1
|
Lv J, Song X, Luo Z, Huang D, Xiao L, Zou K. Luteolin: exploring its therapeutic potential and molecular mechanisms in pulmonary diseases. Front Pharmacol 2025; 16:1535555. [PMID: 40012626 PMCID: PMC11861102 DOI: 10.3389/fphar.2025.1535555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 01/22/2025] [Indexed: 02/28/2025] Open
Abstract
Luteolin is a flavonoid widely found in plants, including vegetables, botanical drugs, and fruits. Owing to its diverse pharmacological activities, such as anticancer, oxidative stress protection, anti-inflammatory, and neuron-preserving effects, luteolin has attracted attention in research and medicine. Luteolin exhibits therapeutic effects on various pulmonary disease models through multiple molecular mechanisms; these include inhibition of activation of the PI3K/Akt-mediated Nuclear Factor kappa-B (NF-κB) and MAPK signaling pathways, as well as the promotion of regulatory T cell (Treg) function and enhancement of alveolar epithelial sodium channel (ENaC) activity (alleviating inflammation and oxidative stress responses). Luteolin has therapeutic effects on chronic obstructive pulmonary disease (COPD), acute lung injury/acute respiratory distress syndrome (ALI/ARDS), pulmonary fibrosis, allergic asthma, and lung cancer. Luteolin, a naturally occurring polyphenol, is poorly water-soluble. The oral route may be ineffective because the gut poorly absorbs this type of flavonoid. Therefore, although luteolin exhibits significant biological activity, its clinical application is limited by challenges associated with its poor water solubility and low bioavailability, which are critical factors for its efficacy and pharmacological application. These challenges can be addressed by modifying the chemical structure and enhancing pharmaceutical formulations. We summarized the research advancements in improving the solubility and bioavailability of luteolin, as well as the effects of luteolin on various pulmonary diseases and their related mechanisms, with the aim of providing new ideas for researchers.
Collapse
Affiliation(s)
- Jialian Lv
- The First Clinical Medical College, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Xinyue Song
- The First Clinical Medical College, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Zixin Luo
- The First Clinical Medical College, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Duoqin Huang
- The First Clinical Medical College, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Li Xiao
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Kang Zou
- Department of Critical Care Medicine, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| |
Collapse
|
2
|
Kong K, Qiao X, Liu T, Wang X, Li R, Fang J, Zhang X. Identification of Novel Hub Genes Associated with Inflammation and Autophagy in Astragaloside Membranaceus ameliorates Lupus Nephritis by Bioinformatics Analysis and Molecular Dynamics Simulation. Comb Chem High Throughput Screen 2025; 28:306-318. [PMID: 38299290 DOI: 10.2174/0113862073255980231113071412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 09/17/2023] [Accepted: 10/09/2023] [Indexed: 02/02/2024]
Abstract
BACKGROUND Lupus nephritis is an autoimmune disease, and its pathogenesis involves inflammation and autophagy disorders. Studies have demonstrated that Astragalus membranaceus can effectively suppress the progression of LN, but the underlying therapeutic target is still unclear. OBJECTION This study aimed to investigate the therapeutic target whereby AM ameliorates LN. METHOD We downloaded AM and LN-related chips from the TCMSP and GEO databases, respectively. We selected the two compound targets for the subsequent analysis via WGCNA, and constructed protein interaction networks of compound targets and determined the core targets. GO, KEGG analyses were conducted on compound targets to identify enriched functional and genomic pathways. The core genes were further validated in clinical and external datasets. Molecular docking of AS with the core targets was performed using the AutoDock software, and molecular dynamics simulation was conducted for the optimal core protein ligand obtained by molecular docking by Gromacs 2020.6 software. RESULT We obtained 10 core targets, namely IL-1β, EGF, CCND1, CASP3, STAT1, PTGS2, PPARγ, AR, CXCL10, and KDR, from the 24 compound targets identified. The results of the GO enrichment analysis mainly included cell growth regulation. The results of the KEGG enrichment analysis showed that 7 out of 23 valid targets were significantly enriched in the mitogen-activated protein kinase pathway (p < 0.01). Combined with the clinical datasets, we found that IL-1β, EGF, CCND1, CASP3, STAT1, PTGS2, and PPARγ have high diagnostic values for LN. In the validation dataset, all the core targets were significantly differentially expressed, except for EGF deletion. The molecular docking and molecular dynamics simulation results showed that AM and IL- 1β, CASP3, STAT1, and PPARγ all had binding energies < -5 kJ·mol-1 and good binding properties. CONCLUSION IL-1β, CASP3, STAT1, and PPARγ could be potential biomarkers and therapeutic targets in AM ameliorates LN.
Collapse
Affiliation(s)
- Kaili Kong
- Shanxi Medicial University, Taiyuan, China
| | | | - Ting Liu
- Department of Nephrology, The First Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | | | - Rui Li
- Shanxi Medicial University, Taiyuan, China
| | - Jingai Fang
- Department of Nephrology, The First Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Xiaodong Zhang
- Department of Nephrology, The First Hospital of Shanxi Medical University, Taiyuan, 030001, China
| |
Collapse
|
3
|
Alqudah S, Claesen J. Mechanisms of gut bacterial metabolism of dietary polyphenols into bioactive compounds. Gut Microbes 2024; 16:2426614. [PMID: 39540668 PMCID: PMC11572103 DOI: 10.1080/19490976.2024.2426614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/23/2024] [Accepted: 11/03/2024] [Indexed: 11/16/2024] Open
Abstract
The fruits and vegetables we consume as part of our diet are rich in bioactive metabolites that can prevent and ameliorate cardiometabolic diseases, cancers, and neurological conditions. Polyphenols are a major metabolite family that has been intensively investigated in this context. However, for these compounds to exert their optimal bioactivity, they rely on the enzymatic capacity of an individual's gut microbiota. Indeed, for most polyphenols, the human host is restricted to more basic metabolism such as deglycosylation and hepatic conjugation. In this review, we discuss the mechanisms by which gut bacteria metabolize the core scaffold of polyphenol substrates, and how their conversion into bioactive small molecules impacts host health.
Collapse
Affiliation(s)
- Sara Alqudah
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute of the Cleveland Clinic, Cleveland, OH, USA
- Department of Chemistry, Cleveland State University, Cleveland, OH, USA
| | - Jan Claesen
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute of the Cleveland Clinic, Cleveland, OH, USA
- Center for Microbiome and Human Health, Lerner Research Institute of the Cleveland Clinic, Cleveland, OH, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
4
|
Mondal A, Sharma R, Abiha U, Ahmad F, Karan A, Jayaraj RL, Sundar V. A Spectrum of Solutions: Unveiling Non-Pharmacological Approaches to Manage Autism Spectrum Disorder. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1584. [PMID: 37763703 PMCID: PMC10536417 DOI: 10.3390/medicina59091584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/22/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023]
Abstract
Autism spectrum disorder (ASD) is a developmental disorder that causes difficulty while socializing and communicating and the performance of stereotyped behavior. ASD is thought to have a variety of causes when accompanied by genetic disorders and environmental variables together, resulting in abnormalities in the brain. A steep rise in ASD has been seen regardless of the numerous behavioral and pharmaceutical therapeutic techniques. Therefore, using complementary and alternative therapies to treat autism could be very significant. Thus, this review is completely focused on non-pharmacological therapeutic interventions which include different diets, supplements, antioxidants, hormones, vitamins and minerals to manage ASD. Additionally, we also focus on complementary and alternative medicine (CAM) therapies, herbal remedies, camel milk and cannabiodiol. Additionally, we concentrate on how palatable phytonutrients provide a fresh glimmer of hope in this situation. Moreover, in addition to phytochemicals/nutraceuticals, it also focuses on various microbiomes, i.e., gut, oral, and vaginal. Therefore, the current comprehensive review opens a new avenue for managing autistic patients through non-pharmacological intervention.
Collapse
Affiliation(s)
- Arunima Mondal
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Ghudda 151401, India
| | - Rashi Sharma
- Department of Biotechnology, Delhi Technological University, Bawana, Delhi 110042, India
| | - Umme Abiha
- IDRP, Indian Institute of Technology, Jodhpur 342030, India
- All India Institute of Medical Sciences, Jodhpur 342005, India
| | - Faizan Ahmad
- Department of Medical Elementology and Toxicology, Jamia Hamdard University, Delhi 110062, India
| | | | - Richard L. Jayaraj
- Department of Pediatrics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain 15551, United Arab Emirates
| | - Vaishnavi Sundar
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
5
|
Li H, Gao L, Shao H, Li B, Zhang C, Sheng H, Zhu L. Elucidation of active ingredients and mechanism of action of hawthorn in the prevention and treatment of atherosclerosis. J Food Biochem 2022; 46:e14457. [PMID: 36200679 DOI: 10.1111/jfbc.14457] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 09/15/2022] [Accepted: 09/19/2022] [Indexed: 01/14/2023]
Abstract
Hawthorn (HT), a functional food and medicinal herb for centuries in China, has potential preventive and therapeutic effects on atherosclerosis (AS). However, the mechanisms and active ingredients of HT in the prevention and treatment of AS are unclear. This study aimed to reveal active components and mechanism of HT in the prevention and treatment of AS using UHPLC-Q-Exactive Orbitrap MS and network pharmacology. A total of 50 compounds were identified by UHPLC-Q-Exactive Orbitrap MS. Six core targets and six active compounds were obtained by network pharmacology. Apigenin, luteolin, chrysin, quercetin, oleanic acid, and corosolic acid were the active components in the prevention and treatment of AS, and core targets included SRC, HSP90AA1, MAPK3, EGFR, HRAS, and AKT1. The key signaling pathways involved are MAPK, HIF-1, NF-kappa B, PI3K-Akt, TNF, Rap1, Ras, and VEGF signaling pathways. Further molecular docking results indicated that the six active compounds had strong hydrogen bonding ability with the six core targets. On the molecular level, HT may regulate AS by controlling cell survival and proliferation, reducing the levels of enzymes HMG-CoA reductase and lipoprotein lipase and inhibiting inflammatory response. PRACTICAL APPLICATIONS: HT can serve as "medicine-food homology" for dietary supplement and exert potential preventive and therapeutic effects on AS. However, the mechanisms of HT in the prevention and treatment of AS are unclear. This study describes a rapid method of detecting and identifying the components and mechanism of HT based on LC-MS and network pharmacology, which provides a theoretical and scientific support for further application of HT and guidance for the research of other herbal medicines.
Collapse
Affiliation(s)
- Huan Li
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lei Gao
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Huili Shao
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Bingqian Li
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chao Zhang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Huagang Sheng
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Liqiao Zhu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
6
|
Momchilova A, Nikolaev G, Pankov S, Vassileva E, Krastev N, Robev B, Krastev D, Pinkas A, Pankov R. Effect of Quercetin and Fingolimod, Alone or in Combination, on the Sphingolipid Metabolism in HepG2 Cells. Int J Mol Sci 2022; 23:ijms232213916. [PMID: 36430423 PMCID: PMC9697772 DOI: 10.3390/ijms232213916] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/08/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
Combinations of anti-cancer drugs can overcome resistance to therapy and provide new more effective treatments. In this work we have analyzed the effect of the polyphenol quercetin and the anti-cancer sphingosine analog fingolimod on the sphingolipid metabolism in HepG2 cells, since sphingolipids are recognized as mediators of cell proliferation and apoptosis in cancer cells. Treatment of hepatocellular carcinoma HepG2 cells with quercetin and fingolimod, alone or in combination, induced different degrees of sphingomyelin (SM) reduction and a corresponding activation of neutral sphingomyelinase (nSMase). Western blot analysis showed that only treatments containing quercetin induced up-regulation of nSMase expression. The same treatment caused elevation of ceramide (CER) levels, whereas the observed alterations in sphingosine (SPH) content were not statistically significant. The two tested drugs induced a reduction of the pro-proliferative sphingolipid, sphingosine 1 phosphate (S1P), in the following order: quercetin, fingolimod, quercetin + fingolimod. The activity of the enzyme responsible for CER hydrolysis, alkaline ceramidase (ALCER) was down-regulated only in the incubations involving quercetin and fingolimod did not affect this activity. The enzyme, maintaining the balance between apoptosis and proliferation, sphingosine kinase 1 (SK1), was down-regulated by incubations in the following order: quercetin, fingolimod, quercetin + fingolimod. Western blot analysis showed down-regulation in SK1 expression upon quercetin but not upon fingolimod treatment. Studies on the effect of quercetin and fingolimod on the two proteins associated with apoptotic events, AKT and Bcl-2, showed that only quercetin, alone or in combination, down-regulated the activity of the two proteins. The reported observations provide information which can be useful in the search of novel anti-tumor approaches, aiming at optimization of the therapeutic effect and maximal preservation of healthy tissues.
Collapse
Affiliation(s)
- Albena Momchilova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
- Correspondence: ; Tel.: +359-2-9792686 or +359-898-238971
| | - Georgi Nikolaev
- Biological Faculty, Sofia University “St. Kliment Ohridki”, 8 Dragan Tzankov Str., 1164 Sofia, Bulgaria
| | - Stefan Pankov
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Evgenia Vassileva
- Clinic of Neurology, Tsaritsa Yoanna University Hospital-ISUL, 1527 Sofia, Bulgaria
| | - Nikolai Krastev
- Department of Anatomy, Histology and Embryology, Medical University-Sofia, Blvd. Sv. Georgi Sofiisky 1, 1431 Sofia, Bulgaria
| | - Bozhil Robev
- Department of Medical Oncology, University Multi-Profile Hospital for Active Treatment (UMHAT) “St. Ivan Rilski”, 1606 Sofia, Bulgaria
| | - Dimo Krastev
- Medical College “Y. Filaretova”, Medical University-Sofia, Yordanka Filaretova Str. 3, 1606 Sofia, Bulgaria
| | - Adriana Pinkas
- CSTEP, Office of Continuing Education, Suffolk County Community College 30 Greene Ave., Sayville, NY 11782, USA
| | - Roumen Pankov
- Biological Faculty, Sofia University “St. Kliment Ohridki”, 8 Dragan Tzankov Str., 1164 Sofia, Bulgaria
| |
Collapse
|
7
|
Flavones: Six Selected Flavones and Their Related Signaling Pathways That Induce Apoptosis in Cancer. Int J Mol Sci 2022; 23:ijms231810965. [PMID: 36142874 PMCID: PMC9505532 DOI: 10.3390/ijms231810965] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 11/18/2022] Open
Abstract
Cancer is a horrific disease that, to date, has no cure. It is caused by various factors and takes many lives. Apoptosis is a programmed cell death mechanism and if it does not function correctly in cancer cells, it can lead to severe disease. There are various signaling pathways for regulating apoptosis in cancer cells. Flavonoids are non-artificial natural bioactive compounds that are gaining attention as being capable of for inducing apoptosis in cancer cells. Among these, in this study, we focus on flavones. Flavones are a subclass of the numerous available flavonoids and possess several bioactive functions. Some of the most reported and well-known critical flavones, namely apigenin, acacetin, baicalein, luteolin, tangeretin, and wogonin, are discussed in depth in this review. Our main aim is to investigate the effects of the selected flavones on apoptosis and cell signaling pathways that contribute to death due to various types of cancers.
Collapse
|
8
|
Tao Y, Zhu F, Pan M, Liu Q, Wang P. Pharmacokinetic, Metabolism, and Metabolomic Strategies Provide Deep Insight Into the Underlying Mechanism of Ginkgo biloba Flavonoids in the Treatment of Cardiovascular Disease. Front Nutr 2022; 9:857370. [PMID: 35399672 PMCID: PMC8984020 DOI: 10.3389/fnut.2022.857370] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 02/21/2022] [Indexed: 12/18/2022] Open
Abstract
Ginkgo biloba, known as the "living fossil," has a long history of being used as botanical drug for treating cardiovascular diseases and the content of flavonoids as high as 24%. More than 110 different kinds of flavonoids and their derivatives have been separated from G. biloba, including flavones, flavonols, biflavonoids, catechins, and their glycosides, etc., all of which display the ability to dilate blood vessels, regulate blood lipids, and antagonize platelet activating factor, and protect against ischemic damage. At present, many types of preparations based on G. biloba extract or the bioactive flavonoids of it have been developed, which are mostly used for the treatment of cardiovascular diseases. We herein review recent progress in understanding the metabolic regulatory processes and gene regulation of cellular metabolism in cardiovascular diseases of G. biloba flavonoids. First, we present the cardioprotective flavonoids of G. biloba and their possible pharmacological mechanism. Then, it is the pharmacokinetic and liver and gut microbial metabolism pathways that enable the flavonoids to reach the target organ to exert effect that is analyzed. In the end, we review the possible endogenous pathways toward restoring lipid metabolism and energy metabolism as well as detail novel metabolomic methods for probing the cardioprotective effect of flavonoids of G. biloba.
Collapse
Affiliation(s)
- Yi Tao
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | | | | | | | - Ping Wang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
9
|
Mohd Zaid NA, Sekar M, Bonam SR, Gan SH, Lum PT, Begum MY, Mat Rani NNI, Vaijanathappa J, Wu YS, Subramaniyan V, Fuloria NK, Fuloria S. Promising Natural Products in New Drug Design, Development, and Therapy for Skin Disorders: An Overview of Scientific Evidence and Understanding Their Mechanism of Action. Drug Des Devel Ther 2022; 16:23-66. [PMID: 35027818 PMCID: PMC8749048 DOI: 10.2147/dddt.s326332] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 08/24/2021] [Indexed: 12/17/2022] Open
Abstract
The skin is the largest organ in the human body, composed of the epidermis and the dermis. It provides protection and acts as a barrier against external menaces like allergens, chemicals, systemic toxicity, and infectious organisms. Skin disorders like cancer, dermatitis, psoriasis, wounds, skin aging, acne, and skin infection occur frequently and can impact human life. According to a growing body of evidence, several studies have reported that natural products have the potential for treating skin disorders. Building on this information, this review provides brief information about the action of the most important in vitro and in vivo research on the use of ten selected natural products in inflammatory, neoplastic, and infectious skin disorders and their mechanisms that have been reported to date. The related studies and articles were searched from several databases, including PubMed, Google, Google Scholar, and ScienceDirect. Ten natural products that have been reported widely on skin disorders were reviewed in this study, with most showing anti-inflammatory, antioxidant, anti-microbial, and anti-cancer effects as the main therapeutic actions. Overall, most of the natural products reported in this review can reduce and suppress inflammatory markers, like tumor necrosis factor-alpha (TNF-α), scavenge reactive oxygen species (ROS), induce cancer cell death through apoptosis, and prevent bacteria, fungal, and virus infections indicating their potentials. This review also highlighted the challenges and opportunities of natural products in transdermal/topical delivery systems and their safety considerations for skin disorders. Our findings indicated that natural products might be a low-cost, well-tolerated, and safe treatment for skin diseases. However, a larger number of clinical trials are required to validate these findings. Natural products in combination with modern drugs, as well as the development of novel delivery mechanisms, represent a very promising area for future drug discovery of these natural leads against skin disorders.
Collapse
Affiliation(s)
- Nurul Amirah Mohd Zaid
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Health Sciences, Royal College of Medicine Perak, Universiti Kuala Lumpur, Ipoh, 30450, Malaysia
| | - Mahendran Sekar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Health Sciences, Royal College of Medicine Perak, Universiti Kuala Lumpur, Ipoh, 30450, Malaysia
| | - Srinivasa Reddy Bonam
- Institut National de la Santé et de la Recherche Médicale; Centre de Recherche des Cordeliers, Equipe-Immunopathologie et Immunointervention Thérapeutique, Sorbonne Université, Université de Paris, Paris, France
| | - Siew Hua Gan
- School of Pharmacy, Monash University Malaysia, Selangor Darul Ehsan, 47500, Malaysia
| | - Pei Teng Lum
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Health Sciences, Royal College of Medicine Perak, Universiti Kuala Lumpur, Ipoh, 30450, Malaysia
| | - M Yasmin Begum
- Department of Pharmaceutics, College of Pharmacy, King Khalid University (KKU), Asir-Abha, 61421, Saudi Arabia
| | - Nur Najihah Izzati Mat Rani
- Faculty of Pharmacy and Health Sciences, Royal College of Medicine Perak, Universiti Kuala Lumpur, Ipoh, 30450, Malaysia
| | - Jaishree Vaijanathappa
- Faculty of Life Sciences, JSS Academy of Higher Education and Research Mauritius, Vacoas-Phoenix, Mauritius
| | - Yuan Seng Wu
- Centre for Virus and Vaccine Research, School of Medical and Life Sciences, Sunway University, Selangor, 47500, Malaysia
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Selangor, 47500, Malaysia
| | | | | | | |
Collapse
|
10
|
Varghese R, George Priya Doss C, Kumar RS, Almansour AI, Arumugam N, Efferth T, Ramamoorthy S. Cardioprotective effects of phytopigments via multiple signaling pathways. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 95:153859. [PMID: 34856476 DOI: 10.1016/j.phymed.2021.153859] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 11/08/2021] [Accepted: 11/14/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Cardiovascular diseases (CVDs) are among the deadliest non-communicable diseases, and millions of dollars are spent every year to combat CVDs. Unfortunately, the multifactorial etiology of CVDs complicates the development of efficient therapeutics. Interestingly, phytopigments show significant pleiotropic cardioprotective effects both in vitro and in vivo. PURPOSE This review gives an overview of the cardioprotective effects of phytopigments based on in vitro and in vivo studies as well as clinical trials. METHODS A literature-based survey was performed to collect the available data on cardioprotective activities of phytopigments via electronic search engines such as PubMed, Google Scholar, and Scopus. RESULTS Different classes of phytopigments such as carotenoids, xanthophylls, flavonoids, anthocyanins, anthraquinones alleviate major CVDs (e.g., cardiac hypertrophy, atherosclerosis, hypertension, cardiotoxicities) via acting on signaling pathways related to AMPK, NF-κB, NRF2, PPARs, AKT, TLRs, MAPK, JAK/STAT, NLRP3, TNF-α, and RA. CONCLUSION Phytopigments represent promising candidates to develop novel and effective CVD therapeutics. More randomized, placebo-controlled clinical studies are recommended to establish the clinical efficacy of phytopigments.
Collapse
Affiliation(s)
- Ressin Varghese
- School of Bio Sciences and Technology, VIT University, Vellore 632014, Tamil Nadu, India
| | - C George Priya Doss
- School of Bio Sciences and Technology, VIT University, Vellore 632014, Tamil Nadu, India
| | - Raju Suresh Kumar
- Department of Chemistry, College of Science, King Saud University, P. O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Abdulrahman I Almansour
- Department of Chemistry, College of Science, King Saud University, P. O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Natarajan Arumugam
- Department of Chemistry, College of Science, King Saud University, P. O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany
| | - Siva Ramamoorthy
- School of Bio Sciences and Technology, VIT University, Vellore 632014, Tamil Nadu, India.
| |
Collapse
|
11
|
Alotaibi BS, Ijaz M, Buabeid M, Kharaba ZJ, Yaseen HS, Murtaza G. Therapeutic Effects and Safe Uses of Plant-Derived Polyphenolic Compounds in Cardiovascular Diseases: A Review. Drug Des Devel Ther 2021; 15:4713-4732. [PMID: 34848944 PMCID: PMC8619826 DOI: 10.2147/dddt.s327238] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 09/12/2021] [Indexed: 12/29/2022] Open
Abstract
Polyphenols have long been recognized as health-promoting entities, including beneficial effects on cardiovascular disease, but their reputation has been boosted recently following a number of encouraging clinical studies in multiple chronic pathologies, that seem to validate efficacy. Health benefits of polyphenols have been linked to their well-established powerful antioxidant activity. This review aims to provide comprehensive and up-to-date knowledge on the current therapeutic status of polyphenols having sufficient heed towards the treatment of cardiovascular diseases. Furthermore, data about the safety profile of highly efficacious polyphenols has also been investigated to further enhance their role in cardiac abnormalities. Evidence is presented to support the action of phenolic derivatives against cardiovascular pathologies by following receptors and signaling pathways which ultimately cause changes in endogenous antioxidant, antiplatelet, vasodilatory, and anti-inflammatory activities. In addition, in vitro antioxidant and pre-clinical and clinical experiments on anti-inflammatory as well as immunomodulatory attributes of polyphenols have revealed their role as cardioprotective agents. However, an obvious shortage of in vivo studies related to dose selection and toxicity of polyphenols makes these compounds a suitable target for clinical investigations. Further studies are needed for the development of safe and potent herbal products against cardiovascular diseases. The novelty of this review is to provide comprehensive knowledge on polyphenols safety and their health claims. It will help researchers to identify those moieties which likely exert protective and therapeutic effects towards cardiovascular diseases.
Collapse
Affiliation(s)
- Badriyah Shadid Alotaibi
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Munazza Ijaz
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Manal Buabeid
- Medical and Bio-Allied Health Sciences Research Centre, Ajman University, Ajman, United Arab Emirates
- Department of Clinical Sciences, Ajman University, Ajman, 346, United Arab Emirates
| | - Zelal Jaber Kharaba
- Department of Clinical Sciences, College of Pharmacy, Al-Ain University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Hafiza Sidra Yaseen
- Department of Pharmacy, COMSATS University Islamabad, Lahore Campus, Lahore, 54000, Pakistan
| | - Ghulam Murtaza
- Department of Pharmacy, COMSATS University Islamabad, Lahore Campus, Lahore, 54000, Pakistan
| |
Collapse
|
12
|
An updated review on the versatile role of chrysin in neurological diseases: Chemistry, pharmacology, and drug delivery approaches. Biomed Pharmacother 2021; 141:111906. [PMID: 34328092 DOI: 10.1016/j.biopha.2021.111906] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 04/29/2021] [Accepted: 07/06/2021] [Indexed: 02/06/2023] Open
Abstract
Neurological diseases are responsible for a large number of morbidities and mortalities in the world. Flavonoids are phytochemicals that possess various health-promoting impacts. Chrysin, a natural flavonoid isolated from diverse fruits, vegetables, and even mushrooms, has several pharmacological activities comprising antioxidant, anti-inflammatory, antiapoptotic, anticancer, and neuroprotective effects. The current study was designed to review the relationship between chrysin administration and neurological complications by discussing the feasible mechanism and signaling pathways. Herein, we mentioned the sources, pharmacological properties, chemistry, and drug delivery systems associated with chrysin pharmacotherapy. The role of chrysin was discussed in depression, anxiety, neuroinflammation, Alzheimer's disease, Parkinson's disease, Huntington's disease, epilepsy, cerebral ischemia, spinal cord injury, neuropathy, Multiple Sclerosis, and Guillain-Barré Syndrome. The findings indicate that chrysin has protective effects against neurological conditions by modulating oxidative stress, inflammation, and apoptosis in animal models. However, more studies should be done to clear the neuroprotective effects of chrysin.
Collapse
|
13
|
Owumi SE, Lewu DO, Arunsi UO, Oyelere AK. Luteolin attenuates doxorubicin-induced derangements of liver and kidney by reducing oxidative and inflammatory stress to suppress apoptosis. Hum Exp Toxicol 2021; 40:1656-1672. [PMID: 33827303 DOI: 10.1177/09603271211006171] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Doxorubicin is an effective anti-neoplastic agent; the reported toxicities of DOX limit its use. Luteolin is a polyphenolic phytochemical that exhibits beneficial biological effects via several mechanisms. We investigate luteolin protective effects on hepatorenal toxicity associated with doxorubicin treatment in rats. For 2 weeks, randomly assigned rat cohorts were treated as follows: control, luteolin (100 mg/kg; per os), doxorubicin alone (2mg/kg; by intraperitoneal injection), co-treated cohorts received luteolin (50 and 100 mg/kg) in addition to doxorubicin. Treatment with doxorubicin alone significantly (p < 0.05) increased biomarkers of hepatorenal toxicities in the serum. Doxorubicin also reduced relative organ weights, antioxidant capacity, and anti-inflammatory cytokine interleukine-10. Doxorubicin also increased reactive oxygen and nitrogen species, lipid peroxidation, pro-inflammatory-interleukin-1β and tumour necrosis factor-α-cytokine, and apoptotic caspases-3 and -9). Morphological damage accompanied these biochemical alterations in the rat's liver and kidney treated with doxorubicin alone. Luteolin co-treatment dose-dependently abated doxorubicin-mediated toxic responses, improved antioxidant capacity and interleukine-10 level. Luteolin reduced (p < 0.05) lipid peroxidation, caspases-3 and -9 activities and marginally improved rats' survivability. Similarly, luteolin co-treated rats exhibited improvement in hepatorenal pathological lesions observed in rats treated with doxorubicin alone. In summary, luteolin co-treatment blocked doxorubicin-mediated hepatorenal injuries linked with pro-oxidative, inflammatory, and apoptotic mechanisms. Therefore, luteolin can act as a chemoprotective agent in abating toxicities associated with doxorubicin usage and improve its therapeutic efficacy.
Collapse
Affiliation(s)
- S E Owumi
- Cancer Research and Molecular Biology Laboratories, Department of Biochemistry, 113092College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - D O Lewu
- Cancer Research and Molecular Biology Laboratories, Department of Biochemistry, 113092College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - U O Arunsi
- School of Medicine, Cancer Immunology and Biotechnology, Department of Biosciences, University of Nottingham, UK
| | - A K Oyelere
- School of Chemistry and Biochemistry, Parker H. Petit Institute for Bioengineering and Bioscience, 1372Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
14
|
Wang F, Chen L, Chen S, Chen H, Liu Y. Microbial biotransformation of Pericarpium Citri Reticulatae (PCR) by Aspergillus niger and effects on antioxidant activity. Food Sci Nutr 2021; 9:855-865. [PMID: 33598169 PMCID: PMC7866601 DOI: 10.1002/fsn3.2049] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/21/2020] [Accepted: 11/21/2020] [Indexed: 12/23/2022] Open
Abstract
Pericarpium Citri Reticulatae (PCR), the mature fruit peel of Citrus reticulata Blanco and its different cultivars, is an important citrus by-product with beneficial health and nutritive properties. However, due to the lack of value-added methods for its development and utilization, a large amount of PCR is discarded or wasted. To explore a possibly more effective method to utilize PCR, we compared the chemical and biological differences before (CK) and after (CP) microbial transformation of PCR by Aspergillus niger. UPLC-ESI-MS/MS, HPLC, and LC-MS methods were used to compare the chemical profiles of CK and CP. The results demonstrated that microbial biotransformation by A. niger could transform flavonoid compounds by utilizing the carbohydrate and amino acid nutrients in PCR. This could also promote the accumulation of polyhydroxyflavones compounds in CP. The antioxidant assay demonstrated that CP had significantly greater free radical-scavenging activity than CK. The higher antioxidant activity of CP may result from the high level of flavonoids with associated phenolic hydroxyl groups. Microbial biotransformation is an effective method for improving the antioxidant capacity of PCR and may be effective and useful in other natural product situations.
Collapse
Affiliation(s)
- Fu Wang
- Department of PharmacyStandardization Education Ministry Key Laboratory of Traditional Chinese MedicineChengdu University of TCMChengduChina
- Food & Drugs Authority of NanchongNanchongChina
| | - Lin Chen
- Department of PharmacyStandardization Education Ministry Key Laboratory of Traditional Chinese MedicineChengdu University of TCMChengduChina
| | - Shiwei Chen
- Food & Drugs Authority of NanchongNanchongChina
| | - Hongping Chen
- Department of PharmacyStandardization Education Ministry Key Laboratory of Traditional Chinese MedicineChengdu University of TCMChengduChina
| | - Youping Liu
- Department of PharmacyStandardization Education Ministry Key Laboratory of Traditional Chinese MedicineChengdu University of TCMChengduChina
| |
Collapse
|
15
|
Li CY, Cheng SE, Wang SH, Wu JY, Hsieh CW, Tsou HK, Tsai MS. The Anti-inflammatory Effects of the Bioactive Compounds Isolated from Alpinia officinarum Hance Mediated by the Suppression of NF-kappaB and MAPK Signaling. CHINESE J PHYSIOL 2021; 64:32-42. [PMID: 33642342 DOI: 10.4103/cjp.cjp_81_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
This study was designed to evaluate the anti-inflammatory effects of Alpinia officinarum Hance extract (AOE) and identify its main active ingredients. AOE was obtained using a 95% ethanol extraction method. Lipopolysaccharide (LPS) were used to induce an inflammatory response in RAW264.7 cells. The results showed that AOE exerts anti-inflammatory effects via inhibition of prostaglandin E2 secretion and cyclooxygenase -2 (COX-2) production. We further analyzed the components of AOE using high-performance liquid chromatography and found that AOE is comprised of several bioactive flavonoids including quercetin (Q), kaempferol (K), galangin (G), and curcumin (C). These four flavonoids effectively inhibited nitric oxide (NO), interleukin (IL)-1β, IL-6, and tumor necrosis factor-α production. Moreover, they reduced COX-2 and inducible NO synthase expressions via regulation of nuclear factor kappa-light-chain-enhancer of activated B cells and c-Jun N-terminal kinase signaling pathways. Furthermore, we compared and contrasted the anti-inflammatory effects and mechanisms of these four flavonoids at the same dose in the LPS-induced cell inflammation model. The results showed that C is the most effective inhibitor of LPS-induced NO production. However, only Q and K effectively attenuated LPS-induced extracellular signal-regulated kinase and p38 elevations. In conclusion, AOE and its major bioactive compounds exert anti-inflammatory effects on LPS-induced inflammation. As A. officinarum Hance is much cheaper than any of its four flavonoids, especially G, we suggest using AOE as an anti-inflammatory agent.
Collapse
Affiliation(s)
- Chia-Yu Li
- PhD Program of Biotechnology and Industry, College of Biotechnology and Bioresources, Da-Yeh University, Changhua; Department of Life-and-Death Studies, Nanhua University, Chiayi, Taiwan
| | - Szu-En Cheng
- Department of Food Science and Biotechnology, Da-Yeh University, Changhua, Taiwan
| | - Sue-Hong Wang
- Department of Biomedical Sciences, Chung Shan Medical University; Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Jane-Yii Wu
- Department of Food Science and Biotechnology, Da-Yeh University, Changhua, Taiwan
| | - Chang-Wei Hsieh
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Hsi-Kai Tsou
- Functional Neurosurgery Division, Neurological Institute, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Ming-Shiun Tsai
- Department of Food Science and Biotechnology, Da-Yeh University, Changhua, Taiwan
| |
Collapse
|
16
|
Li F, Fu Y, Yang H, Tang Y. The inhibition mechanism of luteolin on peroxidase based on multispectroscopic techniques. Int J Biol Macromol 2021; 166:1072-1081. [PMID: 33157143 DOI: 10.1016/j.ijbiomac.2020.10.262] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/30/2020] [Accepted: 10/31/2020] [Indexed: 01/11/2023]
Abstract
Luteolin, a plant-derived flavonoid, was found to exert effective inhibitory effect to peroxidase activity in a non-competitive manner with an IC50 of (6.62 ± 0.45) × 10-5 mol L-1. The interaction between luteolin and peroxidase induced the formation of a static complex with a binding constant (Ksv) of 7.31 × 103 L mol-1 s-1 driven by hydrogen bond and hydrophobic interaction. Further, the molecular interaction between luteolin and peroxidase resulted in intrinsic fluorescence quenching, structural and conformational alternations which were determined by multispectroscopic techniques combined with computational molecular docking. Molecular docking results revealed that luteolin bound to peroxidase and interacted with relevant amino acid residues in the hydrophobic pocket. These results will provide information for screening additional peroxidase inhibitors and provide evidence of luteolin's potential application in preservation and processing of fruit and vegetables and clinical disease remedy.
Collapse
Affiliation(s)
- Fengmao Li
- College of Life Science, Southwest University, Chongqing 400715, China; Engineering & Technology Research Center for Sweet potato of Chongqing, Chongqing 400715, China
| | - Yufan Fu
- College of Life Science, Southwest University, Chongqing 400715, China; Engineering & Technology Research Center for Sweet potato of Chongqing, Chongqing 400715, China
| | - Hao Yang
- College of Life Science, Southwest University, Chongqing 400715, China; Engineering & Technology Research Center for Sweet potato of Chongqing, Chongqing 400715, China
| | - Yunming Tang
- College of Life Science, Southwest University, Chongqing 400715, China; Engineering & Technology Research Center for Sweet potato of Chongqing, Chongqing 400715, China.
| |
Collapse
|
17
|
Celebi D, Aydin P, Cinar I, Kutlu Z, Calik I, Halici Z, Bilici D, Bayraktutan Z. Protective effect of luteolin on acute lung injury in a rat model of sepsis. Biotech Histochem 2020; 96:579-585. [PMID: 33176504 DOI: 10.1080/10520295.2020.1846787] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
We investigated the effects of luteolin (LUT) treatment on acute lung injury caused by cecal ligation and puncture (CLP) induced septic rats. We also investigated the relation between LUT and the cytokines, interleukin-10 (IL-10) and tumor necrosis factor-α (TNF-α). LUT was administered 1 h after CLP surgery. Administration of LUT reduced the glutathione level and superoxide dismutase activity in rat lung tissues. We also found significant reduction of malondialdehyde following LUT treatment. LUT administration also reduced TNF-α and IL-10 mRNA expression in lung tissue. Histopathologic investigation of lung tissue supported our biochemical and molecular findings. Administration of LUT ameliorated lung injury in CLP induced septic rats owing to its antioxidant and anti-inflammatory properties.
Collapse
Affiliation(s)
- Demet Celebi
- Faculty of Veterinary Medicine, Department of Microbiology, Ataturk University, Erzurum, Turkey
| | - Pelin Aydin
- Department of Anesthesia, Regional Education and Research Hospital, Erzurum, Turkey
| | - Irfan Cinar
- Faculty of Medicine, Department of Pharmacology, Kastamonu University, Kastamonu, Turkey
| | - Zerrin Kutlu
- Faculty of Pharmacy, Department of Biochemistry, Ataturk University, Erzurum, Turkey
| | - Ilknur Calik
- Faculty of Medicine, Department of Pathology, Fırat University, Elazığ, Turkey
| | - Zekai Halici
- Faculty of Medicine,Department of Pharmacology, Ataturk University, Erzurum, Turkey
| | - Dilek Bilici
- Department of Microbiology, Regional Education and Research Hospital, Erzurum, Turkey
| | - Zafer Bayraktutan
- Faculty of Medicine, Department of Biochemistry, Ataturk University, Erzurum, Turkey
| |
Collapse
|
18
|
Shen CY, Lin JJ, Jiang JG, Wang TX, Zhu W. Potential roles of dietary flavonoids from Citrus aurantium L. var. amara Engl. in atherosclerosis development. Food Funct 2020; 11:561-571. [PMID: 31850465 DOI: 10.1039/c9fo02336d] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Dietary consumption of flavonoids correlated positively with lower risk of cardiovascular disease. However, the precise roles of flavonoids from the blossoms of Citrus aurantium Linn variant amara Engl (CAVA) in atherosclerosis (AS) are still poorly understood. This study aimed to find novel flavonoid-type skeletons with protection against AS. Total flavonoids (CAVAF), homoeriodictyol (HE) and hesperetin-7-O-β-d-glucopyranoside (HG) were isolated from the blossoms of Citrus aurantium Linn variant amara Engl. by chromatography. Their suppressive effects on lipopolysaccharide (LPS)-induced inflammatory responses and ox-LDL-induced foam cell formation were systematically and comparatively investigated using macrophage RAW264.7 cells. HE was more powerful than HG in inhibiting LPS-induced production of nitric oxide (NO), interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), interleukin-1 beta (IL-1β) and gene expression in RAW264.7 cells. HE and HG showed different responses to extracellular signal-regulated kinases (ERK), c-Jun N-terminal kinases (JNK), P38, P65, IκBα, IκKα/β phosphorylation, and nuclear factor-kappa B (NF-κB) nuclear translocation. HE and HG also differentially decreased oxidized low-density lipoprotein (ox-LDL)-induced foam cell formation by regulating peroxisome proliferator-activated receptor-gamma (PPARγ), phospholipid ATP-binding cassette transporter A1 (ABCA1), phospholipid ATP-binding cassette transporter G1 (ABCG1), scavenger receptor class B type I (SRB1), scavenger receptor class A type I (SRA1) and cluster of differentiation 36 (CD36) expression at gene and protein levels in RAW264.7 cells. HG showed weaker potential than HE in preventing AS development. Their chemical differences might partially explain the discrepancy in their bioactivity. In conclusion, HE and HG might be developed into novel therapeutic agents against inflammation and AS-associated diseases.
Collapse
Affiliation(s)
- Chun-Yan Shen
- College of Food and Bioengineering, South China University of Technology, Guangzhou, 510640, China.
| | | | | | | | | |
Collapse
|
19
|
Ali F, Siddique YH. Bioavailability and Pharmaco-therapeutic Potential of Luteolin in Overcoming Alzheimer's Disease. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2020; 18:352-365. [PMID: 30892166 DOI: 10.2174/1871527318666190319141835] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 11/30/2018] [Accepted: 03/08/2019] [Indexed: 12/22/2022]
Abstract
Luteolin is a naturally occurring, yellow crystalline flavonoid found in numerous dietary supplements we frequently have in our meals. Studies in the last 2 decades have revealed its therapeutic potential to reduce the Alzheimer's disease (AD) symptoms in various in vitro and in vivo models. The anti-Alzheimer's potential of luteolin is attributed to its ability to suppress Aβ as well as tau aggregation or promote their disaggregation, down-regulate the expression of COX-2, NOS, MMP-9, TNF-α, interleukins and chemokines, reduce oxidative stress by scavenging ROS, modulate the activities of transcription factors CREB, cJun, Nrf-1, NF-κB, p38, p53, AP-1 and β-catenine and inhibiting the activities of various protein kinases. In several systems, luteolin has been described as a potent antioxidant and anti-inflammatory agent. In addition, we have also discussed about the bio-availability of the luteolin in the plasma. After being metabolized luteolin persists in plasma as glucuronides and sulphate-conjugates. Human clinical trials indicated no dose limiting toxicity when administered at a dose of 100 mg/day. Improvements in the formulations and drug delivery systems may further enhance the bioavailability and potency of luteolin. The current review describes in detail the data supporting these studies.
Collapse
Affiliation(s)
- Fahad Ali
- Department of Zoology, Aligarh Muslim University, Aligarh-202002, India
| | | |
Collapse
|
20
|
Hu Y, Zhang C, Zhu H, Wang S, Zhou Y, Zhao J, Xia Y, Li D. Luteolin modulates SERCA2a via Sp1 upregulation to attenuate myocardial ischemia/reperfusion injury in mice. Sci Rep 2020; 10:15407. [PMID: 32958799 PMCID: PMC7506543 DOI: 10.1038/s41598-020-72325-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 08/23/2020] [Indexed: 12/15/2022] Open
Abstract
The sarco/endoplasmic reticulum Ca2+ ATPase 2a (SERCA2a) is responsible for calcium transport during excitation-contraction coupling and is essential for maintaining myocardial systolic/diastolic function and intracellular Ca2+ levels. Therefore, it is important to investigate mechanisms whereby luteolin modulates SERCA2a expression to attenuate myocardial ischemia/reperfusion injury. C57BL/6j mice were randomly divided into eight groups. The expression and activity of SERCA2a was measured to assess interactions between the SERCA2a promoter and the Sp1 transcription factor, and the regulatory effects of luteolin. We used serum LDH release, serum cardiac troponin I level, hemodynamic data, myocardial infarction size and apoptosis-related indices to measure SERCA2a cardio-protective effects of luteolin pretreatment. Sp1 binding to SERCA2a promoter under ischemia/reperfusion conditions in the presence or absence of luteolin was analyzed by chromatin immunoprecipitation. Our experimental results indicated that during myocardial ischemia/reperfusion injury, luteolin pretreatment upregulated the expression levels of SERCA2a and Sp1. Sp1 overexpression enhanced the expression of SERCA2a at the transcriptional level. Luteolin pretreatment reversed the expression of SERCA2a through the increased expression of Sp1. Moreover, we demonstrated that luteolin pretreatment appeared to exert myocardial protective effects by upregulating the transcriptional activity of SERCA2a, via Sp1. In conclusion, during myocardial ischemia/reperfusion, Sp1 appeared to downregulate the expression of SERCA2a. Luteolin pretreatment was shown to improve SERCA2a expression via the upregulation of Sp1 to attenuate myocardial ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Ya Hu
- Institute of Cardiovascular Disease Research, Xuzhou Medical University, 84 West Huaihai Road, Xuzhou, 221002, Jiangsu, People's Republic of China
| | - Chengmeng Zhang
- Institute of Cardiovascular Disease Research, Xuzhou Medical University, 84 West Huaihai Road, Xuzhou, 221002, Jiangsu, People's Republic of China
| | - Hong Zhu
- Department of Cardiology, The Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, 221002, Jiangsu, People's Republic of China
| | - Shuai Wang
- Department of Cardiology, The Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, 221002, Jiangsu, People's Republic of China
| | - Yao Zhou
- Institute of Cardiovascular Disease Research, Xuzhou Medical University, 84 West Huaihai Road, Xuzhou, 221002, Jiangsu, People's Republic of China
| | - Jiaqi Zhao
- Institute of Cardiovascular Disease Research, Xuzhou Medical University, 84 West Huaihai Road, Xuzhou, 221002, Jiangsu, People's Republic of China
| | - Yong Xia
- Department of Cardiology, The Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, 221002, Jiangsu, People's Republic of China.
| | - Dongye Li
- Institute of Cardiovascular Disease Research, Xuzhou Medical University, 84 West Huaihai Road, Xuzhou, 221002, Jiangsu, People's Republic of China.
- Department of Cardiology, The Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, 221002, Jiangsu, People's Republic of China.
| |
Collapse
|
21
|
Phenolic Compounds Exerting Lipid-Regulatory, Anti-Inflammatory and Epigenetic Effects as Complementary Treatments in Cardiovascular Diseases. Biomolecules 2020; 10:biom10040641. [PMID: 32326376 PMCID: PMC7226566 DOI: 10.3390/biom10040641] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/16/2020] [Accepted: 04/17/2020] [Indexed: 12/14/2022] Open
Abstract
Atherosclerosis is the main process behind cardiovascular diseases (CVD), maladies which continue to be responsible for up to 70% of death worldwide. Despite the ongoing development of new and potent drugs, their incomplete efficacy, partial intolerance and numerous side effects make the search for new alternatives worthwhile. The focus of the scientific world turned to the potential of natural active compounds to prevent and treat CVD. Essential for effective prevention or treatment based on phytochemicals is to know their mechanisms of action according to their bioavailability and dosage. The present review is focused on the latest data about phenolic compounds and aims to collect and correlate the reliable existing knowledge concerning their molecular mechanisms of action to counteract important risk factors that contribute to the initiation and development of atherosclerosis: dyslipidemia, and oxidative and inflammatory-stress. The selection of phenolic compounds was made to prove their multiple benefic effects and endorse them as CVD remedies, complementary to allopathic drugs. The review also highlights some aspects that still need clear scientific explanations and draws up some new molecular approaches to validate phenolic compounds for CVD complementary therapy in the near future.
Collapse
|
22
|
Song S, Gao K, Niu R, Wang J, Zhang J, Gao C, Yang B, Liao X. Inclusion complexes between chrysin and amino-appended β-cyclodextrins (ACDs): Binding behavior, water solubility, in vitro antioxidant activity and cytotoxicity. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 106:110161. [PMID: 31753384 DOI: 10.1016/j.msec.2019.110161] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 08/12/2019] [Accepted: 09/03/2019] [Indexed: 10/26/2022]
Abstract
Solid inclusion complexes between chrysin and four amino-appended β-cyclodextrins (ACDs) were prepared by suspension method and characterized in solid and solution states by kinds of analytical methods. The scanning electron microscopy (SEM) showed distinct micro-morphologies of them. Thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) analysis revealed their unique thermal properties, such as decomposition temperatures and endothermic points. Powder X-ray diffractometry (XRD) analysis disclosed their unique crystal patterns. Their nuclear magnetic resonance (NMR) analyses provided the variations of chemical shifts before and after the formation of inclusion complexes. Their binding stability constants (Ks) were 574, 842, 704, and 474 L·mol-1, respectively, as determined by spectral titration. A 1:1 inclusion mode with self-assembly of their amino side chains inside the ACD cavity was proposed based on Job plot and 2D-ROESY experiments. Water solubility of chrysin was promoted up to 4411.98 μg·mL-1 after formation of inclusion complexes with ACDs, better than that of β-CD and its derivatives, i.e., HP- and SBE-β-CD. In vitro antioxidant activity of chrysin was also improved after inclusion complexation by the DPPH scavenging assay. Furthermore, in vitro cytotoxicity of solid inclusion complexes towards three human cancer cell lines, A549, HT-29 and HCT116 were enhanced significantly.
Collapse
Affiliation(s)
- Shuang Song
- Faculty of Life Science and Technology, Kunming University of Science and Technology, 650500 Kunming, China
| | - Kai Gao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, 650500 Kunming, China
| | - Raomei Niu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, 650500 Kunming, China; Jiangsu Xinchen Pharmaceutical Co., LTD, 222047 Lianyungang, China
| | - Jin Wang
- School of Pharmacy, Jiangsu Key Laboratory for Bioresources of Saline Soils, Yancheng Teachers University, 224007 Yancheng, China
| | - Jihong Zhang
- Faculty of Medicine, Kunming University of Science and Technology, Kunming 650500, China; Research Centre for Pharmaceutical Care and Quality Management, First People's Hospital of Yunnan Province, Kunming 650500, China
| | - Chuanzhu Gao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, 650500 Kunming, China
| | - Bo Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, 650500 Kunming, China
| | - Xiali Liao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, 650500 Kunming, China.
| |
Collapse
|
23
|
Cheng SC, Huang WC, S Pang JH, Wu YH, Cheng CY. Quercetin Inhibits the Production of IL-1β-Induced Inflammatory Cytokines and Chemokines in ARPE-19 Cells via the MAPK and NF-κB Signaling Pathways. Int J Mol Sci 2019; 20:ijms20122957. [PMID: 31212975 PMCID: PMC6628093 DOI: 10.3390/ijms20122957] [Citation(s) in RCA: 141] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 06/08/2019] [Accepted: 06/13/2019] [Indexed: 12/27/2022] Open
Abstract
Quercetin, a bioflavonoid derived from vegetables and fruits, exerts anti-inflammatory effects in various diseases. Our previous study revealed that quercetin could suppress the expression of matrix metalloprotease-9 (MMP-9) and intercellular adhesion molecule-1 (ICAM-1) to achieve anti-inflammatory effects in tumor necrosis factor-α (TNF-α)-stimulated human retinal pigment epithelial (ARPE-19) cells. The present study explored whether quercetin can inhibit the interleukin-1β (IL-1β)-induced production of inflammatory cytokines and chemokines in ARPE-19 cells. Prior to stimulation by IL-1β, ARPE-19 cells were pretreated with quercetin at various concentrations (2.5–20 µM). The results showed that quercetin could dose-dependently decrease the mRNA and protein levels of ICAM-1, IL-6, IL-8 and monocyte chemoattractant protein-1 (MCP-1). It also attenuated the adherence of the human monocytic leukemia cell line THP-1 to IL-1β-stimulated ARPE-19 cells. We also demonstrated that quercetin inhibited signaling pathways related to the inflammatory process, including phosphorylation of mitogen-activated protein kinases (MAPKs), inhibitor of nuclear factor κ-B kinase (IKK)α/β, c-Jun, cAMP response element-binding protein (CREB), activating transcription factor 2 (ATF2) and nuclear factor (NF)-κB p65, and blocked the translocation of NF-κB p65 into the nucleus. Furthermore, MAPK inhibitors including an extracellular signal-regulated kinase (ERK) 1/2 inhibitor (U0126), a p38 inhibitor (SB202190) and a c-Jun N-terminal kinase (JNK) inhibitor (SP600125) decreased the expression of soluble ICAM-1 (sICAM-1), but not ICAM-1. U0126 and SB202190 could inhibit the expression of IL-6, IL-8 and MCP-1, but SP600125 could not. An NF-κB inhibitor (Bay 11-7082) also reduced the expression of ICAM-1, sICAM-1, IL-6, IL-8 and MCP-1. Taken together, these results provide evidence that quercetin protects ARPE-19 cells from the IL-1β-stimulated increase in ICAM-1, sICAM-1, IL-6, IL-8 and MCP-1 production by blocking the activation of MAPK and NF-κB signaling pathways to ameliorate the inflammatory response.
Collapse
Affiliation(s)
- Shu-Chen Cheng
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital, Taoyuan 33372, Taiwan.
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan.
| | - Wen-Chung Huang
- Graduate Institute of Health Industry Technology, Research Center for Chinese Herbal Medicine and Research Center for Food and Cosmetic Safety, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 33303, Taiwan.
- Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan.
| | - Jong-Hwei S Pang
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan.
- Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan.
| | - Yi-Hong Wu
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan.
- Division of Chinese Internal Medicine, Center for Traditional Chinese Medicine, Chang Gung Memorial Hospital, Taoyuan 33372, Taiwan.
- School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan.
| | - Ching-Yi Cheng
- Graduate Institute of Health Industry Technology, Research Center for Chinese Herbal Medicine and Research Center for Food and Cosmetic Safety, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 33303, Taiwan.
- Department of Thoracic Medicine, Chang Gung Memorial Hospital, Linkou 33305, Taiwan.
- Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou 33305, Taiwan.
| |
Collapse
|
24
|
Kline L. The Flavone Luteolin, an Endocrine Disruptor, Relaxed Male Guinea Pig Gallbladder Strips. Gastroenterology Res 2019; 12:53-59. [PMID: 31019613 PMCID: PMC6469902 DOI: 10.14740/gr1142] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 02/19/2019] [Indexed: 11/11/2022] Open
Abstract
Background Luteolin (3',4',5,7-tetrahydroxyflavone) is a flavone with a yellow crystalline appearance present in numerous plants such as broccoli, green chili, and carrot. Luteolin is considered to be an endocrine disruptor with potent estrogen agonist activity and potent progesterone antagonist activity. Luteolin has effects on smooth muscle. Luteolin relaxed guinea pig trachea smooth muscle as it inhibited both phosphodiesterase and reduced intracellular Ca2+. Luteolin also caused vasorelaxation in rat thoracic aorta smooth muscle by inhibiting intracellular Ca2+ release, inhibition of sarcolemmal Ca2+ channels, and activation of K+ channels. Luteolin or its glycosides from artichoke extracts may have an ameliorating effect on irritable bowel syndrome. The purpose of this study was to determine if luteolin had an effect on gallbladder motility. Methods An in vitro pharmacologic technique was utilized. Either cholecystokinin octapeptide (CCK) or KCl were used to induce tension in male guinea pig gallbladder strips maintained in Sawyer-Bartlestone chambers. Luteolin relaxed either the CCK- or KCl-induced tension in a concentration dependent manner. Various blockers were added to the chambers to determine which second messenger system(s) mediated the observed relaxation. Paired t-tests were used for statistical analysis. Differences between mean values of P < 0.05 were considered significant. Results Treatment of the gallbladder strips with luteolin prior to either KCl or CCK significantly (P < 0.001) decreased the amount of either KCl- or cholecystokinin-induced tension. The 2-aminoethoxydiphenylborane was used to ascertain if the release of intracellular Ca2+ mediated the luteolin-induced relaxation. It significantly (P < 0.001) decreased the amount of luteolin-induced relaxation. To ascertain if PKA mediated the luteolin-induced relaxation, PKA inhibitor 14-22 amide myristolated was used. It significantly (P < 0.01) reduced the amount of luteolin-induced relaxation. Neither KT5823, NG-methyl-L-arginine acetate salt, genistein, tetraethylammonium, nor fulvestrant had a significant effect. To ascertain if PKC mediated the luteolin-induced relaxation, the PKC inhibitors bisindolymaleimide IV and chelerythrine Cl- were used together. They had no significant effect. Conclusions Luteolin relaxed cholecystokinin- or KCl-induced tension by blocking extracellular Ca2+ entry as well as intracellular Ca2+ release. In addition, the actions of PKA are also involved in mediating the luteolin effect.
Collapse
Affiliation(s)
- Loren Kline
- School of Dentistry, University of Alberta, 5-470 ECHA, Edmonton, Alberta T6G 2E1, Canada.
| |
Collapse
|
25
|
Farkhondeh T, Samarghandian S, Roshanravan B. Impact of chrysin on the molecular mechanisms underlying diabetic complications. J Cell Physiol 2019; 234:17144-17158. [DOI: 10.1002/jcp.28488] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 02/17/2019] [Accepted: 02/20/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Tahereh Farkhondeh
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences Birjand Iran
| | - Saeed Samarghandian
- Noncommunicable Disease Research Center, Neyshabur University of Medical Sciences Neyshabur Iran
- Department of Basic Medical Sciences Neyshabur University of Medical Sciences Neyshabur Iran
| | - Babak Roshanravan
- Student Research Committee, Birjand University of Medical Sciences Birjand Iran
| |
Collapse
|
26
|
Ryu S, Park S, Lim W, Song G. Effects of luteolin on canine osteosarcoma: Suppression of cell proliferation and synergy with cisplatin. J Cell Physiol 2018; 234:9504-9514. [DOI: 10.1002/jcp.27638] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 10/02/2018] [Indexed: 12/16/2022]
Affiliation(s)
- Soomin Ryu
- Department of Biotechnology Institute of Animal Molecular Biotechnology, College of Life Sciences and Biotechnology, Korea University Seoul Republic of Korea
| | - Sunwoo Park
- Department of Biotechnology Institute of Animal Molecular Biotechnology, College of Life Sciences and Biotechnology, Korea University Seoul Republic of Korea
| | - Whasun Lim
- Department of Biomedical Sciences Catholic Kwandong University Gangneung Republic of Korea
| | - Gwonhwa Song
- Department of Biotechnology Institute of Animal Molecular Biotechnology, College of Life Sciences and Biotechnology, Korea University Seoul Republic of Korea
| |
Collapse
|
27
|
Treatment of atherosclerosis by traditional Chinese medicine: Questions and quandaries. Atherosclerosis 2018; 277:136-144. [DOI: 10.1016/j.atherosclerosis.2018.08.039] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 08/07/2018] [Accepted: 08/29/2018] [Indexed: 01/04/2023]
|
28
|
Dei Cas M, Ghidoni R. Cancer Prevention and Therapy with Polyphenols: Sphingolipid-Mediated Mechanisms. Nutrients 2018; 10:nu10070940. [PMID: 30037082 PMCID: PMC6073226 DOI: 10.3390/nu10070940] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 07/18/2018] [Accepted: 07/19/2018] [Indexed: 12/12/2022] Open
Abstract
Polyphenols, chemically characterized by a polyhydroxylated phenolic structure, are well known for their widespread pharmacological properties: anti-inflammatory, antibiotic, antiseptic, antitumor, antiallergic, cardioprotective and others. Their distribution in food products is also extensive especially in plant foods such as vegetables, cereals, legumes, fruits, nuts and certain beverages. The latest scientific literature outlines a resilient interconnection between cancer modulation and dietary polyphenols by sphingolipid-mediated mechanisms, usually correlated with a modification of their metabolism. We aim to extensively survey this relationship to show how it could be advantageous in cancer treatment or prevention by nutrients. From this analysis it emerges that a combination of classical chemotherapy with nutrients and especially with polyphenols dietary sources may improve efficacy and decreases negative side effects of the antineoplastic drug. In this multifaceted scenario, sphingolipids play a pivotal role as bioactive molecules, emerging as the mediators of cell proliferation in cancer and modulator of chemotherapeutics.
Collapse
Affiliation(s)
- Michele Dei Cas
- Department of Health Sciences, University of Milan, 20142 Milan, Italy.
| | - Riccardo Ghidoni
- Department of Health Sciences, University of Milan, 20142 Milan, Italy.
| |
Collapse
|
29
|
Chrysin Attenuates Cell Viability of Human Colorectal Cancer Cells through Autophagy Induction Unlike 5-Fluorouracil/Oxaliplatin. Int J Mol Sci 2018; 19:ijms19061763. [PMID: 29899208 PMCID: PMC6032318 DOI: 10.3390/ijms19061763] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 06/07/2018] [Accepted: 06/11/2018] [Indexed: 01/05/2023] Open
Abstract
Chemotherapeutic 5-fluorouracil (5-FU) combined with oxaliplatin is often used as the standard treatment for colorectal cancer (CRC). The disturbing side effects and drug resistance commonly observed in chemotherapy motivate us to develop alternative optimal therapeutic options for CRC treatment. Chrysin, a natural and biologically active flavonoid abundant in propolis, is reported to have antitumor effects on a few CRCs. However, whether and how chrysin achieves similar effectiveness to the 5-FU combination is not clear. In this study, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), western blotting, fluorescence microscopy, and reactive oxygen species (ROS) production were assayed. We found that chrysin exhibited similar inhibition of cell viability as the 5-FU combination in a panel of human CRC cells. Furthermore, the results showed that chrysin significantly increased the levels of LC3-II, an autophagy-related marker, in CRC cells, which was not observed with the 5-FU combination. More importantly, blockage of autophagy induction restored chrysin-attenuated CRC cell viability. Further mechanistic analysis revealed that chrysin, not the 5-FU combination, induced ROS generation, and in turn, inhibited the phosphorylation of protein kinase B (Akt) and mammalian target of rapamycin (mTOR). Collectively, these results imply that chrysin may be a potential replacement for the 5-FU and oxaliplatin combination to achieve antitumor activity through autophagy for CRC treatment in the future.
Collapse
|
30
|
Basu A, Das AS, Sharma M, Pathak MP, Chattopadhyay P, Biswas K, Mukhopadhyay R. STAT3 and NF-κB are common targets for kaempferol-mediated attenuation of COX-2 expression in IL-6-induced macrophages and carrageenan-induced mouse paw edema. Biochem Biophys Rep 2017; 12:54-61. [PMID: 28955792 PMCID: PMC5613220 DOI: 10.1016/j.bbrep.2017.08.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 07/25/2017] [Accepted: 08/14/2017] [Indexed: 01/16/2023] Open
Abstract
Cycloxygenase-2 (COX-2) is the inducible isoform of cycloxygenase enzyme family that catalyzes synthesis of inflammatory mediators, prostanoids and prostaglandins, and therefore, can be targeted by anti-inflammatory drugs. Here, we showed a plant polyphenol, kaempferol, attenuated IL-6-induced COX-2 expression in human monocytic THP-1 cells suggesting its beneficial role in chronic inflammation. Kaempferol deactivated and prevented nuclear localization of two major transcription factors STAT3 and NF-κB, mutually responsible for COX-2 induction in response to IL-6. Moreover, STAT3 and NF-κB were simultaneously deactivated by kaempferol in acute inflammation, as shown by carrageenan-induced mouse paw edema model. The concomitant reduction in COX-2 expression in paw tissues suggested kaempferol’s role in mitigation of inflammation by targeting STAT3 and NF-κB. IL-6-induced COX-2 expression was attenuated by kaempferol in macrophages. The attenuation is attributed to simultaneous deactivation of STAT3 and NF-κB. The nuclear translocation of both transcription factors are prevented by kaempferol treatment. Kaempferol targets STAT3 and NF-κB and inhibits COX-2 expression to reduce carrageenan-induced mouse paw edema.
Collapse
Affiliation(s)
- Anandita Basu
- Cellular, Molecular and Environmental Biotechnology Laboratory, Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur 784028, Assam, India
| | - Anindhya Sundar Das
- Cellular, Molecular and Environmental Biotechnology Laboratory, Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur 784028, Assam, India
| | - Manoj Sharma
- Cellular, Molecular and Environmental Biotechnology Laboratory, Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur 784028, Assam, India
| | - Manash Pratim Pathak
- Division of Pharmaceutical Technology, Defense Research Laboratory, Tezpur 784001, Assam, India
| | - Pronobesh Chattopadhyay
- Division of Pharmaceutical Technology, Defense Research Laboratory, Tezpur 784001, Assam, India
| | - Kaushik Biswas
- Division of Molecular Medicine, Bose Institute, Kolkata 700054, India
| | - Rupak Mukhopadhyay
- Cellular, Molecular and Environmental Biotechnology Laboratory, Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur 784028, Assam, India
| |
Collapse
|