1
|
Rahman AFMT, Benko A, Bulbule S, Gottschalk CG, Arnold LA, Roy A. Tetrahydrobiopterin in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: A Friend or Foe? Biomolecules 2025; 15:102. [PMID: 39858496 PMCID: PMC11763651 DOI: 10.3390/biom15010102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 01/03/2025] [Accepted: 01/07/2025] [Indexed: 01/27/2025] Open
Abstract
Myalgic Encephalomyelitis or Chronic Fatigue Syndrome (ME/CFS) is a chronic multisystem disease characterized by severe muscle fatigue, pain, dizziness, and brain fog. The two most common symptoms are post-exertional malaise (PEM) and orthostatic intolerance (OI). ME/CFS patients with OI (ME+OI) suffer from dizziness or faintness due to a sudden drop in blood pressure while maintaining an upright posture. Clinical research has demonstrated that patients with OI display severe cardiovascular abnormalities resulting in reduced effective blood flow in the cerebral blood vessels. However, despite intense investigation, it is not known why the effective cerebral blood flow is reduced in OI patients. Based on our recent findings, we observed that tetrahydrobiopterin (BH4) metabolism was highly dysregulated in ME+OI patients. In the current review article, we attempted to summarize our recent findings on BH4 metabolism to shed light on the molecular mechanisms of OI.
Collapse
Affiliation(s)
- A. F. M. Towheedur Rahman
- Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee, 2000 E Kenwood Blvd, Milwaukee, WI 53211, USA; (A.F.M.T.R.); (A.B.); (L.A.A.)
| | - Anna Benko
- Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee, 2000 E Kenwood Blvd, Milwaukee, WI 53211, USA; (A.F.M.T.R.); (A.B.); (L.A.A.)
| | - Sarojini Bulbule
- Research and Development Laboratory, Chemistry Building, 2000 E Kenwood Blvd, Suite #320, Milwaukee, WI 53211, USA; (S.B.); (C.G.G.)
| | - Carl Gunnar Gottschalk
- Research and Development Laboratory, Chemistry Building, 2000 E Kenwood Blvd, Suite #320, Milwaukee, WI 53211, USA; (S.B.); (C.G.G.)
- Simmaron Research Institute, 948 Incline Way, Incline Village, NV 89451, USA
| | - Leggy A. Arnold
- Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee, 2000 E Kenwood Blvd, Milwaukee, WI 53211, USA; (A.F.M.T.R.); (A.B.); (L.A.A.)
| | - Avik Roy
- Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee, 2000 E Kenwood Blvd, Milwaukee, WI 53211, USA; (A.F.M.T.R.); (A.B.); (L.A.A.)
- Research and Development Laboratory, Chemistry Building, 2000 E Kenwood Blvd, Suite #320, Milwaukee, WI 53211, USA; (S.B.); (C.G.G.)
- Simmaron Research Institute, 948 Incline Way, Incline Village, NV 89451, USA
| |
Collapse
|
2
|
Yang X, Xu J, Xu Y, Wang C, Lin F, Yu J. Regulatory mechanism of perinatal nonylphenol exposure on cardiac mitochondrial autophagy and the PINK1/Parkin signaling pathway in male offspring rats. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 126:155434. [PMID: 38367424 DOI: 10.1016/j.phymed.2024.155434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 01/24/2024] [Accepted: 02/06/2024] [Indexed: 02/19/2024]
Abstract
OBJECTIVE This study investigated whether perinatal exposure to nonylphenol (NP) induces mitochondrial autophagy (i.e., mitophagy) damage in neonatal rat cardiomyocytes (NRCMs) and whether the PINK1/Parkin signaling pathway is involved in NP-induced primary cardiomyocyte injury. METHODS AND RESULTS In vivo: Perinatal NP exposure increased apoptosis and mitochondrial damage in NRCMs. Mitochondrial swelling and autophagosome-like structures with multiple concentric membranes were observed in the 100 mg/kg NP group, with an increase in the number of autophagosomes. Disorganized fiber arrangement and elevated serum myocardial enzyme levels were observed with increasing NP dosage. Additionally, NP exposure led to increased MDA levels and decreased SOD activity and ATP levels in myocardial tissue. The mRNA expression levels of autophagy-related genes, including Beclin-1, p62, and LC3B, as well as the expression of mitochondrial autophagy-related proteins (PINK1, p-Parkin, Parkin, Beclin-1, p62, LC3-I, LC3-II, and LC3-II/I) and apoptosis-related proteins (Bax and caspase-3), increased, whereas the expression levels of the mitochondrial membrane protein TOMM20 and the anti-apoptotic protein Bcl-2 decreased. In vitro: NP increased ROS levels, LDH release, and decreased ATP levels in NRCMs. CsA treatment significantly inhibited the expression of autophagy-related proteins (Beclin-1, LC3-II/I, and p62) and apoptosis-related proteins (caspase-3 and Bax), increased the expression levels of TOMM20 and Bcl-2 proteins, increased cellular ATP levels, and inhibited LDH release. The inhibition of the PINK1/Parkin signaling pathway suppressed the expression of mitochondrial autophagy-related proteins (PINK1, p-Parkin, Parkin, Beclin-1, LC3-II/I, and p62) and apoptosis-related proteins (caspase-3 and Bax), increased TOMM20 and Bcl-2 protein expression, increased ATP levels, and decreased LDH levels in NRCMs. CONCLUSIONS This study is novel in reporting that perinatal NP exposure induced myocardial injury in male neonatal rats, thereby inducing mitophagy. The PINK1/Parkin signaling pathway was involved in this injury by regulating mitophagy.
Collapse
Affiliation(s)
- Xiaolian Yang
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Jie Xu
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Yuzhu Xu
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Chengxing Wang
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Fangmei Lin
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Jie Yu
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou 563000, China.
| |
Collapse
|
3
|
Mudgal R, Singh S. Xanthine Oxidoreductase in the Pathogenesis of Endothelial Dysfunction: An Update. Curr Hypertens Rev 2024; 20:10-22. [PMID: 38318826 DOI: 10.2174/0115734021277772240124075120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 12/04/2023] [Accepted: 12/19/2023] [Indexed: 02/07/2024]
Abstract
Xanthine oxidoreductase (XOR) is a rate-limiting enzyme in the formation of uric acid (UA) and is involved in the generation of reactive oxygen species (ROS). Overproduction of ROS has been linked to the pathogenesis of hypertension, atherosclerosis, and cardiovascular disease, with multiple studies over the last 30 years demonstrating that XOR inhibition is beneficial. The involvement of XOR and its constituents in the advancement of chronic inflammation and ROS, which are responsible for endothelial dysfunction, is the focus of this evidence-based review. An overabundance of XOR products and ROS appears to drive the inflammatory response, resulting in significant endothelium damage. It has also been demonstrated that XOR activity and ED are connected. Diabetes, hypertension, and cardiovascular disease are all associated with endothelial dysfunction. ROS mainly modifies the activity of vascular cells and can be important in normal vascular physiology as well as the development of vascular disease. Suppressing XOR activity appears to decrease endothelial dysfunction, probably because it lessens the generation of reactive oxygen species and the oxidative stress brought on by XOR. Although there has long been a link between higher vascular XOR activity and worse clinical outcomes, new research suggests a different picture in which positive results are mediated by XOR enzymatic activity. Here in this study, we aimed to review the association between XOR and vascular endothelial dysfunction. The prevention and treatment approaches against vascular endothelial dysfunction in atherosclerotic disease.
Collapse
Affiliation(s)
- Rajat Mudgal
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur, Bihar, India
| | - Sanjiv Singh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur, Bihar, India
| |
Collapse
|
4
|
Colston KJ, Basu P. Synthesis, Redox and Spectroscopic Properties of Pterin of Molybdenum Cofactors. Molecules 2022; 27:3324. [PMID: 35630801 PMCID: PMC9146068 DOI: 10.3390/molecules27103324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 12/10/2022] Open
Abstract
Pterins are bicyclic heterocycles that are found widely across Nature and are involved in a variety of biological functions. Notably, pterins are found at the core of molybdenum cofactor (Moco) containing enzymes in the molybdopterin (MPT) ligand that coordinates molybdenum and facilitates cofactor activity. Pterins are diverse and can be widely functionalized to tune their properties. Herein, the general methods of synthesis, redox and spectroscopic properties of pterin are discussed to provide more insight into pterin chemistry and their importance to biological systems.
Collapse
Affiliation(s)
| | - Partha Basu
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA;
| |
Collapse
|
5
|
Bouly M, Bourguignon MP, Roesch S, Rigouin P, Gosgnach W, Bossard E, Royere E, Diguet N, Sansilvestri-Morel P, Bonnin A, Xuereb L, Berson P, Komajda M, Bernhardt P, Tyl B. Aging increases circulating BH 2 without modifying BH 4 levels and impairs peripheral vascular function in healthy adults. Transl Res 2021; 238:36-48. [PMID: 34332154 DOI: 10.1016/j.trsl.2021.07.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/23/2021] [Accepted: 07/23/2021] [Indexed: 11/17/2022]
Abstract
Little is known about the mechanisms of aging on vascular beds and its relationship with tetra and di-hydrobiopterin (BH4 and BH2) levels. This observational clinical study analyzed the impact of aging on plasma and platelet biopterins, cutaneous blood flow (CBF), and coronary flow reserve (CFR) in healthy adults. The study enrolled healthy adults in 3 age groups: 18-30, 50-59, and 60-70 years (n = 25/group). Biopterins were assessed by LC-MS/MS using newly defined pre-analytical conditions limiting BH4 oxidation and improving long-term stability. CBF was measured by Laser Speckle Contrast Imaging coupled with acetylcholine-iontophoresis and CFR by adenosine stress cardiac magnetic resonance. In healthy adults, aging (60-70 years vs 18-30 years) significantly increased platelet BH2 (+75%, P = 0.033) and BH2 + BH4 (+31%, P = 0.033), and to a lesser extent plasma BH2 (+29%, P = 0.009) without affecting BH4 and BH4/BH2. Simultaneously, CBF was decreased (-23%, P = 0.004) but not CFR, CBF being inversely correlated with platelet BH2 (r = -0.42, P = 0.001) and BH2 + BH4 (r = -0.41, P = 0.002). The proportion of adults with abnormal platelet BH2 increased with age (+28% in 60-70y). These abnormal BH2 levels were significantly associated with reduced CBF and CFR (-16%, P = 0.03 and -26%, P = 0.02). In conclusion, our study showed that age-related peripheral endothelial dysfunction was associated with an increase in circulating BH2 without decreasing BH4, the effect being more marked in platelets, the most relevant blood compartment to assess biopterin bioavailability. Peripheral but not coronary vascular function is progressively impaired with aging in healthy adults. All these findings support biopterins as therapeutic targets to improve vascular function.
Collapse
Affiliation(s)
- Muriel Bouly
- Cardiovascular & Metabolic Disease Centre for Therapeutic Innovation, Institut de Recherches Internationales Servier, Suresnes, France
| | - Marie-Pierre Bourguignon
- Cardiovascular & Metabolic Disease Centre for Therapeutic Innovation, Institut de Recherches Servier, Suresnes, France
| | - Susanne Roesch
- Centre of Excellence Clinical Operations, Institut de Recherches Internationales Servier, Suresnes, France
| | - Pascal Rigouin
- Biostatistics Department, Keyrus Life Science, Nantes, France
| | - Willy Gosgnach
- Centre of Excellence Biotechnology, Institut de Recherches Servier, Croissy, France
| | | | - Emilie Royere
- Cardiovascular & Metabolic Disease Centre for Therapeutic Innovation, Institut de Recherches Servier, Suresnes, France
| | - Nicolas Diguet
- Cardiovascular & Metabolic Disease Centre for Therapeutic Innovation, Institut de Recherches Servier, Suresnes, France
| | - Patricia Sansilvestri-Morel
- Cardiovascular & Metabolic Disease Centre for Therapeutic Innovation, Institut de Recherches Servier, Suresnes, France
| | - Ariane Bonnin
- Drug Safety & Pharmacokinetics Centre of Excellence, Biologie Servier, Gidy, France
| | - Laura Xuereb
- Centre of Excellence Methodology and Valorisation of Data, Institut de Recherches Internationales Servier, Suresnes, France
| | - Pascal Berson
- Cardiovascular & Metabolic Disease Centre for Therapeutic Innovation, Institut de Recherches Servier, Suresnes, France
| | - Michel Komajda
- Department of Cardiology, Hospital Saint Joseph, France/Paris Sorbonne Université France, Paris, France
| | | | - Benoit Tyl
- Cardiovascular & Metabolic Disease Centre for Therapeutic Innovation, Institut de Recherches Internationales Servier, Suresnes, France
| |
Collapse
|
6
|
Simonet S, Gosgnach W, Billou L, Lucats L, Royere E, Crespo C, Lapret I, Ragonnet L, Moreau K, Vayssettes-Courchay C, Berson P, Bourguignon MP. GTP-cyclohydrolase deficiency induced peripheral and deep microcirculation dysfunction with age. Microvasc Res 2021; 133:104078. [PMID: 32980388 DOI: 10.1016/j.mvr.2020.104078] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 09/03/2020] [Accepted: 09/22/2020] [Indexed: 01/04/2023]
Abstract
The present study assessed the impact of impaired tetrahydrobiopterin (BH4) production on vasoreactivity from conduit and small arteries along the vascular tree as seen during aging. For this purpose, the mutant hyperphenylalaninemic mouse (hph-1) was used. This model is reported to be deficient in GTP cyclohydrolase I, a rate limiting enzyme in BH4 biosynthesis. BH4 is a key regulator of vascular homeostasis by regulating the nitric oxide synthase 3 (NOS3) activity. In GTP-CH deficient mice, the aortic BH4 levels were decreased, by -77% in 12 week-middle-aged mice (young) and by -83% in 35-45 week-middle-aged mice (middle-aged). In young hph-1, the mesenteric artery ability to respond to flow was slightly reduced by 9%. Aging induced huge modification in many vascular functions. In middle-aged hph-1, we observed a decrease in aortic cGMP levels, biomarker of NO availability (-46%), in flow-mediated vasodilation of mesenteric artery (-31%), in coronary hyperemia response measured in isolated heart following transient ischemia (-27%) and in cutaneous microcirculation dilation in response to acetylcholine assessed in vivo by laser-doppler technic (-69%). In parallel, the endothelium-dependent relaxation in response to acetylcholine in conduit blood vessel, measured on isolated aorta rings, was unchanged in hph-1 mice whatever the age. Our findings demonstrate that in middle-aged GTP-CH depleted mice, the reduction of BH4 was characterized by an alteration of microcirculation dilatory properties observed in various parts of the vascular tree. Large conduit blood vessels vasoreactivity, ie aorta, was unaltered even in middle-aged mice emphasizing the main BH4-deletion impact on the microcirculation.
Collapse
Affiliation(s)
- Serge Simonet
- SERVIER Research Institute, Cardiovascular and Metabolism Discovery Research, Suresnes, France
| | - Willy Gosgnach
- SERVIER Research Institute, Cardiovascular and Metabolism Discovery Research, Suresnes, France
| | - Lucie Billou
- SERVIER Research Institute, Cardiovascular and Metabolism Discovery Research, Suresnes, France
| | - Laurence Lucats
- SERVIER Research Institute, Cardiovascular and Metabolism Discovery Research, Suresnes, France
| | - Emilie Royere
- SERVIER Research Institute, Cardiovascular and Metabolism Discovery Research, Suresnes, France
| | - Christine Crespo
- SERVIER Research Institute, Cardiovascular and Metabolism Discovery Research, Suresnes, France
| | - Isabelle Lapret
- SERVIER Research Institute, Cardiovascular and Metabolism Discovery Research, Suresnes, France
| | - Lea Ragonnet
- SERVIER Research Institute, Cardiovascular and Metabolism Discovery Research, Suresnes, France
| | - Kevin Moreau
- SERVIER Research Institute, Cardiovascular and Metabolism Discovery Research, Suresnes, France
| | | | - Pascal Berson
- SERVIER Research Institute, Cardiovascular and Metabolism Discovery Research, Suresnes, France
| | | |
Collapse
|
7
|
Volino-Souza M, de Oliveira GV, Conte-Junior CA, Alvares TS. Covid-19 Quarantine: Impact of Lifestyle Behaviors Changes on Endothelial Function and Possible Protective Effect of Beetroot Juice. Front Nutr 2020; 7:582210. [PMID: 33195371 PMCID: PMC7609412 DOI: 10.3389/fnut.2020.582210] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 09/10/2020] [Indexed: 12/11/2022] Open
Abstract
The current recommendation for reducing person-to-person Coronavirus 2019 (COVID-19) transmission is social distancing, including remote work and school, and home confinement. However, confinement may cause negative feelings, such as frustration, anger, boredom, and stress, in quarantined people. Furthermore, unhealthy diet and physical inactivity behaviors are commonly linked to home confinement, leading to weight gain, metabolic disorders, smoking, and exacerbated alcohol consumption. As a result, these unhealthy behaviors are typically linked to vascular endothelium damage (endothelial dysfunction), which is a first step for the development of cardiovascular disease (CVD). Given that CVD is the main cause of morbidity and mortality worldwide, attenuating the progression of endothelial dysfunction is very important for the control of CVD. Consuming vegetable rich in nitrate, such as beetroots, may be an effective way to prevent endothelial dysfunction. Several emerging studies have recommended beetroot juice in order to improve endothelial function in hypertensive, hypercholesterolemic individuals, as well as in those with CVD risk factors. Therefore, nitrate-rich vegetable consumption, such as beetroot, should be encouraged to be included in the diet during confinement from COVID-19 outbreaks in order to alleviate the potential negative effect of home confinement on cardiovascular health.
Collapse
Affiliation(s)
- Mônica Volino-Souza
- Nutrition and Exercise Metabolism Research Group, Nutrition Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Graduate Program in Food Science (PPGCAL), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, Brazil
| | - Gustavo Vieira de Oliveira
- Nutrition and Exercise Metabolism Research Group, Nutrition Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Nanotechnology Network, Carlos Chagas Filho Research Support Foundation of the State of Rio de Janeiro (FAPERJ), Rio de Janeiro, Brazil
| | - Carlos Adam Conte-Junior
- Nutrition and Exercise Metabolism Research Group, Nutrition Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Graduate Program in Food Science (PPGCAL), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, Brazil
- Nanotechnology Network, Carlos Chagas Filho Research Support Foundation of the State of Rio de Janeiro (FAPERJ), Rio de Janeiro, Brazil
| | - Thiago Silveira Alvares
- Nutrition and Exercise Metabolism Research Group, Nutrition Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Graduate Program in Food Science (PPGCAL), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, Brazil
- Postgraduate Program in Bioactive Products and Biosciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
8
|
Pisarenko O, Studneva I. Modulating the Bioactivity of Nitric Oxide as a Therapeutic Strategy in Cardiac Surgery. J Surg Res 2020; 257:178-188. [PMID: 32835951 DOI: 10.1016/j.jss.2020.07.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/29/2020] [Accepted: 07/11/2020] [Indexed: 12/29/2022]
Abstract
Cardiac surgery, including cardioplegic arrest and extracorporeal circulation, causes endothelial dysfunction, which can lead to no-reflow phenomenon and reduction of myocardial pump function. Nitric oxide (NO) deficiency is involved in this pathologic process, thereby providing a fundamental basis for the use of NO replacement therapy. Presently used drugs and additives to cardioplegic and heart preservation solutions are not able to reliably protect endothelial cells and cardiomyocytes from ischemia-reperfusion injury. This review discusses promising NO-releasing compounds of various chemical classes for cardioplegia and reperfusion, which effectively maintain NO homeostasis under experimental conditions, and presents the mechanisms of their action on the cardiovascular system. Incomplete preclinical studies and a lack of toxicity assessment, however, hinder translation of these drug candidates into the clinic. Perspectives for modulation of endothelial function using NO-mediated mechanisms are discussed. They are based on the cardioprotective potential of targeting vascular gap junctions and endothelial ion channels, intracoronary administration of progenitor cells, and endothelial-specific microRNAs. Some of these strategies may provide important therapeutic benefits for human cardiovascular interventions.
Collapse
Affiliation(s)
- Oleg Pisarenko
- National Medical Research Center for Cardiology, Institute of Experimental Cardiology, Moscow, Russian Federation.
| | - Irina Studneva
- National Medical Research Center for Cardiology, Institute of Experimental Cardiology, Moscow, Russian Federation
| |
Collapse
|
9
|
Alba BK, Castellani JW, Charkoudian N. Cold‐induced cutaneous vasoconstriction in humans: Function, dysfunction and the distinctly counterproductive. Exp Physiol 2019; 104:1202-1214. [DOI: 10.1113/ep087718] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 04/30/2019] [Indexed: 01/03/2023]
Affiliation(s)
- Billie K. Alba
- Thermal & Mountain Medicine Division US Army Research Institute of Environmental Medicine Natick MA USA
- Oak Ridge Institute of Science and Education Belcamp MD USA
| | - John W. Castellani
- Thermal & Mountain Medicine Division US Army Research Institute of Environmental Medicine Natick MA USA
| | - Nisha Charkoudian
- Thermal & Mountain Medicine Division US Army Research Institute of Environmental Medicine Natick MA USA
| |
Collapse
|
10
|
Loscalzo J. Nitric Oxide Signaling and Atherothrombosis Redux: Evidence From Experiments of Nature and Implications for Therapy. Circulation 2019; 137:233-236. [PMID: 29335284 DOI: 10.1161/circulationaha.117.032901] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Joseph Loscalzo
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA.
| |
Collapse
|
11
|
Shen JS, Arning E, West ML, Day TS, Chen S, Meng XL, Forni S, McNeill N, Goker-Alpan O, Wang X, Ashcraft P, Moore DF, Cheng SH, Schiffmann R, Bottiglieri T. Tetrahydrobiopterin deficiency in the pathogenesis of Fabry disease. Hum Mol Genet 2017; 26:1182-1192. [PMID: 28158561 DOI: 10.1093/hmg/ddx032] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 01/19/2017] [Indexed: 02/07/2023] Open
Abstract
Fabry disease is caused by deficient activity of α-galactosidase A and subsequent accumulation of glycosphingolipids (mainly globotriaosylceramide, Gb3), leading to multisystem organ dysfunction. Oxidative stress and nitric oxide synthase (NOS) uncoupling are thought to contribute to Fabry cardiovascular diseases. We hypothesized that decreased tetrahydrobiopterin (BH4) plays a role in the pathogenesis of Fabry disease. We found that BH4 was decreased in the heart and kidney but not in the liver and aorta of Fabry mice. BH4 was also decreased in the plasma of female Fabry patients, which was not corrected by enzyme replacement therapy (ERT). Gb3 levels were inversely correlated with BH4 levels in animal tissues and cultured patient cells. To investigate the role of BH4 deficiency in disease phenotypes, 12-month-old Fabry mice were treated with gene transfer-mediated ERT or substrate reduction therapy (SRT) for 6 months. In the Fabry mice receiving SRT but not ERT, BH4 deficiency was restored, concomitant with ameliorated cardiac and renal hypertrophy. Additionally, glutathione levels were decreased in Fabry mouse tissues in a sex-dependent manner. Renal BH4 levels were closely correlated with glutathione levels and inversely correlated with cardiac and kidney weight. In conclusion, this study showed that BH4 deficiency occurs in Fabry disease and may contribute to the pathogenesis of the disease through oxidative stress associated with a reduced antioxidant capacity of cells and NOS uncoupling. This study also suggested dissimilar efficacy of ERT and SRT in correcting pre-existing pathologies in Fabry disease.
Collapse
Affiliation(s)
- Jin-Song Shen
- Institute of Metabolic Disease, Baylor Research Institute, Dallas, TX 75226, USA
| | - Erland Arning
- Institute of Metabolic Disease, Baylor Research Institute, Dallas, TX 75226, USA
| | - Michael L West
- Division of Nephrology, Department of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Taniqua S Day
- Institute of Metabolic Disease, Baylor Research Institute, Dallas, TX 75226, USA
| | | | - Xing-Li Meng
- Institute of Metabolic Disease, Baylor Research Institute, Dallas, TX 75226, USA
| | - Sabrina Forni
- Institute of Metabolic Disease, Baylor Research Institute, Dallas, TX 75226, USA
| | - Nathan McNeill
- Institute of Metabolic Disease, Baylor Research Institute, Dallas, TX 75226, USA
| | - Ozlem Goker-Alpan
- Lysosomal and Rare Disorders Research and Treatment Center, Fairfax, VA, USA
| | - Xuan Wang
- Baylor Research Institute, Dallas, TX, USA
| | - Paula Ashcraft
- Institute of Metabolic Disease, Baylor Research Institute, Dallas, TX 75226, USA
| | - David F Moore
- Sanford Health and University of North Dakota, Fargo, ND, USA
| | | | - Raphael Schiffmann
- Institute of Metabolic Disease, Baylor Research Institute, Dallas, TX 75226, USA
| | - Teodoro Bottiglieri
- Institute of Metabolic Disease, Baylor Research Institute, Dallas, TX 75226, USA
| |
Collapse
|
12
|
Matalonga L, Gort L, Ribes A. Small molecules as therapeutic agents for inborn errors of metabolism. J Inherit Metab Dis 2017; 40:177-193. [PMID: 27966099 DOI: 10.1007/s10545-016-0005-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 11/22/2016] [Accepted: 11/23/2016] [Indexed: 01/03/2023]
Abstract
Most inborn errors of metabolism (IEM) remain without effective treatment mainly due to the incapacity of conventional therapeutic approaches to target the neurological symptomatology and to ameliorate the multisystemic involvement frequently observed in these patients. However, in recent years, the therapeutic use of small molecules has emerged as a promising approach for treating this heterogeneous group of disorders. In this review, we focus on the use of therapeutically active small molecules to treat IEM, including readthrough agents, pharmacological chaperones, proteostasis regulators, substrate inhibitors, and autophagy inducers. The small molecules reviewed herein act at different cellular levels, and this knowledge provides new tools to set up innovative treatment approaches for particular IEM. We review the molecular mechanism underlying therapeutic properties of small molecules, methodologies used to screen for these compounds, and their applicability in preclinical and clinical practice.
Collapse
Affiliation(s)
- Leslie Matalonga
- Secció Errors Congènits del Metabolisme-IBC. Servei de Bioquímica i Genètica Molecular, Hospital Clínic, CIBERER-U737; IDIBAPS, C/ Mejía Lequerica s/n, 08028, Barcelona, Spain.
| | - Laura Gort
- Secció Errors Congènits del Metabolisme-IBC. Servei de Bioquímica i Genètica Molecular, Hospital Clínic, CIBERER-U737; IDIBAPS, C/ Mejía Lequerica s/n, 08028, Barcelona, Spain
| | - Antonia Ribes
- Secció Errors Congènits del Metabolisme-IBC. Servei de Bioquímica i Genètica Molecular, Hospital Clínic, CIBERER-U737; IDIBAPS, C/ Mejía Lequerica s/n, 08028, Barcelona, Spain
| |
Collapse
|
13
|
Stewart CR, Obi N, Epane EC, Akbari AA, Halpern L, Southerland JH, Gangula PR. Effects of Diabetes on Salivary Gland Protein Expression of Tetrahydrobiopterin and Nitric Oxide Synthesis and Function. J Periodontol 2016; 87:735-41. [PMID: 26777763 PMCID: PMC4882217 DOI: 10.1902/jop.2016.150639] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Xerostomia is defined as dry mouth resulting from a change in the amount or composition of saliva and is often a major oral health complication associated with diabetes mellitus (DM). Studies have shown that xerostomia is more common in females at the onset of DM. Evidence suggests that nitric oxide (NO) plays a critical role in healthy salivary gland function. However, the specific mechanisms by which NO regulates salivary gland function at the onset of DM have yet to be determined. This study has two aims: 1) to determine whether protein expression or dimerization of NO synthase enzymes (neuronal [nNOS] and endothelial [eNOS]) are altered in the onset of diabetic xerostomia; and 2) to determine whether the changes in nNOS/eNOS protein expression or dimerization are correlated with changes in NO cofactor tetrahydrobiopterin (BH4) biosynthetic enzymes (guanosine triphosphate cyclohydrolase-1 and dihydrofolate reductase). METHODS Functional and Western blot studies were performed in streptozotocin-induced and control Sprague-Dawley female rats with DM (type 1 [t1DM]) using standardized protocols. Confirmation of xerostomia was determined by increased water intake and decreased salivary flow rate. RESULTS The results showed that in female rats with DM, salivary hypofunction is correlated with decreased submandibular and parotid gland sizes. The results also show a decrease in NOS and BH4 biosynthetic enzyme in submandibular glands. CONCLUSIONS These results indicate that a decrease in submandibular NO-BH4 protein expression may provide insight pertaining to mechanisms for the development of hyposalivation in DM-induced xerostomia. Furthermore, understanding the role of the NO-BH4 pathway may give insight into possible treatment options for the patient with DM experiencing xerostomia.
Collapse
Affiliation(s)
| | - Nneka Obi
- School of Dentistry, Meharry Medical College, Nashville, TN
| | - Elodie C Epane
- School of Dentistry, Meharry Medical College, Nashville, TN
| | | | - Leslie Halpern
- Department of Oral Surgery, School of Dentistry, Meharry Medical College
| | | | - Pandu R Gangula
- School of Dentistry, Meharry Medical College, Nashville, TN
- Center for Women's Health Research, School of Medicine, Meharry Medical College
- Department of Physiology, School of Medicine, Meharry Medical College
| |
Collapse
|
14
|
Roof SR, Boslett J, Russell D, del Rio C, Alecusan J, Zweier JL, Ziolo MT, Hamlin R, Mohler PJ, Curran J. Insulin-like growth factor 1 prevents diastolic and systolic dysfunction associated with cardiomyopathy and preserves adrenergic sensitivity. Acta Physiol (Oxf) 2016; 216:421-34. [PMID: 26399932 DOI: 10.1111/apha.12607] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 06/03/2015] [Accepted: 09/15/2015] [Indexed: 12/11/2022]
Abstract
AIMS Insulin-like growth factor 1 (IGF-1)-dependent signalling promotes exercise-induced physiological cardiac hypertrophy. However, the in vivo therapeutic potential of IGF-1 for heart disease is not well established. Here, we test the potential therapeutic benefits of IGF-1 on cardiac function using an in vivo model of chronic catecholamine-induced cardiomyopathy. METHODS Rats were perfused with isoproterenol via osmotic pump (1 mg kg(-1) per day) and treated with 2 mg kg(-1) IGF-1 (2 mg kg(-1) per day, 6 days a week) for 2 or 4 weeks. Echocardiography, ECG, and blood pressure were assessed. In vivo pressure-volume loop studies were conducted at 4 weeks. Heart sections were analysed for fibrosis and apoptosis, and relevant biochemical signalling cascades were assessed. RESULTS After 4 weeks, diastolic function (EDPVR, EDP, tau, E/A ratio), systolic function (PRSW, ESPVR, dP/dtmax) and structural remodelling (LV chamber diameter, wall thickness) were all adversely affected in isoproterenol-treated rats. All these detrimental effects were attenuated in rats treated with Iso+IGF-1. Isoproterenol-dependent effects on BP were attenuated by IGF-1 treatment. Adrenergic sensitivity was blunted in isoproterenol-treated rats but was preserved by IGF-1 treatment. Immunoblots indicate that cardioprotective p110α signalling and activated Akt are selectively upregulated in Iso+IGF-1-treated hearts. Expression of iNOS was significantly increased in both the Iso and Iso+IGF-1 groups; however, tetrahydrobiopterin (BH4) levels were decreased in the Iso group and maintained by IGF-1 treatment. CONCLUSION IGF-1 treatment attenuates diastolic and systolic dysfunction associated with chronic catecholamine-induced cardiomyopathy while preserving adrenergic sensitivity and promoting BH4 production. These data support the potential use of IGF-1 therapy for clinical applications for cardiomyopathies.
Collapse
Affiliation(s)
| | - J. Boslett
- The Dorothy M. Davis Heart and Lung Research Institute; The Ohio State University Wexner Medical Center; Columbus OH USA
| | - D. Russell
- Department of Veterinary Clinical Sciences; College of Veterinarian Medicine; The Ohio State University; Columbus OH USA
| | | | - J. Alecusan
- The Dorothy M. Davis Heart and Lung Research Institute; The Ohio State University Wexner Medical Center; Columbus OH USA
| | - J. L. Zweier
- The Dorothy M. Davis Heart and Lung Research Institute; The Ohio State University Wexner Medical Center; Columbus OH USA
| | - M. T. Ziolo
- The Dorothy M. Davis Heart and Lung Research Institute; The Ohio State University Wexner Medical Center; Columbus OH USA
- Department of Physiology and Cell Biology; The Ohio State University Wexner Medical Center; Columbus OH USA
| | | | - P. J. Mohler
- The Dorothy M. Davis Heart and Lung Research Institute; The Ohio State University Wexner Medical Center; Columbus OH USA
- Department of Internal Medicine; The Ohio State University Wexner Medical Center; Columbus OH USA
- Department of Physiology and Cell Biology; The Ohio State University Wexner Medical Center; Columbus OH USA
| | - J. Curran
- The Dorothy M. Davis Heart and Lung Research Institute; The Ohio State University Wexner Medical Center; Columbus OH USA
- Department of Internal Medicine; The Ohio State University Wexner Medical Center; Columbus OH USA
| |
Collapse
|
15
|
Franssen C, Chen S, Hamdani N, Paulus WJ. From comorbidities to heart failure with preserved ejection fraction: a story of oxidative stress. Heart 2015; 102:320-30. [PMID: 26674988 DOI: 10.1136/heartjnl-2015-307787] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Constantijn Franssen
- Department of Physiology, Institute for Cardiovascular Research, VU University Medical Center, Amsterdam, The Netherlands
| | - Sophia Chen
- Department of Physiology, Institute for Cardiovascular Research, VU University Medical Center, Amsterdam, The Netherlands
| | - Nazha Hamdani
- Department of Physiology, Institute for Cardiovascular Research, VU University Medical Center, Amsterdam, The Netherlands Department of Cardiovascular Physiology, Ruhr University Bochum, Bochum, Germany
| | - Walter J Paulus
- Department of Physiology, Institute for Cardiovascular Research, VU University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
16
|
Greaney JL, Stanhewicz AE, Proctor DN, Alexander LM, Kenney WL. Impairments in central cardiovascular function contribute to attenuated reflex vasodilation in aged skin. J Appl Physiol (1985) 2015; 119:1411-20. [PMID: 26494450 PMCID: PMC4683344 DOI: 10.1152/japplphysiol.00729.2015] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 10/20/2015] [Indexed: 01/08/2023] Open
Abstract
During supine passive heating, increases in skin blood flow (SkBF) and cardiac output (Qc) are both blunted in older adults. The aim here was to determine the effect of acutely correcting the peripheral vasodilatory capacity of aged skin on the integrated cardiovascular responses to passive heating. A secondary aim was to examine the SkBF-Qc relation during hyperthermia in the presence (upright posture) and absence (dynamic exercise) of challenges to central venous pressure. We hypothesized that greater increases in SkBF would be accompanied by greater increases in Qc. Eleven healthy older adults (69 ± 3 yr) underwent supine passive heating (0.8°C rise in core temperature; water-perfused suit) after ingesting sapropterin (BH4, a nitric oxide synthase cofactor; 10 mg/kg) or placebo (randomized double-blind crossover design). Twelve young (24 ± 1 yr) subjects served as a comparison group. SkBF (laser-Doppler flowmetry) and Qc (open-circuit acetylene wash-in) were measured during supine heating, heating + upright posture, and heating + dynamic exercise. Throughout supine and upright heating, sapropterin fully restored the SkBF response of older adults to that of young adults but Qc remained blunted. During heat + upright posture, SkBF failed to decrease in untreated older subjects. There were no age- or treatment-related differences in SkBF-Qc during dynamic exercise. The principal finding of this study was that the blunted Qc response to passive heat stress is directly related to age as opposed to the blunted peripheral vasodilatory capacity of aged skin. Furthermore, peripheral impairments to SkBF in the aged may contribute to inapposite responses during challenges to central venous pressure during hyperthermia.
Collapse
Affiliation(s)
- Jody L Greaney
- Department of Kinesiology, Noll Laboratory, The Pennsylvania State University, University Park, Pennsylvania
| | - Anna E Stanhewicz
- Department of Kinesiology, Noll Laboratory, The Pennsylvania State University, University Park, Pennsylvania
| | - David N Proctor
- Department of Kinesiology, Noll Laboratory, The Pennsylvania State University, University Park, Pennsylvania
| | - Lacy M Alexander
- Department of Kinesiology, Noll Laboratory, The Pennsylvania State University, University Park, Pennsylvania
| | - W Larry Kenney
- Department of Kinesiology, Noll Laboratory, The Pennsylvania State University, University Park, Pennsylvania
| |
Collapse
|
17
|
Toll-Like Receptor 4 Promotes NO Synthesis by Upregulating GCHI Expression under Oxidative Stress Conditions in Sheep Monocytes/Macrophages. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:359315. [PMID: 26576220 PMCID: PMC4630417 DOI: 10.1155/2015/359315] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 02/26/2015] [Indexed: 12/14/2022]
Abstract
Many groups of Gram-negative bacteria cause diseases that are harmful to sheep. Toll-like receptor 4 (TLR4), which is critical for detecting Gram-negative bacteria by the innate immune system, is activated by lipopolysaccharide (LPS) to initiate inflammatory responses and oxidative stress. Oxidation intermediates are essential activators of oxidative stress, as low levels of free radicals form a stressful oxidative environment that can clear invading pathogens. NO is an oxidation intermediate and its generation is regulated by nitric oxide synthase (iNOS). Guanosine triphosphate cyclohydrolase (GCHI) is the rate-limiting enzyme for tetrahydrobiopterin (BH4) synthesis, which is essential for the production of inducible iNOS. Previously, we made vectors to overexpress the sheep TLR4 gene. Herein, first generation (G1) of transgenic sheep was stimulated with LPS in vivo and in vitro, and oxidative stress and GCHI expression were investigated. Oxidative injury caused by TLR4 overexpression was tightly regulated in tissues. However, the transgenic (Tg) group still secreted nitric oxide (NO) when an iNOS inhibitor was added. Furthermore, GCHI expression remained upregulated in both serum and monocytes/macrophages. Thus, overexpression of TLR4 in transgenic sheep might accelerate the clearance of invading microbes through NO generation following LPS stimulation. Additionally, TLR4 overexpression also enhances GCHI activation.
Collapse
|
18
|
Greaney JL, Alexander LM, Kenney WL. Sympathetic control of reflex cutaneous vasoconstriction in human aging. J Appl Physiol (1985) 2015; 119:771-82. [PMID: 26272321 DOI: 10.1152/japplphysiol.00527.2015] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
This Synthesis highlights a series of recent studies that has systematically interrogated age-related deficits in cold-induced skin vasoconstriction. In response to cold stress, a reflex increase in sympathetic nervous system activity mediates reductions in skin blood flow. Reflex vasoconstriction during cold exposure is markedly impaired in aged skin, contributing to the relative inability of healthy older adults to maintain core temperature during mild cold stress in the absence of appropriate behavioral thermoregulation. This compromised reflex cutaneous vasoconstriction in healthy aging can occur as a result of functional deficits at multiple points along the efferent sympathetic reflex axis, including blunted sympathetic outflow directed to the skin vasculature, reduced presynaptic neurotransmitter synthesis and/or release, and altered end-organ responsiveness at several loci, in addition to potential alterations in afferent thermoreceptor function. Arguments have been made that the relative inability of aged skin to appropriately constrict is due to the aging cutaneous arterioles themselves, whereas other data point to the neural circuitry controlling those vessels. The argument presented herein provides strong evidence for impaired efferent sympathetic control of the peripheral cutaneous vasculature during whole body cold exposure as the primary mechanism responsible for attenuated vasoconstriction.
Collapse
Affiliation(s)
- Jody L Greaney
- Department of Kinesiology, Noll Laboratory, The Pennsylvania State University, University Park, Pennsylvania
| | - Lacy M Alexander
- Department of Kinesiology, Noll Laboratory, The Pennsylvania State University, University Park, Pennsylvania
| | - W Larry Kenney
- Department of Kinesiology, Noll Laboratory, The Pennsylvania State University, University Park, Pennsylvania
| |
Collapse
|
19
|
Jerkic M, Letarte M. Contribution of oxidative stress to endothelial dysfunction in hereditary hemorrhagic telangiectasia. Front Genet 2015; 6:34. [PMID: 25763011 PMCID: PMC4327735 DOI: 10.3389/fgene.2015.00034] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Accepted: 01/25/2015] [Indexed: 11/17/2022] Open
Abstract
Oxidative stress causes endothelial dysfunction and is implicated in the pathogenesis of cardiovascular diseases. Our studies suggested that reactive oxygen species (ROS) play a crucial role in hereditary hemorrhagic telangiectasia (HHT) disease, a vascular dysplasia affecting 1 in 5,000–8,000 people. Mutations in endoglin (ENG) and activin receptor-like kinase 1 (ACVRL1) genes are responsible for HHT1 and HHT2 and are associated with arteriovenous malformations. ENG and ACVRL1 interact with endothelial nitric oxide synthase (eNOS) and regulate its activation. Mice heterozygous for these genes (Eng+/– and Acvrl1+/–) show reduced ENG or ACVRL1 protein levels in endothelial cells causing eNOS uncoupling, generation of ROS rather than nitric oxide (NO•), leading to impaired NO• mediated vasodilation. ROS production is increased in several organs of Eng+/– and Acvrl1+/– mice, including lungs, liver, and colon, affected in HHT. The major source of increased oxidative stress in these tissues is eNOS-derived ROS and not mitochondrial or NADPH oxidase-dependent ROS. Eng+/– and Acvrl1+/– mice also develop with age signs of pulmonary arterial hypertension attributable to eNOS-derived ROS, which was preventable by antioxidant treatment. To date, only one pilot study has been carried out in HHT patients, and it showed beneficial effects of antioxidant therapy on epistaxis. We suggest that more clinical studies are warranted to investigate whether antioxidants would prevent, delay or attenuate manifestations of disease in individuals with HHT, based on our experimental data in mouse models.
Collapse
Affiliation(s)
- Mirjana Jerkic
- Anesthesia Research, Keenan Research Centre for Biomedical Science, St. Michael's Hospital, University of Toronto , Toronto, ON, Canada
| | - Michelle Letarte
- Molecular Structure and Function Program, Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, University of Toronto , Toronto, ON, Canada ; Department of Immunology, University of Toronto , Toronto, ON, Canada
| |
Collapse
|
20
|
Modulation of Radiation Response by the Tetrahydrobiopterin Pathway. Antioxidants (Basel) 2015; 4:68-81. [PMID: 26785338 PMCID: PMC4665563 DOI: 10.3390/antiox4010068] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 01/07/2015] [Accepted: 01/13/2015] [Indexed: 02/07/2023] Open
Abstract
Ionizing radiation (IR) is an integral component of our lives due to highly prevalent sources such as medical, environmental, and/or accidental. Thus, understanding of the mechanisms by which radiation toxicity develops is crucial to address acute and chronic health problems that occur following IR exposure. Immediate formation of IR-induced free radicals as well as their persistent effects on metabolism through subsequent alterations in redox mediated inter- and intracellular processes are globally accepted as significant contributors to early and late effects of IR exposure. This includes but is not limited to cytotoxicity, genomic instability, fibrosis and inflammation. Damage to the critical biomolecules leading to detrimental long-term alterations in metabolic redox homeostasis following IR exposure has been the focus of various independent investigations over last several decades. The growth of the "omics" technologies during the past decade has enabled integration of "data from traditional radiobiology research", with data from metabolomics studies. This review will focus on the role of tetrahydrobiopterin (BH4), an understudied redox-sensitive metabolite, plays in the pathogenesis of post-irradiation normal tissue injury as well as how the metabolomic readout of BH4 metabolism fits in the overall picture of disrupted oxidative metabolism following IR exposure.
Collapse
|
21
|
Immune changes and neurotransmitters: possible interactions in depression? Prog Neuropsychopharmacol Biol Psychiatry 2014; 48:268-76. [PMID: 23085509 DOI: 10.1016/j.pnpbp.2012.10.006] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Revised: 09/28/2012] [Accepted: 10/01/2012] [Indexed: 01/06/2023]
Abstract
A disturbed metabolism of catecholamines and other neurotransmitters appears to play a major role in the pathogenesis of neurospychiatric symptoms, such as changes in mood and depression. This symptomatology is common in patients with chronic inflammatory disorders such as infections, autoimmune diseases, or cancer. The pathogenesis of these symptoms is still unclear. Pro-inflammatory stimuli interfere not only with the neural circuits and neurotransmitters of the serotonergic system but also with those of the adrenergic system. The pro-inflammatory cytokine interferon-γ stimulates the biosynthesis of 5,6,7,8-tetrahydrobiopterin (BH4), which is a co-factor for several aromatic amino acid mono-oxygenases and is rate-limiting for the biosynthesis of the neurotransmitter serotonin and the catecholamines dopamine, epinephrine (adrenaline) and norepinephrine (noradrenaline). Interferon-γ triggers the high output of reactive oxygen species in macrophages, which can destroy the oxidation-labile BH4. Recent data suggests that oxidative loss of BH4 in chronic inflammatory conditions can reduce the biosynthesis of catecholamines, which may relate to disturbed adrenergic neurotransmitter pathways in patients.
Collapse
|
22
|
Synthesis of Sepiapterin-C via Hydrolysis of 6-Ethynylpteridine. Nat Prod Commun 2014. [DOI: 10.1177/1934578x1400900112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Acid hydrolysis of 6-ethynylpteridine catalyzed by mercury oxide gives 6-acetyl-2-amino-3,4-dihydropteridin-4-one in good yield. Partial reduction of the product with dissolved Al in NH3 solution afforded sepiapterin-C.
Collapse
|
23
|
Stanhewicz AE, Alexander LM, Kenney WL. Oral sapropterin augments reflex vasoconstriction in aged human skin through noradrenergic mechanisms. J Appl Physiol (1985) 2013; 115:1025-31. [PMID: 23869061 PMCID: PMC3798824 DOI: 10.1152/japplphysiol.00626.2013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 07/11/2013] [Indexed: 11/22/2022] Open
Abstract
Reflex vasoconstriction is attenuated in aged skin due to a functional loss of adrenergic vasoconstriction. Bioavailability of tetrahydrobiopterin (BH4), an essential cofactor for catecholamine synthesis, is reduced with aging. Locally administered BH4 increases vasoconstriction through adrenergic mechanisms in aged human skin. We hypothesized that oral sapropterin (Kuvan, a pharmaceutical BH4) would augment vasoconstriction elicited by whole-body cooling and tyramine perfusion in aged skin. Ten healthy subjects (age 75 ± 2 yr) ingested sapropterin (10 mg/kg) or placebo in a randomized, double-blind crossover design. Venous blood samples were collected prior to, and 3 h following ingestion. Three intradermal microdialysis fibers were placed in the forearm skin for local delivery of 1) lactated Ringer, 2) 5 mM BH4, and 3) 5 mM yohimbine + 1 mM propranolol (Y+P; to inhibit adrenergic vasoconstriction). Red cell flux was measured at each site by laser-Doppler flowmetry (LDF) as reflex vasoconstriction was induced by lowering and then clamping whole-body skin temperature (Tsk) using a water-perfused suit. Following whole-body cooling, subjects were rewarmed and 1 mM tyramine was perfused at each site to elicit endogenous norepinephrine release from the perivascular nerve terminal. Cutaneous vascular conductance was calculated as CVC = LDF/mean arterial pressure and expressed as change from baseline (ΔCVC). Plasma BH4 was elevated 3 h after ingestion of sapropterin (43.8 ± 3 vs. 19.1 ± 2 pmol/ml; P < 0.001). Sapropterin increased reflex vasoconstriction at the Ringer site at Tsk ≤ 32.5°C (P < 0.05). Local BH4 perfusion augmented reflex vasoconstriction at Tsk ≤ 31.5°C with placebo treatment only (P < 0.05). There was no treatment effect on reflex vasoconstriction at the BH4-perfused or Y+P-perfused sites. Sapropterin increased pharmacologically induced vasoconstriction at the Ringer site (-0.19 ± 0.03 vs. -0.08 ± 0.02 ΔCVC; P = 0.01). There was no difference in pharmacologically induced vasoconstriction between treatments at the BH4-perfused site (-0.16 ± 0.04 vs. -0.14 ± 0.03 ΔCVC; P = 0.60) or the Y+P-perfused site (-0.05 ± 0.02 vs.-0.06 ± 0.02 ΔCVC; P = 0.79). Sapropterin increases both reflex (cold-induced) and pharmacologically induced vasoconstriction through adrenergic mechanisms and may be a viable intervention to improve reflex vasoconstriction in aged humans.
Collapse
Affiliation(s)
- Anna E Stanhewicz
- Department of Kinesiology, Noll Laboratory, The Pennsylvania State University, University Park, Pennsylvania
| | | | | |
Collapse
|
24
|
Abstract
SIGNIFICANCE Despite recent medical advances, cardiovascular disease and heart failure (HF) continue to be major health concerns, and related mortality remains high. As a result, investigation of the mechanisms involved in the development of HF continues to be an active field of study. RECENT ADVANCES The renin-angiotensin system (RAS) and its effector molecule, angiotensin (Ang) II, affect cardiac function through both systemic and local actions, and have been shown to play a major role in cardiac remodeling and dysfunction in the failing heart. Many of the downstream effects of AngII signaling are mediated by elevated levels of reactive oxygen species (ROS) and oxidative stress, which have also been implicated in the pathology of HF. CRITICAL ISSUES Inhibitors of the RAS have proven beneficial in the treatment of patients at risk for and suffering from HF, but remain only partially effective. ROS can be generated from several different sources, and the oxidative state is normally tightly regulated in the heart. How AngII increases ROS levels and causes dysregulation of the cardiac oxidative state has been the subject of considerable interest in recent years. FUTURE DIRECTIONS A better understanding of this process and the mechanisms involved should lead to the development of more effective HF therapies and improved outcomes.
Collapse
Affiliation(s)
- Daniela Zablocki
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, New Jersey Medical School, University of Medicine and Dentistry of New Jersey , Newark, New Jersey
| | | |
Collapse
|
25
|
Site-specific antioxidative therapy for prevention of atherosclerosis and cardiovascular disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2013; 2013:796891. [PMID: 23738041 PMCID: PMC3657429 DOI: 10.1155/2013/796891] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Accepted: 04/09/2013] [Indexed: 02/07/2023]
Abstract
Oxidative stress has been implicated in pathophysiology of aging and age-associated disease. Antioxidative medicine has become a practice for prevention of atherosclerosis. However, limited success in preventing cardiovascular disease (CVD) in individuals with atherosclerosis using general antioxidants has prompted us to develop a novel antioxidative strategy to prevent atherosclerosis. Reducing visceral adipose tissue by calorie restriction (CR) and regular endurance exercise represents a causative therapy for ameliorating oxidative stress. Some of the recently emerging drugs used for the treatment of CVD may be assigned as site-specific antioxidants. CR and exercise mimetic agents are the choice for individuals who are difficult to continue CR and exercise. Better understanding of molecular and cellular biology of redox signaling will pave the way for more effective antioxidative medicine for prevention of CVD and prolongation of healthy life span.
Collapse
|
26
|
Noh JS, Choi YH, Song YO. Beneficial effects of the active principle component of Korean cabbage kimchi via increasing nitric oxide production and suppressing inflammation in the aorta of apoE knockout mice. Br J Nutr 2013; 109:17-24. [PMID: 22715945 DOI: 10.1017/s0007114512000633] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The present study investigated the effects of 3'-(4'-hydroxyl-3',5'-dimethoxyphenyl)propionic acid (HDMPPA), the active principle compound of kimchi, on vascular damage in the experimental atherosclerotic animal. HDMPPA was administrated by an intraperitoneal injection of 10 mg/kg per d for 8 weeks to apoE knockout (KO) mice with an atherogenic diet containing 1 % cholesterol, and its effects were compared with vehicle-treated control mice. HDMPPA increased NO content in the aorta, accompanied by a decrease in reactive oxygen species (ROS) concentration. Furthermore, in the HDMPPA-treated group, aortic endothelial NO synthase (eNOS) expression was up-regulated compared with the control group. These results suggested that HDMPPA could maintain NO bioavailability through an increasing eNOS expression and preventing NO degradation by ROS. Furthermore, HDMPPA treatment in apoE KO mice inhibited eNOS uncoupling through an increase in vascular tetrahydrobiopterin content and a decrease in serum asymmetric dimethylarginine levels. Moreover, HDMPPA ameliorates inflammatory-related protein expression in the aorta of apoE KO mice. Therefore, the present study suggests that HDMPPA, the active compound of kimchi, a Korean functional food, may exert its vascular protective effect through the preservation of NO bioavailability and suppression of the inflammatory response.
Collapse
Affiliation(s)
- Jeong Sook Noh
- Department of Food Science and Nutrition, Kimchi Research Institute, Pusan National University, Busan 609-735, Republic of Korea
| | | | | |
Collapse
|
27
|
Liao YC, Lee YH, Chuang LY, Guh JY, Shi MD, Huang JS. Advanced glycation end products-mediated hypertrophy is negatively regulated by tetrahydrobiopterin in renal tubular cells. Mol Cell Endocrinol 2012; 355:71-7. [PMID: 22326994 DOI: 10.1016/j.mce.2012.01.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Revised: 12/30/2011] [Accepted: 01/20/2012] [Indexed: 01/10/2023]
Abstract
Diabetic nephropathy (DN) is the most common cause of end-stage renal disease worldwide. The accumulation of advanced glycation end products (AGE) is a key mediator of renal tubular hypertrophy in DN. Elimination of tetrahydrobiopterin (BH(4)) and nitric oxide (NO) bioavailability may contribute to the aggravation of DN. The present study aims to explore any possible beneficial effect of exogenous BH(4) in alleviating the AGE-induced renal tubular hypertrophy in DN. Thus, renal tubular cells were treated with BH(4), BH(2), sepiapterin, or DAHP in the presence of AGE. We found that AGE (but not non-glycated BSA) markedly reduced NO production and increased hypertrophy index in these cells. Exogenous BH(4)/BH(2) and sepiapterin treatments attenuated AGE-inhibited the iNOS/NO/GTPCH I protein synthesis. Moreover, BH(4) and BH(2) significantly reversed AGE-enhanced the JAK2-STAT1/STAT3 activation. The abilities of BH(4) and BH(2) to inhibit AGE-induced renal cellular hypertrophy were verified by the observation that BH(4) and BH(2) inhibited hypertrophic growth and the protein synthesis of p27(Kip1) and α-SMA. These findings indicate for the first time that exogenous BH(4) and BH(2) attenuate AGE-induced hypertrophic effect at least partly by increasing the iNOS/GTPCH I synthesis and NO generation in renal tubular cells.
Collapse
Affiliation(s)
- Yi-Chen Liao
- Department of Dermatology, Chi Mei Medical Center, Tainan, Taiwan, ROC
| | | | | | | | | | | |
Collapse
|
28
|
Du J, Teng RJ, Lawrence M, Guan T, Xu H, Ge Y, Shi Y. The protein partners of GTP cyclohydrolase I in rat organs. PLoS One 2012; 7:e33991. [PMID: 22479495 PMCID: PMC3313957 DOI: 10.1371/journal.pone.0033991] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Accepted: 02/22/2012] [Indexed: 02/03/2023] Open
Abstract
OBJECTIVE GTP cyclohydrolase I (GCH1) is the rate-limiting enzyme for tetrahydrobiopterin biosynthesis and has been shown to be a promising therapeutic target in ischemic heart disease, hypertension, atherosclerosis and diabetes. The endogenous GCH1-interacting partners have not been identified. Here, we determined endogenous GCH1-interacting proteins in rat. METHODS AND RESULTS A pulldown and proteomics approach were used to identify GCH1 interacting proteins in rat liver, brain, heart and kidney. We demonstrated that GCH1 interacts with at least 17 proteins including GTP cyclohydrolase I feedback regulatory protein (GFRP) in rat liver by affinity purification followed by proteomics and validated six protein partners in liver, brain, heart and kidney by immunoblotting. GCH1 interacts with GFRP and very long-chain specific acyl-CoA dehydrogenase in the liver, tubulin beta-2A chain in the liver and brain, DnaJ homolog subfamily A member 1 and fatty aldehyde dehydrogenase in the liver, heart and kidney and eukaryotic translation initiation factor 3 subunit I (EIF3I) in all organs tested. Furthermore, GCH1 associates with mitochondrial proteins and GCH1 itself locates in mitochondria. CONCLUSION GCH1 interacts with proteins in an organ dependant manner and EIF3I might be a general regulator of GCH1. Our finding indicates GCH1 might have broader functions beyond tetrahydrobiopterin biosynthesis.
Collapse
Affiliation(s)
- Jianhai Du
- Department of Surgery, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
- Children's Research Institute, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Ru-Jeng Teng
- Children's Research Institute, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Matt Lawrence
- Human Proteomics Program and Department of Physiology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Tongju Guan
- Department of Surgery, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
- Children's Research Institute, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Hao Xu
- Department of Surgery, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
- Children's Research Institute, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Ying Ge
- Human Proteomics Program and Department of Physiology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Yang Shi
- Department of Surgery, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
- Children's Research Institute, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
- Patient Centered Research, Aurora Health Care, Milwaukee, Wisconsin, United States of America
| |
Collapse
|
29
|
Kim HR, Kim TH, Hong SH, Kim HG. Direct detection of tetrahydrobiopterin (BH4) and dopamine in rat brain using liquid chromatography coupled electrospray tandem mass spectrometry. Biochem Biophys Res Commun 2012; 419:632-7. [PMID: 22382017 DOI: 10.1016/j.bbrc.2012.02.064] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Accepted: 02/09/2012] [Indexed: 10/28/2022]
Abstract
A simple and rapid liquid chromatography tandem mass spectrometry (LC-MS/MS) method was developed for the quantification of tetrahydrobiopterin (BH4) and dopamine in rat brain using epsilon-acetamidocaproic acid (AACA) as an internal standard. Proteins in the samples were precipitated with acetonitrile and then the supernatants were separated by a Sepax Polar-Imidazole (2.1 × 100 mm, i.d., 3 μm) column using a mixture of 10mM ammonium formate in acetonitrile/water (75:25, v/v) as the mobile phase at a flow rate of 300 μl/min. Quantification was performed on a triple quadrupole mass spectrometer employing electrospray ionization with the operating conditions as multiple reaction monitoring (MRM) and positive ion mode from m/z 242.1 → 166.0 for BH4, m/z 154.1 → 90.0 for dopamine and m/z 174.1 → 114.0 for AACA (IS). The total chromatographic run time was for 5.5 min. The method was validated for the analysis of samples: the limit of detection was 10 ng/g. The calibration curve was linear between 10-2000 ng/g for BH4 (r(2)=0.995) and 10-5000 ng/g for dopamine (r(2)=0.997) in the rat brain. Thus, good correlated LC-ESI/MS/MS results were obtained and found to be a powerful tool for the quantitative analysis of BH4 and dopamine in the rat brain.
Collapse
Affiliation(s)
- Hak Rim Kim
- Department of Pharmacology, College of Medicine, Dankook University, San 29, Anseo-dong, Dongnam-gu, Cheonan, Chungnam 330-714, Republic of Korea
| | | | | | | |
Collapse
|
30
|
Han J, Shuvaev VV, Muzykantov VR. Targeted interception of signaling reactive oxygen species in the vascular endothelium. Ther Deliv 2012; 3:263-76. [PMID: 22834201 PMCID: PMC5333711 DOI: 10.4155/tde.11.151] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Reactive oxygen species (ROS) are implicated as injurious and as signaling agents in human maladies including inflammation, hyperoxia, ischemia-reperfusion and acute lung injury. ROS produced by the endothelium play an important role in vascular pathology. They quench, for example, nitric oxide, and mediate pro-inflammatory signaling. Antioxidant interventions targeted for the vascular endothelium may help to control these mechanisms. Animal studies have demonstrated superiority of targeting ROS-quenching enzymes catalase and superoxide dismutase to endothelial cells over nontargeted formulations. A diverse arsenal of targeted antioxidant formulations devised in the last decade shows promising results for specific quenching of endothelial ROS. In addition to alleviation of toxic effects of excessive ROS, these targeted interventions suppress pro-inflammatory mechanisms, including endothelial cytokine activation and barrier disruption. These interventions may prove useful in experimental biomedicine and, perhaps, in translational medicine.
Collapse
Affiliation(s)
- Jingyan Han
- Institute for Translational Medicine & Therapeutics & Department of Pharmacology, University of Pennsylvania School of Medicine, TRC 10–125, 3400 Civic Center Blvd, Bldg 421, Philadelphia, PA 19104–5158, USA
| | - Vladimir V Shuvaev
- Institute for Translational Medicine & Therapeutics & Department of Pharmacology, University of Pennsylvania School of Medicine, TRC 10–125, 3400 Civic Center Blvd, Bldg 421, Philadelphia, PA 19104–5158, USA
| | - Vladimir R Muzykantov
- Institute for Translational Medicine & Therapeutics & Department of Pharmacology, University of Pennsylvania School of Medicine, TRC 10–125, 3400 Civic Center Blvd, Bldg 421, Philadelphia, PA 19104–5158, USA
| |
Collapse
|
31
|
Moens AL, Ketner EA, Takimoto E, Schmidt TS, O'Neill CA, Wolin MS, Alp NJ, Channon KM, Kass DA. Bi-modal dose-dependent cardiac response to tetrahydrobiopterin in pressure-overload induced hypertrophy and heart failure. J Mol Cell Cardiol 2011; 51:564-9. [PMID: 21645517 PMCID: PMC3257520 DOI: 10.1016/j.yjmcc.2011.05.017] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2010] [Revised: 05/09/2011] [Accepted: 05/21/2011] [Indexed: 12/21/2022]
Abstract
The exogenous administration of tetrahydrobiopterin (BH4), an essential cofactor of nitric oxide synthase (NOS), has been shown to reduce left ventricular hypertrophy, fibrosis, and cardiac dysfunction in mice with pre-established heart disease induced by pressure-overload. In this setting, BH4 re-coupled endothelial NOS (eNOS), with subsequent reduction of NOS-dependent oxidative stress and reversal of maladaptive remodeling. However, recent studies suggest the effective BH4 dosing may be narrower than previously thought, potentially due to its oxidation upon oral consumption. Accordingly, we assessed the dose response of daily oral synthetic sapropterin dihydrochloride (6-R-l-erythro-5,6,7,8-tetrahydrobiopterin, 6R-BH4) on pre-established pressure-overload cardiac disease. Mice (n=64) were administered 0-400mg/kg/d BH4 by ingesting small pre-made pellets (consumed over 15-30 min). In a dose range of 36-200mg/kg/d, 6R-BH4 suppressed cardiac chamber remodeling, hypertrophy, fibrosis, and oxidative stress with pressure-overload. However, at both lower and higher doses, BH4 had less or no ameliorative effects. The effective doses correlated with a higher myocardial BH4/BH2 ratio. However, BH2 rose linearly with dose, and at the 400mg/kg/d, this lowered the BH4/BH2 ratio back toward control. These results expose a potential limitation for the clinical use of BH4, as variability of cellular redox and perhaps heart disease could produce a variable therapeutic window among individuals. This article is part of a special issue entitled ''Key Signaling Molecules in Hypertrophy and Heart Failure.''
Collapse
Affiliation(s)
- An L. Moens
- Division of Cardiology, Department of Medicine, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Elizabeth A. Ketner
- Division of Cardiology, Department of Medicine, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Eiki Takimoto
- Division of Cardiology, Department of Medicine, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Tim S. Schmidt
- Department of Cardiovascular Medicine, University of Oxford, Oxford, United Kingdom
| | | | - Michael S. Wolin
- Dept. of Physiology, New York Medical College, Valhalla, NY, USA
| | - Nicholas J Alp
- Department of Cardiovascular Medicine, University of Oxford, Oxford, United Kingdom
| | - Keith M. Channon
- Department of Cardiovascular Medicine, University of Oxford, Oxford, United Kingdom
| | - David A. Kass
- Division of Cardiology, Department of Medicine, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| |
Collapse
|
32
|
Otani H. Oxidative stress as pathogenesis of cardiovascular risk associated with metabolic syndrome. Antioxid Redox Signal 2011; 15:1911-26. [PMID: 21126197 DOI: 10.1089/ars.2010.3739] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Metabolic syndrome (MetS) is characterized by accumulation of visceral fat associated with the clustering of metabolic and pathophysiological cardiovascular risk factors: impaired glucose tolerance, dyslipidemia, and hypertension. Although the definition of MetS is different among countries, visceral obesity is an indispensable component of MetS. A growing body of evidence suggests that increased oxidative stress to adipocytes is central to the pathogenesis of cardiovascular disease in MetS. Increased oxidative stress to adipocytes causes dysregulated expression of inflammation-related adipocytokines in MetS, which contributes to obesity-associated vasculopathy and cardiovascular risk primarily through endothelial dysfunction. The purpose of present review is to unravel the mechanistic link between oxidative stress and cardiovascular risk in MetS, focusing on insulin resistance, hypertension, and atherosclerosis. Then, therapeutic opportunities translated from the bench to bedside will be provided to develop novel strategies to cardiovascular risk factors in MetS.
Collapse
Affiliation(s)
- Hajime Otani
- Second Department of Internal Medicine, Kansai Medical University, 10-15-Fumizono-cho, Moriguchi City, Japan.
| |
Collapse
|
33
|
Montezano AC, Touyz RM. Reactive oxygen species and endothelial function--role of nitric oxide synthase uncoupling and Nox family nicotinamide adenine dinucleotide phosphate oxidases. Basic Clin Pharmacol Toxicol 2011; 110:87-94. [PMID: 21883939 DOI: 10.1111/j.1742-7843.2011.00785.x] [Citation(s) in RCA: 221] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The healthy endothelium prevents platelet aggregation and leucocyte adhesion, controls permeability to plasma components and maintains vascular integrity. Damage to the endothelium promotes endothelial dysfunction characterized by: altered endothelium-mediated vasodilation, increased vascular reactivity, platelet aggregation, thrombus formation, increased permeability, leucocyte adhesion and monocyte migration. Molecular processes contributing to these phenomena include increased expression of adhesion molecules, synthesis of pro-inflammatory and pro-thrombotic factors and increased endothelin-1 secretion. Decreased nitric oxide bioavailability and increased generation of reactive oxygen species (ROS) are among the major molecular changes associated with endothelial dysfunction. A critical source of endothelial ROS is a family of non-phagocytic nicotinamide adenine dinucleotide phosphate (NADPH) oxidases, including the prototypic Nox2-based NADPH oxidases, Nox1, Nox4 and Nox5. Other possible sources include mitochondrial electron transport enzymes, xanthine oxidase, cyclooxygenase, lipoxygenase and uncoupled nitric oxide synthase (NOS). Cross-talk between ROS-generating enzymes, such as mitochondrial oxidases and Noxs, is increasingly implicated in cellular ROS production. The present review discusses the importance of endothelial ROS in health and disease and focuses on the major ROS-generating systems in the endothelium, namely uncoupled endothelial nitric oxide synthase and NADPH oxidases.
Collapse
Affiliation(s)
- Augusto C Montezano
- Kidney Research Centre, Ottawa Health Research Institute, University of Ottawa, Ontario, Canada
| | | |
Collapse
|
34
|
Abstract
Cardioprotective strategies such as pre- and postconditioning result in a robust reduction in infarct size in young, healthy male animals. However, there are data suggesting that the protection is diminished in animals with comorbidities such as hypertension, hypercholesterolemia, and diabetes. It is important to understand at a mechanistic level the reasons for these differences. The effects of sex and diseases need to be considered in design of cardioprotective interventions in animal studies and clinical trials.
Collapse
Affiliation(s)
- Michael N Sack
- Center for Molecular Medicine, NHLBI, NIH, Bethesda, MD, USA
| | | |
Collapse
|
35
|
Noguchi K, Hamadate N, Matsuzaki T, Sakanashi M, Nakasone J, Uchida T, Arakaki K, Kubota H, Ishiuchi S, Masuzaki H, Sugahara K, Ohya Y, Sakanashi M, Tsutsui M. Increasing dihydrobiopterin causes dysfunction of endothelial nitric oxide synthase in rats in vivo. Am J Physiol Heart Circ Physiol 2011; 301:H721-9. [PMID: 21622822 DOI: 10.1152/ajpheart.01089.2010] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
An elevation of oxidized forms of tetrahydrobiopterin (BH(4)), especially dihydrobiopterin (BH(2)), has been reported in the setting of oxidative stress, such as arteriosclerotic/atherosclerotic disorders, where endothelial nitric oxide synthase (eNOS) is dysfunctional, but the role of BH(2) in the regulation of eNOS activity in vivo remains to be evaluated. This study was designed to clarify whether increasing BH(2) concentration causes endothelial dysfunction in rats. To increase vascular BH(2) levels, the BH(2) precursor sepiapterin (SEP) was intravenously given after the administration of the specific dihydrofolate reductase inhibitor methotrexate (MTX) to block intracellular conversion of BH(2) to BH(4). MTX/SEP treatment did not significantly affect aortic BH(4) levels compared with control treatment. However, MTX/SEP treatment markedly augmented aortic BH(2) levels (291.1 ± 29.2 vs. 33.4 ± 6.4 pmol/g, P < 0.01) in association with moderate hypertension. Treatment with MTX alone did not significantly alter blood pressure or BH(4) levels but decreased the BH(4)-to-BH(2) ratio. Treatment with MTX/SEP, but not with MTX alone, impaired ACh-induced vasodilator and depressor responses compared with the control treatment (both P < 0.05) and also aggravated ACh-induced endothelium-dependent relaxations (P < 0.05) of isolated aortas without affecting sodium nitroprusside-induced endothelium-independent relaxations. Importantly, MTX/SEP treatment significantly enhanced aortic superoxide production, which was diminished by NOS inhibitor treatment, and the impaired ACh-induced relaxations were reversed with SOD (P < 0.05), suggesting the involvement of eNOS uncoupling. These results indicate, for the first time, that increasing BH(2) causes eNOS dysfunction in vivo even in the absence of BH(4) deficiency, demonstrating a novel insight into the regulation of endothelial function.
Collapse
Affiliation(s)
- Katsuhiko Noguchi
- Department of Pharmacology, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Zhang Y, Janssens SP, Wingler K, Schmidt HHHW, Moens AL. Modulating endothelial nitric oxide synthase: a new cardiovascular therapeutic strategy. Am J Physiol Heart Circ Physiol 2011; 301:H634-46. [PMID: 21622818 DOI: 10.1152/ajpheart.01315.2010] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The pathogenesis of many cardiovascular diseases is associated with reduced nitric oxide (NO) bioavailability and/or increased endothelial NO synthase (eNOS)-dependent superoxide formation. These findings support that restoring and conserving adequate NO signaling in the heart and blood vessels is a promising therapeutic intervention. In particular, modulating eNOS, e.g., through increasing the bioavailability of its substrate and cofactors, enhancing its transcription, and interfering with other modulators of eNOS pathway, such as netrin-1, has a high potential for effective treatments of cardiovascular diseases. This review provides an overview of the possibilities for modulating eNOS and how this may be translated to the clinic in addition to describing the genetic models used to study eNOS modulation.
Collapse
Affiliation(s)
- Yixuan Zhang
- Department of Cardiology, Maastricht University Medical Centre, Cardiovascular Research Institute Maastricht, Maastricht, The Netherlands
| | | | | | | | | |
Collapse
|
37
|
Abstract
The molybdenum cofactor is composed of a molybdenum coordinated by one or two rather complicated ligands known as either molybdopterin or pyranopterin. Pterin is one of a large family of bicyclic N-heterocycles called pteridines. Such molecules are widely found in Nature, having various forms to perform a variety of biological functions. This article describes the basic nomenclature of pterin, their biological roles, structure, chemical synthesis and redox reactivity. In addition, the biosynthesis of pterins and current models of the molybdenum cofactor are discussed.
Collapse
Affiliation(s)
- Partha Basu
- Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, PA 15282, United States
| | | |
Collapse
|
38
|
Rasmussen HH, Hamilton EJ, Liu CC, Figtree GA. Reversible oxidative modification: implications for cardiovascular physiology and pathophysiology. Trends Cardiovasc Med 2011; 20:85-90. [PMID: 21130951 DOI: 10.1016/j.tcm.2010.06.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Reminiscent of phosphorylation, cellular signaling can induce reversible forms of oxidative modification of proteins with an impact on their function. Redox signaling can be coupled to cell membrane receptors for hormones and be a physiologic means of regulating protein function, whereas pathologic increases in oxidative stress may induce disease processes. Here we review the role of reversible oxidative modification of proteins in the regulation of their function with particular emphasis on the cardiac Na(+)-K(+) pump. We describe how protein-kinase-dependent activation of redox signaling, mediated by angiotensin receptors and β adrenergic receptors, induces glutathionylation of an identified cysteine residue in the β(1) subunit of the α/β pump heterodimer; and we discuss how this may link neurohormonal abnormalities, increased oxidative stress, and cardiac myocyte Na(+) dysregulation and heart failure with important implications for treatment.
Collapse
Affiliation(s)
- Helge H Rasmussen
- North Shore Heart Research Group, Kolling Institute, University of Sydney, NSW 2006, Australia.
| | | | | | | |
Collapse
|
39
|
Nediani C, Raimondi L, Borchi E, Cerbai E. Nitric oxide/reactive oxygen species generation and nitroso/redox imbalance in heart failure: from molecular mechanisms to therapeutic implications. Antioxid Redox Signal 2011; 14:289-331. [PMID: 20624031 DOI: 10.1089/ars.2010.3198] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Adaptation of the heart to intrinsic and external stress involves complex modifications at the molecular and cellular levels that lead to tissue remodeling, functional and metabolic alterations, and finally to failure depending upon the nature, intensity, and chronicity of the stress. Reactive oxygen species (ROS) have long been considered as merely harmful entities, but their role as second messengers has gradually emerged. At the same time, our comprehension of the multifaceted role of nitric oxide (NO) and the related reactive nitrogen species (RNS) has been upgraded. The tight interlay between ROS and RNS suggests that their imbalance may implicate the impairment in physiological NO/redox-based signaling that contributes to the failing of the cardiovascular system. This review initially provides basic concepts on the role of nitroso/oxidative stress in the pathophysiology of heart failure with a particular focus on sources of ROS/RNS, their downstream targets, and endogenous modulators. Then, the role of NO/redox regulation of cardiomyocyte function, including calcium homeostasis, electrogenesis, and insulin signaling pathways, is described. Finally, an overview of old and emerging therapeutic opportunities in heart failure is presented, focusing on modulation of NO/redox mechanisms and discussing benefits and limitations.
Collapse
Affiliation(s)
- Chiara Nediani
- Department of Biochemical Sciences, University of Florence, Florence, Italy.
| | | | | | | |
Collapse
|
40
|
GANGULA PRR, MUKHOPADHYAY S, PASRICHA PJ, RAVELLA K. Sepiapterin reverses the changes in gastric nNOS dimerization and function in diabetic gastroparesis. Neurogastroenterol Motil 2010; 22:1325-31, e351-2. [PMID: 20731778 PMCID: PMC3072796 DOI: 10.1111/j.1365-2982.2010.01588.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
BACKGROUND We have demonstrated previously that in vivo supplementation of tetrahydrobiopterin (BH₄); a co-factor for neuronal nitric oxide synthase (nNOS) significantly restored delayed gastric emptying and attenuated nitrergic relaxation in diabetic rat. In this study, we have investigated whether supplementation of sepiapterin (SEP), a precursor for BH₄ biosynthesis via salvage pathway restores gastric emptying and nitrergic system in female diabetic rats. METHODS Diabetic rats (streptozotocin-induced) were supplemented with BH₄ or SEP (20 mg kg⁻¹ body weight). Gastric nitrergic relaxation in the presence or absence of high glucose and SEP were measured by electric field stimulation. Gastric muscular strips from healthy or diabetic female rats were incubated in the presence or absence of high glucose, SEP and/or methotrexate (MTX). Nitric oxide release was measured colorimetrically by NO assay kit. The expression of nNOSα and dimerization was detected by Western blot. KEY RESULTS In vitro studies on gastric muscular tissues showed that MTX, an inhibitor of BH₄ synthesis via salvage pathway, significantly decreased NO release. In vivo treatment with MTX reduced both gastric nitrergic relaxation and nNOSα dimerization. Supplementation of SEP significantly attenuated delayed gastric emptying in diabetic rats. In addition, SEP supplementation restored impaired nitrergic relaxation, gastric nNOSα protein expression, and dimerization in diabetic rats. CONCLUSIONS & INFERENCES The above data suggests that supplementation of SEP accelerated gastric emptying and attenuated reduced gastric nNOSα expression, and dimerization. Therefore, SEP supplementation is a potential therapeutic option for female patients of diabetic gastroparesis.
Collapse
Affiliation(s)
- P. R. R. GANGULA
- Department of physiology, Center for Women’s Health Research, Meharry Medical College, Nashville, TN, USA
| | - S. MUKHOPADHYAY
- Department of physiology, Center for Women’s Health Research, Meharry Medical College, Nashville, TN, USA
| | - P. J. PASRICHA
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, CA, USA
| | - K. RAVELLA
- Department of physiology, Center for Women’s Health Research, Meharry Medical College, Nashville, TN, USA
| |
Collapse
|
41
|
Lang JA, Holowatz LA, Kenney WL. Tetrahydrobiopterin does not affect end-organ responsiveness to norepinephrine-mediated vasoconstriction in aged skin. Am J Physiol Regul Integr Comp Physiol 2010; 299:R1651-5. [PMID: 20926766 PMCID: PMC3007192 DOI: 10.1152/ajpregu.00138.2010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2010] [Accepted: 09/30/2010] [Indexed: 11/22/2022]
Abstract
We have recently demonstrated that tetrahydrobiopterin (BH(4)) augments reflex vasoconstriction (VC) in aged skin. Although this appears to occur through its role in norepinephrine (NE) biosynthesis, the extent with which vascular mechanisms are affected are unknown. We hypothesized that localized BH(4) supplementation would not affect the VC response to exogenous NE when sympathetic nerves were blocked. Two microdialysis fibers were placed in bretylium tosylate pretreated (presynaptically blocks neurotransmitter release from sympathetic adrenergic nerve terminals; iontophoresis, 200 μA for 20 min) 3-cm(2) forearm skin of 10 young (Y) and 10 older (O) subjects for perfusion of 1) Ringer (control) and 2) 5 mM BH(4). While local skin temperature was clamped at 34°C, six concentrations of NE (10(-12), 10(-10), 10(-8), 10(-6), 10(-4), 10(-2) M) were infused at each drug-treated site. Cutaneous vascular conductance (CVC) was calculated (CVC = laser Doppler flux/mean arterial pressure) and normalized to baseline (%ΔCVC(base)). Despite prejunctional adrenergic blockade, NE-mediated VC was blunted in aged skin at each NE dose (10(-12): -12 ± 2 vs. -21 ± 2; 10(-10): -15 ± 2 vs. -27 ± 1; 10(-8): -22 ± 2 vs. -32 ± 2; 10(-6): -27 ± 2 vs. -38 ± 1; 10(-4): -52 ± 3 vs. -66 ± 5; 10(-2): -62 ± 3 vs. -75 ± 4%ΔCVC(base); P < 0.01), and this response was not affected by pretreatment with BH(4) (P > 0.05). Localized BH(4) did not affect end-organ responsiveness to exogenous NE, suggesting that the effects of BH(4) on cutaneous VC are primarily isolated to the NE biosynthetic pathway.
Collapse
Affiliation(s)
- James A Lang
- Pennsylvania State University, Noll Laboratory, Department of Kinesiology, University Park, Pennsylvania, USA.
| | | | | |
Collapse
|
42
|
Abstract
Tetrahydrobiopterin (BH4) is a multifunctional cofactor of aromatic amino acid hydroxylases and nitric oxide synthase (NOS) as well as an intracellular antioxidant in animals. Through regulation of NOS activity BH4 plays a pivotal role not only in a variety of normal cellular functions but also in the pathogenesis of cardiovascular and neurodegenerative diseases, which develop under oxidative stress conditions. It appears that a balanced interplay between BH4 and NOS is crucial for cellular fate. If cellular BH4 homeostasis maintained by BH4 synthesis and regeneration fails to cope with increased oxidative stress, NOS is uncoupled to generate superoxide rather than NO and, in turn, exacerbates impaired BH4 homeostasis, thereby leading to cell death. The fundamental biochemical events involved in the BH4-NOS interplay are essentially the same, as revealed in mammalian endothelial, cardiac, and neuronal cells. This review summarizes information on the cellular BH4 homeostasis in mammals, focusing on its regulation under normal and oxidative stress conditions.
Collapse
|
43
|
Jiang X, Kim B, Lin H, Lee CK, Kim J, Kang H, Lee P, Jung SH, Lee HM, Won KJ. Tetrahydrobiopterin Inhibits PDGF-stimulated Migration and Proliferation in Rat Aortic Smooth Muscle Cells via the Nitric Oxide Synthase-independent Pathway. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2010; 14:177-83. [PMID: 20631891 DOI: 10.4196/kjpp.2010.14.3.177] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2010] [Revised: 06/14/2010] [Accepted: 06/17/2010] [Indexed: 11/15/2022]
Abstract
Tetrahydrobiopterin (BH4), an essential cofactor for nitric oxide synthase (NOS) activity, is known to play important roles in modulating both NO and superoxide production during vascular diseases such as atherosclerosis. However, the role of BH4 in functions of vascular smooth muscle cells is not fully known. In this study, we tested the effects of BH4 and dihydrobiopterin (BH2), a BH4 precursor, on migration and proliferation in response to platelet-derived growth factor-BB (PDGF-BB) in rat aortic smooth muscle cells (RASMCs). Cell migration and proliferation were measured using a Boyden chamber and a 5-bromo-2'-deoxyuridine incorporation assay, respectively, and these results were confirmed with an ex vivo aortic sprout assay. Cell viability was examined by 2,3-bis [2-methoxy-4-nitro-5-sulfophenyl]-2H-tetrazolium-5-carboxanilide assays. BH4 and BH2 decreased PDGF-BB-induced cell migration and proliferation in a dose-dependent manner. The inhibition of cell migration and proliferation by BH4 and BH2 was not affected by pretreatment with N(G)-nitro-L-arginine methyl ester, a NOS inhibitor. Moreover, the sprout outgrowth formation of aortic rings induced by PDGF-BB was inhibited by BH4 and BH2. Cell viability was not inhibited by BH4 and BH2 treatment. The present results suggest that BH4 and BH2 may inhibit PDGF-stimulated RASMC migration and proliferation via the NOS-independent pathway. Therefore, BH4 and its derivative could be useful for the development of a candidate molecule with an NO-independent anti-atherosclerotic function.
Collapse
Affiliation(s)
- Xiaowen Jiang
- Departments of Physiology and Biotechnology, Konkuk University, Chungju 380-701, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Gangula PRR, Mukhopadhyay S, Ravella K, Cai S, Channon KM, Garfield RE, Pasricha PJ. Tetrahydrobiopterin (BH4), a cofactor for nNOS, restores gastric emptying and nNOS expression in female diabetic rats. Am J Physiol Gastrointest Liver Physiol 2010; 298:G692-9. [PMID: 20185690 PMCID: PMC2867432 DOI: 10.1152/ajpgi.00450.2009] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2009] [Accepted: 02/18/2010] [Indexed: 01/31/2023]
Abstract
Gastroparesis is a debilitating disease predominantly affecting young women. Recently, dysregulation of neuronal nitric oxide synthase (nNOS) in myenteric plexus neurons has been implicated for delayed solid gastric emptying/gastroparesis in diabetic patients. In this study, we have explored the role of tetrahydrobiopterin (BH4), a major cofactor for nNOS activity and NO synthesis in diabetic gastroparesis. Diabetes was induced with single injection of streptozotocin (55 mg/kg body wt, ip) in female rats, with experiments performed on week 3 or 9 following induction, with or without 3-wk BH4 supplementation. Gastric pyloric BH4 levels were significantly decreased in diabetic female rats compared with control (18.6 +/- 1.45 vs. 31.0 +/- 2.31 pmol/mg protein). In vitro studies showed that 2,4-diamino-6-hydroxypyrimidine (DAHP), an inhibitor of BH4 synthesis, significantly decreased gastric NO release and nitrergic relaxation. Three-week dietary supplementation of BH4 either from day 1 or week 6 significantly attenuated diabetes-induced delayed gastric emptying for solids (3 wk: BH4, 67 +/- 6.7 vs. diabetic, 36.05 +/- 7.09; 9 wk: BH4, 57 +/- 8.45 vs. diabetic, 33 +/- 9.91) and diabetes-induced reduction in pyloric nNOS-alpha protein expression in female rats. Supplementation of BH4 significantly restored gastric nNOS-alpha dimerization in 9-wk-old diabetic female rats. In addition, BH4 treatment reversed (17.23 +/- 5.81 vs. 42.0 +/- 2.70 mmHg x s) the diabetes-induced changes in intragastric pressures (IGP) and gastric pyloric nitrergic relaxation (-0.62 +/- 0.01 vs. -0.22 +/- 0.07). BH4 deficiency plays a critical role in diabetes-induced alterations including delayed solid gastric emptying, increased IGP, reduced pyloric nitrergic relaxation, and nNOS-alpha expression in female rats. Supplementation of BH4 accelerates gastric emptying by restoring nitrergic system in diabetic female rats. Therefore, BH4 supplementation is a potential therapeutic option for female patients of diabetic gastroparesis.
Collapse
Affiliation(s)
- Pandu R R Gangula
- Department of Obstetrics and Gynecology, Center for Women's Health Research, Meharry Medical College, Nashville, Tennessee 37208, USA.
| | | | | | | | | | | | | |
Collapse
|
45
|
Lang JA, Holowatz LA, Kenney WL. Localized tyrosine or tetrahydrobiopterin supplementation corrects the age-related decline in cutaneous vasoconstriction. J Physiol 2010; 588:1361-8. [PMID: 20176627 PMCID: PMC2872739 DOI: 10.1113/jphysiol.2009.185694] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2009] [Accepted: 02/21/2010] [Indexed: 11/08/2022] Open
Abstract
The attenuated reflex vasoconstriction in aged skin may be partly mediated by oxidant-induced reduction in functional substrate and cofactor availability for noradrenaline biosynthesis. We hypothesized that localized supplementation of tyrosine and tetrahydrobiopterin (BH(4)) in aged human skin could augment reflex- (whole-body cooling) and pharmacologically (tyramine, which displaces noradrenaline from axon terminals) induced vasoconstriction. Four microdialysis fibres were placed in the forearm skin of 10 young and 10 older subjects for infusion of (1) Ringer solution (control), (2) 0.5 mm L-tyrosine, (3) 5 mm BH(4), and (4) BH(4) + L-tyrosine. Cutaneous vascular conductance (CVC) was calculated (laser Doppler flux/mean arterial pressure) and normalized to baseline (% Delta CVC(base)). Vasoconstriction was attenuated at the control site in the older subjects during both whole-body cooling (young: 39 +/- 3, older: 17 +/- 3% Delta CVC(base); P < 0.01) and tyramine infusion (young: 41 +/- 3, older: 21 +/- 4% Delta CVC(base); P < 0.01). BH(4) (cold, young: 37 +/- 3, older: 36 +/- 3; tyramine, young: 41 +/- 2, older: 36 +/- 3% Delta CVC(base)) and tyrosine (cold, young: 37 +/- 4, older: 34 +/- 4; tyramine, young: 40 +/- 4, older: 45 +/- 4% Delta CVC(base)) both resolved the age-related decrease in cutaneous vasoconstriction, but BH(4) + tyrosine did not further augment vasoconstriction (cold, young: 38 +/- 4, older: 31 +/- 3; tyramine, young: 36 +/- 3, older: 36 +/- 5 Delta %CVC(base)). These data are consistent with the concept that reduced bioavailability of BH(4) and/or tyrosine may impair noradrenaline synthesis and contribute to the attenuated vasoconstrictor response in aged skin.
Collapse
Affiliation(s)
- James A Lang
- Department of Kinesiology, Pennsylvania State University, 229 Noll Lab, University Park, PA 16802, USA.
| | | | | |
Collapse
|
46
|
Noguchi K, Hamadate N, Matsuzaki T, Sakanashi M, Nakasone J, Sakanashi M, Tsutsui M, Sakanashi M. Improvement of impaired endothelial function by tetrahydrobiopterin in stroke-prone spontaneously hypertensive rats. Eur J Pharmacol 2010; 631:28-35. [PMID: 20096684 DOI: 10.1016/j.ejphar.2010.01.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2009] [Revised: 12/04/2009] [Accepted: 01/12/2010] [Indexed: 10/19/2022]
Abstract
To investigate the role of tetrahydrobiopterin (BH4), an essential cofactor of nitric oxide synthase, in endothelial function in a model of genetic hypertension, acetylcholine- and sodium nitroprusside (SNP)-induced vasodilator responses were examined in the absence and presence of BH4 in age-matched adult stroke-prone spontaneously hypertensive rats (SHRSP) and Wistar-Kyoto (WKY) rats. Acetylcholine-induced depressor responses attenuated significantly in SHRSP compared with those in WKY rats. Acetylcholine-induced relaxations in phenylephrine-precontracted aortic rings of SHRSP were also significantly impaired as compared to those of WKY rats, while SNP-induced relaxations were similar between both strains. In SHRSP, intravenous infusion of BH4 (0.12 mg/kg per min for 20 min following a bolus injection of 0.48 mg/kg) significantly improved vasodilator responses to acetylcholine without affecting those to SNP, but in WKY rats BH4 did not influence those to acetylcholine. BH4 infusion itself had no hemodynamic effect in both strains. However, BH4 levels in plasma and thoracic aorta as well as plasma concentrations of nitrite plus nitrate, metabolites of NO, in SHRSP were all significantly greater than those in WKY rats, suggesting the occurrence of compensatory upregulation of NO synthesis in SHRSP. These results demonstrate that the impaired endothelial function in SHRSP cannot be explained simply by the decrease in absolute amount of BH4.
Collapse
Affiliation(s)
- Katsuhiko Noguchi
- Department of Pharmacology, School of Medicine, Faculty of Medicine, University of the Ryukyus, Okinawa 903-0215, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
47
|
From AM, Borlaug BA. Heart failure with preserved ejection fraction: pathophysiology and emerging therapies. Cardiovasc Ther 2010; 29:e6-21. [PMID: 20370792 DOI: 10.1111/j.1755-5922.2010.00133.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Approximately half of patients with heart failure (HF) have a preserved ejection fraction (HFpEF). Morbidity and mortality are similar to HF with reduced EF (HFrEF), yet therapies with unequivocal benefit in HFrEF have not been shown to be effective in HFpEF. Recent studies have shown that the pathophysiology of HFpEF, initially believed to be due principally to diastolic dysfunction, is more complex. Appreciation of this complexity has shed new light into how HFpEF patients might respond to traditional HF treatments, while also suggesting new applications for novel therapies and strategies. In this review, we shall briefly review the pathophysiologic mechanisms in HFpEF, currently available clinical trial data, and finally explore new investigational therapies that are being developed and tested in ongoing and forthcoming trials.
Collapse
Affiliation(s)
- Aaron M From
- Division of Cardiovascular Diseases, Department of Internal Medicine, Mayo Clinic College of Medicine, Mayo Foundation, Rochester, MN, USA
| | | |
Collapse
|
48
|
Silberman GA, Fan THM, Liu H, Jiao Z, Xiao HD, Lovelock JD, Boulden BM, Widder J, Fredd S, Bernstein KE, Wolska BM, Dikalov S, Harrison DG, Dudley SC. Uncoupled cardiac nitric oxide synthase mediates diastolic dysfunction. Circulation 2010; 121:519-28. [PMID: 20083682 PMCID: PMC2819317 DOI: 10.1161/circulationaha.109.883777] [Citation(s) in RCA: 193] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
BACKGROUND Heart failure with preserved ejection fraction is 1 consequence of hypertension and is caused by impaired cardiac diastolic relaxation. Nitric oxide (NO) is a known modulator of cardiac relaxation. Hypertension can lead to a reduction in vascular NO, in part because NO synthase (NOS) becomes uncoupled when oxidative depletion of its cofactor tetrahydrobiopterin (BH(4)) occurs. Similar events may occur in the heart that lead to uncoupled NOS and diastolic dysfunction. METHODS AND RESULTS In a hypertensive mouse model, diastolic dysfunction was accompanied by cardiac oxidation, a reduction in cardiac BH(4), and uncoupled NOS. Compared with sham-operated animals, male mice with unilateral nephrectomy, with subcutaneous implantation of a controlled-release deoxycorticosterone acetate pellet, and given 1% saline to drink were mildly hypertensive and had diastolic dysfunction in the absence of systolic dysfunction or cardiac hypertrophy. The hypertensive mouse hearts showed increased oxidized biopterins, NOS-dependent superoxide production, reduced NO production, and dephosphorylated phospholamban. Feeding hypertensive mice BH(4) (5 mg/d), but not treating with hydralazine or tetrahydroneopterin, improved cardiac BH(4) stores, phosphorylated phospholamban levels, and diastolic dysfunction. Isolated cardiomyocyte experiments revealed impaired relaxation that was normalized with short-term BH(4) treatment. Targeted cardiac overexpression of angiotensin-converting enzyme also resulted in cardiac oxidation, NOS uncoupling, and diastolic dysfunction in the absence of hypertension. CONCLUSIONS Cardiac oxidation, independently of vascular changes, can lead to uncoupled cardiac NOS and diastolic dysfunction. BH(4) may represent a possible treatment for diastolic dysfunction.
Collapse
Affiliation(s)
- Gad A. Silberman
- Department of Medicine (Division of Cardiology), Emory University School of Medicine, Atlanta, GA
| | - Tai-Hwang M. Fan
- Department of Medicine (Division of Cardiology), Emory University School of Medicine, Atlanta, GA
- Atlanta VA Medical Center, Atlanta, GA
| | - Hong Liu
- Department of Medicine (Division of Cardiology), Emory University School of Medicine, Atlanta, GA
- Section of Cardiology, University of Illinois at Chicago, Chicago, IL and the Jesse Brown VA Medical Center, Chicago IL
| | - Zhe Jiao
- Department of Medicine (Division of Cardiology), Emory University School of Medicine, Atlanta, GA
- Section of Cardiology, University of Illinois at Chicago, Chicago, IL and the Jesse Brown VA Medical Center, Chicago IL
| | - Hong D. Xiao
- Department of Pathology, Massachusetts General Hospital, Boston, MA
| | - Joshua D. Lovelock
- Section of Cardiology, University of Illinois at Chicago, Chicago, IL and the Jesse Brown VA Medical Center, Chicago IL
| | - Beth M. Boulden
- Department of Medicine (Division of Cardiology), Emory University School of Medicine, Atlanta, GA
| | - Julian Widder
- Department of Medicine (Division of Cardiology), Emory University School of Medicine, Atlanta, GA
| | - Scott Fredd
- Department of Medicine (Division of Cardiology), Emory University School of Medicine, Atlanta, GA
| | | | - Beata M. Wolska
- Section of Cardiology, University of Illinois at Chicago, Chicago, IL and the Jesse Brown VA Medical Center, Chicago IL
| | - Sergey Dikalov
- Department of Medicine (Division of Cardiology), Emory University School of Medicine, Atlanta, GA
| | - David G. Harrison
- Department of Medicine (Division of Cardiology), Emory University School of Medicine, Atlanta, GA
- Atlanta VA Medical Center, Atlanta, GA
| | - Samuel C. Dudley
- Department of Medicine (Division of Cardiology), Emory University School of Medicine, Atlanta, GA
- Atlanta VA Medical Center, Atlanta, GA
- Section of Cardiology, University of Illinois at Chicago, Chicago, IL and the Jesse Brown VA Medical Center, Chicago IL
| |
Collapse
|
49
|
|
50
|
Miguel-Carrasco JL, Monserrat MT, Mate A, Vázquez CM. Comparative effects of captopril and l-carnitine on blood pressure and antioxidant enzyme gene expression in the heart of spontaneously hypertensive rats. Eur J Pharmacol 2010; 632:65-72. [PMID: 20123095 DOI: 10.1016/j.ejphar.2010.01.017] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2009] [Revised: 12/17/2009] [Accepted: 01/20/2010] [Indexed: 12/11/2022]
Abstract
It has been shown that oxidative stress is involved in the pathogenesis of arterial hypertension. The aim of this work was to study and compare the molecular mechanisms of the antioxidant properties of l-carnitine and captopril in spontaneously hypertensive rats (SHR). Antioxidant enzyme activity/regulation (glutathione peroxidase, glutathione reductase and superoxide dismutase) was measured in the erythrocytes and hearts of SHR. The molecular expression of endothelial nitric oxide synthase (eNOS), NADPH oxidase, angiotensin converting enzyme (ACE), angiotensin II type I receptor (AT(1) receptor) and NF-kappaB/IkappaB system was also measured in the hearts of these animals. Both l-carnitine and captopril augmented the antioxidant defense capacity in SHRs. This effect was mediated by an upregulation of antioxidant enzymes, an increase in the plasma total antioxidant capacity and a reduction of lipid peroxidation and superoxide anion production in the heart. The administration of both compounds to hypertensive animals also produced an upregulation of eNOS and a normalization of ACE, angiotensin AT(1) receptor, and the NF-kappaB/IkappaB system expression. In addition, captopril reduced the arterial blood pressure and the relative heart weights back to control values, whereas l-carnitine caused only a partial reduction of blood pressure values and did not alter the cardiac hypertrophy found in SHRs. In conclusion, we have found that l-carnitine and captopril have a similar antioxidant effect in the hearts of hypertensive rats. The molecular regulation of antioxidant enzymes through an inhibition of the renin-angiotensin system and a modulation of the NF-kappaB/IkappaB system seems to be responsible for this antioxidant effect.
Collapse
|