematic comparison of the contributions of all benzodiazepine-sensitive GABAA receptors to these processes, a mechanistic understanding of how the positive modulation of each receptor subtype might contribute to the brain mechanisms underlying each of these processes, and a definitive answer to the question of whether specific chronic modulation of any given subtype would result in some or all of the benzodiazepine effects are currently lacking from the literature. Moreover, how non-selective benzodiazepines might lead to the maladaptive behaviors listed in DSM and how different GABAA receptor subtypes might be involved in the development of these behaviors remains unexplored. Considering the increasing burden of benzodiazepine abuse, the common practice of benzodiazepine misuse that leads to severe dependence, and the current efforts to generate side-effect free benzodiazepine alternatives, there is an urgent need for systematic, mechanistic research that provides a better understanding of the brain mechanisms of benzodiazepine misuse and abuse, including the involvement of specific GABAA receptor subtypes in these processes, to establish an informed foundation for preclinical and clinical efforts.
Collapse
Affiliation(s)
- Elif Engin
- Stress Neurobiology Laboratory, Division of Basic Neuroscience, McLean Hospital, Belmont, MA, United States
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
5
|
Cornett EM, Amarasinghe SN, Angelette A, Abubakar T, Kaye AM, Kaye AD, Neuchat EE, Urits I, Viswanath O. VALTOCO ® (Diazepam Nasal Spray) for the Acute Treatment of Intermittent Stereotypic Episodes of Frequent Seizure Activity. Neurol Int 2021; 13:64-78. [PMID: 33670456 PMCID: PMC7931041 DOI: 10.3390/neurolint13010007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/04/2021] [Accepted: 02/05/2021] [Indexed: 11/17/2022] Open
Abstract
Valtoco® is a new FDA-approved nasal spray version of diazepam indicated for the treatment of acute, intermittent, and stereotypic episodes of frequent seizure activity in epilepsy patients six years of age and older. Although IV and rectal diazepam are already used to treat seizure clusters, Valtoco® has less variability in plasma concentration compared to rectal diazepam. Furthermore, the intranasal administration of Valtoco® is more convenient and less invasive than rectal or IV diazepam, making it ideal for self-administration outside of a hospital setting. Multiple clinical trials have taken place comparing Valtoco® to the oral, rectal, and IV forms of diazepam. Aside from mild nasal irritation and lacrimation, Valtoco® was found to have no increased safety risk in comparison to traditional forms of diazepam. This review of Valtoco® will include a history of diazepam prescribing and withdrawal treatment, Valtoco® drug information, its mechanism of action, pharmacokinetics and pharmacodynamics, and a comprehensive review of clinical studies.
Collapse
Affiliation(s)
- Elyse M. Cornett
- Department of Anesthesiology, LSU Health Shreveport, Shreveport, LA 71103, USA; (S.N.A.); (A.A.); (T.A.); (A.D.K.); (I.U.); (O.V.)
| | - Sam N. Amarasinghe
- Department of Anesthesiology, LSU Health Shreveport, Shreveport, LA 71103, USA; (S.N.A.); (A.A.); (T.A.); (A.D.K.); (I.U.); (O.V.)
| | - Alexis Angelette
- Department of Anesthesiology, LSU Health Shreveport, Shreveport, LA 71103, USA; (S.N.A.); (A.A.); (T.A.); (A.D.K.); (I.U.); (O.V.)
| | - Tunde Abubakar
- Department of Anesthesiology, LSU Health Shreveport, Shreveport, LA 71103, USA; (S.N.A.); (A.A.); (T.A.); (A.D.K.); (I.U.); (O.V.)
| | - Adam M. Kaye
- Department of Pharmacy Practice, Thomas J. Long School of Pharmacy, University of the Pacific, Stockton, CA 95211, USA;
| | - Alan David Kaye
- Department of Anesthesiology, LSU Health Shreveport, Shreveport, LA 71103, USA; (S.N.A.); (A.A.); (T.A.); (A.D.K.); (I.U.); (O.V.)
- LSU School of Medicine, LSUHSC New Orleans, New Orleans, LA 70112, USA
| | - Elisa E. Neuchat
- School of Medicine, Florida International University, Miami, FL 33199, USA;
| | - Ivan Urits
- Department of Anesthesiology, LSU Health Shreveport, Shreveport, LA 71103, USA; (S.N.A.); (A.A.); (T.A.); (A.D.K.); (I.U.); (O.V.)
- Department of Anesthesia, Beth Israel Deaconess Medical Center, Critical Care, and Pain Medicine, Boston, MA 02215, USA
| | - Omar Viswanath
- Department of Anesthesiology, LSU Health Shreveport, Shreveport, LA 71103, USA; (S.N.A.); (A.A.); (T.A.); (A.D.K.); (I.U.); (O.V.)
- Valley Anesthesiology and Pain Consultants–Envision Physician Services, Phoenix, AZ 85004, USA
- Department of Anesthesiology, University of Arizona College of Medicine-Phoenix, Phoenix, AZ 85724, USA
- Department of Anesthesiology, Creighton University School of Medicine, Omaha, NE 68124, USA
| |
Collapse
|
6
|
Kubová H, Bendová Z, Moravcová S, Pačesová D, Rocha LL, Mareš P. Neonatal Clonazepam Administration Induces Long-Lasting Changes in Glutamate Receptors. Front Mol Neurosci 2018; 11:382. [PMID: 30364265 PMCID: PMC6193113 DOI: 10.3389/fnmol.2018.00382] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Accepted: 09/24/2018] [Indexed: 11/13/2022] Open
Abstract
γ-aminobutyric acid (GABA) pathways play an important role in neuronal circuitry formation during early postnatal development. Our previous studies revealed an increased risk for adverse neurodevelopmental consequences in animals exposed to benzodiazepines, which enhance GABA inhibition via GABAA receptors. We reported that administration of the benzodiazepine clonazepam (CZP) during postnatal days 7-11 resulted in permanent behavioral alterations. However, the mechanisms underlying these changes are unknown. We hypothesized that early CZP exposure modifies development of glutamatergic receptors and their composition due to the tight developmental link between GABAergic functions and maturation of glutamatergic signaling. These changes may alter excitatory synapses, as well as neuronal connectivity and function of the neural network. We used quantitative real-time PCR and quantitative autoradiography to examine changes in NMDA and AMPA receptor composition and binding in response to CZP (1 mg/kg/day) administration for five consecutive days, beginning on P7. Brains were collected 48 h, 1 week, or 60 days after treatment cessation, and mRNA subunit expression was assessed in the hippocampus and sensorimotor cortex. A separate group of animals was used to determine binding to NMDA in different brain regions. Patterns of CZP-induced alterations in subunit mRNA expression were dependent on brain structure, interval after CZP cessation, and receptor subunit type. In the hippocampus, upregulation of GluN1, GluN3, and GluR2 subunit mRNA was observed at the 48-h interval, and GluN2A and GluR1 mRNA expression levels were higher 1 week after CZP cessation compared to controls, while GluN2B was downregulated. CZP exposure increased GluN3 and GluR2 subunit mRNA expression levels in the sensorimotor cortex 48 h after treatment cessation. GluA3 was higher 1 week after the CZP exposure, and GluN2A and GluA4 mRNA were significantly upregulated 2 months later. Expression of other subunits was not significantly different from that of the controls. NMDA receptor binding increased 1 week after the end of exposure in most hippocampal and cortical areas, including the sensorimotor cortex at the 48-h interval. CZP exposure decreased NMDA receptor binding in most evaluated hippocampal and cortical areas 2 months after the end of administration. Overall, early CZP exposure likely results in long-term glutamatergic receptor modulation that may affect synaptic development and function, potentially causing behavioral impairment.
Collapse
Affiliation(s)
- Hana Kubová
- Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czechia
| | - Zdenka Bendová
- Faculty of Science, Charles University, Prague, Czechia.,National Institute of Mental Health, Klecany, Czechia
| | - Simona Moravcová
- Faculty of Science, Charles University, Prague, Czechia.,National Institute of Mental Health, Klecany, Czechia
| | - Dominika Pačesová
- Faculty of Science, Charles University, Prague, Czechia.,National Institute of Mental Health, Klecany, Czechia
| | - Luisa Lilia Rocha
- Pharmacobiology Department, Center of Research and Advanced Studies, Mexico City, Mexico
| | - Pavel Mareš
- Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czechia
| |
Collapse
|
7
|
LaCorte S. How chronic administration of benzodiazepines leads to unexplained chronic illnesses: A hypothesis. Med Hypotheses 2018; 118:59-67. [PMID: 30037616 DOI: 10.1016/j.mehy.2018.06.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 05/28/2018] [Accepted: 06/19/2018] [Indexed: 11/15/2022]
Abstract
It is thought that an ill defined biochemical cascade may lead to protracted withdrawal symptoms subsequent to discontinuance of routine use of benzodiazepine class drugs and establish chronic illness in some patients. In this review, published findings are presented that support the novel concept that withdrawal from benzodiazepine class drugs can trigger elevated and sustained levels of a potent oxidant called peroxynitrite via potentiation of the L-type voltage-gated calcium channels, and in the later stages of withdrawal, via excessive N-methyl-D-aspartate receptor activity, as well. Potentiation of L-type voltage-gated calcium channels and excessive N-methyl-D-aspartate receptor activity both result in calcium influx into the cell that triggers nitric oxide synthesis. In pathophysiological conditions, such increased nitric oxide synthesis leads to peroxynitrite formation. The downstream effects of peroxynitrite formation that may occur during withdrawal ultimately lead to further peroxynitrite production in a system of overlapping vicious cycles collectively referred to as the NO/ONOO(-) cycle. Once triggered, the elements of the NO/ONOO(-) cycle perpetuate pathophysiology, perhaps including reduced GABAA receptor functioning, that may explain protracted withdrawal associated symptoms while the vicious cycle nature of the NO/ONOO(-) cycle may explain how withdrawal becomes a chronic state. Suboptimal levels of tetrahydrobiopterin may be one risk factor for the development of the protracted withdrawal syndrome as this will lead to partial nitric oxide uncoupling and resultant peroxynitrite formation. Nitric oxide uncoupling results in superoxide production as calcium-dependent nitric oxide synthases attempt to produce nitric oxide in response to L-type voltage-gated calcium channel-mediated calcium influx that is known to occur during withdrawal. The combination of nitric oxide and superoxide produced, as when partial uncoupling occurs, react together in a very rapid, diffusion limited reaction to form peroxynitrite and thereby trigger the NO/ONOO(-) cycle. The NO/ONOO(-) cycle may explain the nature of the protracted withdrawal syndrome and the related constellation of symptoms that are also common in other illnesses characterized as NO/ONOO(-) disorders such as myalgic encephalomyelitis/chronic fatigue syndrome and fibromyalgia.
Collapse
Affiliation(s)
- S LaCorte
- Benzodiazepine Information Coalition, 1042 Fort Union Blvd. Suite 1030, Midvale, UT 84047, United States.
| |
Collapse
|
8
|
Blum K, Gold M, Modestino EJ, Baron D, Boyett B, Siwicki D, Lott L, Podesta A, Roy AK, Hauser M, Downs BW, Badgaiyan RD. Would induction of dopamine homeostasis via coupling genetic addiction risk score (GARS®) and pro-dopamine regulation benefit benzodiazepine use disorder (BUD)? ACTA ACUST UNITED AC 2018; 4. [PMID: 31750006 PMCID: PMC6865059 DOI: 10.15761/jsin.1000196] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Prescriptions for Benzodiazepines (BZDs) have risen continually. According to national statistics, the combination of BZDs with opioids has increased since 1999. BZDs (sometimes called “benzos”) work to calm or sedate a person by raising the level of the inhibitory neurotransmitter GABA in the brain. In terms of neurochemistry, BZDs act at the GABAA receptors to inhibit excitatory neurons, reducing VTA glutaminergic drive to reduce dopamine release at the Nucleus accumbens. Benzodiazepine Use Disorder (BUD) is very difficult to treat, partly because BZDs are used to reduce anxiety which paradoxically induces hypodopaminergia. Considering this, we are proposing a paradigm shift. Instead of simply targeting chloride channel direct GABAA receptors for replacement or substitution therapy, we propose the induction of dopamine homeostasis. Our rationale is supported by the well-established notion that the root cause of drug and non-drug addictions (i.e. Reward Deficiency Syndrome [RDS]), at least in adults, involve dopaminergic dysfunction and heightened stress. This proposition involves coupling the Genetic Addiction Risk Score (GARS) with a subsequent polymorphic matched genetic customized Pro-Dopamine Regulator known as KB220ZPBM (Precision Behavioral Management). Induction of dopamine homeostasis will be clinically beneficial in attempts to combat BUD for at least three reasons: 1) During detoxification of alcoholism, the potential induction of dopamine regulation reduces the need for BZDs; 2) A major reason for BZD abuse is because people want to achieve stress reduction and subsequently, the potential induction of dopamine regulation acts as an anti-stress factor; and 3) BUD and OUD are known to reduce resting state functional connectivity, and as such, potential induction of dopamine regulation enhances resting state functional connectivity. Future randomized placebo-controlled studies will investigate this forward thinking proposed novel modality.
Collapse
Affiliation(s)
- K Blum
- Western University Health Sciences, Graduate School of Biomedical Sciences, Pomona, CA, USA.,Division of Nutrigenomics, Geneus Health, LLC., San Antonio, TX, USA.,Division of Neuroscience & Addiction Research, Pathway Healthcare, LLc., Birmingham, AL, USA.,Division of Addiction Services, Dominion Diagnostics, LLC. North Kingstown, RI, USA.,Division of Nutrigenomic Research, Victory Nutrition International, Lederach, PA, USA
| | - M Gold
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Mo, USA
| | - E J Modestino
- Department of Psychology, Curry College, Milton, MA, USA
| | - D Baron
- Western University Health Sciences, Graduate School of Biomedical Sciences, Pomona, CA, USA.,Division of Nutrigenomics, Geneus Health, LLC., San Antonio, TX, USA
| | - B Boyett
- Division of Neuroscience & Addiction Research, Pathway Healthcare, LLc., Birmingham, AL, USA
| | - D Siwicki
- Division of Nutrigenomics, Geneus Health, LLC., San Antonio, TX, USA
| | - L Lott
- Division of Nutrigenomics, Geneus Health, LLC., San Antonio, TX, USA
| | - A Podesta
- Department of psychiatry, Tulane University School of Medicine, New Orleans, LA, USA
| | - A K Roy
- Department of psychiatry, Tulane University School of Medicine, New Orleans, LA, USA
| | - M Hauser
- Division of Addiction Services, Dominion Diagnostics, LLC. North Kingstown, RI, USA
| | - B W Downs
- Division of Nutrigenomic Research, Victory Nutrition International, Lederach, PA, USA
| | - R D Badgaiyan
- Department of Psychiatry, Veterans Administration Hospital at San Antonio, San Antonio, TX, USA
| |
Collapse
|
9
|
Fitzpatrick CM, Larsen M, Madsen LH, Caballero-Puntiverio M, Pickering DS, Clausen RP, Andreasen JT. Positive allosteric modulation of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid glutamate receptors differentially modulates the behavioural effects of citalopram in mouse models of antidepressant and anxiolytic action. Behav Pharmacol 2016; 27:549-55. [DOI: 10.1097/fbp.0000000000000243] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
10
|
Mariani JJ, Malcolm RJ, Mamczur AK, Choi JC, Brady R, Nunes E, Levin FR. Pilot trial of gabapentin for the treatment of benzodiazepine abuse or dependence in methadone maintenance patients. THE AMERICAN JOURNAL OF DRUG AND ALCOHOL ABUSE 2016; 42:333-40. [PMID: 26962719 DOI: 10.3109/00952990.2015.1125493] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Benzodiazepine use disorders are a common clinical problem among methadone maintenance treatment patients and have adverse effects on clinical outcomes. OBJECTIVES To evaluate gabapentin for the outpatient treatment of benzodiazepine abuse or dependence in methadone maintenance patients. METHODS Participants (n = 19) using benzodiazepines at least 4 days per week were enrolled into an 8-week randomized double-blind placebo-controlled outpatient pilot trial. All participants received a manual-guided supportive psychotherapy aimed to promote abstinence. Study medication was titrated over a 2-week period to a maximum dose of gabapentin 1200 mg or placebo three times a day. Benzodiazepine use was assessed using urine toxicology confirmed self-report. Benzodiazepines were not provided as part of study participation; participants were provided guidance to gradually reduce benzodiazepine intake. RESULTS Sixteen participants had post-randomization data for analysis. Retention at week eight was 50%. The mean dose of gabapentin achieved by titration was 2666 mg/day (SD = ± 1446). There were no significant between group differences on benzodiazepine use outcomes (amount benzodiazepine per day [Mann-Whitney U = 27, p = 0.745], abstinent days per week [U = 28, p = 0.811]) and Clinical Instrument Withdrawal Assessment (CIWA)-benzodiazepines scale (U = 29.0, p = 0.913). One participant in the gabapentin group discontinued study medication because of peripheral edema. Two participants in the placebo group requested admission for inpatient detoxification treatment. CONCLUSION In outpatient methadone-maintained patients with benzodiazepine use disorder, gabapentin did significantly decrease benzodiazepine use relative to placebo. The small sample recruited for this trial may have limited the ability to detect a group difference.
Collapse
Affiliation(s)
- John J Mariani
- a Division on Substance Abuse , New York State Psychiatric Institute , New York , NY , USA.,b Department of Psychiatry , College of Physicians and Surgeons of Columbia University , New York , NY , USA
| | | | - Agnieszka K Mamczur
- a Division on Substance Abuse , New York State Psychiatric Institute , New York , NY , USA
| | - Jean C Choi
- d Division of Biostatistics , New York State Psychiatric Institute , New York , NY , USA
| | | | - Edward Nunes
- a Division on Substance Abuse , New York State Psychiatric Institute , New York , NY , USA.,b Department of Psychiatry , College of Physicians and Surgeons of Columbia University , New York , NY , USA
| | - Frances R Levin
- a Division on Substance Abuse , New York State Psychiatric Institute , New York , NY , USA.,b Department of Psychiatry , College of Physicians and Surgeons of Columbia University , New York , NY , USA
| |
Collapse
|
11
|
GABA withdrawal syndrome: GABAA receptor, synapse, neurobiological implications and analogies with other abstinences. Neuroscience 2015; 313:57-72. [PMID: 26592722 DOI: 10.1016/j.neuroscience.2015.11.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 11/07/2015] [Accepted: 11/10/2015] [Indexed: 11/22/2022]
Abstract
The sudden interruption of the increase of the concentration of the gamma-aminobutyric acid (GABA), determines an increase in neuronal activity. GABA withdrawal (GW) is a heuristic analogy, with withdrawal symptoms developed by other GABA receptor-agonists such as alcohol, benzodiazepines, and neurosteroids. GW comprises a model of neuronal excitability validated by electroencephalogram (EEG) in which high-frequency and high-amplitude spike-wave complexes appear. In brain slices, GW was identified by increased firing synchronization of pyramidal neurons and by changes in the active properties of the neuronal membrane. GW induces pre- and postsynaptic changes: a decrease in GABA synthesis/release, and the decrease in the expression and composition of GABAA receptors associated with increased calcium entry into the cell. GW is an excellent bioassay for studying partial epilepsy, epilepsy refractory to drug treatment, and a model to reverse or prevent the generation of abstinences from different drugs.
Collapse
|
12
|
Korpi ER, den Hollander B, Farooq U, Vashchinkina E, Rajkumar R, Nutt DJ, Hyytiä P, Dawe GS. Mechanisms of Action and Persistent Neuroplasticity by Drugs of Abuse. Pharmacol Rev 2015; 67:872-1004. [PMID: 26403687 DOI: 10.1124/pr.115.010967] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2025] Open
Abstract
Adaptation of the nervous system to different chemical and physiologic conditions is important for the homeostasis of brain processes and for learning and remembering appropriate responses to challenges. Although processes such as tolerance and dependence to various drugs of abuse have been known for a long time, it was recently discovered that even a single pharmacologically relevant dose of various drugs of abuse induces neuroplasticity in selected neuronal populations, such as the dopamine neurons of the ventral tegmental area, which persist long after the drug has been excreted. Prolonged (self-) administration of drugs induces gene expression, neurochemical, neurophysiological, and structural changes in many brain cell populations. These region-specific changes correlate with addiction, drug intake, and conditioned drugs effects, such as cue- or stress-induced reinstatement of drug seeking. In rodents, adolescent drug exposure often causes significantly more behavioral changes later in adulthood than a corresponding exposure in adults. Clinically the most impairing and devastating effects on the brain are produced by alcohol during fetal development. In adult recreational drug users or in medicated patients, it has been difficult to find persistent functional or behavioral changes, suggesting that heavy exposure to drugs of abuse is needed for neurotoxicity and for persistent emotional and cognitive alterations. This review describes recent advances in this important area of research, which harbors the aim of translating this knowledge to better treatments for addictions and related neuropsychiatric illnesses.
Collapse
Affiliation(s)
- Esa R Korpi
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Finland (E.R.K., B.d.H., E.V., P.H.); Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Neurobiology and Ageing Programme, Life Sciences Institute, National University of Singapore, Singapore, and SINAPSE, Singapore Institute for Neurotechnology, Singapore (E.R.K., R.R., G.S.D.); Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut (U.F.); and Centre for Neuropsychopharmacology, Division of Brain Sciences, Burlington Danes Building, Imperial College London, London. United Kingdom (D.J.N.)
| | - Bjørnar den Hollander
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Finland (E.R.K., B.d.H., E.V., P.H.); Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Neurobiology and Ageing Programme, Life Sciences Institute, National University of Singapore, Singapore, and SINAPSE, Singapore Institute for Neurotechnology, Singapore (E.R.K., R.R., G.S.D.); Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut (U.F.); and Centre for Neuropsychopharmacology, Division of Brain Sciences, Burlington Danes Building, Imperial College London, London. United Kingdom (D.J.N.)
| | - Usman Farooq
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Finland (E.R.K., B.d.H., E.V., P.H.); Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Neurobiology and Ageing Programme, Life Sciences Institute, National University of Singapore, Singapore, and SINAPSE, Singapore Institute for Neurotechnology, Singapore (E.R.K., R.R., G.S.D.); Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut (U.F.); and Centre for Neuropsychopharmacology, Division of Brain Sciences, Burlington Danes Building, Imperial College London, London. United Kingdom (D.J.N.)
| | - Elena Vashchinkina
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Finland (E.R.K., B.d.H., E.V., P.H.); Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Neurobiology and Ageing Programme, Life Sciences Institute, National University of Singapore, Singapore, and SINAPSE, Singapore Institute for Neurotechnology, Singapore (E.R.K., R.R., G.S.D.); Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut (U.F.); and Centre for Neuropsychopharmacology, Division of Brain Sciences, Burlington Danes Building, Imperial College London, London. United Kingdom (D.J.N.)
| | - Ramamoorthy Rajkumar
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Finland (E.R.K., B.d.H., E.V., P.H.); Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Neurobiology and Ageing Programme, Life Sciences Institute, National University of Singapore, Singapore, and SINAPSE, Singapore Institute for Neurotechnology, Singapore (E.R.K., R.R., G.S.D.); Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut (U.F.); and Centre for Neuropsychopharmacology, Division of Brain Sciences, Burlington Danes Building, Imperial College London, London. United Kingdom (D.J.N.)
| | - David J Nutt
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Finland (E.R.K., B.d.H., E.V., P.H.); Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Neurobiology and Ageing Programme, Life Sciences Institute, National University of Singapore, Singapore, and SINAPSE, Singapore Institute for Neurotechnology, Singapore (E.R.K., R.R., G.S.D.); Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut (U.F.); and Centre for Neuropsychopharmacology, Division of Brain Sciences, Burlington Danes Building, Imperial College London, London. United Kingdom (D.J.N.)
| | - Petri Hyytiä
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Finland (E.R.K., B.d.H., E.V., P.H.); Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Neurobiology and Ageing Programme, Life Sciences Institute, National University of Singapore, Singapore, and SINAPSE, Singapore Institute for Neurotechnology, Singapore (E.R.K., R.R., G.S.D.); Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut (U.F.); and Centre for Neuropsychopharmacology, Division of Brain Sciences, Burlington Danes Building, Imperial College London, London. United Kingdom (D.J.N.)
| | - Gavin S Dawe
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Finland (E.R.K., B.d.H., E.V., P.H.); Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Neurobiology and Ageing Programme, Life Sciences Institute, National University of Singapore, Singapore, and SINAPSE, Singapore Institute for Neurotechnology, Singapore (E.R.K., R.R., G.S.D.); Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut (U.F.); and Centre for Neuropsychopharmacology, Division of Brain Sciences, Burlington Danes Building, Imperial College London, London. United Kingdom (D.J.N.)
| |
Collapse
|
13
|
Vashchinkina E, Panhelainen A, Aitta-Aho T, Korpi ER. GABAA receptor drugs and neuronal plasticity in reward and aversion: focus on the ventral tegmental area. Front Pharmacol 2014; 5:256. [PMID: 25505414 PMCID: PMC4243505 DOI: 10.3389/fphar.2014.00256] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 11/03/2014] [Indexed: 12/13/2022] Open
Abstract
GABAA receptors are the main fast inhibitory neurotransmitter receptors in the mammalian brain, and targets for many clinically important drugs widely used in the treatment of anxiety disorders, insomnia and in anesthesia. Nonetheless, there are significant risks associated with the long-term use of these drugs particularly related to development of tolerance and addiction. Addictive mechanisms of GABAA receptor drugs are poorly known, but recent findings suggest that those drugs may induce aberrant neuroadaptations in the brain reward circuitry. Recently, benzodiazepines, acting on synaptic GABAA receptors, and modulators of extrasynaptic GABAA receptors (THIP and neurosteroids) have been found to induce plasticity in the ventral tegmental area (VTA) dopamine neurons and their main target projections. Furthermore, depending whether synaptic or extrasynaptic GABAA receptor populations are activated, the behavioral outcome of repeated administration seems to correlate with rewarding or aversive behavioral responses, respectively. The VTA dopamine neurons project to forebrain centers such as the nucleus accumbens and medial prefrontal cortex, and receive afferent projections from these brain regions and especially from the extended amygdala and lateral habenula, forming the major part of the reward and aversion circuitry. Both synaptic and extrasynaptic GABAA drugs inhibit the VTA GABAergic interneurons, thus activating the VTA DA neurons by disinhibition and this way inducing glutamatergic synaptic plasticity. However, the GABAA drugs failed to alter synaptic spine numbers as studied from Golgi-Cox-stained VTA dendrites. Since the GABAergic drugs are known to depress the brain metabolism and gene expression, their likely way of inducing neuroplasticity in mature neurons is by disinhibiting the principal neurons, which remains to be rigorously tested for a number of clinically important anxiolytics, sedatives and anesthetics in different parts of the circuitry.
Collapse
Affiliation(s)
- Elena Vashchinkina
- Department of Pharmacology, Institute of Biomedicine, University of Helsinki Helsinki, Finland
| | - Anne Panhelainen
- Institute of Biotechnology, University of Helsinki Helsinki, Finland
| | - Teemu Aitta-Aho
- Department of Pharmacology, Institute of Biomedicine, University of Helsinki Helsinki, Finland ; Department of Pharmacology, University of Cambridge Cambridge, UK
| | - Esa R Korpi
- Department of Pharmacology, Institute of Biomedicine, University of Helsinki Helsinki, Finland ; Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Neurobiology and Ageing Programme, Life Sciences Institute, National University of Singapore, and SINAPSE, Singapore Institute for Neurotechnology Singapore, Singapore
| |
Collapse
|
14
|
Kiselycznyk C, Zhang X, Huganir RL, Holmes A, Svenningsson P. Reduced phosphorylation of GluA1 subunits relates to anxiety-like behaviours in mice. Int J Neuropsychopharmacol 2013; 16:919-24. [PMID: 23360771 PMCID: PMC3787598 DOI: 10.1017/s1461145712001174] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Anxiety and depression are highly prevalent and frequently co-morbid conditions. The ionotropic glutamate receptors N-methyl-D-aspartate and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) mediate actions of monoaminergic antidepressants and have been directly targeted by novel fast-acting antidepressants. Less is known about the role of these receptors in anxiety-like states. Here we investigate how two distinct anxiolytic agents, buspirone, a partial 5-HT(1A) agonist, and diazepam, a benzodiazepine, influence phosphorylation of GluA1 subunits of AMPA receptors at the potentiating residue Ser(845) and Ser(831) in corticolimbic regions. To test the functional relevance of these changes, phosphomutant GluA1 mice lacking phosphorylatable Ser(845) and Ser(831) were examined in relevant behavioural paradigms. These mutant mice exhibited a reduced anxiety-like phenotype in the light/dark exploration task and elevated plus maze, but not in the novelty induced hypophagia paradigm. These data indicate that reduced potentiation of the AMPA receptor signalling, via decreased GluA1 phoshorylation, is specifically involved in approach-avoidance based paradigms relevant for anxiety-like behaviours.
Collapse
Affiliation(s)
- Carly Kiselycznyk
- Laboratory of Translational Neuropharmacology, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| | | | | | | | | |
Collapse
|
15
|
Regulation of Ca²⁺/calmodulin-dependent protein kinase II signaling within hippocampal glutamatergic postsynapses during flurazepam withdrawal. Neural Plast 2012; 2012:405926. [PMID: 22830051 PMCID: PMC3399473 DOI: 10.1155/2012/405926] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Accepted: 04/19/2012] [Indexed: 11/18/2022] Open
Abstract
Cessation of one-week oral administration of the benzodiazepine flurazepam (FZP) to rats results in withdrawal anxiety after 1 day of withdrawal. FZP withdrawal is correlated with synaptic incorporation of homomeric GluA1-containing α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptors (AMPARs) in the proximal stratum radiatum of CA1 neurons. After 2 days of withdrawal, Ca2+/calmodulin-dependent protein kinase II (CaMKII) phosphorylates GluA1 subunits at Ser831, increasing channel conductance. Secondary to AMPAR potentiation, GluN2B-containing N-methyl-D-aspartate receptors (NMDARs), known binding partners of CaMKII, are selectively removed from the postsynaptic density (PSD). While activation of synaptic CaMKII is known to involve translocation to the PSD, CaMKII bound to NMDARs may be removed from the PSD. To distinguish these possibilities, the current studies used postembedding immunogold electron microscopy to investigate alterations in CaMKII signaling at CA1 stratum radiatum synapses after 2 days of FZP withdrawal. These studies revealed decreased total, but not autophosphorylated (Thr286) CaMKIIα expression in CA1 PSDs. The removal of CaMKII-GluN2B complexes from the PSD during drug withdrawal may serve as a homeostatic mechanism to limit AMPAR-mediated CA1 neuron hyperexcitability and benzodiazepine withdrawal anxiety.
Collapse
|
16
|
Diazepam-induced neuronal plasticity attenuates locomotor responses to morphine and amphetamine challenges in mice. Neuroscience 2011; 192:312-21. [DOI: 10.1016/j.neuroscience.2011.07.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Revised: 06/30/2011] [Accepted: 07/01/2011] [Indexed: 11/17/2022]
|
17
|
Earl DE, Tietz EI. Inhibition of recombinant L-type voltage-gated calcium channels by positive allosteric modulators of GABAA receptors. J Pharmacol Exp Ther 2011; 337:301-11. [PMID: 21262851 PMCID: PMC3063747 DOI: 10.1124/jpet.110.178244] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Accepted: 01/21/2011] [Indexed: 11/22/2022] Open
Abstract
Benzodiazepines (BDZs) depress neuronal excitability via positive allosteric modulation of inhibitory GABA(A) receptors (GABA(A)R). BDZs and other positive GABA(A)R modulators, including barbiturates, ethanol, and neurosteroids, can also inhibit L-type voltage-gated calcium channels (L-VGCCs), which could contribute to reduced neuronal excitability. Because neuronal L-VGCC function is up-regulated after long-term GABA(A)R modulator exposure, an interaction with L-VGCCs may also play a role in physical dependence. The current studies assessed the effects of BDZs (diazepam, flurazepam, and desalkylflurazepam), allopregnanolone, pentobarbital, and ethanol on whole-cell Ba(2+) currents through recombinant neuronal Ca(v)1.2 and Ca(v)1.3 L-VGCCs expressed with β(3) and α(2)δ-1 in HEK293T cells. Allopregnanolone was the most potent inhibitor (IC(50), ∼10 μM), followed by BDZs (IC(50), ∼50 μM), pentobarbital (IC(50), 0.3-1 mM), and ethanol (IC(50), ∼300 mM). Ca(v)1.3 channels were less sensitive to pentobarbital inhibition than Ca(v)1.2 channels, similar to dihydropyridine (DHP) L-VGCC antagonists. All GABA(A)R modulators induced a negative shift in the steady-state inactivation curve of Ca(v)1.3 channels, but only BDZs and pentobarbital induced a negative shift in Ca(v)1.2 channel inactivation. Mutation of the high-affinity DHP binding site (T1039Y and Q1043M) in Ca(v)1.2 channels reduced pentobarbital potency. Despite the structural similarity between benzothiazepines and BDZs, mutation of an amino acid important for diltiazem potency (I1150A) did not affect diazepam potency. Although L-VGCC inhibition by BDZs occurred at concentrations that are possibly too high to be clinically relevant and is not likely to play a role in the up-regulation of L-VGCCs during long-term treatment, pentobarbital and ethanol inhibited L-VGCCs at clinically relevant concentrations.
Collapse
Affiliation(s)
- Damien E Earl
- Department of Physiology and Pharmacology, University of Toledo College of Medicine, Health Science Campus, Toledo, OH 43614, USA
| | | |
Collapse
|
18
|
Das P, Zerda R, Alvarez FJ, Tietz EI. Immunogold electron microscopic evidence of differential regulation of GluN1, GluN2A, and GluN2B, NMDA-type glutamate receptor subunits in rat hippocampal CA1 synapses during benzodiazepine withdrawal. J Comp Neurol 2011; 518:4311-28. [PMID: 20853509 DOI: 10.1002/cne.22458] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Benzodiazepine withdrawal-anxiety is associated with enhanced α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor (AMPAR)-mediated glutamatergic transmission in rat hippocampal CA1 synapses due to enhanced synaptic insertion and phosphorylation of GluA1 homomers. Interestingly, attenuation of withdrawal-anxiety is associated with a reduction in N-methyl-D-aspartate receptor (NMDAR)-mediated currents and subunit expression, secondary to AMPA receptor potentiation. Therefore, in this study ultrastructural evidence for possible reductions in NMDAR GluN1, GluN2A, and GluN2B subunits was sought at CA1 stratum radiatum synapses in proximal dendrites using postembedding immunogold labeling of tissues from rats withdrawn for 2 days from 1-week daily oral administration of the benzodiazepine, flurazepam (FZP). GluN1-immunogold density and the percentage of immunopositive synapses were significantly decreased in tissues from FZP-withdrawn rats. Similar decreases were observed for GluN2B subunits; however, the relative lateral distribution of GluN2B-immunolabeling within the postsynaptic density did not change after BZ withdrawal. In contrast to the GluN2B subunit, the percentage of synapses labeled with the GluN2A subunit antibody and the density of immunogold labeling for this subunit was unchanged. The spatial localization of immunogold particles associated with each NMDAR subunit was consistent with a predominantly postsynaptic localization. The data therefore provide direct evidence for reduced synaptic GluN1/GluN2B receptors and preservation of GluN1/GluN2A receptors in the CA1 stratum radiatum region during BZ withdrawal. Based on collective findings in this benzodiazepine withdrawal-anxiety model, we propose a functional model illustrating the changes in glutamate receptor populations at excitatory synapses during benzodiazepine withdrawal.
Collapse
Affiliation(s)
- Paromita Das
- Department of Physiology and Pharmacology, University of Toledo College of Medicine, Health Science Campus, Toledo, Ohio 43614, USA
| | | | | | | |
Collapse
|
19
|
Shen G, Tietz EI. Down-regulation of synaptic GluN2B subunit-containing N-methyl-D-aspartate receptors: a physiological brake on CA1 neuron α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid hyperexcitability during benzodiazepine withdrawal. J Pharmacol Exp Ther 2011; 336:265-73. [PMID: 20935233 PMCID: PMC3014299 DOI: 10.1124/jpet.110.174235] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Accepted: 10/07/2010] [Indexed: 11/22/2022] Open
Abstract
A significant link was previously established between benzodiazepine withdrawal anxiety and a progressive increase in α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) potentiation in hippocampal CA1 neurons from rats withdrawn up to 2 days from 1-week oral administration of the benzodiazepine flurazepam (FZP). Despite AMPAR current potentiation, withdrawal anxiety was masked by a 2-fold reduction in CA1 neuron N-methyl-D-aspartate receptor (NMDAR) currents since preinjection of an NMDA antagonist restored NMDAR currents and unmasked anxiety in 2-day FZP-withdrawn rats. In the current study, GluN subunit levels in postsynaptic density (PSD)-enriched subfractions of CA1 minislices were compared with GluN2B-mediated whole-cell currents evoked in CA1 neurons in hippocampal slices from 1- and 2-day FZP-withdrawn rats. GluN1 and GluN2B, although not the phosphoSer1303-GluN2B ratio or GluN2A subunit levels, were decreased in PSD subfractions from 2-day, but not 1-day, FZP-withdrawn rats. Consistent with immunoblot analyses, GluN2B-mediated NMDAR currents evoked in slices from 2-day FZP-withdrawn rats were decreased in the absence, but not the presence, of the GluN2B subunit-selective antagonist ifenprodil. In contrast, ifenprodil-sensitive NMDAR currents were unchanged in slices from 1-day withdrawn rats. Because AMPA (1 μM) preincubation of slices from 1-day FZP-withdrawn rats induced depression of GluN2B subunit-mediated currents, depression of NMDAR currents was probably secondary to AMPAR potentiation. CA1 neuron NMDAR currents were depressed ∼50% after 2-day withdrawal and offset potentiation of AMPAR-mediated currents, leaving total charge transfer unchanged between groups. Collectively, these findings suggest that a reduction of GluN2B-containing NMDAR may serve as a homeostatic feedback mechanism to modulate glutamatergic synaptic strength during FZP withdrawal to alleviate benzodiazepine withdrawal symptoms.
Collapse
Affiliation(s)
- Guofu Shen
- Department of Physiology and Pharmacology, University of Toledo College of Medicine, Health Science Campus, 3000 Arlington Ave., Toledo, OH 43614, USA
| | | |
Collapse
|
20
|
Casamassima F, Hay AC, Benedetti A, Lattanzi L, Cassano GB, Perlis RH. L-type calcium channels and psychiatric disorders: A brief review. Am J Med Genet B Neuropsychiatr Genet 2010; 153B:1373-90. [PMID: 20886543 DOI: 10.1002/ajmg.b.31122] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2009] [Accepted: 07/28/2010] [Indexed: 01/11/2023]
Abstract
Emerging evidence from genome-wide association studies (GWAS) support the association of polymorphisms in the alpha 1C subunit of the L-type voltage-gated calcium channel gene (CACNA1C) with bipolar disorder. These studies extend a rich prior literature implicating dysfunction of L-type calcium channels (LTCCs) in the pathophysiology of neuropsychiatric disorders. Moreover, calcium channel blockers reduce Ca(2+) flux by binding to the α1 subunit of the LTCC and are used extensively for treating hypertension, preventing angina, cardiac arrhythmias and stroke. Calcium channel blockers have also been studied clinically in psychiatric conditions such as mood disorders and substance abuse/dependence, yielding conflicting results. In this review, we begin with a summary of LTCC pharmacology. For each category of disorder, this article then provides a review of animal and human data. In particular, we extensively focus on animal models of depression and clinical trials in mood disorders and substance abuse/dependence. Through examining rationale and study design of published clinical trials, we provide some of the possible reasons why we still do not have definitive evidence of efficacy of calcium-channel antagonists for mood disorders. Refinement of genetic results and target phenotypes, enrollment of adequate sample sizes in clinical trials and progress in physiologic and pharmacologic studies to synthesize tissue and isoform specific calcium channel antagonists, are all future challenges of research in this promising field. © 2010 Wiley-Liss, Inc.
Collapse
|
21
|
Calcium/calmodulin-dependent protein kinase II mediates hippocampal glutamatergic plasticity during benzodiazepine withdrawal. Neuropsychopharmacology 2010; 35:1897-909. [PMID: 20445501 PMCID: PMC2904841 DOI: 10.1038/npp.2010.61] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Benzodiazepine withdrawal anxiety is associated with potentiation of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate receptor (AMPAR) currents in hippocampal CA1 pyramidal neurons attributable to increased synaptic incorporation of GluA1-containing AMPARs. The contribution of calcium/calmodulin-dependent protein kinase II (CaMKII) to enhanced glutamatergic synaptic strength during withdrawal from 1-week oral flurazepam (FZP) administration was further examined in hippocampal slices. As earlier reported, AMPAR-mediated miniature excitatory postsynaptic current (mEPSC) amplitude increased in CA1 neurons from 1- and 2-day FZP-withdrawn rats, along with increased single-channel conductance in neurons from 2-day rats, estimated by non-stationary noise analysis. Input-output curve slope was increased without a change in paired-pulse facilitation, suggesting increased AMPAR postsynaptic efficacy rather than altered glutamate release. The increased mEPSC amplitude and AMPAR conductance were related to CaMKII activity, as intracellular inclusion of CaMKIINtide or autocamtide-2-related inhibitory peptide, but not scrambled peptide, prevented both AMPAR amplitude and conductance changes. mEPSC inhibition by 1-naphthyl acetyl spermine and the negative shift in rectification index at both withdrawal time points were consistent with functional incorporation of GluA2-lacking AMPARs. GluA1 but not GluA2 or GluA3 levels were increased in immunoblots of postsynaptic density (PSD)-enriched subcellular fractions of CA1 minislices from 1-day FZP-withdrawn rats, when mEPSC amplitude, but not conductance, was increased. Both GluA1 expression levels and CaMKII alpha-mediated GluA1 Ser(831) phosphorylation were increased in PSD-subfractions from 2-day FZP-withdrawn rats. As phospho-Thr(286)CaMKII alpha was unchanged, CaMKII alpha may be activated through an alternative signaling pathway. Synaptic insertion and subsequent CaMKII alpha-mediated Ser(831) phosphorylation of GluA1 homomers contribute to benzodiazepine withdrawal-induced AMPAR potentiation and may represent an important hippocampal pathway mediating both drug-induced and activity-dependent plasticity.
Collapse
|
22
|
Uusi-Oukari M, Korpi ER. Regulation of GABA(A) receptor subunit expression by pharmacological agents. Pharmacol Rev 2010; 62:97-135. [PMID: 20123953 DOI: 10.1124/pr.109.002063] [Citation(s) in RCA: 147] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The gamma-aminobutyric acid (GABA) type A receptor system, the main fast-acting inhibitory neurotransmitter system in the brain, is the pharmacological target for many drugs used clinically to treat, for example, anxiety disorders and epilepsy, and to induce and maintain sedation, sleep, and anesthesia. These drugs facilitate the function of pentameric GABA(A) receptors that exhibit widespread expression in all brain regions and large structural and pharmacological heterogeneity as a result of composition from a repertoire of 19 subunit variants. One of the main problems in clinical use of GABA(A) receptor agonists is the development of tolerance. Most drugs, in long-term use and during withdrawal, have been associated with important modulations of the receptor subunit expression in brain-region-specific manner, participating in the mechanisms of tolerance and dependence. In most cases, the molecular mechanisms of regulation of subunit expression are poorly known, partly as a result of neurobiological adaptation to altered neuronal function. More knowledge has been obtained on the mechanisms of GABA(A) receptor trafficking and cell surface expression and the processes that may contribute to tolerance, although their possible pharmacological regulation is not known. Drug development for neuropsychiatric disorders, including epilepsy, alcoholism, schizophrenia, and anxiety, has been ongoing for several years. One key step to extend drug development related to GABA(A) receptors is likely to require deeper understanding of the adaptational mechanisms of neurons, receptors themselves with interacting proteins, and finally receptor subunits during drug action and in neuropsychiatric disease processes.
Collapse
Affiliation(s)
- Mikko Uusi-Oukari
- Department of Pharmacology, Drug Development and Therapeutics, University of Turku, Itainen Pitkakatu 4, 20014 Turku, Finland.
| | | |
Collapse
|
23
|
Positive allosteric activation of GABAA receptors bi-directionally modulates hippocampal glutamate plasticity and behaviour. Biochem Soc Trans 2010; 37:1394-8. [PMID: 19909283 DOI: 10.1042/bst0371394] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Long-term BZ (benzodiazepine) anxiolytic therapy increases the risk of physical dependence manifested as withdrawal anxiety. BZ-induced potentiation of GABA(A)R (gamma-aminobutyric acid type-A receptor) function by 1-week oral administration of FZP (flurazepam) bi-directionally modulates excitatory glutamatergic synaptic transmission in hippocampal CA1 neurons during drug withdrawal. Previous electrophysiological studies on acutely isolated and intact CA1 neurons, as well as immunofluorescence and post-embedding immunogold electron microscopy studies, suggest increased synaptic insertion of GluR (glutamate receptor) 2-lacking AMPARs (alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptors) in 2-day FZP-withdrawn rats. Preliminary studies indicated a similar increase in GluR1, then phospho-Ser(831)-GluR1, as well as CaMKIIalpha (Ca(2+)/calmodulin-dependent protein kinase IIalpha), but not phospho-Thr(286)-CaMKII levels at the same time point. In our studies, whole-cell recordings in hippocampal slices revealed that AMPAR mEPSC [miniature EPSC (excitatory postsynaptic current)] amplitude was increased in 1-day FZP-withdrawn rats followed by an increase in estimated single-channel conductance in 2-day-FZP-withdrawn rats. Enhanced conductance was no longer observed in slices pre-incubated for 2 h in the CaMKII inhibitor KN-93, but not the inactive analogue KN-92. To evaluate whether CaMKII-mediated AMPA potentiation could occlude LTP (long-term potentiation), LTP was induced by TBS (theta burst stimulation) and recorded using whole-cell and extracellular techniques. LTP was induced in both groups, but only maintained for <15 min in 2-day FZP-withdrawn rats. LTP was fully restored after 7-day withdrawal. Despite the lack of LTP maintenance, impairment of object recognition, place and context was not observed in 2-day-FZP-withdrawn rats. Since L-VGCC (L-type voltage-gated calcium channel) current density was doubled on drug withdrawal and up to 2 days, Ca(2+) entry through L-VGCCs and perhaps subsequently through Ca(2+)-permeable AMPARs are proposed to be responsible for enhanced CaMKIIalpha levels and AMPAR potentiation. Mechanisms associated with several different models of activity-dependent plasticity may underlie BZ physical dependence.
Collapse
|
24
|
Das P, Lilly SM, Zerda R, Gunning WT, Alvarez FJ, Tietz EI. Increased AMPA receptor GluR1 subunit incorporation in rat hippocampal CA1 synapses during benzodiazepine withdrawal. J Comp Neurol 2009; 511:832-46. [PMID: 18924138 DOI: 10.1002/cne.21866] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Prolonged benzodiazepine treatment leads to tolerance and increases the risk of dependence. Flurazepam (FZP) withdrawal is associated with increased anxiety correlated with increased alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid-type glutamate receptor (AMPAR)-mediated synaptic function and AMPAR binding in CA1 pyramidal neurons. Enhanced AMPAR synaptic strength is also associated with a shift toward inward rectification of synaptic currents and increased expression of GluR1, but not GluR2, subunits, suggesting augmented membrane incorporation of GluR1-containing, GluR2-lacking AMPARs. To test this hypothesis, the postsynaptic incorporation of GluR1 and GluR2 subunits in CA1 neurons after FZP withdrawal was examined by postembedding immunogold quantitative electron microscopy. The percentage of GluR1 positively labeled stratum radiatum (SR) synapses was significantly increased in FZP-withdrawn rats (88.2% +/- 2.2%) compared with controls (74.4% +/- 1.9%). In addition, GluR1 immunogold density was significantly increased by 30% in SR synapses in CA1 neurons from FZP-withdrawn rats compared with control rats (FZP: 14.1 +/- 0.3 gold particles/mum; CON: 10.8 +/- 0.4 gold particles/mum). In contrast, GluR2 immunogold density was not significantly different between groups. Taken together with recent functional data from our laboratory, the current study suggests that the enhanced glutamatergic strength at CA1 neuron synapses during benzodiazepine withdrawal is mediated by increased incorporation of GluR1-containing AMPARs. Mechanisms underlying synaptic plasticity in this model of drug dependence are therefore fundamentally similar to those that operate during activity-dependent plasticity.
Collapse
Affiliation(s)
- Paromita Das
- Department of Physiology and Pharmacology, University of Toledo College of Medicine, Health Science Campus, Toledo, Ohio 43614, USA
| | | | | | | | | | | |
Collapse
|
25
|
Long-lasting modulation of glutamatergic transmission in VTA dopamine neurons after a single dose of benzodiazepine agonists. Neuropsychopharmacology 2009; 34:290-8. [PMID: 18563060 DOI: 10.1038/npp.2008.89] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Initial effects of drugs of abuse seem to converge on the mesolimbic dopamine pathway originating from the ventral tegmental area (VTA). Even after a single dose, many drugs of abuse are able to modulate the glutamatergic transmission activating the VTA dopamine neurons, which may represent a critical early stage in the development of addiction. Ligands acting on the benzodiazepine site of the inhibitory gamma-aminobutyric acid type A (GABA(A)) receptors are known to be rewarding in animal models and have abuse liability in humans, but notably little evidence exists on the involvement of the mesolimbic dopamine system in their effects. Here we report that single in vivo doses of benzodiazepine-site agonists, similar to morphine and ethanol, induce a modulation in the glutamatergic transmission of VTA dopamine neurons. This is seen 24 h later as an increase in the ratio between alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and N-methyl-D-aspartate (NMDA) receptor-mediated excitatory currents using whole-cell patch-clamp configuration in mouse VTA slices. The effect was due to increased frequency of spontaneous miniature AMPA receptor-mediated currents. It lasted at least 3 days after the injection of diazepam, and was prevented by coadministration of the benzodiazepine-site antagonist flumazenil or the NMDA receptor antagonist dizocilpine. A single injection of the GABA(A) receptor alpha1 subunit-preferring benzodiazepine-site ligand zolpidem also produced an increase in the AMPA/NMDA ratio in VTA dopamine neurons. These findings suggest a role for the mesolimbic dopamine system in the initial actions of and on neuronal adaptation to benzodiazepines.
Collapse
|
26
|
Xiang K, Earl DE, Davis KM, Giovannucci DR, Greenfield LJ, Tietz EI. Chronic benzodiazepine administration potentiates high voltage-activated calcium currents in hippocampal CA1 neurons. J Pharmacol Exp Ther 2008; 327:872-83. [PMID: 18812492 DOI: 10.1124/jpet.108.144444] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2025] Open
Abstract
Signs of physical dependence as a consequence of long-term drug use and a moderate abuse liability limit benzodiazepine clinical usefulness. Growing evidence suggests a role for voltage-gated calcium channel (VGCC) regulation in mediating a range of chronic drug effects from drug withdrawal phenomena to dependence on a variety of drugs of abuse. High voltage-activated (HVA) calcium currents were measured in whole-cell recordings from acutely isolated hippocampal CA1 neurons after a 1-week flurazepam (FZP) treatment that results in withdrawal-anxiety. An approximately 1.8-fold increase in Ca(2+) current density was detected immediately after and up to 2 days but not 3 or 4 days after drug withdrawal. Current density was unchanged after acute desalkyl-FZP treatment. A significant negative shift of the half-maximal potential of activation of HVA currents was also observed but steady-state inactivation remained unchanged. FZP and diazepam showed use- and concentration-dependent inhibition of Ca(2+) currents in hippocampal cultured cells following depolarizing trains (FZP, IC(50) = 1.8 microM; diazepam, IC(50) = 36 microM), pointing to an additional mechanism by which benzodiazepines modulate HVA Ca(2+) channels. Systemic preinjection of nimodipine (10 mg/kg), an L-type (L)-VGCC antagonist, prevented the benzodiazepine-induced increase in alpha-amino-3-hydroxy-5-methylisoxasole-4-propionic acid receptor (AMPAR)-mediated miniature excitatory postsynaptic current in CA1 neurons 2 days after FZP withdrawal, suggesting that AMPAR potentiation, previously linked to withdrawal-anxiety may require enhanced L-VGCC-mediated Ca(2+) influx. Taken together with prior work, these findings suggest that enhanced Ca(2+) entry through HVA Ca(2+) channels may contribute to hippocampal AMPAR plasticity and serve as a potential mechanism underlying benzodiazepine physical dependence.
Collapse
Affiliation(s)
- Kun Xiang
- Department of Physiology and Pharmacology, University of Toledo College of Medicine, Toledo, OH 43614, USA
| | | | | | | | | | | |
Collapse
|
27
|
Early alterations of AMPA receptors mediate synaptic potentiation induced by neonatal seizures. J Neurosci 2008; 28:7979-90. [PMID: 18685023 DOI: 10.1523/jneurosci.1734-08.2008] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The highest incidence of seizures during lifetime is found in the neonatal period and neonatal seizures lead to a propensity for epilepsy and long-term cognitive deficits. Here, we identify potential mechanisms that elucidate a critical role for AMPA receptors (AMPARs) in epileptogenesis during this critical period in the developing brain. In a rodent model of neonatal seizures, we have shown previously that administration of antagonists of the AMPARs during the 48 h after seizures prevents long-term increases in seizure susceptibility and seizure-induced neuronal injury. Hypoxia-induced seizures in postnatal day 10 rats induce rapid and reversible alterations in AMPAR signaling resembling changes implicated previously in models of synaptic potentiation in vitro. Hippocampal slices removed after hypoxic seizures exhibited potentiation of AMPAR-mediated synaptic currents, including an increase in the amplitude and frequency of spontaneous and miniature EPSCs as well as increased synaptic potency. This increased excitability was temporally associated with a rapid increase in phosphorylation at GluR1 S845/S831 and GluR2 S880 sites and increased activity of the protein kinases CaMKII (calcium/calmodulin-dependent protein kinase II), PKA, and PKC, which mediate the phosphorylation of these AMPAR subunits. Postseizure administration of AMPAR antagonists NBQX (2,3-dihydroxy-6-nitro-7-sulfonyl-benzo[f]quinoxaline), topiramate, or GYKI-53773 [(1)-1-(4-aminophenyl)-3-acetyl-4-methyl-7,8-methylenedioxy-3,4-dihydro-5H-2,3-benzodiazepine] attenuated the AMPAR potentiation, phosphorylation, and kinase activation and prevented the concurrent increase in in vivo seizure susceptibility. Thus, the potentiation of AMPAR-containing synapses is a reversible, early step in epileptogenesis that offers a novel therapeutic target in the highly seizure-prone developing brain.
Collapse
|
28
|
Xiang K, Tietz EI. Chronic benzodiazepine-induced reduction in GABA(A) receptor-mediated synaptic currents in hippocampal CA1 pyramidal neurons prevented by prior nimodipine injection. Neuroscience 2008; 157:153-63. [PMID: 18805463 DOI: 10.1016/j.neuroscience.2008.08.049] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2008] [Revised: 08/21/2008] [Accepted: 08/23/2008] [Indexed: 01/13/2023]
Abstract
One week oral flurazepam (FZP) administration in rats results in reduced GABA(A) receptor-mediated synaptic transmission in CA1 pyramidal neurons associated with benzodiazepine tolerance in vivo and in vitro. Since voltage-gated calcium channel (VGCC) current density is enhanced twofold during chronic FZP treatment, the role of L-type VGCCs in regulating benzodiazepine-induced changes in CA1 neuron GABA(A) receptor-mediated function was evaluated. Nimodipine (10 mg/kg, i.p.) or vehicle (0.5% Tween 80, 2 ml/kg) was injected 1 day after ending FZP treatment and 24 h prior to hippocampal slice preparation for measurement of mIPSC characteristics and in vitro tolerance to zolpidem. The reduction in GABA(A) receptor-mediated mIPSC amplitude and estimated unitary channel conductance measured 2 days after drug removal was no longer observed following prior nimodipine injection. However, the single nimodipine injection failed to prevent in vitro tolerance to zolpidem's ability to prolong mIPSC decay in FZP-treated neurons, suggesting multiple mechanisms may be involved in regulating GABA(A) receptor-mediated synaptic transmission following chronic FZP administration. As reported previously in recombinant receptors, nimodipine inhibited synaptic GABA(A) receptor currents only at high concentrations (>30 muM), significantly greater than attained in vivo (1 muM) 45 min after a single antagonist injection. Thus, the effects of nimodipine were unlikely to be related to direct effects on GABA(A) receptors. As with nimodipine injection, buffering intracellular free [Ca(2+)] with BAPTA similarly prevented the effects on GABA(A) receptor-mediated synaptic transmission, suggesting intracellular Ca(2+) homeostasis is important to maintain GABA(A) receptor function. The findings further support a role for activation of L-type VGCCs, and perhaps other Ca(2+)-mediated signaling pathways, in the modulation of GABA(A) receptor synaptic function following chronic benzodiazepine administration, independent of modulation of the allosteric interactions between benzodiazepine and GABA binding sites.
Collapse
Affiliation(s)
- K Xiang
- Department of Physiology and Pharmacology, and the Cellular and Molecular Neurobiology Program, University of Toledo College of Medicine, Health Science Campus, 3000 Arlington Avenue, Mailstop 1008, Toledo, OH 43614, USA
| | | |
Collapse
|
29
|
Wang L, Greenfield LJ. Post-hypoxic changes in rat cortical neuron GABA A receptor function require L-type voltage-gated calcium channel activation. Neuropharmacology 2008; 56:198-207. [PMID: 18674547 DOI: 10.1016/j.neuropharm.2008.07.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2008] [Revised: 06/26/2008] [Accepted: 07/05/2008] [Indexed: 11/17/2022]
Abstract
Hypoxia modifies GABA(A) receptor (GABA(A)R) function and can cause seizures, encephalopathy or myoclonus. To characterize the effects of hypoxia on neuronal GABA(A)Rs, we subjected rat cortical neurons to 1% O2 for 2, 4 or 8h, followed by recovery times of 0-96h, and used whole-cell and perforated patch-clamp recording to assess GABA(A)R currents and pharmacology. Hypoxic exposure for 4h caused downregulation of maximal GABA current immediately following hypoxia and after 48h recovery without changing the EC50 for GABA. Two- and eight-hour hypoxic exposures had inconsistent effects on GABA(A)R currents. Maximal diazepam potentiation was increased immediately following 4h hypoxia, while potentiation by zolpidem was increased after 48h recovery. Pentobarbital enhancement and zinc inhibition of GABA currents were unchanged. Hypoxia also caused a depolarizing shift in the reversal potential of GABA-induced Cl(-) currents after 24h recovery. The L-type voltage-gated calcium channel (L-VGCC) blocker, nitrendipine, during hypoxia or control treatment prevented the reduction in GABA(A)R currents, and increased control currents over baseline. Nitrendipine also prevented the increase in zolpidem potentiation 48h after hypoxia, and blocked the depolarizing shift in Cl(-) reversal potential 24h after hypoxia. The effects of hypoxia on maximal GABA(A)R currents, zolpidem pharmacology and Cl(-) reversal potential thus require depolarization-induced calcium entry via L-VGCCs, and constitutive L-VGCC activity appears to reduce maximal GABA(A)R currents in control neurons via a calcium-dependent process. Calcium-dependent modulation of GABA(A)R currents via L-VGCCs may be a fundamental regulatory mechanism for GABA receptor function.
Collapse
Affiliation(s)
- Liping Wang
- Department of Neurology, University of Toledo College of Medicine, Health Science Campus, Toledo, OH 43614-2598, USA
| | | |
Collapse
|
30
|
Licata SC, Rowlett JK. Abuse and dependence liability of benzodiazepine-type drugs: GABA(A) receptor modulation and beyond. Pharmacol Biochem Behav 2008; 90:74-89. [PMID: 18295321 DOI: 10.1016/j.pbb.2008.01.001] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2007] [Revised: 12/14/2007] [Accepted: 01/02/2008] [Indexed: 01/12/2023]
Abstract
Over the past several decades, benzodiazepines and the newer non-benzodiazepines have become the anxiolytic/hypnotics of choice over the more readily abused barbiturates. While all drugs from this class act at the GABA(A) receptor, benzodiazepine-type drugs offer the clear advantage of being safer and better tolerated. However, there is still potential for these drugs to be abused, and significant evidence exists to suggest that this is a growing problem. This review examines the behavioral determinants of the abuse and dependence liability of benzodiazepine-type drugs. Moreover, the pharmacological and putative biochemical basis of the abuse-related behavior is discussed.
Collapse
Affiliation(s)
- Stephanie C Licata
- McLean Hospital/Harvard Medical School, Behavioral Psychopharmacology Research Laboratory, 115 Mill Street, Belmont, MA 02478, United States.
| | | |
Collapse
|
31
|
Song J, Shen G, Greenfield LJ, Tietz EI. Benzodiazepine withdrawal-induced glutamatergic plasticity involves up-regulation of GluR1-containing alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptors in Hippocampal CA1 neurons. J Pharmacol Exp Ther 2007; 322:569-81. [PMID: 17510319 DOI: 10.1124/jpet.107.121798] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Modification of glutamatergic synaptic function, a mechanism central to neuronal plasticity, may also mediate long-term drug effects, including dependence and addiction. Benzodiazepine withdrawal results in increased glutamatergic strength, but whether alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptors (AMPARs) are functionally and structurally remodeled during benzodiazepine withdrawal is uncertain. Whole-cell recordings of rat hippocampal CA1 neurons, either acutely dissociated or in hippocampal slices, revealed that AMPAR function was enhanced up to 50% during flurazepam (FZP) withdrawal, without changes in whole-cell channel kinetic properties. Agonist-elicited AMPA currents showed a negative shift in rectification in the presence of spermine, suggesting augmented membrane incorporation of glutamate receptor (GluR) 2-lacking AMPARs. As GluR1-containing AMPARs are critical for activity-dependent alterations in excitatory strength, we sought to determine whether changes in GluR1 subunit distribution in CA1 neurons occurred during benzodiazepine withdrawal. Confocal image analysis revealed that FZP withdrawal promoted GluR1 subunit incorporation into somatic and proximal dendritic membranes of CA1 neurons without GluR2 subunit alterations. Findings of immunoblot studies were consistent with immunofluorescent studies indicating increased GluR1, but not GluR2, subunit protein levels in cytosolic, crude membrane and postsynaptic density-enriched fractions from CA1 minislices. As with long-term potentiation (LTP), the FZP-withdrawal-induced GluR1 incorporation into CA1 neuron membranes may require the GluR1-trafficking protein, synapse-associated protein 97, which was also elevated in membrane-associated fractions. Together, our findings provide evidence that during FZP withdrawal, increased membrane incorporation of GluR1-containing AMPARs and associated up-regulation of AMPAR functions in hippocampal CA1 pyramidal neurons share fundamental similarities with the mechanisms underlying LTP. This implies that glutamatergic neuronal remodeling observed in LTP also subserves physiological adaptations to drug withdrawal.
Collapse
Affiliation(s)
- Jun Song
- Department of Physiology and Pharmacology, University of Toledo College of Medicine, Health Science Campus Formerly Medical University of Ohio, Toledo, OH 43614, USA
| | | | | | | |
Collapse
|