1
|
Wei H, Zhang T, Zhan CG, Zheng F. Cebranopadol reduces cocaine self-administration in male rats: Dose, treatment and safety consideration. Neuropharmacology 2020; 172:108128. [PMID: 32389751 PMCID: PMC9334146 DOI: 10.1016/j.neuropharm.2020.108128] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 04/25/2020] [Accepted: 05/02/2020] [Indexed: 11/17/2022]
Abstract
As a novel first-in-class potent analgesic acting as an agonist of multiple opioid receptors, cebranopadol showed high efficacy and good tolerability in a broad range of preclinical models and clinical trials related to pain. In the present study, to evaluate the efficacy and safety of cebranopadol as a potential treatment of cocaine dependence, we tested the effects of cebranopadol with single and repeated doses (25, 50, 75, or 100 μg/kg, oral gavage) using rat models of cocaine fixed-ratio (FR) self-administration (SA), cocaine progressive-ratio (PR) SA, and sucrose pellet SA. In single-dosing treatment paradigm, cebranopadol significantly and dose-dependently reduced cocaine SA under FR and PR schedules and suppressed food intake under FR schedule without causing apparent side effects. In repeated-dosing treatment scheme, i.e. daily administration of 25, 50, 75, or 100 μg/kg cebranopadol for a week, the similar reduction in cocaine intake was detected, while non-negligible complications/side effects were observed at repeated high doses (75 and 100 μg/kg). The observed side effects were similar to the common toxic signs elicited by heroin at high doses, although cebranopadol did not fully substitute heroin's discriminative stimulant effects in our drug discriminative tests. These results demonstrated that the most appropriate oral dose of cebranopadol to balance the efficacy and safety is 50 μg/kg. Collectively, although cebranopadol may serve as a new treatment for cocaine dependence, more consideration, cautiousness, and a clear optimal dose window to dissociate its therapeutic effects from opioid side effects/complications in male and female subjects will be necessary to increase its practical clinical utility.
Collapse
Affiliation(s)
- Huimei Wei
- Molecular Modeling and Biopharmaceutical Center, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536, USA; Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536, USA
| | - Ting Zhang
- Molecular Modeling and Biopharmaceutical Center, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536, USA; Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536, USA
| | - Chang-Guo Zhan
- Molecular Modeling and Biopharmaceutical Center, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536, USA; Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536, USA.
| | - Fang Zheng
- Molecular Modeling and Biopharmaceutical Center, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536, USA; Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536, USA.
| |
Collapse
|
2
|
Gendy MNS, Ibrahim C, Sloan ME, Le Foll B. Randomized Clinical Trials Investigating Innovative Interventions for Smoking Cessation in the Last Decade. Handb Exp Pharmacol 2020; 258:395-420. [PMID: 31267165 DOI: 10.1007/164_2019_253] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Every year, billions of dollars are spent treating smoking and related conditions, yet smoking-related morbidity and mortality continue to rise. There are currently only three FDA-approved medications for smoking cessation: nicotine replacement therapy, bupropion, and varenicline. Although these medications increase abstinence rates, most individuals relapse following treatment. This chapter reviews clinical trials published within the past 10 years investigating novel smoking cessation pharmacotherapies. Among these pharmacotherapies, some showed promising results, such as cytisine and endocannabinoid modulators, whereas others failed to produce significant effects. More research is needed to develop drugs that produce higher rates of long-term abstinence and to determine which subgroups of patients benefit from a given treatment.
Collapse
Affiliation(s)
- Marie N S Gendy
- Translational Addiction Research Laboratory, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Pharmacology, University of Toronto, Toronto, ON, Canada
| | - Christine Ibrahim
- Translational Addiction Research Laboratory, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Pharmacology, University of Toronto, Toronto, ON, Canada
| | - Matthew E Sloan
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Bernard Le Foll
- Translational Addiction Research Laboratory, Centre for Addiction and Mental Health, Toronto, ON, Canada.
- Department of Pharmacology, University of Toronto, Toronto, ON, Canada.
- Addictions Division, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada.
- Division of Brain and Therapeutics, Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada.
- Alcohol Research and Treatment Clinic, Centre for Addiction and Mental Health, Toronto, ON, Canada.
- Department of Family and Community Medicine, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
3
|
Arenas MC, Mateos-García A, Manzanedo C, Rodríguez-Arias M, Aguilar MA, Navarrete F, Gutiérrez MSG, Manzanares J, Miñarro J. Topiramate increases the rewarding properties of cocaine in young-adult mice limiting its clinical usefulness. Psychopharmacology (Berl) 2016; 233:3849-3859. [PMID: 27596289 DOI: 10.1007/s00213-016-4409-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 08/16/2016] [Indexed: 02/02/2023]
Abstract
RATIONALE Topiramate is an anticonvulsant drug which has been evaluated as a therapeutic option for the treatment of cocaine addiction during the last decade. OBJECTIVES The purpose of this study was to evaluate the effects of topiramate on the reinforcing actions of cocaine. To this aim, the topiramate-mediated regulation of acquisition and extinction phases of the cocaine conditioned place preference (CPP) was assessed in young-adult mice using three experimental designs. METHODS Topiramate (50 mg/kg, p.o.) was given as follows: (1) during cocaine (1 and 25 mg/kg, i.p.) conditioning sessions (4 days) and cocaine (25 mg/kg) post-conditioning session; (2) 2 weeks before and during cocaine conditioning (25 mg/kg); and (3) during extinction of CPP induced by cocaine (25 mg/kg). In the first experimental design, changes in tyrosine hydroxylase (TH) and dopamine transporter (DAT) gene expressions were measured in the ventral tegmental area (VTA). RESULTS Topiramate significantly increased cocaine-induced CPP and delayed or failed to produce extinction after the first cocaine reinstatement extinction in the first and second experiments. Furthermore, treatment with topiramate after place conditioning blocked the extinction of cocaine-induced CPP. TH and DAT gene expression in the VTA was significantly lower both with topiramate alone and in combination with cocaine compared with animals receiving only cocaine. CONCLUSIONS These findings suggest that topiramate increases the rewarding properties of cocaine, at least in part, by regulating dopaminergic signaling in the mesolimbic circuit. Consequently, the results of this study do not support the use of topiramate for the treatment of problems related to cocaine dependence. HIGHLIGHTS • Topiramate increases the rewarding properties of cocaine in CPP • Topiramate alters dopaminergic signaling in the mesolimbic circuit • Topiramate delays the extinction of cocaine-induced CPP • TH and DAT gene expression in the VTA decreases with topiramate and/or with cocaine • Results show that it should limit the use of topiramate in cocaine-dependent subjects.
Collapse
Affiliation(s)
- M C Arenas
- Unidad de Investigación Psicobiología de las Drogodependencias, Departamento de Psicobiología, Facultad de Psicología, Universitat de València, Avda. Blasco Ibañez, 21, 46010, Valencia, Spain.
| | - A Mateos-García
- Unidad de Investigación Psicobiología de las Drogodependencias, Departamento de Psicobiología, Facultad de Psicología, Universitat de València, Avda. Blasco Ibañez, 21, 46010, Valencia, Spain
| | - C Manzanedo
- Unidad de Investigación Psicobiología de las Drogodependencias, Departamento de Psicobiología, Facultad de Psicología, Universitat de València, Avda. Blasco Ibañez, 21, 46010, Valencia, Spain
| | - M Rodríguez-Arias
- Unidad de Investigación Psicobiología de las Drogodependencias, Departamento de Psicobiología, Facultad de Psicología, Universitat de València, Avda. Blasco Ibañez, 21, 46010, Valencia, Spain
- Red Temática de Investigación Cooperativa en Salud (RETICS-Trastornos Adictivos), Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain
| | - M A Aguilar
- Unidad de Investigación Psicobiología de las Drogodependencias, Departamento de Psicobiología, Facultad de Psicología, Universitat de València, Avda. Blasco Ibañez, 21, 46010, Valencia, Spain
- Red Temática de Investigación Cooperativa en Salud (RETICS-Trastornos Adictivos), Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain
| | - F Navarrete
- Red Temática de Investigación Cooperativa en Salud (RETICS-Trastornos Adictivos), Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Avda. Ramón y Cajal s/n, 03550, San Juan de Alicante, Alicante, Spain
| | - M S García Gutiérrez
- Red Temática de Investigación Cooperativa en Salud (RETICS-Trastornos Adictivos), Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Avda. Ramón y Cajal s/n, 03550, San Juan de Alicante, Alicante, Spain
| | - J Manzanares
- Red Temática de Investigación Cooperativa en Salud (RETICS-Trastornos Adictivos), Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Avda. Ramón y Cajal s/n, 03550, San Juan de Alicante, Alicante, Spain
| | - J Miñarro
- Unidad de Investigación Psicobiología de las Drogodependencias, Departamento de Psicobiología, Facultad de Psicología, Universitat de València, Avda. Blasco Ibañez, 21, 46010, Valencia, Spain
- Red Temática de Investigación Cooperativa en Salud (RETICS-Trastornos Adictivos), Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain
| |
Collapse
|
4
|
Echeverry-Alzate V, Giné E, Bühler KM, Calleja-Conde J, Olmos P, Gorriti MA, Nadal R, Rodríguez de Fonseca F, López-Moreno JA. Effects of topiramate on ethanol-cocaine interactions and DNA methyltransferase gene expression in the rat prefrontal cortex. Br J Pharmacol 2015; 171:3023-36. [PMID: 24527678 DOI: 10.1111/bph.12636] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2013] [Revised: 01/27/2014] [Accepted: 02/01/2014] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND AND PURPOSE Recent and ongoing clinical studies have indicated that topiramate (Topamax®) could be effective in treating ethanol or cocaine abuse. However, the effects of topiramate on the co-administration of ethanol and cocaine remain largely unknown. EXPERIMENTAL APPROACH We studied the effects of topiramate, in Wistar rats, on operant ethanol self-administration with the co-administration of cocaine (i.p.). The psychomotor effects of topiramate were examined before ethanol self-administration and cocaine exposure. Blood samples were collected to analyse ethanol and cocaine metabolism (blood ethanol levels and benzoylecgonine). Quantitative real-time PCR was used to characterize the gene expression in the prefrontal cortex. KEY RESULTS Topiramate prevented the cocaine-induced increased response to ethanol in a dose-dependent manner without causing any motor impairment by itself. This effect was observed when topiramate was administered before ethanol access, but not when topiramate was administered before the cocaine injection. Topiramate did not block cocaine-induced psychomotor stimulation. Topiramate reduced blood ethanol levels but did not affect cocaine metabolism. Ethanol increased the gene expression of DNA methyltransferases (Dnmt1 and Dnmt3a), the corepressor Dnmt1-associated protein 1 (Dmap1), and the RNA methyltransferase Trdmt1. These effects were prevented by topiramate or cocaine. Gene expression of histone deacetylase-2 and glutamate receptor kainate-1 were only increased by cocaine treatment. Topiramate and cocaine co-administration caused an up-regulation of dopamine (Drd1, Th) and opioid (Oprm1) receptor genes. Topiramate showed a tendency to alter episodic-like memory. CONCLUSIONS AND IMPLICATIONS Topiramate is an effective inhibitor of the cocaine-induced increase in operant ethanol self-administration.
Collapse
Affiliation(s)
- V Echeverry-Alzate
- Department of Psychobiology, School of Psychology, Campus de Somosaguas, Complutense University of Madrid, Madrid, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Anderson SM, Brunzell DH. Low dose nicotine and antagonism of β2 subunit containing nicotinic acetylcholine receptors have similar effects on affective behavior in mice. PLoS One 2012; 7:e48665. [PMID: 23144922 PMCID: PMC3492489 DOI: 10.1371/journal.pone.0048665] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Accepted: 09/28/2012] [Indexed: 12/19/2022] Open
Abstract
Nicotine leads to both activation and desensitization (inactivation) of nicotinic acetylcholine receptors (nAChRs). This study tested the hypothesis that nicotine and a selective antagonist of β2*nAChRs would have similar effects on affective behavior. Adult C57BL/6J male mice were tested in a conditioned emotional response (CER) assay which evaluates the ability of an aversive stimulus to inhibit goal-directed behavior. Mice lever-pressed for a saccharin reinforcer according to a variable schedule of reinforcement during sessions in which two presentations of a compound light/tone conditioned stimulus (CS) co-terminated with a 0.1 or 0.3 mA, 0.5 s footshock unconditioned stimulus (US). During testing in the absence of the US, mice received doses of i.p. nicotine (0, 0.0032, 0.01, 0.032, 0.1 mg/kg) or a selective β2 subunit containing nAChR (β2*nAChR) antagonist dihydro-beta-erythroidine (0, 0.1, 0.3, 1.0, 3.0 mg/kg DHβE). There was a dose-dependent effect of nicotine revealing that only low doses (0.01, 0.032 mg/kg) increased CER suppression ratios (SR) in these mice. DHβE also dose-dependently increased SR at the 3 mg/kg dose. In ethological measures of fear-/anxiety-like behavior, these doses of nicotine and DHβE significantly reduced digging behavior in a marble burying task and 0.3 mg/kg DHβE promoted open-arm activity in the elevated plus maze. Doses of nicotine and DHβE that altered affective behavior had no effect on locomotor activity. Similar to previous reports with anxiolytic drugs, low dose nicotine and DHβE reversed SR in a CER assay, decreased digging in a marble burying assay and increased open arm activity in the elevated plus maze. This study provides evidence that inactivation of β2*nAChRs reduces fear-like and anxiety-like behavior in rodents and suggests that smokers may be motivated to smoke in part to desensitize their β2*nAChRs. These data further identify β2*nAChR antagonism as a potential therapeutic strategy for relief of negative affect and anxiety.
Collapse
Affiliation(s)
- Shawn M. Anderson
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, United States of America
| | - Darlene H. Brunzell
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, United States of America
- Interdepartmental Neuroscience Graduate Program, and Institute for Drug and Alcohol Studies, Virginia Commonwealth University School of Medicine, Richmond, Virginia, United States of America
| |
Collapse
|
6
|
Yan Y, Pushparaj A, Le Strat Y, Gamaleddin I, Barnes C, Justinova Z, Goldberg SR, Le Foll B. Blockade of dopamine d4 receptors attenuates reinstatement of extinguished nicotine-seeking behavior in rats. Neuropsychopharmacology 2012; 37:685-96. [PMID: 22030716 PMCID: PMC3260983 DOI: 10.1038/npp.2011.245] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Since cloning of the dopamine receptor D4 (DRD4), its role in the brain has remained unclear. It has been reported that polymorphism of the DRD4 gene in humans is associated with reactivity to cues related to tobacco smoking. However, the role of DRD4 in animal models of nicotine addiction has seldom been explored. In our study, male Long-Evans rats learned to intravenously self-administer nicotine under a fixed-ratio (FR) schedule of reinforcement. Effects of the selective DRD4 antagonist L-745,870 were evaluated on nicotine self-administration behavior and on reinstatement of extinguished nicotine-seeking behavior induced by nicotine-associated cues or by priming injections of nicotine. L-745,870 was also tested on reinstatement of extinguished food-seeking behavior as a control. In addition, the selective DRD4 agonist PD 168,077 was tested for its ability to reinstate extinguished nicotine-seeking behavior. Finally, L-745,870 was tested in Sprague Dawley rats trained to discriminate administration of 0.4 mg/kg nicotine from vehicle under an FR schedule of food delivery. L-745,870 significantly attenuated reinstatement of nicotine-seeking induced by both nicotine-associated cues and nicotine priming. In contrast, L-745,870 did not affect established nicotine self-administration behavior or reinstatement of food-seeking behavior induced by food cues or food priming. L-745,870 did not produce nicotine-like discriminative-stimulus effects and did not alter discriminative-stimulus effects of nicotine. PD 168,077 did not reinstate extinguished nicotine-seeking behavior. As DRD4 blockade by L-745,870 selectively attenuated both cue- and nicotine-induced reinstatement of nicotine-seeking behavior, without affecting cue- or food-induced reinstatement of food-seeking behavior, DRD4 antagonists are potential therapeutic agents against tobacco smoking relapse.
Collapse
Affiliation(s)
- Yijin Yan
- Translational Addiction Research Laboratory, Centre for Addiction and Mental Health Addiction (CAMH), University of Toronto, Toronto, ON, Canada
| | - Abhiram Pushparaj
- Translational Addiction Research Laboratory, Centre for Addiction and Mental Health Addiction (CAMH), University of Toronto, Toronto, ON, Canada
| | - Yann Le Strat
- Translational Addiction Research Laboratory, Centre for Addiction and Mental Health Addiction (CAMH), University of Toronto, Toronto, ON, Canada
| | - Islam Gamaleddin
- Translational Addiction Research Laboratory, Centre for Addiction and Mental Health Addiction (CAMH), University of Toronto, Toronto, ON, Canada
| | - Chanel Barnes
- Preclinical Pharmacology Section, Behavioral Neuroscience Research Branch, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Department of Health and Human Services, Baltimore, MD, USA
| | - Zuzana Justinova
- Preclinical Pharmacology Section, Behavioral Neuroscience Research Branch, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Department of Health and Human Services, Baltimore, MD, USA,Department of Psychiatry, Maryland Psychiatric Research Centre, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Steven R Goldberg
- Preclinical Pharmacology Section, Behavioral Neuroscience Research Branch, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Department of Health and Human Services, Baltimore, MD, USA
| | - Bernard Le Foll
- Translational Addiction Research Laboratory, Centre for Addiction and Mental Health Addiction (CAMH), University of Toronto, Toronto, ON, Canada,Departments of Family and Community Medicine, Pharmacology, Psychiatry, Institute of Medical Sciences, University of Toronto, Toronto, Canada,Translational Addiction Research Laboratory, Centre for Addiction and Mental Health Addiction (CAMH), University of Toronto, 33 Russell Street, Toronto, ON M5S 2S1 Canada, Tel: +416 535 8501 extension 4772, Fax: +416 595 6922, E-mail:
| |
Collapse
|
7
|
Schmidt HD, Pierce RC. Cocaine-induced neuroadaptations in glutamate transmission: potential therapeutic targets for craving and addiction. Ann N Y Acad Sci 2010; 1187:35-75. [PMID: 20201846 DOI: 10.1111/j.1749-6632.2009.05144.x] [Citation(s) in RCA: 171] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A growing body of evidence indicates that repeated exposure to cocaine leads to profound changes in glutamate transmission in limbic nuclei, particularly the nucleus accumbens. This review focuses on preclinical studies of cocaine-induced behavioral plasticity, including behavioral sensitization, self-administration, and the reinstatement of cocaine seeking. Behavioral, pharmacological, neurochemical, electrophysiological, biochemical, and molecular biological changes associated with cocaine-induced plasticity in glutamate systems are reviewed. The ultimate goal of these lines of research is to identify novel targets for the development of therapies for cocaine craving and addiction. Therefore, we also outline the progress and prospects of glutamate modulators for the treatment of cocaine addiction.
Collapse
Affiliation(s)
- Heath D Schmidt
- Department of Psychiatry, Center for Neurobiology and Behavior, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | | |
Collapse
|
8
|
Wooters TE, Bevins RA, Bardo MT. Neuropharmacology of the interoceptive stimulus properties of nicotine. CURRENT DRUG ABUSE REVIEWS 2009; 2:243-55. [PMID: 20443771 PMCID: PMC3086090 DOI: 10.2174/1874473710902030243] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Preclinical drug discrimination techniques play a significant role in advancing our knowledge of the receptor mechanisms underlying the interoceptive effects of nicotine. Early reports confirmed that nicotinic acetylcholine receptors (nAChRs) are critical for transduction of the nicotine cue. In recent years, advances in molecular biology and the discovery of novel ligands with greater selectively for specific nAChR subtypes have furthered our understanding of these mechanisms. There is now evidence regarding the specific nAChR subtypes involved in nicotine discrimination; in addition, there is also evidence suggesting that other systems (i.e., adenosine, cannabinoid, dopamine, glutamate and serotonin) may play a modulatory role. The neuroanatomical structures mediating the nicotine cue have also begun to be elucidated. However, much remains to be learned about the predictive validity of the drug discrimination procedure, particularly with regard to the relation between interoceptive and reinforcing effects and individual differences in vulnerability to tobacco dependence. Recent data also suggests that the mechanisms involved in the conditional and discriminative stimulus properties of nicotine may be dissociable. Avenues for future research should include assessing the mechanisms of the subjective effects of nicotine withdrawal, factors contributing to individual differences in sensitivity to the nicotine cue, and the role of behavioral factors involved in drug cross-substitution.
Collapse
Affiliation(s)
- Thomas E. Wooters
- Department of Psychology, BBSRB, University of Kentucky, Lexington, KY 40536-0509
| | - Rick A. Bevins
- Department of Psychology, 238 Burnett Hall, University of Nebraska-Lincoln, Lincoln, NE 68588-0308
| | - Michael T. Bardo
- Department of Psychology, BBSRB, University of Kentucky, Lexington, KY 40536-0509
| |
Collapse
|
9
|
Justinova Z, Ferré S, Barnes C, Wertheim CE, Pappas LA, Goldberg SR, Le Foll B. Effects of chronic caffeine exposure on adenosinergic modulation of the discriminative-stimulus effects of nicotine, methamphetamine, and cocaine in rats. Psychopharmacology (Berl) 2009; 203:355-67. [PMID: 18688601 PMCID: PMC2656400 DOI: 10.1007/s00213-008-1270-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2008] [Accepted: 07/19/2008] [Indexed: 12/25/2022]
Abstract
RATIONALE Adenosine receptors are involved in cocaine and methamphetamine discrimination and exposure to caffeine can affect behavioral effects of nicotine in rats. OBJECTIVES Here we investigated the relative involvement of adenosine A(1) and A(2A) receptors in nicotine, cocaine, and methamphetamine discrimination, before and/or during chronic caffeine exposure. MATERIALS AND METHODS The nonselective adenosine receptor antagonist caffeine, the A(1)-receptor antagonist cyclopentyltheophylline (CPT), and the A(2A)-receptor antagonist MSX-3 were evaluated in rats trained to discriminate 0.4 mg/kg nicotine from saline under a fixed-ratio schedule of food delivery. Effects of adenosine receptor antagonists were then compared in rats discriminating nicotine, methamphetamine, or cocaine from saline during chronic caffeine exposure in their drinking water. RESULTS Caffeine, CPT, and MSX-3 partially generalized to nicotine and shifted nicotine dose-response curves leftwards. During chronic caffeine exposure, however, all three ligands failed to generalize to nicotine and failed to shift nicotine dose-response curves. In previous experiments, CPT and MSX-3 partially generalized to methamphetamine and cocaine and shifted dose-response curves leftwards. In the present experiments, CPT neither generalized nor shifted dose-response curves for methamphetamine or cocaine during chronic caffeine exposure. However, MSX-3 partially generalized to both psychostimulants and shifted their dose-response curves leftwards. Caffeine partially generalized to cocaine, but not methamphetamine, and shifted both dose-response curves leftwards. CONCLUSIONS Both adenosine A(1) and A(2A) receptors are capable of modulating the discriminative-stimulus effects of nicotine. Chronic caffeine exposure produces complete tolerance to both A(1)- and A(2A)-mediated effects in nicotine-trained rats. In contrast, chronic caffeine exposure produces tolerance to adenosine A(1)-mediated, but not A(2A)-mediated, effects in methamphetamine- and cocaine-trained rats.
Collapse
Affiliation(s)
- Zuzana Justinova
- Preclinical Pharmacology Section, Behavioral Neuroscience Research Branch, Intramural Research Program, National Institute on Drug Abuse, NIH, DHHS, Biomedical Research Center, 251 Bayview Blvd., Baltimore, MD 21224, USA.
| | | | | | | | | | | | | |
Collapse
|