1
|
Gyöngyösi M, Guthrie J, Hasimbegovic E, Han E, Riesenhuber M, Hamzaraj K, Bergler-Klein J, Traxler D, Emmert MY, Hackl M, Derdak S, Lukovic D. Critical analysis of descriptive microRNA data in the translational research on cardioprotection and cardiac repair: lost in the complexity of bioinformatics. Basic Res Cardiol 2025:10.1007/s00395-025-01104-1. [PMID: 40205177 DOI: 10.1007/s00395-025-01104-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 03/21/2025] [Accepted: 03/24/2025] [Indexed: 04/11/2025]
Abstract
The unsuccessful translation of cardiac regeneration and cardioprotection from animal experiments to clinical applications in humans has raised the question of whether microRNA bioinformatics can narrow the gap between animal and human research outputs. We reviewed the literature for the period between 2000 and 2024 and found 178 microRNAs involved in cardioprotection and cardiac regeneration. On analyzing the orthologs and annotations, as well as downstream regulation, we observed species-specific differences in the diverse regulation of the microRNAs and related genes and transcriptomes, the influence of the experimental setting on the microRNA-guided biological responses, and database-specific bioinformatics results. We concluded that, in addition to reducing the number of in vivo experiments, following the 3R animal experiment rules, the bioinformatics approach allows the prediction of several currently unknown interactions between pathways, coding and non-coding genes, proteins, and downstream regulatory elements. However, a comprehensive analysis of the miRNA-mRNA-protein networks needs a profound bioinformatics and mathematical education and training to appropriately design an experimental study, select the right bioinformatics tool with programming language skills and understand and display the bioinformatics output of the results to translate the research data into clinical practice. In addition, using in-silico approaches, a risk of deviating from the in vivo processes exists, with adverse consequences on the translational research.
Collapse
Affiliation(s)
- Mariann Gyöngyösi
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria.
| | - Julia Guthrie
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Zimmermannplatz 10, 1090, Vienna, Austria
| | - Ena Hasimbegovic
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Emilie Han
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Martin Riesenhuber
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Kevin Hamzaraj
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Jutta Bergler-Klein
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Denise Traxler
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Maximilian Y Emmert
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charite (DHZC), Berlin, Germany
| | | | - Sophia Derdak
- Core Facilities, Medical University of Vienna, Vienna, Austria
| | - Dominika Lukovic
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
2
|
Gheitasi I, Akbari G, Savari F. Physiological and cellular mechanisms of ischemic preconditioning microRNAs-mediated in underlying of ischemia/reperfusion injury in different organs. Mol Cell Biochem 2025; 480:855-868. [PMID: 39001984 DOI: 10.1007/s11010-024-05052-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 06/10/2024] [Indexed: 07/15/2024]
Abstract
Ischemia-reperfusion (I/R) injury, as a pathological phenomenon, takes place when blood supply to an organ is disrupted and then aggravated during restoration of blood flow. Ischemic preconditioning (IPC) is a potent method for attenuating subsequent events of IR damage in numerous organs. IPC protocol is determined by a brief and sequential time periods of I/R before the main ischemia. MicroRNAs are endogenous non-coding RNAs that regulate post-transcriptionally target mRNA translation via degrading it and/or suppressing protein synthesis. This review introduces the physiological and cellular mechanisms of ischemic preconditioning microRNAs-mediated after I/R insult in different organs such as the liver, kidney, heart, brain, and intestine. Data of this review have been collected from the scientific articles published in databases such as Science Direct, Scopus, PubMed, Web of Science, and Scientific Information Database from 2000 to 2023. Based on these literature studies, IPC/IR intervention can affect cellular mechanisms including oxidative stress, apoptosis, angiogenesis, and inflammation through up-regulation or down-regulation of multiple microRNAs and their target genes.
Collapse
Affiliation(s)
- Izadpanah Gheitasi
- Department of Physiology, Faculty of Medicine, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Ghaidafeh Akbari
- Department of Physiology, Faculty of Medicine, Yasuj University of Medical Sciences, Yasuj, Iran.
| | - Feryal Savari
- Department of Medical Basic Sciences, Shoushtar Faculty of Medical Sciences, Shoushtar, Iran.
| |
Collapse
|
3
|
Hazra J, Vijayakumar A, Mahapatra NR. Emerging role of heat shock proteins in cardiovascular diseases. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 134:271-306. [PMID: 36858739 DOI: 10.1016/bs.apcsb.2022.10.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Heat Shock Proteins (HSPs) are evolutionarily conserved proteins from prokaryotes to eukaryotes. They are ubiquitous proteins involved in key physiological and cellular pathways (viz. inflammation, immunity and apoptosis). Indeed, the survivability of the cells under various stressful conditions depends on appropriate levels of HSP expression. There is a growing line of evidence for the role of HSPs in regulating cardiovascular diseases (CVDs) (viz. hypertension, atherosclerosis, atrial fibrillation, cardiomyopathy and heart failure). Furthermore, studies indicate that a higher concentration of circulatory HSP antibodies correlate to CVDs; some are even potential markers for CVDs. The multifaceted roles of HSPs in regulating cellular signaling necessitate unraveling their links to pathophysiology of CVDs. This review aims to consolidate our understanding of transcriptional (via multiple transcription factors including HSF-1, NF-κB, CREB and STAT3) and post-transcriptional (via microRNAs including miR-1, miR-21 and miR-24) regulation of HSPs. The cytoprotective nature of HSPs catapults them to the limelight as modulators of cell survival. Yet another attractive prospect is the development of new therapeutic strategies against cardiovascular diseases (from hypertension to heart failure) by targeting the regulation of HSPs. Moreover, this review provides insights into how genetic variation of HSPs can contribute to the manifestation of CVDs. It would also offer a bird's eye view of the evolving role of different HSPs in the modulation and manifestation of cardiovascular disease.
Collapse
Affiliation(s)
- Joyita Hazra
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| | - Anupama Vijayakumar
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| | - Nitish R Mahapatra
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India.
| |
Collapse
|
4
|
Majka M, Kleibert M, Wojciechowska M. Impact of the Main Cardiovascular Risk Factors on Plasma Extracellular Vesicles and Their Influence on the Heart's Vulnerability to Ischemia-Reperfusion Injury. Cells 2021; 10:3331. [PMID: 34943838 PMCID: PMC8699798 DOI: 10.3390/cells10123331] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/20/2021] [Accepted: 11/22/2021] [Indexed: 12/12/2022] Open
Abstract
The majority of cardiovascular deaths are associated with acute coronary syndrome, especially ST-elevation myocardial infarction. Therapeutic reperfusion alone can contribute up to 40 percent of total infarct size following coronary artery occlusion, which is called ischemia-reperfusion injury (IRI). Its size depends on many factors, including the main risk factors of cardiovascular mortality, such as age, sex, systolic blood pressure, smoking, and total cholesterol level as well as obesity, diabetes, and physical effort. Extracellular vesicles (EVs) are membrane-coated particles released by every type of cell, which can carry content that affects the functioning of other tissues. Their role is essential in the communication between healthy and dysfunctional cells. In this article, data on the variability of the content of EVs in patients with the most prevalent cardiovascular risk factors is presented, and their influence on IRI is discussed.
Collapse
Affiliation(s)
- Miłosz Majka
- Laboratory of Centre for Preclinical Research, Department of Experimental and Clinical Physiology, Medical University of Warsaw, Banacha 1b, 02-097 Warsaw, Poland; (M.M.); (M.K.)
| | - Marcin Kleibert
- Laboratory of Centre for Preclinical Research, Department of Experimental and Clinical Physiology, Medical University of Warsaw, Banacha 1b, 02-097 Warsaw, Poland; (M.M.); (M.K.)
| | - Małgorzata Wojciechowska
- Laboratory of Centre for Preclinical Research, Department of Experimental and Clinical Physiology, Medical University of Warsaw, Banacha 1b, 02-097 Warsaw, Poland; (M.M.); (M.K.)
- Invasive Cardiology Unit, Independent Public Specialist Western Hospital John Paul II, Daleka 11, 05-825 Grodzisk Mazowiecki, Poland
| |
Collapse
|
5
|
Gao S, Gao H, Dai L, Han Y, Lei Z, Wang X, Chang H, Liu S, Wang Z, Tong H, Wu H. miR-126 regulates angiogenesis in myocardial ischemia by targeting HIF-1α. Exp Cell Res 2021; 409:112925. [PMID: 34785240 DOI: 10.1016/j.yexcr.2021.112925] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 10/17/2021] [Accepted: 11/12/2021] [Indexed: 12/27/2022]
Abstract
Promoting angiogenesis by targeting various angiogenic regulators has emerged as a new treatment strategy for myocardial ischemia (MI). MicroRNA-126 (miR-126) has been identified as the main regulator of compensatory angiogenesis; however, its role in MI is unclear. A rat MI model and an EA. hy926 endothelial cell hypoxia model were constructed and it was found that miR-126 was highly expressed in both models. The knockdown of HIF-1α expression in EA. hy926 cells in turn downregulated VEGF and CD34 expression and consequently inhibited angiogenesis. MiR-126 inhibitor inhibited EA. hy926 cell migration and tube formation as well as downregulated VEGF and CD34 expression, and these were reversed by transfection of miR-126 mimics. Rescue tests using miR-126 and HIF-1α demonstrated that miR-126-mediated regulation of angiogenesis was dependent on HIF-1α. In summary, miR-126 regulates the occurrence and progression of angiogenesis during MI via HIF-1α and may be a potential new therapeutic target.
Collapse
Affiliation(s)
- Shuibo Gao
- Second School of Clinical Medicine, Henan University of Chinese Medicine, Zhengzhou, 450002, China; Laboratory of Cell Imaging, Henan University of Chinese Medicine, Zhengzhou, 450002, China
| | - Haixia Gao
- Second School of Clinical Medicine, Henan University of Chinese Medicine, Zhengzhou, 450002, China; Laboratory of Cell Imaging, Henan University of Chinese Medicine, Zhengzhou, 450002, China
| | - Liping Dai
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Yongjun Han
- Second School of Clinical Medicine, Henan University of Chinese Medicine, Zhengzhou, 450002, China; Laboratory of Cell Imaging, Henan University of Chinese Medicine, Zhengzhou, 450002, China
| | - Zhen Lei
- Second School of Clinical Medicine, Henan University of Chinese Medicine, Zhengzhou, 450002, China; Laboratory of Cell Imaging, Henan University of Chinese Medicine, Zhengzhou, 450002, China
| | - Xinzhou Wang
- Second School of Clinical Medicine, Henan University of Chinese Medicine, Zhengzhou, 450002, China; Laboratory of Cell Imaging, Henan University of Chinese Medicine, Zhengzhou, 450002, China
| | - Hongbo Chang
- Second School of Clinical Medicine, Henan University of Chinese Medicine, Zhengzhou, 450002, China; Laboratory of Cell Imaging, Henan University of Chinese Medicine, Zhengzhou, 450002, China
| | - Shanshan Liu
- Second School of Clinical Medicine, Henan University of Chinese Medicine, Zhengzhou, 450002, China; Laboratory of Cell Imaging, Henan University of Chinese Medicine, Zhengzhou, 450002, China
| | - Zhentao Wang
- Institute of Cardiovascular Disease, Henan University of Chinese Medicine, Zhengzhou, 450002, China
| | - Haibin Tong
- College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China.
| | - Hong Wu
- Second School of Clinical Medicine, Henan University of Chinese Medicine, Zhengzhou, 450002, China; Laboratory of Cell Imaging, Henan University of Chinese Medicine, Zhengzhou, 450002, China; Institute of Cardiovascular Disease, Henan University of Chinese Medicine, Zhengzhou, 450002, China.
| |
Collapse
|
6
|
Golmohammadi MG, Banaei S, Azimian E. Mechanistic Evaluation of Linalool Effect against Renal Ischemia- Reperfusion Injury in Rats. Drug Res (Stuttg) 2021; 71:372-378. [PMID: 34020490 DOI: 10.1055/a-1488-5904] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
BACKGROUND Kidney ischemia reperfusion (IR) is an important cause of renal dysfunction. The hypoxic conditions in ischemic damage result in the formation of free radicals and apoptotic death of renal cells. We evaluated the renoprotective effects of linalool in IR- induced renal injury. METHODS Wistar rats were divided into three groups of six rats; namely, control group, IR group, and linalool + IR group. The animals were unilaterally nephrectomized and subjected to 45 min of renal pedicle occlusion followed by 24 h reperfusion. Linalool (40mg/kg) was administered before ischemia. After 24h reperfusion, the kidney tissues were obtained for detection of miR-21, HSP 70 and caspase-3 expression levels and histological studies. Also, the blood samples were collected for the measurement of biochemical parameters. RESULTS IR significantly increased the expression of miR-21, HSP70 and capase-3 and the serum levels of BUN-Cr, ALT, AST and ALP enzymes. Furthermore, histological findings of the IR group confirmed that there were acute tubular necrosis and lymphocyte infiltration in the renal tissues. Treatment with linalool improved the renal function and morphological changes. CONCLUSION It seems that linalool could exert a nephroprotective effect via a number of mechanisms in renal IR injury.
Collapse
Affiliation(s)
| | - Shokofeh Banaei
- Department of Physiology, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Ehsan Azimian
- Department of Linguistics and Foreign Languages, Payame Noor University, Tehran, Iran
| |
Collapse
|
7
|
Prokudina ES, Kurbatov BK, Zavadovsky KV, Vrublevsky AV, Naryzhnaya NV, Lishmanov YB, Maslov LN, Oeltgen PR. Takotsubo Syndrome: Clinical Manifestations, Etiology and Pathogenesis. Curr Cardiol Rev 2021; 17:188-203. [PMID: 31995013 PMCID: PMC8226199 DOI: 10.2174/1573403x16666200129114330] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 12/02/2019] [Accepted: 12/12/2019] [Indexed: 12/15/2022] Open
Abstract
The purpose of the review is the analysis of clinical and experimental data on the etiology and pathogenesis of takotsubo syndrome (TS). TS is characterized by contractile dysfunction, which usually affects the apical region of the heart without obstruction of coronary artery, moderate increase in myocardial necrosis markers, prolonged QTc interval (in 50% of patients), sometimes elevation of ST segment (in 19% of patients), increase N-Terminal Pro-B-Type Natriuretic Peptide level, microvascular dysfunction, sometimes spasm of the epicardial coronary arteries (in 10% of patients), myocardial edema, and life-threatening ventricular arrhythmias (in 11% of patients). Stress cardiomyopathy is a rare disease, it is observed in 0.6 - 2.5% of patients with acute coronary syndrome. The occurrence of takotsubo syndrome is 9 times higher in women, who are aged 60-70 years old, than in men. The hospital mortality among patients with TS corresponds to 3.5% - 12%. Physical or emotional stress do not precede disease in all patients with TS. Most of patients with TS have neurological or mental illnesses. The level of catecholamines is increased in patients with TS, therefore, the occurrence of TS is associated with excessive activation of the adrenergic system. The negative inotropic effect of catecholamines is associated with the activation of β2 adrenergic receptors. An important role of the adrenergic system in the pathogenesis of TS is confirmed by studies which were performed using 125I-metaiodobenzylguanidine (125I -MIBG). TS causes edema and inflammation of the myocardium. The inflammatory response in TS is systemic. TS causes impaired coronary microcirculation and reduces coronary reserve. There is a reason to believe that an increase in blood viscosity may play an important role in the pathogenesis of microcirculatory dysfunction in patients with TS. Epicardial coronary artery spasm is not obligatory for the occurrence of TS. Cortisol, endothelin-1 and microRNAs are challengers for the role of TS triggers. A decrease in estrogen levels is a factor contributing to the onset of TS. The central nervous system appears to play an important role in the pathogenesis of TS.
Collapse
Affiliation(s)
- Ekaterina S Prokudina
- Laboratory of Experimental Cardiology, Cardiology Research Institute, Tomsk National Research Medical Center of the RAS, Tomsk, Russian Federation
| | - Boris K Kurbatov
- Laboratory of Experimental Cardiology, Cardiology Research Institute, Tomsk National Research Medical Center of the RAS, Tomsk, Russian Federation
| | - Konstantin V Zavadovsky
- Laboratory of Experimental Cardiology, Cardiology Research Institute, Tomsk National Research Medical Center of the RAS, Tomsk, Russian Federation
| | - Alexander V Vrublevsky
- Laboratory of Experimental Cardiology, Cardiology Research Institute, Tomsk National Research Medical Center of the RAS, Tomsk, Russian Federation
| | - Natalia V Naryzhnaya
- Laboratory of Experimental Cardiology, Cardiology Research Institute, Tomsk National Research Medical Center of the RAS, Tomsk, Russian Federation
| | - Yuri B Lishmanov
- Laboratory of Experimental Cardiology, Cardiology Research Institute, Tomsk National Research Medical Center of the RAS, Tomsk, Russian Federation
| | - Leonid N Maslov
- Laboratory of Experimental Cardiology, Cardiology Research Institute, Tomsk National Research Medical Center of the RAS, Tomsk, Russian Federation
| | - Peter R Oeltgen
- Department of Pathology, University of Kentucky College of Medicine, Lexington, KY 40506, United States
| |
Collapse
|
8
|
Chen C, Liu M, Tang Y, Sun H, Lin X, Liang P, Jiang B. LncRNA H19 is involved in myocardial ischemic preconditioning via increasing the stability of nucleolin protein. J Cell Physiol 2020; 235:5985-5994. [PMID: 31975412 DOI: 10.1002/jcp.29524] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 01/09/2020] [Indexed: 12/12/2022]
Abstract
Myocardial ischemic preconditioning (IP) is defined as a brief period of myocardial ischemia/reperfusion (I/R) that significantly reduces injury during the subsequent exposure to long-term I/R. However, the underlying mechanisms of myocardial IP are yet to be elucidated. This study investigated the expression and roles of long noncoding RNA (lncRNA) H19 in myocardial IP in vitro and in vivo. LncRNA H19 expression levels were analyzed by quantitative reverse-transcription polymerase chain reaction, cell viability was determined by the Cell Counting Kit-8 assay, apoptosis was evaluated based on the caspase 3 activity, and RNA immunoprecipitation was performed to examine the interaction between lncRNA H19 and nucleolin. The results of this study showed that lncRNA H19 expression was significantly upregulated in mouse hearts subjected to myocardial IP, in rat H9C2 cells exposed to H2 O2 preconditioning (H2 O2 -PC), and in neonatal rat cardiomyocytes subjected to hypoxia preconditioning. H19 knockdown abrogated the H2 O2 -PC-mediated protection in cardiomyocytes evidenced by the decreased cell viability and increased caspase-3 activity. Conversely, H19 overexpression enhanced the protective role of H2 O2 -PC in cardiomyocytes. In addition, H19 overexpression increased the expression of nucleolin, whereas H19 ablation abrogated H2 O2 -PC-induced upregulation of nucleolin in cardiomyocytes. Furthermore, H19 overexpression increased the stabilization of nucleolin; an interaction between H19 and nucleolin was identified using the RNA-protein interaction studies. Furthermore, nucleolin small interfering RNA relieved the protective role of lncRNA H19. These findings demonstrated that the lncRNA H19 is involved in myocardial IP via increasing the stability of nucleolin protein and lncRNA H19 may represent a potential therapeutic target for the treatment of the myocardial injury.
Collapse
Affiliation(s)
- Cheng Chen
- Department of Pathophysiology, Sepsis Translational Medicine Key Laboratory of Hunan Province, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Meidong Liu
- Department of Pathophysiology, Sepsis Translational Medicine Key Laboratory of Hunan Province, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Yuting Tang
- Department of Pathophysiology, Sepsis Translational Medicine Key Laboratory of Hunan Province, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Hui Sun
- Department of Pathophysiology, Sepsis Translational Medicine Key Laboratory of Hunan Province, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Xiaofang Lin
- Department of Pathophysiology, Sepsis Translational Medicine Key Laboratory of Hunan Province, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Pengfei Liang
- Department of Burns and Plastic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Bimei Jiang
- Department of Pathophysiology, Sepsis Translational Medicine Key Laboratory of Hunan Province, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| |
Collapse
|
9
|
Blood microRNA expressions in patients with mild to moderate psoriasis and the relationship between microRNAs and psoriasis activity. An Bras Dermatol 2020; 95:702-707. [PMID: 32811699 PMCID: PMC7672403 DOI: 10.1016/j.abd.2020.07.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 04/04/2020] [Indexed: 12/13/2022] Open
Abstract
Background In recent studies, microRNAs (mi-RNAs) have been shown to play an important role in psoriasis pathogenesis. However, studies evaluating mi-RNAs in the blood of psoriasis patients including a large number of mi-RNA panels are scarce. Objective The authors aimed to assess mi-RNA expressions in blood samples of psoriasis patients, as well as to evaluate the association between mi-RNA expression and psoriasis severity. Methods This was a case-control study on 52 patients with psoriasis vulgaris and 54 controls. Patients’ medical history, psoriasis area and severity index (PASI) scores, and dermatology life quality index (DLQI) scores were recorded. The 42 disease-related mi-RNA primers were assessed by real-time PCR. Results In the patient group, 13.4% presented nail involvement and 8.2% had psoriatic arthritis. The mean PASI and DLQI scores were 7.90 ± 8.83 and 8.13 ± 5.50, respectively. Among 42 mi-RNA primers; hsa-miR-155-5p, hsa-miR-369-3p, hsa-miR-193b-3p, hsa-miR-498, hsa-miR-1266-5p, hsa-let-7d-5p, hsa-miR-205-5p, hsa-let-7c-5p, hsa-miR-30b-3p, and hsa-miR-515-3p expressions were significantly up-regulated, whereas hsa-miR-21-5p, hsa-miR-142-3p, hsa-miR-424-5p, hsa-miR-223-3p, hsa-miR-26a-5p, hsa-miR-106b-5p, hsa-miR-126-5p, hsa-miR-181a-5p, hsa-miR-222-3p, hsa-miR-22-3p, hsa-miR-24-3p, hsa-miR-17-3p, hsa-miR-30b-5p, hsa-miR-130a-3p, hsa-miR-30e-5p, and hsa-miR-16-5p were significantly down-regulated in psoriasis patients when compared with the control group (p < 0.05). Study limitations As the study included patients with mild to moderate psoriasis who mostly only received topical treatments, changes in miRNA before and after systemic treatments were not assessed. Conclusion The detection of 24 mi-RNA expressions up- or down-regulated in psoriasis patients, even in those with milder disease, further supports the role of mi-RNAs in the psoriasis pathogenesis. Future studies should clarify whether mi-RNAs can be used as a marker for psoriasis prognosis or as a therapeutic agent in the treatment of psoriasis.
Collapse
|
10
|
Kura B, Kalocayova B, Devaux Y, Bartekova M. Potential Clinical Implications of miR-1 and miR-21 in Heart Disease and Cardioprotection. Int J Mol Sci 2020; 21:ijms21030700. [PMID: 31973111 PMCID: PMC7037063 DOI: 10.3390/ijms21030700] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 01/10/2020] [Accepted: 01/17/2020] [Indexed: 02/07/2023] Open
Abstract
The interest in non-coding RNAs, which started more than a decade ago, has still not weakened. A wealth of experimental and clinical studies has suggested the potential of non-coding RNAs, especially the short-sized microRNAs (miRs), to be used as the new generation of therapeutic targets and biomarkers of cardiovascular disease, an ever-growing public health issue in the modern world. Among the hundreds of miRs characterized so far, microRNA-1 (miR-1) and microRNA-21 (miR-21) have received some attention and have been associated with cardiac injury and cardioprotection. In this review article, we summarize the current knowledge of the function of these two miRs in the heart, their association with cardiac injury, and their potential cardioprotective roles and biomarker value. While this field has already been extensively studied, much remains to be done before research findings can be translated into clinical application for patient’s benefit.
Collapse
Affiliation(s)
- Branislav Kura
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, 84104 Bratislava, Slovakia; (B.K.); (B.K.)
- Institute of Physiology, Faculty of Medicine, Comenius University in Bratislava, 81372 Bratislava, Slovakia
| | - Barbora Kalocayova
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, 84104 Bratislava, Slovakia; (B.K.); (B.K.)
| | - Yvan Devaux
- Cardiovascular Research Unit, Department of Population Health, Luxembourg Institute of Health, L-1445 Strassen, Luxembourg;
| | - Monika Bartekova
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, 84104 Bratislava, Slovakia; (B.K.); (B.K.)
- Institute of Physiology, Faculty of Medicine, Comenius University in Bratislava, 81372 Bratislava, Slovakia
- Correspondence: ; Tel.: +421-2-3229-5427
| |
Collapse
|
11
|
Li SN, Li P, Liu WH, Shang JJ, Qiu SL, Zhou MX, Liu HX. Danhong injection enhances angiogenesis after myocardial infarction by activating MiR-126/ERK/VEGF pathway. Biomed Pharmacother 2019; 120:109538. [PMID: 31629250 DOI: 10.1016/j.biopha.2019.109538] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 09/30/2019] [Accepted: 10/02/2019] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND/AIM Danhong injection (DHI) is a Chinese drug used for relieving cardiovascular diseases. This study aimed to identify the effect and mechanism of action of DHI on post-infarct angiogenesis, especially the epigenetic regulation of angiogenesis. METHODS A myocardial infarction (MI) mouse model was induced by ligating the left anterior descending coronary artery. A 4-week daily treatment with or without DHI via intraperitoneal injection was started immediately following MI. The changes in cardiac function, pathology, and angiogenesis following MI were measured by echocardiography and immunostaining. Matrigel tube formation and scratch wound assays were used to evaluate the effect of DHI on the proliferation and migration of hypoxic human umbilical vein endothelial cells (HUVECs). The expression of miR-126, Spred-1, and angiogenesis-related mRNAs was measured by quantitative real-time polymerase chain reaction (qRT-PCR). The expression of related proteins and the phosphorylated levels of extracellular signal-regulated kinase (ERK) and protein kinase B were detected by Western blot analysis. The loss-of-function study was performed using antagomir-126. RESULTS The DHI-treated mice had significantly reduced infarct area, improved ejection fraction, and increased capillary density 4 weeks after MI. Also, DHI promoted the proliferation and migration of hypoxic HUVECs. The qRT-PCR and Western blot analysis revealed that DHI intervention upregulated miR-126, suppressed Spred-1 expression, and activated the ERK pathway, but not the Akt pathway. The loss-of-function study showed the blockade of the pro-angiogenic effect of DHI by antagomir-126 involving the ERK/vascular endothelial growth factor (VEGF) pathway. CONCLUSION DHI enhanced post-infarct angiogenesis after MI by activating the miR-126/ERK/VEGF pathway.
Collapse
Affiliation(s)
- Si-Nai Li
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China; Beijing Institute of Traditional Chinese Medicine, Beijing 100010, China
| | - Ping Li
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China; Beijing Institute of Traditional Chinese Medicine, Beijing 100010, China
| | - Wei-Hong Liu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China; Beijing Institute of Traditional Chinese Medicine, Beijing 100010, China
| | - Ju-Ju Shang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China
| | - Sheng-Lei Qiu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China
| | - Ming-Xue Zhou
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China; Beijing Institute of Traditional Chinese Medicine, Beijing 100010, China.
| | - Hong-Xu Liu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China.
| |
Collapse
|
12
|
Tsibulnikov SY, Maslov LN, Gorbunov AS, Voronkov NS, Boshchenko AA, Popov SV, Prokudina ES, Singh N, Downey JM. A Review of Humoral Factors in Remote Preconditioning of the Heart. J Cardiovasc Pharmacol Ther 2019; 24:403-421. [PMID: 31035796 DOI: 10.1177/1074248419841632] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A humoral mechanism of cardioprotection by remote ischemic preconditioning (RIP) has been clearly demonstrated in various models of ischemia-reperfusion including upper and lower extremities, liver, and the mesenteric and renal arteries. A wide range of humoral factors for RIP have been proposed including hydrophobic peptides, opioid peptides, adenosine, prostanoids, endovanilloids, endocannabinoids, calcitonin gene-related peptide, leukotrienes, noradrenaline, adrenomedullin, erythropoietin, apolipoprotein, A-I glucagon-like peptide-1, interleukin 10, stromal cell-derived factor 1, and microRNAs. Virtually, all of the components of ischemic preconditioning's signaling pathway such as nitric oxide synthase, protein kinase C, redox signaling, PI3-kinase/Akt, glycogen synthase kinase β, ERK1/2, mitoKATP channels, Connexin 43, and STAT were all found to play a role. The signaling pattern also depends on which remote vascular bed was subjected to ischemia and on the time between applying the rip and myocardial ischemia occurs. Because there is convincing evidence for many seemingly diverse humoral components in RIP, the most likely explanation is that the overall mechanism is complex like that seen in ischemic preconditioning where multiple components are both in series and in parallel and interact with each other. Inhibition of any single component in the right circumstance may block the resulting protective effect, and selectively activating that component may trigger the protection. Identifying the humoral factors responsible for RIP might be useful in developing drugs that confer RIP's protection in a more comfortable and reliable manner.
Collapse
Affiliation(s)
- Sergey Y Tsibulnikov
- 1 Cardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Science, Tomsk, Russia
| | - Leonid N Maslov
- 1 Cardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Science, Tomsk, Russia
| | - Alexander S Gorbunov
- 1 Cardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Science, Tomsk, Russia
| | - Nikita S Voronkov
- 1 Cardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Science, Tomsk, Russia
| | - Alla A Boshchenko
- 1 Cardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Science, Tomsk, Russia
| | - Sergey V Popov
- 1 Cardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Science, Tomsk, Russia
| | - Ekaterina S Prokudina
- 1 Cardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Science, Tomsk, Russia
| | - Nirmal Singh
- 2 Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, India
| | - James M Downey
- 3 Department of Physiology and Cell Biology, College of Medicine, University of South Alabama, Mobile, AL, USA
| |
Collapse
|
13
|
Zhang B, Zhang G, Wei T, Yang Z, Tan W, Mo Z, Liu J, Li D, Wei Y, Zhang L, Webster KA, Wei J. MicroRNA-25 Protects Smooth Muscle Cells against Corticosterone-Induced Apoptosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:2691514. [PMID: 30992737 PMCID: PMC6434288 DOI: 10.1155/2019/2691514] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 12/17/2018] [Accepted: 01/01/2019] [Indexed: 12/21/2022]
Abstract
BACKGROUND AND AIMS Vascular smooth muscle cells (VSMCs) are central components of atherosclerotic plaque. Loss of VSMCs through apoptotic cell death can cause fibrous cap thinning, necrotic core formation, and calcification that may destabilize plaque. Elevated glucocorticoid levels caused by psychological stress promote VSMC apoptosis and can exacerbate atherosclerosis in mice and humans. Changes in the levels of antiapoptosis microRNA-25 (miR-25) have been linked with heart disease, inflammation, VSMC phenotype, oxidative stress, and apoptosis. Here, we investigated the pathways and mechanisms of glucocorticoid-induced apoptosis of mouse VSMCs and the protective role of miR-25. METHODS Primary mouse VSMCs were cultured +/- corticosterone for 48 h. Apoptosis, ROS, apoptotic protein activities, miR-25, MOAP1, a miR-25 target, and p70S6 kinase were quantified at intervals. The roles of miR-25 were assessed by treating cells with lenti-pre-miR-25 and anti-miR-25. RESULTS VSMC apoptosis, caspase-3 activity, and Bax were increased by corticosterone, and cell death was paralleled by marked loss of miR-25. Protection was conferred by pre-miR-25 and exacerbated by anti-miR-25. Pre-miR-25 conferred reduced expression of the proapoptotic protein MOAP1, and the protective effects of pre-miR-25 were abrogated by overexpressing MOAP1. The antiapoptotic effects of miR-25 were paralleled by inhibition of the p70S6K pathway, a convergence target for the survival signaling pathways, and protection by pre-miR-25 was abrogated by the p70S6k inhibitor rapamycin. CONCLUSIONS MicroRNA-25 blocks corticosterone-induced VSMC apoptosis by targeting MOAP1 and the p70S6k pathway. Therapeutic manipulation of miR-25 may reduce atherosclerosis and unstable plaque formation associated with chronic stress.
Collapse
Affiliation(s)
- Bin Zhang
- Department of Cardiovascular Disease, The Jiangmen Central Hospital, Jiangmen 529030, China
- Clinical Experimental Center, Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-Sen University, Jiangmen 529030, China
| | - Gaoxing Zhang
- Department of Cardiovascular Disease, The Jiangmen Central Hospital, Jiangmen 529030, China
- Clinical Experimental Center, Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-Sen University, Jiangmen 529030, China
| | - Tianlu Wei
- Department of Medicine, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning 530023, China
| | - Zhen Yang
- Clinical Experimental Center, Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-Sen University, Jiangmen 529030, China
- Department of Cardiovascular, Sun Yat-Sen University, Guangzhou 510080, China
| | - Wenfeng Tan
- Department of Cardiovascular Disease, The Jiangmen Central Hospital, Jiangmen 529030, China
- Clinical Experimental Center, Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-Sen University, Jiangmen 529030, China
| | - Ziqing Mo
- Department of Cardiovascular Disease, The Jiangmen Central Hospital, Jiangmen 529030, China
- Clinical Experimental Center, Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-Sen University, Jiangmen 529030, China
| | - Jinxue Liu
- Department of Cardiovascular Disease, The Jiangmen Central Hospital, Jiangmen 529030, China
- Clinical Experimental Center, Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-Sen University, Jiangmen 529030, China
| | - Dong Li
- Clinical Experimental Center, Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-Sen University, Jiangmen 529030, China
- Department of Intensive Care Unit, The Jiangmen Central Hospital, Jiangmen 529030, China
| | - Yidong Wei
- Youjiang Medical University for Nationalities, Chengxiang Rd, Baise, Guangxi 533000, China
| | - Lukun Zhang
- Department of Infection, Third People's Hospital of Shenzhen, 29 Bulan Road, Shenzhen 518112, China
| | - Keith A. Webster
- Department of Molecular and Cellular Pharmacology and the Vascular Biology Institute, Miller School of Medicine, University of Miami, FL 33136, USA
| | - Jianqin Wei
- Department of Medicine, Division of Cardiology, Miller School of Medicine, University of Miami, FL 33136, USA
| |
Collapse
|
14
|
Zhang X, Qin Q, Dai H, Cai S, Zhou C, Guan J. Emodin protects H9c2 cells from hypoxia-induced injury by up-regulating miR-138 expression. ACTA ACUST UNITED AC 2019; 52:e7994. [PMID: 30810622 PMCID: PMC6393853 DOI: 10.1590/1414-431x20187994] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 11/19/2018] [Indexed: 12/21/2022]
Abstract
Myocardial infarction (MI) is a common presentation for ischemic heart disease, which is a leading cause of death. Emodin is a Chinese herbal anthraquinone used in several diseases. However, the effect of emodin in hypoxia-induced injury in cardiomyocytes has not been clearly elucidated. Our study aimed to clarify the functions of emodin in hypoxia-induced injury in rat cardiomyocytes H9c2 and explore the underlying mechanism. The effects of emodin on cell viability and apoptosis were analyzed by the Cell counting kit-8 assay and flow cytometry assay, respectively. The cell proliferation- and cell apoptosis-related proteins were detected by western blot. qRT-PCR was used to determine the relative expression of miR-138. Cell transfection was performed to alter miR-138 and MLK3 expression. miR-138 target was performed by dual luciferase activity assay. Sirt1/AKT and Wnt/β-catenin pathways-related factors phosphorylation were analyzed by western blot. Emodin inhibited hypoxia-induced injury in H9c2 cells by promoting cell viability and reducing cell apoptosis. miR-138 was down-regulated by hypoxia treatment but up-regulated by emodin. Up-regulation of miR-138 alleviated hypoxia-induced cell injury. Down-regulation of miR-138 attenuated the growth-promoting effect of emodin on hypoxia-induced injury, whereas up-regulation of miR-138 enhanced the growth-promoting effects of emodin. The underlying mechanism might be by inactivating Sirt1/AKT and Wnt/β-catenin pathways. MLK3 was negatively regulated by miR-138 expression and inactivated Sirt1/AKT and Wnt/β-catenin pathways. Emodin alleviated hypoxia-induced injury in H9c2 cells via up-regulation of miR-138 modulated by MLK3, as well as by activating Sirt1/AKT and Wnt/β-catenin pathways.
Collapse
Affiliation(s)
- Xuezhi Zhang
- Department of Emergency Internal Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Qiaoji Qin
- Department of Emergency Internal Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Hongyan Dai
- Department of Cardiology, Qingdao Municipal Hospital, Qingdao, China
| | - Shanglang Cai
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Changyong Zhou
- Department of Emergency Internal Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jun Guan
- Department of Cardiology, Qingdao Municipal Hospital, Qingdao, China
| |
Collapse
|
15
|
Scumaci D, Oliva A, Concolino A, Curcio A, Fiumara CV, Tammè L, Campuzano O, Pascali VL, Coll M, Iglesias A, Berne P, Casu G, Olivo E, Ausania F, Ricci P, Indolfi C, Brugada J, Brugada R, Cuda G. Integration of "Omics" Strategies for Biomarkers Discovery and for the Elucidation of Molecular Mechanisms Underlying Brugada Syndrome. Proteomics Clin Appl 2018; 12:e1800065. [PMID: 29956481 DOI: 10.1002/prca.201800065] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 05/26/2018] [Indexed: 12/31/2022]
Abstract
PURPOSE The Brugada syndrome (BrS) is a severe inherited cardiac disorder. Given the high genetic and phenotypic heterogeneity of this disease, three different "omics" approaches are integrated in a synergic way to elucidate the molecular mechanisms underlying the pathophysiology of BrS as well as for identifying reliable diagnostic/prognostic markers. EXPERIMENTAL DESIGN The profiling of plasma Proteome and MiRNome is perfomed in a cohort of Brugada patients that were preliminary subjected to genomic analysis to assess a peculiar gene mutation profile. RESULTS The integrated analysis of "omics" data unveiled a cooperative activity of mutated genes, deregulated miRNAs and proteins in orchestrating transcriptional and post-translational events that are critical determining factors for the development of the Brugada pattern. CONCLUSIONS AND CLINICAL RELEVANCE This study provides the basis to shed light on the specific molecular fingerprints underlying BrS development and to gain further insights on the pathogenesis of this life-threatening cardiac disease.
Collapse
Affiliation(s)
- Domenica Scumaci
- Laboratory of Proteomics, Research Center of Advanced Biochemistry and Molecular Biology, Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, 88100, Catanzaro, Italy
| | - Antonio Oliva
- Fondazione Policlinico A. Gemelli IRCCS, Roma, Università Cattolica del Sacro Cuore, Large Francesco Vito 1, 00168, Rome, Italy
| | - Antonio Concolino
- Laboratory of Proteomics, Research Center of Advanced Biochemistry and Molecular Biology, Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, 88100, Catanzaro, Italy
| | - Antonio Curcio
- Division of Cardiology, Department of Medical and Surgical Science, University "Magna Graecia" of Catanzaro, 88100, Catanzaro, Italy
| | - Claudia Vincenza Fiumara
- Laboratory of Proteomics, Research Center of Advanced Biochemistry and Molecular Biology, Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, 88100, Catanzaro, Italy
| | - Laura Tammè
- Laboratory of Proteomics, Research Center of Advanced Biochemistry and Molecular Biology, Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, 88100, Catanzaro, Italy
| | - Oscar Campuzano
- Cardiovascular Genetics Center, Gencardio Institut d'Investigacions Biomèdiques de Girona,, 17290, Girona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV) 17007, Girona, Spain
- Department of Medical Sciences, School of Medicine, University of Girona, 17004, Girona, Spain
| | - Vincenzo L Pascali
- Fondazione Policlinico A. Gemelli IRCCS, Roma, Università Cattolica del Sacro Cuore, Large Francesco Vito 1, 00168, Rome, Italy
| | - Monica Coll
- Cardiovascular Genetics Center, Gencardio Institut d'Investigacions Biomèdiques de Girona,, 17290, Girona, Spain
| | - Anna Iglesias
- Cardiovascular Genetics Center, Gencardio Institut d'Investigacions Biomèdiques de Girona,, 17290, Girona, Spain
| | - Paola Berne
- Unità Operativa Complessa di Cardiologia Ospedale "San Francesco", 08100, Nuoro, Italy
| | - Gavino Casu
- Unità Operativa Complessa di Cardiologia Ospedale "San Francesco", 08100, Nuoro, Italy
| | - Erika Olivo
- Laboratory of Proteomics, Research Center of Advanced Biochemistry and Molecular Biology, Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, 88100, Catanzaro, Italy
| | - Francesco Ausania
- Fondazione Policlinico A. Gemelli, IRCCS, Università Cattolica del Sacro Cuore, Roma
| | - Pietrantonio Ricci
- Department of Medical Sciences, School of Medicine, University of Girona, 17004, Girona, Spain
- Institute of Legal Medicine, University "Magna Graecia" of Catanzaro, 88100, Catanzaro, Italy
| | - Ciro Indolfi
- Division of Cardiology, Department of Medical and Surgical Science, University "Magna Graecia" of Catanzaro, 88100, Catanzaro, Italy
| | - Josep Brugada
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV) 17007, Girona, Spain
- Arrhythmia's Unit, Hospital Clinic, 08036, Barcelona, Spain
| | - Ramon Brugada
- Cardiovascular Genetics Center, Gencardio Institut d'Investigacions Biomèdiques de Girona,, 17290, Girona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV) 17007, Girona, Spain
- Department of Medical Sciences, School of Medicine, University of Girona, 17004, Girona, Spain
- Cardiology Service, Hospital Josep Trueta, 17007, Girona, Spain
| | - Giovanni Cuda
- Laboratory of Proteomics, Research Center of Advanced Biochemistry and Molecular Biology, Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, 88100, Catanzaro, Italy
| |
Collapse
|
16
|
Onrat ST, Onrat E, Ercan Onay E, Yalım Z, Avşar A. The Genetic Determination of the Differentiation Between Ischemic Dilated Cardiomyopathy and Idiopathic Dilated Cardiomyopathy. Genet Test Mol Biomarkers 2018; 22:644-651. [DOI: 10.1089/gtmb.2018.0188] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Serap Tutgun Onrat
- Department of Medical Genetics, Faculty of Medicine, Afyon Kocatepe University, Afyonkarahisar, Turkey
| | - Ersel Onrat
- Department of Cardiology, Faculty of Medicine, Afyon Kocatepe University, Afyonkarahisar, Turkey
| | | | - Zafer Yalım
- Department of Cardiology, Faculty of Medicine, Afyon Kocatepe University, Afyonkarahisar, Turkey
| | - Alaettin Avşar
- Department of Cardiology, Faculty of Medicine, Afyon Kocatepe University, Afyonkarahisar, Turkey
| |
Collapse
|
17
|
Xu X, Jiao X, Song N, Luo W, Liang M, Ding X, Teng J. Role of miR‑21 on vascular endothelial cells in the protective effect of renal delayed ischemic preconditioning. Mol Med Rep 2017; 16:2627-2635. [PMID: 28677811 PMCID: PMC5548024 DOI: 10.3892/mmr.2017.6870] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 04/25/2017] [Indexed: 12/18/2022] Open
Abstract
Vascular endothelial cells may serve crucial roles in the development of acute kidney injury (AKI). microRNA (miR)-21, which possesses a renal protective function has been found on vascular endothelial cells. The present study aimed to test the hypothesis that miR-21 may protect vascular endothelial cells against injury, which may contribute to the protective effects of renal delayed ischemic preconditioning (IPC). Preconditioned (15 min ischemia) or Sham mice (not clamped) were subjected to 35 min occlusion of bilateral renal pedicles 4 days following preconditioning or Sham treatment. Human umbilical vein endothelial cells (HUVECs) were treated with cobalt(II) chloride (CoCl2) to establish an in vitro hypoxia model. Locked nucleic acid-modified anti-miR-21 or scrambled control oligonucleotides were transfected into cells or delivered into mice via tail vein injection <1 h prior to IPC. Following 24 h of reperfusion or hypoxia, morphological and functional parameters, apoptosis and miR-21 and programmed cell death 4 (PDCD4) expression were assessed in vivo and in vitro. Treatment of HUVECs with CoCl2 led to an upregulation of miR-21 expression, a downregulation of PDCD4 protein expression and attenuation of apoptosis. Inhibition of miR-21 expression led to increased expression levels of PDCD4 protein and apoptosis in HUVECs. IPC attenuated renal IR injury in mice. The protective effect of IPC appeared to be dependent on upregulated miR-21 expression. IPC-induced upregulation of miR-21 expression also occurred in HUVECs, and IPC also led to reduced PDCD4 expression and vascular permeability in mouse kidneys. The effects of IPC were attenuated by the inhibition of miR-21; miR-21 expression attenuated damage in vascular endothelial cells, which may contribute to the protective effects of delayed IPC on renal IR injury. The present study suggested a novel target for the prevention and repair of AKI in the future.
Collapse
Affiliation(s)
- Xialian Xu
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Xiaoyan Jiao
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Nana Song
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Weili Luo
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Mingyu Liang
- Department of Physiology and Center of Systems Molecular Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Xiaoqiang Ding
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Jie Teng
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| |
Collapse
|
18
|
Bologna Z, Teoh JP, Bayoumi AS, Tang Y, Kim IM. Biased G Protein-Coupled Receptor Signaling: New Player in Modulating Physiology and Pathology. Biomol Ther (Seoul) 2017; 25:12-25. [PMID: 28035079 PMCID: PMC5207460 DOI: 10.4062/biomolther.2016.165] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 08/19/2016] [Accepted: 08/23/2016] [Indexed: 01/03/2023] Open
Abstract
G protein-coupled receptors (GPCRs) are a family of cell-surface proteins that play critical roles in regulating a variety of pathophysiological processes and thus are targeted by almost a third of currently available therapeutics. It was originally thought that GPCRs convert extracellular stimuli into intracellular signals through activating G proteins, whereas β-arrestins have important roles in internalization and desensitization of the receptor. Over the past decade, several novel functional aspects of β-arrestins in regulating GPCR signaling have been discovered. These previously unanticipated roles of β-arrestins to act as signal transducers and mediators of G protein-independent signaling have led to the concept of biased agonism. Biased GPCR ligands are able to engage with their target receptors in a manner that preferentially activates only G protein- or β-arrestin-mediated downstream signaling. This offers the potential for next generation drugs with high selectivity to therapeutically relevant GPCR signaling pathways. In this review, we provide a summary of the recent studies highlighting G protein- or β-arrestin-biased GPCR signaling and the effects of biased ligands on disease pathogenesis and regulation.
Collapse
Affiliation(s)
- Zuzana Bologna
- Vascular Biology Center, Medical College of Georgia, Augusta University, GA 30912, USA
| | - Jian-Peng Teoh
- Vascular Biology Center, Medical College of Georgia, Augusta University, GA 30912, USA
| | - Ahmed S Bayoumi
- Vascular Biology Center, Medical College of Georgia, Augusta University, GA 30912, USA
| | - Yaoliang Tang
- Vascular Biology Center, Medical College of Georgia, Augusta University, GA 30912, USA
| | - Il-Man Kim
- Vascular Biology Center, Medical College of Georgia, Augusta University, GA 30912, USA.,Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, GA 30912, USA
| |
Collapse
|
19
|
Duggal B, Gupta MK, Naga Prasad SV. Potential Role of microRNAs in Cardiovascular Disease: Are They up to Their Hype? Curr Cardiol Rev 2016; 12:304-310. [PMID: 26926293 PMCID: PMC5304257 DOI: 10.2174/1573403x12666160301120642] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 01/17/2016] [Accepted: 01/19/2016] [Indexed: 01/01/2023] Open
Abstract
PURPOSE OF REVIEW Cardiovascular diseases remain the foremost cause of mortality globally. As molecular medicine unravels the alterations in genomic expression and regulation of the underlying atherosclerotic process, it opens new vistas for discovering novel diagnostic biomarkers and therapeutics for limiting the disease process. miRNAs have emerged as powerful regulators of protein translation by regulating gene expression at the post-transcriptional level. RECENT FINDINGS Overexpression and under-expression of specific miRNAs are being evaluated as a novel approach to diagnosis and treatment of cardiovascular disease. This review sheds light on the current knowledge of the miRNA evaluated in cardiovascular disease. CONCLUSION In this review we summarize the data, including the more recent data, regarding miRNAs in cardiovascular disease and their potential role in future in diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Bhanu Duggal
- Department of Cardiology, 4th floor, Main Building, Grant Medical College & Sir JJ Group of Hospitals, Mumbai, 400008, India.
| | | | | |
Collapse
|
20
|
Dong H, Dong S, Zhang L, Gao X, Lv G, Chen W, Shao S. MicroRNA-214 exerts a Cardio-protective effect by inhibition of fibrosis. Anat Rec (Hoboken) 2016; 299:1348-57. [PMID: 27357906 DOI: 10.1002/ar.23396] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 03/24/2016] [Accepted: 03/30/2016] [Indexed: 01/30/2023]
Abstract
The miRNAs play important roles in regulating myocardial fibrosis. The purpose of this study was to determine the potential roles of microRNA-214 (miR-214) in cardiac fibrosis in vitro and in vivo. In vitro experiment, Ang II-induced cardiac fibroblasts (CFBs) are transfected with pre-miR-214, anti-miR-214 and their oligo controls. Gene expression was checked by Quantitative realtime-PCR (qRT-PCR) and western blotting. In the present experiment, compared with controls, expressions of collagen type I (COL I), collagen type III (COL III), transforming growth factor (TGF)-β1, and tissue inhibitors of metalloproteinase (TIMP)-1 were all increased, but matrix metalloproteinase (MMP)-1 was reduced in CFB by Ang II treatment at both mRNA and protein levels, and these alterations were found reversed by miR-214 transfection. In vivo, an anterior transmural acute myocardial infarction (AMI) was created by occlusion of the left anterior descending coronary artery after Ad-pre-miR-214, Ad-anti-miR-214 or Ad-GFP was delivered separately. Four weeks after AMI, protein contents of COL I, COL III and TGF-β1 in tissue from border area were found increased after AMI, but impaired by overexpression of miR-214. While the expression of MMP-1 was increased by miR-214 stimulation but decreased by miR-214 inhibition. These results suggested that miR-214 exerts cardio-protective effects by inhibition of fibrosis and the inhibitory effect involves TGF-β1 suppression and MMP-1/TIMP-1 regulation. Anat Rec, 299:1348-1357, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Hua Dong
- Department of Histology and Embryology, Hebei Medical University, Shijiazhuang, 050017, China
| | - Shimin Dong
- Department of Emergency, the 3rd Hospital of Hebei Medical University, Shijiazhuang, 050051, China
| | - Lisi Zhang
- Department of Histology and Embryology, Hebei Medical University, Shijiazhuang, 050017, China
| | - Xueping Gao
- Department of Emergency, the 3rd Hospital of Hebei Medical University, Shijiazhuang, 050051, China
| | - Guangwei Lv
- Department of Emergency, the 3rd Hospital of Hebei Medical University, Shijiazhuang, 050051, China
| | - Wei Chen
- Department of Histology and Embryology, Hebei Medical University, Shijiazhuang, 050017, China
| | - Suxia Shao
- Department of Histology and Embryology, Hebei Medical University, Shijiazhuang, 050017, China.
| |
Collapse
|
21
|
Li J, Liu J, Zhang Y, Wang X, Li W, Zhang H, Wang H. Screening on the differentially expressed miRNAs in zebrafish (Danio rerio) exposed to trace β-diketone antibiotics and their related functions. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 178:27-38. [PMID: 27450238 DOI: 10.1016/j.aquatox.2016.07.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 07/11/2016] [Accepted: 07/15/2016] [Indexed: 06/06/2023]
Abstract
The toxicity of β-diketone antibiotics (DKAs) to larval and adult zebrafish (Danio rerio) was investigated by miRNA sequencing and bioinformatics analyses. In control and DKA-exposed groups, 215 differentially expressed miRNAs were screened, and 4076 differential target genes were predicted. Among 51 co-differentially expressed genes, 45 were annotated in KOG functional classification, and 34 in KEGG pathway analysis. The homology analysis of 20 miRNAs with human hsa-miRNAs demonstrated 17 high homologous sequences. The expression levels of 12 miRNAs by qRT-PCR were consistent with those by sRNA-seq. A regulatory network for 4 positive miRNA genes (dre-miR-10, -96, -92 and -184) was plotted, and the high-degree of connectivity between miRNA-gene pairs suggests that these miRNAs play critical roles during zebrafish development. The consistent expression of dre-miR-184 and dre-miR-96 was proved in 120-hpf zebrafish brain, gill, otoliths and lateral line neuromast by qRT-PCR, miRNA-seq, W-ISH and ISH. DKA-exposure led to vacuolation of interstitial cells, reduced number of neurons, glial cell proliferation and formation of glial scar, and the obvious abnormality of cell structure might result from abnormal expression of differentially expressed miRNAs. In general, chronic DKA-exposure resulted in comprehensively toxic effects on larval and adult zebrafish tissues, especially for nervous system.
Collapse
Affiliation(s)
- Jieyi Li
- College of Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Jinfeng Liu
- College of Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Yuhuan Zhang
- College of Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Xuedong Wang
- Key Laboratory of Watershed Sciences and Health of Zhejiang Province, Wenzhou Medical University, Wenzhou 325035, China
| | - Weijun Li
- Puyang People's Hospital of Henan Province, Puyang 457000, China
| | - Hongqin Zhang
- College of Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Huili Wang
- College of Life Sciences, Wenzhou Medical University, Wenzhou 325035, China.
| |
Collapse
|
22
|
Chistiakov DA, Orekhov AN, Bobryshev YV. The role of miR-126 in embryonic angiogenesis, adult vascular homeostasis, and vascular repair and its alterations in atherosclerotic disease. J Mol Cell Cardiol 2016; 97:47-55. [DOI: 10.1016/j.yjmcc.2016.05.007] [Citation(s) in RCA: 139] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 04/19/2016] [Accepted: 05/11/2016] [Indexed: 10/21/2022]
|
23
|
He SF, Zhu HJ, Han ZY, Wu H, Jin SY, Irwin MG, Zhang Y. MicroRNA-133b-5p Is Involved in Cardioprotection of Morphine Preconditioning in Rat Cardiomyocytes by Targeting Fas. Can J Cardiol 2016; 32:996-1007. [DOI: 10.1016/j.cjca.2015.10.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 10/20/2015] [Accepted: 10/22/2015] [Indexed: 12/11/2022] Open
|
24
|
Pierdomenico M, Cesi V, Cucchiara S, Vitali R, Prete E, Costanzo M, Aloi M, Oliva S, Stronati L. NOD2 Is Regulated By Mir-320 in Physiological Conditions but this Control Is Altered in Inflamed Tissues of Patients with Inflammatory Bowel Disease. Inflamm Bowel Dis 2016; 22:315-26. [PMID: 26752466 DOI: 10.1097/mib.0000000000000659] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Large evidence supports the role of microRNAs as new important inflammatory mediators by regulating both the adaptive and innate immunity. In the present study, we speculated that miR-320 controls NOD2 (nucleotide-binding oligomerization domain) expression, because it contains multiple binding sites in the 3'-untranslated region of the gene. NOD2, the first gene associated to increased susceptibility to Crohn's disease, is a cytosolic receptor that senses wall peptides of bacteria and promotes their clearance through initiation of a proinflammatory transcriptional program. This study aims at demonstrating that NOD2 is a target of miR-320 as well as investigating the role of inflammation in modulating the miR-320 control on NOD2 expression and analyzing miR-320 expression in intestinal biopsies of children with inflammatory bowel disease. METHODS The colonic adenocarcinoma cell line HT29 was used to assess the miR-320-mediated regulation of NOD2 expression. MiR-320 and NOD2 expression were analyzed in mucosal samples of 40 children with inflammatory bowel disease. RESULTS During inflammation, NOD2 expression is inversely correlated with miR-320 expression in vitro and ex vivo. Exogenous miR-320 transfection in HT29 cells leads to a significant decrease of NOD2 expression, whereas the miR-320 inhibitor transfection leads to increase of NOD2 expression, nuclear translocation of nuclear factor κB, and activation of downstream cytokines. CONCLUSIONS We show for the first time that NOD2 expression is under the control of miR-320. We also show in vitro and ex vivo that inflammation induces a decrease of miR-320 and the latter correlates negatively with NOD2 expression.
Collapse
Affiliation(s)
- Maria Pierdomenico
- *Department of Radiation Biology and Human Health, ENEA, Rome, Italy; and †Department of Pediatrics and Infantile Neuropsychiatry, Pediatric Gastroenterology and Liver Unit, Sapienza University of Rome, Rome, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Tao L, Bei Y, Zhou Y, Xiao J, Li X. Non-coding RNAs in cardiac regeneration. Oncotarget 2015; 6:42613-22. [PMID: 26462179 PMCID: PMC4767457 DOI: 10.18632/oncotarget.6073] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Accepted: 09/28/2015] [Indexed: 02/06/2023] Open
Abstract
Developing new therapeutic strategies which could enhance cardiomyocyte regenerative capacity is of significant clinical importance. Though promising, methods to promote cardiac regeneration have had limited success due to the weak regenerative capacity of the adult mammalian heart. Non-coding RNAs (ncRNAs), including microRNAs (miRNAs, miRs) and long non-coding RNAs (lncRNAs), are functional RNA molecules without a protein coding function that have been reported to engage in cardiac regeneration and repair. In light of current regenerative strategies, the regulatory effects of ncRNAs can be categorized as follows: cardiac proliferation, cardiac differentiation, cardiac survival and cardiac reprogramming. miR-590, miR-199a, miR-17-92 cluster, miR302-367 cluster and miR-222 have been reported to promote cardiomyocyte proliferation while miR-1 and miR-133 suppress that. miR-499 and miR-1 promote the differentiation of cardiac progenitors into cardiomyocyte while miR-133 and H19 inhibit that. miR-21, miR-24, miR-221, miR-199a and miR-155 improve cardiac survival while miR-34a, miR-1 and miR-320 exhibit opposite effects. miR-1, miR-133, miR-208 and miR-499 are capable of reprogramming fibroblasts to cardiomyocyte-like cells and miR-284, miR-302, miR-93 , miR-106b and lncRNA-ST8SIA3 are able to enhace cardiac reprogramming. Exploring non-coding RNA-based methods to enhance cardiac regeneration would be instrumental for devising new effective therapies against cardiovascular diseases.
Collapse
Affiliation(s)
- Lichan Tao
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yihua Bei
- Regeneration and Ageing Lab, Experimental Center of Life Sciences, School of Life Science, Shanghai University, Shanghai, China
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Science, Shanghai University, Shanghai, China
| | - Yanli Zhou
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Junjie Xiao
- Regeneration and Ageing Lab, Experimental Center of Life Sciences, School of Life Science, Shanghai University, Shanghai, China
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Science, Shanghai University, Shanghai, China
| | - Xinli Li
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
26
|
Gurianova V, Stroy D, Ciccocioppo R, Gasparova I, Petrovic D, Soucek M, Dosenko V, Kruzliak P. Stress response factors as hub-regulators of microRNA biogenesis: implication to the diseased heart. Cell Biochem Funct 2015; 33:509-18. [PMID: 26659949 DOI: 10.1002/cbf.3151] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 09/21/2015] [Accepted: 10/02/2015] [Indexed: 12/21/2022]
Abstract
MicroRNAs (miRNAs) are important regulators of heart function and then an intriguing therapeutic target for plenty of diseases. The problem raised is that many data in this area are contradictory, thus limiting the use of miRNA-based therapy. The goal of this review is to describe the hub-mechanisms regulating the biogenesis and function of miRNAs, which could help in clarifying some contradictions in the miRNA world. With this scope, we analyse an array of factors, including several known agents of stress response, mediators of epigenetic changes, regulators of alternative splicing, RNA editing, protein synthesis and folding and proteolytic systems. All these factors are important in cardiovascular function and most of them regulate miRNA biogenesis, but their influence on miRNAs was shown for non-cardiac cells or some specific cardiac pathologies. Finally, we consider that studying the stress response factors, which are upstream regulators of miRNA biogenesis, in the diseased heart could help in (1) explaining some contradictions concerning miRNAs in heart pathology, (2) making the role of miRNAs in pathogenesis of cardiovascular disease more clear, and therefore, (3) getting powerful targets for its molecular therapy.
Collapse
Affiliation(s)
- Veronika Gurianova
- Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, Kiev, Ukraine
| | - Dmytro Stroy
- Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, Kiev, Ukraine
| | - Rachele Ciccocioppo
- Clinica Medica I; Fondazione IRCCS Policlinico San Matteo, Università degli Studi di Pavia, Italy
| | - Iveta Gasparova
- Institute of Biology, Genetics and Medical Genetics, Faculty of Medicine, Comenius University and University Hospital, Bratislava, Slovak Republic
| | - Daniel Petrovic
- Institute of Histology and Embryology, Medical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Miroslav Soucek
- Second Department of Internal Medicine, St. Anne's University Hospital and Masaryk University, Brno, Czech Republic
| | - Victor Dosenko
- Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, Kiev, Ukraine
| | - Peter Kruzliak
- Second Department of Internal Medicine, St. Anne's University Hospital and Masaryk University, Brno, Czech Republic.,Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University, Bratislava, Slovak Republic.,Laboratory of Structural Biology and Proteomics, Faculty of Pharmacy, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic
| |
Collapse
|
27
|
Modulation of Hypercholesterolemia-Induced Oxidative/Nitrative Stress in the Heart. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2016:3863726. [PMID: 26788247 PMCID: PMC4691632 DOI: 10.1155/2016/3863726] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 09/16/2015] [Indexed: 02/08/2023]
Abstract
Hypercholesterolemia is a frequent metabolic disorder associated with increased risk for cardiovascular morbidity and mortality. In addition to its well-known proatherogenic effect, hypercholesterolemia may exert direct effects on the myocardium resulting in contractile dysfunction, aggravated ischemia/reperfusion injury, and diminished stress adaptation. Both preclinical and clinical studies suggested that elevated oxidative and/or nitrative stress plays a key role in cardiac complications induced by hypercholesterolemia. Therefore, modulation of hypercholesterolemia-induced myocardial oxidative/nitrative stress is a feasible approach to prevent or treat deleterious cardiac consequences. In this review, we discuss the effects of various pharmaceuticals, nutraceuticals, some novel potential pharmacological approaches, and physical exercise on hypercholesterolemia-induced oxidative/nitrative stress and subsequent cardiac dysfunction as well as impaired ischemic stress adaptation of the heart in hypercholesterolemia.
Collapse
|
28
|
|
29
|
Kapitsinou PP, Haase VH. Molecular mechanisms of ischemic preconditioning in the kidney. Am J Physiol Renal Physiol 2015; 309:F821-34. [DOI: 10.1152/ajprenal.00224.2015] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 08/21/2015] [Indexed: 12/26/2022] Open
Abstract
More effective therapeutic strategies for the prevention and treatment of acute kidney injury (AKI) are needed to improve the high morbidity and mortality associated with this frequently encountered clinical condition. Ischemic and/or hypoxic preconditioning attenuates susceptibility to ischemic injury, which results from both oxygen and nutrient deprivation and accounts for most cases of AKI. While multiple signaling pathways have been implicated in renoprotection, this review will focus on oxygen-regulated cellular and molecular responses that enhance the kidney's tolerance to ischemia and promote renal repair. Central mediators of cellular adaptation to hypoxia are hypoxia-inducible factors (HIFs). HIFs play a crucial role in ischemic/hypoxic preconditioning through the reprogramming of cellular energy metabolism, and by coordinating adenosine and nitric oxide signaling with antiapoptotic, oxidative stress, and immune responses. The therapeutic potential of HIF activation for the treatment and prevention of ischemic injuries will be critically examined in this review.
Collapse
Affiliation(s)
- Pinelopi P. Kapitsinou
- Departments of Medicine, Anatomy and Cell Biology, and the Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas
| | - Volker H. Haase
- Departments of Medicine, Cancer Biology, and Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee; and
- Medicine and Research Services, Department of Veterans Affairs Hospital, Tennessee Valley Healthcare System, Nashville, Tennessee
| |
Collapse
|
30
|
Toldo S, Mezzaroma E, Mauro AG, Salloum F, Van Tassell BW, Abbate A. The inflammasome in myocardial injury and cardiac remodeling. Antioxid Redox Signal 2015; 22:1146-61. [PMID: 25330141 DOI: 10.1089/ars.2014.5989] [Citation(s) in RCA: 124] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
SIGNIFICANCE An inflammatory response follows an injury of any nature, and while such a response is an attempt to promote healing, it may, itself, result in further injury. RECENT ADVANCES The inflammasome is a macromolecular structure recently recognized as a central mediator in the acute inflammatory response. The inflammasome senses the injury and it amplifies the response by leading to the release of powerful pro-inflammatory cytokines, interleukin-1β (IL-1β) and IL-18. CRITICAL ISSUES The activation of the inflammasome in the heart during ischemic and nonischemic injury represents an exaggerated response to sterile injury and promotes adverse cardiac remodeling and failure. FUTURE DIRECTIONS Pilot clinical trials have explored blockade of the inflammasome-derived IL-1β and have shown beneficial effects on cardiac function. Additional clinical studies testing this approach are warranted. Moreover, specific inflammasome inhibitors that are ready for clinical use are currently lacking.
Collapse
Affiliation(s)
- Stefano Toldo
- 1 VCU Pauley Heart Center, Virginia Commonwealth University , Richmond, Virginia
| | | | | | | | | | | |
Collapse
|
31
|
Lee YE, Hong CY, Lin YL, Chen RM. MicroRNA-1 participates in nitric oxide-induced apoptotic insults to MC3T3-E1 cells by targeting heat-shock protein-70. Int J Biol Sci 2015; 11:246-55. [PMID: 25678843 PMCID: PMC4323364 DOI: 10.7150/ijbs.11138] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Accepted: 01/06/2015] [Indexed: 12/25/2022] Open
Abstract
Our previous studies showed that nitric oxide (NO) could induce osteoblast apoptosis. MicroRNA-1 (miR-1), a skeletal- and cardiac muscle-specific small non-coding RNA, contributes to the regulation of multiple cell activities. In this study, we evaluated the roles of miR-1 in NO-induced insults to osteoblasts and the possible mechanisms. Exposure of mouse MC3T3-E1 cells to sodium nitroprusside (SNP) increased amounts of cellular NO and intracellular reactive oxygen species. Sequentially, SNP decreased cell survival but induced caspase-3 activation, DNA fragmentation, and cell apoptosis. In parallel, treatment with SNP induced miR-1 expression in a time-dependent manner. Application of miR-1 antisense inhibitors to osteoblasts caused significant inhibition of SNP-induced miR-1 expression. Knocking down miR-1 concurrently attenuated SNP-induced alterations in cell morphology and survival. Consecutively, SNP time-dependently inhibited heat-shock protein (HSP)-70 messenger (m)RNA and protein expressions. A bioinformatic search predicted the existence of miR-1-specific binding elements in the 3'-untranslational region of HSP-70 mRNA. Downregulation of miR-1 expression simultaneously lessened SNP-induced inhibition of HSP-70 mRNA and protein expressions. Consequently, SNP-induced modifications in the mitochondrial membrane potential, caspase-3 activation, DNA fragmentation, and apoptotic insults were significantly alleviated by miR-1 antisense inhibitors. Therefore, this study showed that miR-1 participates in NO-induced apoptotic insults through targeting HSP-70 gene expression.
Collapse
Affiliation(s)
- Yong-Eng Lee
- 1. Department of Orthopedic Surgery, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan ; 2. Cell Biology and Molecular Image Research Center, Taipei Medical University-Wan Fang Hospital, Taipei, Taiwan
| | - Chung-Ye Hong
- 3. Department of Internal Medicine, Taipei Medical University-Wan Fang Hospital, Taipei, Taiwan
| | - Yi-Ling Lin
- 2. Cell Biology and Molecular Image Research Center, Taipei Medical University-Wan Fang Hospital, Taipei, Taiwan
| | - Ruei-Ming Chen
- 2. Cell Biology and Molecular Image Research Center, Taipei Medical University-Wan Fang Hospital, Taipei, Taiwan ; 4. Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan. ; 5. Anesthetics and Toxicology Research Center, Taipei Medical University Hospital, Taipei, Taiwan
| |
Collapse
|
32
|
Song MA, Paradis AN, Gay MS, Shin J, Zhang L. Differential expression of microRNAs in ischemic heart disease. Drug Discov Today 2014; 20:223-35. [PMID: 25461956 DOI: 10.1016/j.drudis.2014.10.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 09/16/2014] [Accepted: 10/15/2014] [Indexed: 01/02/2023]
Abstract
Recent studies provide evidence that ischemic preconditioning (IP) and ischemia/reperfusion (IR) injury lead to altered expression of microRNAs (miRNAs) that affect the survival and recovery of cardiomyocytes. These endogenous ∼22-nucleotide noncoding RNAs negatively regulate gene expression via degradation and translational inhibition of their target mRNAs. miRNAs are involved in differentiation, proliferation, electrical conduction, angiogenesis and apoptosis. These pathways can lead to physiological and pathological adaptations. This review intends to explore several facets of miRNA expression and the underlying mechanisms involved in IR injury, as well as IP as a cardioprotective strategy. In addition, we will investigate miRNA interaction with the renin-angiotensin system and the potential use of miRNAs in developing sensitive biomarkers for cardiovascular disease.
Collapse
Affiliation(s)
- Minwoo A Song
- Center for Perinatal Biology, Division of Pharmacology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Alexandra N Paradis
- Center for Perinatal Biology, Division of Pharmacology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Maresha S Gay
- Center for Perinatal Biology, Division of Pharmacology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - John Shin
- Center for Perinatal Biology, Division of Pharmacology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Lubo Zhang
- Center for Perinatal Biology, Division of Pharmacology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA.
| |
Collapse
|
33
|
The protective effect of microRNA-320 on left ventricular remodeling after myocardial ischemia-reperfusion injury in the rat model. Int J Mol Sci 2014; 15:17442-56. [PMID: 25268616 PMCID: PMC4227171 DOI: 10.3390/ijms151017442] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 09/05/2014] [Accepted: 09/15/2014] [Indexed: 11/16/2022] Open
Abstract
The primary objective of this study investigated the role of microRNA-320 (miR-320) on left ventricular remodeling in the rat model of myocardial ischemia-reperfusion (I/R) injury, and we intended to explore the myocardial mechanism of miR-320-mediated myocardium protection. We collected 120 male Wistar rats (240-280 g) in this study and then randomly divided them into three groups: (1) sham surgery group (sham group: n=40); (2) ischemia-reperfusion model group (I/R group: n=40); and (3) I/R model with antagomir-320 group (I/R+antagomir-320 group: n=40). Value changes of heart function in transesophageal echocardiography were recorded at various time points (day 1, day 3, day 7, day 15 and day 30) after surgery in each group. Myocardial sections were stained with hematoxylin and eosin (H&E) and examined with optical microscope. The degree of myocardial fibrosis was assessed by Sirius Red staining. Terminal dUTP nick end-labeling (TUNEL) and qRT-PCR methods were used to measure the apoptosis rate and to determine the miR-320 expression levels in myocardial tissues. Transesophageal echocardiography showed that the values of left ventricular ejection fraction (LVEF), left ventricular fractional shortening (LVFS), left ventricular systolic pressure (LVSP) and ±dp/dtmax in the I/R group were obviously lower than those in the sham group, while the left ventricular end-diastolic pressure (LVEDP) value was higher than that in the sham group. The values of LVEF, LVFS, LVSP and ±dp/dtmax showed a gradual decrease in the I/R group, while the LVEDP value showed an up tendency along with the extension of reperfusion time. The H&E staining revealed that rat myocardial tissue in the I/R group presented extensive myocardial damage; for the I/R+antagomir-320 group, however, the degree of damage in myocardial cells was obviously better than that of the I/R group. The Sirius Red staining results showed that the degree of myocardial fibrosis in the I/R group was more severe along with the extension of the time of reperfusion. For the I/R+antagomir-320 group, the degree of myocardial fibrosis was less severe than that in the I/R group. Tissues samples in both the sham and I/R+antagomir-320 groups showed a lower apoptosis rate compared to I/R group. The qRT-PCR results indicated that miR-320 expression in the I/R group was significantly higher than that in both the sham and I/R+antagomir-320 groups. The expression level of miR-320 is significantly up-regulated in the rat model of myocardial I/R injury, and it may be implicated in the prevention of myocardial I/R injury-triggered left ventricular remodeling.
Collapse
|
34
|
Greco S, Gaetano C, Martelli F. HypoxamiR regulation and function in ischemic cardiovascular diseases. Antioxid Redox Signal 2014; 21:1202-19. [PMID: 24053126 PMCID: PMC4142792 DOI: 10.1089/ars.2013.5403] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
SIGNIFICANCE MicroRNAs (miRNAs) are deregulated and play a causal role in numerous cardiovascular diseases, including myocardial infarction, coronary artery disease, hypertension, heart failure, stroke, peripheral artery disease, kidney ischemia-reperfusion. RECENT ADVANCES One crucial component of ischemic cardiovascular diseases is represented by hypoxia. Indeed, hypoxia is a powerful stimulus regulating the expression of a specific subset of miRNAs, named hypoxia-induced miRNAs (hypoxamiR). These miRNAs are fundamental regulators of the cell responses to decreased oxygen tension. Certain hypoxamiRs seem to have a particularly pervasive role, such as miR-210 that is virtually induced in all ischemic diseases tested so far. However, its specific function may change according to the physiopathological context. CRITICAL ISSUES The discovery of HypoxamiR dates back 6 years. Thus, despite a rapid growth in knowledge and attention, a deeper insight of the molecular mechanisms underpinning hypoxamiR regulation and function is needed. FUTURE DIRECTIONS An extended understanding of the function of hypoxamiR in gene regulatory networks associated with cardiovascular diseases will allow the identification of novel molecular mechanisms of disease and indicate the development of innovative therapeutic approaches.
Collapse
Affiliation(s)
- Simona Greco
- 1 Molecular Cardiology Laboratory , IRCCS-Policlinico San Donato, Milan, Italy
| | | | | |
Collapse
|
35
|
Xu X, Kriegel AJ, Jiao X, Liu H, Bai X, Olson J, Liang M, Ding X. miR-21 in ischemia/reperfusion injury: a double-edged sword? Physiol Genomics 2014; 46:789-97. [PMID: 25159851 DOI: 10.1152/physiolgenomics.00020.2014] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
MicroRNAs (miRNAs or miRs) are endogenous, small RNA molecules that suppress expression of targeted mRNA. miR-21, one of the most extensively studied miRNAs, is importantly involved in divergent pathophysiological processes relating to ischemia/reperfusion (I/R) injury, such as inflammation and angiogenesis. The role of miR-21 in renal I/R is complex, with both protective and pathological pathways being regulated by miR-21. Preconditioning-induced upregulation of miR-21 contributes to the protection against subsequent renal I/R injury through the targeting of genes such as the proapoptotic gene programmed cell death 4 and interactions between miR-21 and hypoxia-inducible factor. Conversely, long-term elevation of miR-21 may be detrimental to the organ by promoting the development of renal interstitial fibrosis following I/R injury. miR-21 is importantly involved in several pathophysiological processes related to I/R injury including inflammation and angiogenesis as well as the biology of stem cells that could be used to treat I/R injury; however, the effect of miR-21 on these processes in renal I/R injury remains to be studied.
Collapse
Affiliation(s)
- Xialian Xu
- Division of Nephrology, Fudan University Zhongshan Hospital, Shanghai, Peoples Republic of China
| | - Alison J Kriegel
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Xiaoyan Jiao
- Division of Nephrology, Fudan University Zhongshan Hospital, Shanghai, Peoples Republic of China
| | - Hong Liu
- Division of Nephrology, Fudan University Zhongshan Hospital, Shanghai, Peoples Republic of China
| | - Xiaowen Bai
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Jessica Olson
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Mingyu Liang
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Xiaoqiang Ding
- Division of Nephrology, Fudan University Zhongshan Hospital, Shanghai, Peoples Republic of China; Institutes of Biomedical Sciences of Shanghai Medical School, Fudan University, Shanghai, Peoples Republic of China; Kidney and Dialysis Institute of Shanghai, Shanghai, Peoples Republic of China; and Kidney and Blood Purification Laboratory of Shanghai, Shanghai, Peoples Republic of China
| |
Collapse
|
36
|
Yang Y, Duan W, Li Y, Jin Z, Yan J, Yu S, Yi D. Novel role of silent information regulator 1 in myocardial ischemia. Circulation 2014; 128:2232-40. [PMID: 24218438 DOI: 10.1161/circulationaha.113.002480] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Yang Yang
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China (Y.Y., W.D., Z.J., S.Y., D.Y.); Team 10, School of Stomatology, The Fourth Military Medical University, Xi'an, China (Y.L.); and Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, China (J.Y.)
| | | | | | | | | | | | | |
Collapse
|
37
|
|
38
|
Umbrello M, Dyson A, Feelisch M, Singer M. The key role of nitric oxide in hypoxia: hypoxic vasodilation and energy supply-demand matching. Antioxid Redox Signal 2013; 19:1690-710. [PMID: 23311950 DOI: 10.1089/ars.2012.4979] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
SIGNIFICANCE A mismatch between energy supply and demand induces tissue hypoxia with the potential to cause cell death and organ failure. Whenever arterial oxygen concentration is reduced, increases in blood flow--hypoxic vasodilation--occur in an attempt to restore oxygen supply. Nitric oxide (NO) is a major signaling and effector molecule mediating the body's response to hypoxia, given its unique characteristics of vasodilation (improving blood flow and oxygen supply) and modulation of energetic metabolism (reducing oxygen consumption and promoting utilization of alternative pathways). RECENT ADVANCES This review covers the role of oxygen in metabolism and responses to hypoxia, the hemodynamic and metabolic effects of NO, and mechanisms underlying the involvement of NO in hypoxic vasodilation. Recent insights into NO metabolism will be discussed, including the role for dietary intake of nitrate, endogenous nitrite (NO₂⁻) reductases, and release of NO from storage pools. The processes through which NO levels are elevated during hypoxia are presented, namely, (i) increased synthesis from NO synthases, increased reduction of NO₂⁻ to NO by heme- or pterin-based enzymes and increased release from NO stores, and (ii) reduced deactivation by mitochondrial cytochrome c oxidase. CRITICAL ISSUES Several reviews covered modulation of energetic metabolism by NO, while here we highlight the crucial role NO plays in achieving cardiocirculatory homeostasis during acute hypoxia through both vasodilation and metabolic suppression. FUTURE DIRECTIONS We identify a key position for NO in the body's adaptation to an acute energy supply-demand mismatch.
Collapse
Affiliation(s)
- Michele Umbrello
- 1 Department of Medicine, Bloomsbury Institute of Intensive Care Medicine, University College London , London, United Kingdom
| | | | | | | |
Collapse
|
39
|
Shi H, Chen L, Wang H, Zhu S, Dong C, Webster KA, Wei J. Synergistic induction of miR-126 by hypoxia and HDAC inhibitors in cardiac myocytes. Biochem Biophys Res Commun 2012. [PMID: 23201405 DOI: 10.1016/j.bbrc.2012.11.061] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
HDAC inhibitors are under clinical development for the treatment of hypertrophic cardiomyopathy and heart failure although the mechanisms of protection are incompletely understood. Micro-RNA 126, an endothelium-specific miR has been assigned essential developmental roles in the heart by activating survival kinases ERK1/2 and Akt and increasing pro-angiogenic signaling. Here we provide the first evidence that hypoxia and HDAC inhibitors selectively and synergistically stimulate expression of miR-126 in cardiac myocytes. MiR-126 expression was increased 1.7-fold (p<0.05) after 1h of hypoxic exposure and this was further enhanced to 3.0-fold (p<0.01) by simultaneously blocking HDAC with the pan-HDAC inhibitor Tricostatin A (TSA). TSA alone did not increase miR-126. In parallel, hypoxia and TSA synergistically increased p-ERK and p-Akt without effecting VEGF-A level. Knockdown of miR-126 with si-RNA eliminated inductions of p-ERK and p-Akt by hypoxia, whereas miR-126 overexpression mimicked hypoxia and amplified p-ERK and p-Akt in parallel with miR-126. The results suggest that miR-126 is a hypoxia-inducible target of HAT/HDAC and its activation in cardiac myocytes may contribute to cardioprotection by activating cell survival and pro-angiogenic pathways selectively during ischemia.
Collapse
Affiliation(s)
- Huaping Shi
- Hangzhou Red Cross Hospital, Zhejiang, China
| | | | | | | | | | | | | |
Collapse
|
40
|
Chan YC, Roy S, Huang Y, Khanna S, Sen CK. The microRNA miR-199a-5p down-regulation switches on wound angiogenesis by derepressing the v-ets erythroblastosis virus E26 oncogene homolog 1-matrix metalloproteinase-1 pathway. J Biol Chem 2012; 287:41032-43. [PMID: 23060436 DOI: 10.1074/jbc.m112.413294] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
miR-199a-5p plays a critical role in controlling cardiomyocyte survival. However, its significance in endothelial cell biology remains ambiguous. Here, we report the first evidence that miR-199a-5p negatively regulates angiogenic responses by directly targeting v-ets erythroblastosis virus E26 oncogene homolog 1 (Ets-1). Induction of miR-199a-5p in human dermal microvascular endothelial cells (HMECs) blocked angiogenic response in Matrigel® culture, whereas miR-199a-5p-deprived cells exhibited enhanced angiogenesis in vitro. Bioinformatics prediction and miR target reporter assay recognized Ets-1 as a novel direct target of miR-199a-5p. Delivery of miR-199a-5p blocked Ets-1 expression in HMECs, whereas knockdown endogenous miR-199a-5p induced Ets-1 expression. Matrix metalloproteinase 1 (MMP-1), one of the Ets-1 downstream mediators, was negatively regulated by miR-199a-5p. Overexpression of Ets-1 not only rescued miR-199a-5p-dependent anti-angiogenic effects but also reversed miR-199a-5p-induced loss of MMP-1 expression. Similarly, Ets-1 knockdown blunted angiogenic response and induction of MMP-1 in miR-199a-5p-deprived HMECs. Examination of cutaneous wound dermal tissue revealed a significant down-regulation of miR-199a-5p expression, which was associated with induction of Ets-1 and MMP-1. Mice carrying homozygous deletions in the Ets-1 gene exhibited blunted wound blood flow and reduced abundance of endothelial cells. Impaired wound angiogenesis was associated with compromised wound closure, insufficient granulation tissue formation, and blunted induction of MMP-1. Thus, down-regulation of miR-199a-5p is involved in the induction of wound angiogenesis through derepressing of the Ets-1-MMP1 pathway.
Collapse
Affiliation(s)
- Yuk Cheung Chan
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University Medical Center, Columbus, Ohio 43210, USA
| | | | | | | | | |
Collapse
|
41
|
Xu X, Kriegel AJ, Liu Y, Usa K, Mladinov D, Liu H, Fang Y, Ding X, Liang M. Delayed ischemic preconditioning contributes to renal protection by upregulation of miR-21. Kidney Int 2012; 82:1167-75. [PMID: 22785173 PMCID: PMC3777822 DOI: 10.1038/ki.2012.241] [Citation(s) in RCA: 138] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Delayed ischemic preconditioning effectively protects kidneys from ischemia-reperfusion injury but the mechanism underlying renal protection remains poorly understood. Here we examined the in vivo role of microRNA miR-21 in the renal protection conferred by delayed ischemic preconditioning in mice. A 15 minute renal ischemic preconditioning significantly increased the expression of miR-21 by 4 hours and substantially attenuated ischemia-reperfusion injury induced 4 days later. A locked nucleic acid-modified anti-miR-21 given at the time of ischemic preconditioning knocked down miR-21 and significantly exacerbated subsequent ischemia-reperfusion injury in the mouse kidney. Knockdown of miR-21 resulted in significant upregulation of programmed cell death protein 4, a pro-apoptotic target gene of miR-21, and substantially increased tubular cell apoptosis. Hypoxia inducible factor-1α in the kidney was activated after ischemic preconditioning and blockade of its activity with a decoy abolished the up-regulation of miR-21 in cultured human renal epithelial cells treated with the inducer cobalt chloride. In the absence of ischemic preconditioning, knockdown of miR-21 alone did not significantly affect ischemia-reperfusion injury in the mouse kidney. Thus, upregulation of miR-21 contributes to the protective effect of delayed ischemic preconditioning against subsequent renal ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Xialian Xu
- Division of Nephrology, Shanghai Medical College, Fudan University, Zhongshan Hospital, Shanghai, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Current World Literature. Curr Opin Cardiol 2012; 27:318-26. [DOI: 10.1097/hco.0b013e328352dfaf] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
43
|
Jung EJ, Santarpia L, Kim J, Esteva FJ, Moretti E, Buzdar AU, Di Leo A, Le XF, Bast RC, Park ST, Pusztai L, Calin GA. Plasma microRNA 210 levels correlate with sensitivity to trastuzumab and tumor presence in breast cancer patients. Cancer 2011; 118:2603-14. [PMID: 22370716 DOI: 10.1002/cncr.26565] [Citation(s) in RCA: 216] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Revised: 08/27/2011] [Accepted: 08/29/2011] [Indexed: 12/18/2022]
Abstract
BACKGROUND Trastuzumab is part of the standard treatment for patients with human epidermal growth factor receptor 2 (HER-2)-positive breast cancer, but not all patients respond to trastuzumab. Altered microRNA (miR) expression levels in cancer cells have been correlated with prognosis and response to chemotherapy. The authors of this report hypothesized that altered miR expression levels in plasma are associated with sensitivity to trastuzumab in patients with HER-2 positive breast cancer. METHODS Quantitative reverse transcriptase-polymerase chain reaction was used to analyze plasma samples, including samples from patients with breast cancer who were enrolled in a clinical trial of neoadjuvant trastuzumab-based chemotherapy. Expression levels of miR-210, miR-21, miR-29a, and miR-126 were analyzed according to the type of response (pathologic complete response [n = 18] vs residual disease [n = 11]). MicroRNA expression levels also were compared in trastuzumab-sensitive and trastuzumab-resistant breast cancer cells derived from BT474 cells and in an independent set of preoperative plasma samples (n = 39) and postoperative plasma samples (n = 30) from 43 breast cancer patients who did not receive any treatment. RESULTS At baseline before patients received neoadjuvant chemotherapy combined with trastuzumab, circulating miR-210 levels were significantly higher in those who had residual disease than in those who achieved a pathologic complete response (P = .0359). The mean expression ratio for miR-210 was significantly higher in trastuzumab-resistant BT474 cells, and miR-210 expression was significantly higher before surgery than after surgery (P = .0297) and in patients whose cancer metastasized to the lymph nodes (P = .0030). CONCLUSIONS Circulating miR-210 levels were associated with trastuzumab sensitivity, tumor presence, and lymph node metastases. These results suggest that plasma miR-210 may be used to predict and perhaps monitor response to therapies that contain trastuzumab.
Collapse
Affiliation(s)
- Eun-Jung Jung
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Viganò A, Vasso M, Caretti A, Bravatà V, Terraneo L, Fania C, Capitanio D, Samaja M, Gelfi C. Protein modulation in mouse heart under acute and chronic hypoxia. Proteomics 2011; 11:4202-17. [PMID: 21948614 DOI: 10.1002/pmic.201000804] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Revised: 07/08/2011] [Accepted: 08/08/2011] [Indexed: 11/10/2022]
Abstract
Exploring cellular mechanisms underlying beneficial and detrimental responses to hypoxia represents the object of the present study. Signaling molecules controlling adaptation to hypoxia (HIF-1α), energy balance (AMPK), mitochondrial biogenesis (PGC-1α), autophagic/apoptotic processes regulation and proteomic dysregulation were assessed. Responses to acute hypoxia (AH) and chronic hypoxia (CH) in mouse heart proteome were detected by 2-D DIGE, mass spectrometry and antigen-antibody reactions. Both in AH and CH, the results indicated a deregulation of proteins related to sarcomere stabilization and muscle contraction. Neither in AH nor in CH the HIF-1α stabilization was observed. In AH, the metabolic adaptation to lack of oxygen was controlled by AMPK activation and sustained by an up-regulation of adenosylhomocysteinase and acetyl-CoA synthetase. AH was characterized by the mitophagic protein Bnip 3 increment. PGC-1α, a master regulator of mitochondrial biogenesis, was down-regulated. CH was characterized by the up-regulation of enzymes involved in antioxidant defense, in aldehyde bio-product detoxification and in misfolded protein degradation. In addition, a general down-regulation of enzymes controlling anaerobic metabolism was observed. After 10 days of hypoxia, cardioprotective molecules were substantially decreased whereas pro-apoptotic molecules increased accompained by down-regulation of specific target proteins.
Collapse
Affiliation(s)
- Agnese Viganò
- Dipartimento di Scienze e Tecnologie Biomediche, Università degli Studi di Milano, Segrate (MI), Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
He B, Xiao J, Ren AJ, Zhang YF, Zhang H, Chen M, Xie B, Gao XG, Wang YW. Role of miR-1 and miR-133a in myocardial ischemic postconditioning. J Biomed Sci 2011; 18:22. [PMID: 21406115 PMCID: PMC3066105 DOI: 10.1186/1423-0127-18-22] [Citation(s) in RCA: 158] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Accepted: 03/16/2011] [Indexed: 11/10/2022] Open
Abstract
Background Ischemic postconditioning (IPost) has aroused much attention since 2003 when it was firstly reported. The role of microRNAs (miRNAs or miRs) in IPost has rarely been reported. The present study was undertaken to investigate whether miRNAs were involved in the protective effect of IPost against myocardial ischemia-reperfusion (IR) injury and the probable mechanisms involved. Methods Thirty SD rats weighing 250-300 g were equally randomized to three groups: Control group, where the rats were treated with thoracotomy only; IR group, where the rats were treated with ischemia for 60 min and reperfusion for 180 min; and IPost group, where the rats were treated with 3 cycles of transient IR just before reperfusion. The extent of myocardial infarction, LDH and CK activities were measured immediately after treatment. Myocardial apoptosis was detected by TUNEL assay. The myocardial tissue was collected after IR or IPost stimulation to evaluate the miRNAs expression level by miRNA-microarray and quantitative real-time RT-PCR. Real-time PCR was conducted to identify changes in mRNA expression of apoptosis-related genes such as Bcl-2, Bax and Caspase-9 (CASP9), and Western blot was used to compare the protein expression level of CASP9 in the three groups. The miRNA mimics and anti-miRNA oligonucleotides (AMO) were transferred into the cultured neonatal cardiomyocytes and myocardium before they were treated with IR. The effect of miRNAs on apoptosis was determined by flow cytometry and TUNEL assay. CASP9, as one of the candidate target of miR-133a, was compared during IR after the miR-133a mimic or AMO-133a was transferred into the myocardium. Results IPost reduced the IR-induced infarct size of the left ventricle, and decreased CK and LDH levels. TUNEL assay showed that myocardial apoptosis was attenuated by IPost compared with IR. MiRNA-microarray and RT-PCR showed that myocardial-specific miR-1 and miR-133a were down-regulated by IR, and up-regulated by IPost compared with IR. Furthermore, IPost up-regulated the mRNA expression of Bcl-2, down-regulated that of Bax and CASP9. Western blot showed that IPost also down-regulated the CASP9 protein expression compared with IR. The results of flow cytometry and TUNEL assay showed that up-regulation of miR-1 and miR-133a decreased apoptosis of cardiomyocytes. MiR-133a mimic down-regulated CASP9 protein expression and attenuated IR-induced apoptosis. Conclusion MiRNAs are associated with the protective effect of IPost against myocardial IR injury. IPost can up-regulate miR-1 and miR-133a, and decrease apoptosis of cardiomyocyte. Myocardial-specific miR-1 and miR-133a may play an important role in IPost protection by regulating apoptosis-related genes. MiR-133a may attenuate apoptosis of myocardiocytes by targeting CASP9.
Collapse
Affiliation(s)
- Bin He
- Department of Anesthesiology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Kongjiang Road, Shanghai, China
| | | | | | | | | | | | | | | | | |
Collapse
|