1
|
Vandyck K, McGowan DC, Luong XG, Stevens SK, Jekle A, Gupta K, Misner DL, Chanda S, Serebryany V, Welch M, Hu H, Lv Z, Williams C, Maskos K, Lammens A, Stoycheva AD, Lin TI, Blatt LM, Beigelman LN, Symons JA, Raboisson P, Deval J. Discovery and Preclinical Profile of ALG-055009, a Potent and Selective Thyroid Hormone Receptor Beta (THR-β) Agonist for the Treatment of MASH. J Med Chem 2024; 67:14840-14851. [PMID: 39221768 DOI: 10.1021/acs.jmedchem.4c01029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Agonists of thyroid hormone receptor β (THR-β) decreased LDL cholesterol (LDL-C) and triglyceride (TG) levels in human clinical trials for patients with dyslipidemia. The authors present the highly potent and selective compound ALG-055009 (14) as a potential best in class THR-β agonist. The high metabolic stability and good permeability translated well in vivo to afford a long in vivo half-life pharmacokinetic profile with limited liability for DDI, and it overcomes certain drawbacks seen in recent clinical candidates.
Collapse
Affiliation(s)
- Koen Vandyck
- Aligos Belgium BV, Gaston Geenslaan 1, 3001 Leuven, Belgium
| | | | - Xuan G Luong
- Aligos Therapeutics, Incorporated, 1 Corporate Drive, South San Francisco, California 94080, United States
| | - Sarah K Stevens
- Aligos Therapeutics, Incorporated, 1 Corporate Drive, South San Francisco, California 94080, United States
| | - Andreas Jekle
- Aligos Therapeutics, Incorporated, 1 Corporate Drive, South San Francisco, California 94080, United States
| | - Kusum Gupta
- Aligos Therapeutics, Incorporated, 1 Corporate Drive, South San Francisco, California 94080, United States
| | - Dinah L Misner
- Aligos Therapeutics, Incorporated, 1 Corporate Drive, South San Francisco, California 94080, United States
| | - Sushmita Chanda
- Aligos Therapeutics, Incorporated, 1 Corporate Drive, South San Francisco, California 94080, United States
| | - Vladimir Serebryany
- Aligos Therapeutics, Incorporated, 1 Corporate Drive, South San Francisco, California 94080, United States
| | - Michael Welch
- Aligos Therapeutics, Incorporated, 1 Corporate Drive, South San Francisco, California 94080, United States
| | - Haiyang Hu
- Pharmaron, 6 Taihe Road, BDA, Beijing, 100176, P. R. China
| | - Zhidan Lv
- Pharmaron, 6 Taihe Road, BDA, Beijing, 100176, P. R. China
| | - Caroline Williams
- Aligos Therapeutics, Incorporated, 1 Corporate Drive, South San Francisco, California 94080, United States
| | - Klaus Maskos
- Proteros Biostructures GmbH, Bunsenstraße 7a, 82152 Planegg-Martinsried, Germany
| | - Alfred Lammens
- Proteros Biostructures GmbH, Bunsenstraße 7a, 82152 Planegg-Martinsried, Germany
| | - Antitsa D Stoycheva
- Aligos Therapeutics, Incorporated, 1 Corporate Drive, South San Francisco, California 94080, United States
| | - Tse-I Lin
- Aligos Belgium BV, Gaston Geenslaan 1, 3001 Leuven, Belgium
| | - Lawrence M Blatt
- Aligos Therapeutics, Incorporated, 1 Corporate Drive, South San Francisco, California 94080, United States
| | - Leonid N Beigelman
- Aligos Therapeutics, Incorporated, 1 Corporate Drive, South San Francisco, California 94080, United States
| | - Julian A Symons
- Aligos Therapeutics, Incorporated, 1 Corporate Drive, South San Francisco, California 94080, United States
| | - Pierre Raboisson
- Aligos Therapeutics, Incorporated, 1 Corporate Drive, South San Francisco, California 94080, United States
| | - Jerome Deval
- Aligos Therapeutics, Incorporated, 1 Corporate Drive, South San Francisco, California 94080, United States
| |
Collapse
|
2
|
Shen H, Huo R, Zhang Y, Wang L, Tong N, Chen W, Paris AJ, Mensah K, Chen M, Xue Y, Li W, Sinz M. A Pilot Study To Assess the Suitability of Riboflavin As a Surrogate Marker of Breast Cancer Resistance Protein in Healthy Participants. J Pharmacol Exp Ther 2024; 390:162-173. [PMID: 38296646 DOI: 10.1124/jpet.123.002015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/31/2023] [Accepted: 01/08/2024] [Indexed: 02/02/2024] Open
Abstract
We recently showed that riboflavin is a selected substrate of breast cancer resistance protein (BCRP) over P-glycoprotein (P-gp) and demonstrated its prediction performance in preclinical drug-drug interaction (DDI) studies. The aim of this study was to investigate the suitability of riboflavin to assess BCRP inhibition in humans. First, we assessed the substrate potential of riboflavin toward other major drug transporters using established transfected cell systems. Riboflavin is a substrate for organic anion transporter (OAT)1, OAT3, and multidrug and toxin extrusion protein (MATE)2-K, with uptake ratios ranging from 2.69 to 11.6, but riboflavin is not a substrate of organic anion-transporting polypeptide (OATP)1B1, OATP1B3, organic cation transporter (OCT)2, and MATE1. The effects of BMS-986371, a potent in vitro inhibitor of BCRP (IC 50 0.40 μM), on the pharmacokinetics of riboflavin, isobutyryl carnitine, and arginine were then examined in healthy male adults (N = 14 or 16) after oral administration of methotrexate (MTX) (7.5 mg) and enteric-coated (EC) sulfasalazine (SSZ) (1000 mg) alone or in combination with BMS-986371 (150 mg). Oral administration of BMS-986371 increased the area under the plasma concentration-time curves (AUCs) of rosuvastatin and immediate-release (IR) SSZ to 1.38- and 1.51-fold, respectively, and significantly increased AUC(0-4h), AUC(0-24h), and C max of riboflavin by 1.25-, 1.14-, and 1.11-fold (P-values of 0.003, 0.009, and 0.025, respectively) compared with the MTX/SSZ EC alone group. In contrast, BMS-986371 did not significantly influence the AUC(0-24h) and C max values of isobutyryl carnitine and arginine (0.96- to 1.07-fold, respectively; P > 0.05). Overall, these data indicate that plasma riboflavin is a promising biomarker of BCRP that may offer a possibility to assess drug candidate as a BCRP modulator in early drug development. SIGNIFICANCE STATEMENT: Endogenous compounds that serve as biomarkers for clinical inhibition of breast cancer resistance protein (BCRP) are not currently available. This study provides the initial evidence that riboflavin is a promising BCRP biomarker in humans. For the first time, the value of leveraging the substrate of BCRP with acceptable prediction performance in clinical studies is shown. Additional clinical investigations with known BCRP inhibitors are needed to fully validate and showcase the utility of this biomarker.
Collapse
Affiliation(s)
- Hong Shen
- Departments of Drug Metabolism and Pharmacokinetics (H.S., Y.Z., M.S.), Clinical Pharmacology, Pharmacometrics, and Bioanalysis (R.H., L.W., M.C., Y.X.), Development Biotransformation (N.T., W.C., W.L.), and Early Clinical Development (A.J.P., K.M.), Bristol Myers Squibb, Princeton, New Jersey
| | - Runlan Huo
- Departments of Drug Metabolism and Pharmacokinetics (H.S., Y.Z., M.S.), Clinical Pharmacology, Pharmacometrics, and Bioanalysis (R.H., L.W., M.C., Y.X.), Development Biotransformation (N.T., W.C., W.L.), and Early Clinical Development (A.J.P., K.M.), Bristol Myers Squibb, Princeton, New Jersey
| | - Yueping Zhang
- Departments of Drug Metabolism and Pharmacokinetics (H.S., Y.Z., M.S.), Clinical Pharmacology, Pharmacometrics, and Bioanalysis (R.H., L.W., M.C., Y.X.), Development Biotransformation (N.T., W.C., W.L.), and Early Clinical Development (A.J.P., K.M.), Bristol Myers Squibb, Princeton, New Jersey
| | - Linna Wang
- Departments of Drug Metabolism and Pharmacokinetics (H.S., Y.Z., M.S.), Clinical Pharmacology, Pharmacometrics, and Bioanalysis (R.H., L.W., M.C., Y.X.), Development Biotransformation (N.T., W.C., W.L.), and Early Clinical Development (A.J.P., K.M.), Bristol Myers Squibb, Princeton, New Jersey
| | - Nian Tong
- Departments of Drug Metabolism and Pharmacokinetics (H.S., Y.Z., M.S.), Clinical Pharmacology, Pharmacometrics, and Bioanalysis (R.H., L.W., M.C., Y.X.), Development Biotransformation (N.T., W.C., W.L.), and Early Clinical Development (A.J.P., K.M.), Bristol Myers Squibb, Princeton, New Jersey
| | - Weiqi Chen
- Departments of Drug Metabolism and Pharmacokinetics (H.S., Y.Z., M.S.), Clinical Pharmacology, Pharmacometrics, and Bioanalysis (R.H., L.W., M.C., Y.X.), Development Biotransformation (N.T., W.C., W.L.), and Early Clinical Development (A.J.P., K.M.), Bristol Myers Squibb, Princeton, New Jersey
| | - Andrew J Paris
- Departments of Drug Metabolism and Pharmacokinetics (H.S., Y.Z., M.S.), Clinical Pharmacology, Pharmacometrics, and Bioanalysis (R.H., L.W., M.C., Y.X.), Development Biotransformation (N.T., W.C., W.L.), and Early Clinical Development (A.J.P., K.M.), Bristol Myers Squibb, Princeton, New Jersey
| | - Kofi Mensah
- Departments of Drug Metabolism and Pharmacokinetics (H.S., Y.Z., M.S.), Clinical Pharmacology, Pharmacometrics, and Bioanalysis (R.H., L.W., M.C., Y.X.), Development Biotransformation (N.T., W.C., W.L.), and Early Clinical Development (A.J.P., K.M.), Bristol Myers Squibb, Princeton, New Jersey
| | - Min Chen
- Departments of Drug Metabolism and Pharmacokinetics (H.S., Y.Z., M.S.), Clinical Pharmacology, Pharmacometrics, and Bioanalysis (R.H., L.W., M.C., Y.X.), Development Biotransformation (N.T., W.C., W.L.), and Early Clinical Development (A.J.P., K.M.), Bristol Myers Squibb, Princeton, New Jersey
| | - Yongjun Xue
- Departments of Drug Metabolism and Pharmacokinetics (H.S., Y.Z., M.S.), Clinical Pharmacology, Pharmacometrics, and Bioanalysis (R.H., L.W., M.C., Y.X.), Development Biotransformation (N.T., W.C., W.L.), and Early Clinical Development (A.J.P., K.M.), Bristol Myers Squibb, Princeton, New Jersey
| | - Wenying Li
- Departments of Drug Metabolism and Pharmacokinetics (H.S., Y.Z., M.S.), Clinical Pharmacology, Pharmacometrics, and Bioanalysis (R.H., L.W., M.C., Y.X.), Development Biotransformation (N.T., W.C., W.L.), and Early Clinical Development (A.J.P., K.M.), Bristol Myers Squibb, Princeton, New Jersey
| | - Michael Sinz
- Departments of Drug Metabolism and Pharmacokinetics (H.S., Y.Z., M.S.), Clinical Pharmacology, Pharmacometrics, and Bioanalysis (R.H., L.W., M.C., Y.X.), Development Biotransformation (N.T., W.C., W.L.), and Early Clinical Development (A.J.P., K.M.), Bristol Myers Squibb, Princeton, New Jersey
| |
Collapse
|
3
|
Kasten A, Cascorbi I. Understanding the impact of ABCG2 polymorphisms on drug pharmacokinetics: focus on rosuvastatin and allopurinol. Expert Opin Drug Metab Toxicol 2024; 20:519-528. [PMID: 38809523 DOI: 10.1080/17425255.2024.2362184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 05/28/2024] [Indexed: 05/30/2024]
Abstract
INTRODUCTION In addition to the well-established understanding of the pharmacogenetics of drug-metabolizing enzymes, there is growing data on the effects of genetic variation in drug transporters, particularly ATP-binding cassette (ABC) transporters. However, the evidence that these genetic variants can be used to predict drug effects and to adjust individual dosing to avoid adverse events is still limited. AREAS COVERED This review presents a summary of the current literature from the PubMed database as of February 2024 regarding the impact of genetic variants on ABCG2 function and their relevance to the clinical use of the HMG-CoA reductase inhibitor rosuvastatin and the xanthine oxidase inhibitor allopurinol. EXPERT OPINION Although there are pharmacogenetic guidelines for the ABCG2 missense variant Q141K, there is still some conflicting data regarding the clinical benefits of these recommendations. Some caution appears to be warranted in homozygous ABCG2 Q141K carriers when rosuvastatin is administered at higher doses and such information is already included in the drug label. The benefit of dose adaption to lower possible side effects needs to be evaluated in prospective clinical studies.
Collapse
Affiliation(s)
- Anne Kasten
- Institute of Experimental and Clinical Pharmacology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Ingolf Cascorbi
- Institute of Experimental and Clinical Pharmacology, University Hospital Schleswig-Holstein, Kiel, Germany
| |
Collapse
|
4
|
Abstract
The blood-brain barrier (BBB) is a critical interface separating the central nervous system from the peripheral circulation, ensuring brain homeostasis and function. Recent research has unveiled a profound connection between the BBB and circadian rhythms, the endogenous oscillations synchronizing biological processes with the 24-hour light-dark cycle. This review explores the significance of circadian rhythms in the context of BBB functions, with an emphasis on substrate passage through the BBB. Our discussion includes efflux transporters and the molecular timing mechanisms that regulate their activities. A significant focus of this review is the potential implications of chronotherapy, leveraging our knowledge of circadian rhythms for improving drug delivery to the brain. Understanding the temporal changes in BBB can lead to optimized timing of drug administration, to enhance therapeutic efficacy for neurological disorders while reducing side effects. By elucidating the interplay between circadian rhythms and drug transport across the BBB, this review offers insights into innovative therapeutic interventions.
Collapse
Affiliation(s)
- Mari Kim
- Cell Biology Department, Emory University, Atlanta, GA, USA
| | | | | |
Collapse
|
5
|
Michiba K, Watanabe K, Imaoka T, Nakai D. Recent Advances in the Gastrointestinal Complex in Vitro Model for ADME Studies. Pharmaceutics 2023; 16:37. [PMID: 38258048 PMCID: PMC10819272 DOI: 10.3390/pharmaceutics16010037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/06/2023] [Accepted: 12/16/2023] [Indexed: 01/24/2024] Open
Abstract
Intestinal absorption is a complex process involving the permeability of the epithelial barrier, efflux transporter activity, and intestinal metabolism. Identifying the key factors that govern intestinal absorption for each investigational drug is crucial. To assess and predict intestinal absorption in humans, it is necessary to leverage appropriate in vitro systems. Traditionally, Caco-2 monolayer systems and intestinal Ussing chamber studies have been considered the 'gold standard' for studying intestinal absorption. However, these methods have limitations that hinder their universal use in drug discovery and development. Recently, there has been an increasing number of reports on complex in vitro models (CIVMs) using human intestinal organoids derived from intestinal tissue specimens or iPSC-derived enterocytes plated on 2D or 3D in microphysiological systems. These CIVMs provide a more physiologically relevant representation of key ADME-related proteins compared to conventional in vitro methods. They hold great promise for use in drug discovery and development due to their ability to replicate the expressions and functions of these proteins. This review highlights recent advances in gut CIVMs employing intestinal organoid model systems compared to conventional methods. It is important to note that each CIVM should be tailored to the investigational drug properties and research questions at hand.
Collapse
Affiliation(s)
- Kazuyoshi Michiba
- Drug Metabolism & Pharmacokinetics Research Laboratory, Daiichi Sankyo Co., Ltd., 1-2-58, Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan; (K.W.); (T.I.); (D.N.)
| | | | | | | |
Collapse
|
6
|
Maeda K. Quantitative Prediction of Intestinal Absorption of Drugs from In Vitro Study: Utilization of Differentiated Intestinal Epithelial Cells Derived from Intestinal Stem Cells at Crypts. Drug Metab Dispos 2023; 51:1136-1144. [PMID: 37142427 DOI: 10.1124/dmd.122.000966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 03/21/2023] [Accepted: 04/28/2023] [Indexed: 05/06/2023] Open
Abstract
Prediction of intestinal absorption of drugs in humans is one of the critical elements in the development process for oral drugs. However, it remains challenging, because intestinal absorption of drugs is influenced by multiple factors, including the function of various metabolic enzymes and transporters, and large species differences in drug bioavailability hinder the prediction of human bioavailability directly from in vivo animal experiments. For the screening of intestinal absorption properties of drugs, a transcellular transport assay with Caco-2 cells is still routinely used by pharmaceutical companies because of its convenience, but the predictability of the fraction of the oral dose that goes to the portal vein of metabolic enzyme/transporter substrate drugs was not always good because the cellular expression of metabolic enzymes and transporters is different from that in the human intestine. Recently, various novel in vitro experimental systems have been proposed such as the use of human-derived intestinal samples, transcellular transport assay with induced pluripotent stem-derived enterocyte-like cells, or differentiated intestinal epithelial cells derived from intestinal stem cells at crypts. Crypt-derived differentiated epithelial cells have an excellent potential to characterize species differences and regional differences in intestinal absorption of drugs because a unified protocol can be used for the proliferation of intestinal stem cells and their differentiation into intestinal absorptive epithelial cells regardless of the animal species and the gene expression pattern of differentiated cells is maintained at the site of original crypts. The advantages and disadvantages of novel in vitro experimental systems for characterizing intestinal absorption of drugs are also discussed. SIGNIFICANCE STATEMENT: Among novel in vitro tools for the prediction of human intestinal absorption of drugs, crypt-derived differentiated epithelial cells have many advantages. Cultured intestinal stem cells are rapidly proliferated and easily differentiated into intestinal absorptive epithelial cells simply by changing the culture media. A unified protocol can be used for the establishment of intestinal stem cell culture from preclinical species and humans. Region-specific gene expression at the collection site of crypts can be reproduced in differentiated cells.
Collapse
Affiliation(s)
- Kazuya Maeda
- Laboratory of Pharmaceutics, School of Pharmacy, Kitasato University, Tokyo, Japan
| |
Collapse
|
7
|
Sharma S, Mettu VS, Prasad B. Interplay of Breast Cancer Resistance Protein (Bcrp/Abcg2), Sex, and Fed State in Oral Pharmacokinetic Variability of Furosemide in Rats. Pharmaceutics 2023; 15:pharmaceutics15020542. [PMID: 36839862 PMCID: PMC9968170 DOI: 10.3390/pharmaceutics15020542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/20/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023] Open
Abstract
Poor and variable oral bioavailability of furosemide (FUR) presents critical challenges in pharmacotherapy. We investigated the interplay of breast cancer resistance protein (Bcrp)-mediated transport, sex, and fed state on FUR pharmacokinetics (PK) in rats. A crossover PK study of FUR (5 mg/kg, oral) was performed in Sprague-Dawley rats (3 males and 3 females), alone or with a Bcrp inhibitor, novobiocin (NOV) (20 mg/kg, oral), in both fed and fasted states. Co-administration of NOV significantly increased FUR extent (AUC) and rate (Cmax) of exposure by more than two-fold, which indicates efficient Bcrp inhibition in the intestine. The female rats showed two-fold higher AUC and Cmax, and two-fold lower renal clearance of FUR compared to the male rats. The latter was correlated with higher renal abundance of Bcrp and organic anion transporters (Oats) in the male rats compared to age-matched female rats. These findings suggest that the PK of Bcrp and/or Oat substrates could be sex-dependent in rats. Moreover, allometric scaling of rat PK and toxicological data of Bcrp substrates should consider species and sex differences in Bcrp and Oat abundance in the kidney. Considering that Bcrp is abundant in the intestine of rats and humans, a prospective clinical study is warranted to evaluate the effect of Bcrp inhibition on FUR PK. The potential confounding effect of the Bcrp transporter should be considered when FUR is used as a clinical probe of renal organic anion transporter-mediated drug-drug interactions. Unlike human data, no food-effect was observed on FUR PK in rats.
Collapse
Affiliation(s)
| | | | - Bhagwat Prasad
- Correspondence: ; Tel.: +1-(509)-358-7739; Fax: +1-509-368-6561
| |
Collapse
|
8
|
Michiba K, Maeda K, Shimomura O, Miyazaki Y, Hashimoto S, Oda T, Kusuhara H. Usefulness of Human Jejunal Spheroid-Derived Differentiated Intestinal Epithelial Cells for the Prediction of Intestinal Drug Absorption in Humans. Drug Metab Dispos 2022; 50:204-213. [PMID: 34992074 DOI: 10.1124/dmd.121.000796] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/02/2022] [Indexed: 11/22/2022] Open
Abstract
This study aimed to demonstrate the usefulness of human jejunal spheroid-derived differentiated intestinal epithelial cells as a novel in vitro model for clarifying the impact of intestinal drug-metabolizing enzymes and transporters on the intestinal absorption of substrate drugs in humans. Three-dimensional human intestinal spheroids were successfully established from surgical human jejunal specimens and expanded for a long period using L-WRN-conditioned medium, which contains Wnt3a, R-spondin 3, and noggin. The mRNA expression levels of intestinal pharmacokinetics-related genes in the human jejunal spheroid-derived differentiated intestinal epithelial cells were drastically increased over a 5-day period after seeding compared with those in human jejunal spheroids and were approximately the same as those in human jejunal tissue over a culture period of at least 13 days. Activities of typical drug-metabolizing enzymes [cytochrome P450 (CYP) 3A, CYP2C9, uridine 5'-diphospho-glucuronosyltransferase 1A, and carboxylesterase 2] and uptake/efflux transporters [peptide transporter 1/solute carrier 15A1], P-glycoprotein, and breast cancer resistance protein) in the differentiated cells were confirmed. Furthermore, intestinal availability (Fg) values estimated from the apical-to-basolateral permeation clearance across cell monolayer showed a good correlation with the in vivo Fg values in humans for five CYP3A substrate drugs (Fg range, 0.35-0.98). In conclusion, the functions of major intestinal drug-metabolizing enzymes and transporters could be maintained in human jejunal spheroid-derived differentiated intestinal epithelial cells. This model would be useful for the quantitative evaluation of the impact of intestinal drug-metabolizing enzymes and transporters on the intestinal absorption of substrate drugs in humans. SIGNIFICANCE STATEMENT: Limited information is available regarding the quantitative prediction of the impact of drug-metabolizing enzymes and transporters on the human intestinal absorption of substrates using in vitro assays with differentiated cells derived from human intestinal spheroids/organoids. This study confirmed the functions of typical drug-metabolizing enzymes and transporters in human jejunal spheroid-derived differentiated intestinal epithelial cells and demonstrated that intestinal availability (Fg) estimated from apical-to-basolateral permeation clearance across cell monolayers showed a good correlation with in vivo human Fg for CYP3A substrates.
Collapse
Affiliation(s)
- Kazuyoshi Michiba
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan (K.Mi., K.Ma., H.K.); Laboratory of Pharmaceutics, School of Pharmacy, Kitasato University, Tokyo, Japan (K.Ma.); and Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan (O.S., Y.M., S.H., T.O.)
| | - Kazuya Maeda
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan (K.Mi., K.Ma., H.K.); Laboratory of Pharmaceutics, School of Pharmacy, Kitasato University, Tokyo, Japan (K.Ma.); and Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan (O.S., Y.M., S.H., T.O.)
| | - Osamu Shimomura
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan (K.Mi., K.Ma., H.K.); Laboratory of Pharmaceutics, School of Pharmacy, Kitasato University, Tokyo, Japan (K.Ma.); and Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan (O.S., Y.M., S.H., T.O.)
| | - Yoshihiro Miyazaki
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan (K.Mi., K.Ma., H.K.); Laboratory of Pharmaceutics, School of Pharmacy, Kitasato University, Tokyo, Japan (K.Ma.); and Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan (O.S., Y.M., S.H., T.O.)
| | - Shinji Hashimoto
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan (K.Mi., K.Ma., H.K.); Laboratory of Pharmaceutics, School of Pharmacy, Kitasato University, Tokyo, Japan (K.Ma.); and Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan (O.S., Y.M., S.H., T.O.)
| | - Tatsuya Oda
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan (K.Mi., K.Ma., H.K.); Laboratory of Pharmaceutics, School of Pharmacy, Kitasato University, Tokyo, Japan (K.Ma.); and Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan (O.S., Y.M., S.H., T.O.)
| | - Hiroyuki Kusuhara
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan (K.Mi., K.Ma., H.K.); Laboratory of Pharmaceutics, School of Pharmacy, Kitasato University, Tokyo, Japan (K.Ma.); and Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan (O.S., Y.M., S.H., T.O.)
| |
Collapse
|
9
|
Zhao W, Meng H. Effects of genetic polymorphism of drug-metabolizing enzymes on the plasma concentrations of antiepileptic drugs in Chinese population. Bioengineered 2022; 13:7709-7745. [PMID: 35290166 PMCID: PMC9278974 DOI: 10.1080/21655979.2022.2036916] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 11/02/2022] Open
Abstract
As a chronic brain disease, epilepsy affects ~50 million people worldwide. The traditional antiepileptic drugs (AEDs) are widely applied but showing various problems. Although the new AEDs have partially solved the problems of traditional AEDs, the current clinical application of traditional AEDs are not completely replaced by new drugs, particularly due to the large individual differences in drug plasma concentrations and narrow therapeutic windows among patients. Therefore, it is still clinically important to continue to treat patients using traditional AEDs with individualized therapeutic plans. To date, our understanding of the molecular and genetic mechanisms regulating plasma concentrations of AEDs has advanced rapidly, expanding the knowledge on the effects of genetic polymorphisms of genes encoding drug-metabolizing enzymes on the plasma concentrations of AEDs. It is increasingly imperative to summarize and conceptualize the clinical significance of recent studies on individualized therapeutic regimens. In this review, we extensively summarize the critical effects of genetic polymorphisms of genes encoding drug-metabolizing enzymes on the plasma concentrations of several commonly used AEDs as well as the clinical significance of testing genotypes related to drug metabolism on individualized drug dosage. Our review provides solid experimental evidence and clinical guidance for the therapeutic applications of these AEDs.
Collapse
Affiliation(s)
- Weixuan Zhao
- Department of Neurology, the First Hospital of Jilin University, Jilin University, Changchun, China
| | - Hongmei Meng
- Department of Neurology, the First Hospital of Jilin University, Jilin University, Changchun, China
| |
Collapse
|
10
|
Shimizu M, Hayasaka R, Kamiya Y, Yamazaki H. Trivariate Linear Regression and Machine Learning Prediction of Possible Roles of Efflux Transporters in Estimated Intestinal Permeability Values of 301 Disparate Chemicals. Biol Pharm Bull 2022; 45:1142-1157. [DOI: 10.1248/bpb.b22-00221] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
11
|
Negligible Effect of Quercetin in the Pharmacokinetics of Sulfasalazine in Rats and Beagles: Metabolic Inactivation of the Interaction Potential of Quercetin with BCRP. Pharmaceutics 2021; 13:pharmaceutics13121989. [PMID: 34959273 PMCID: PMC8703684 DOI: 10.3390/pharmaceutics13121989] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/19/2021] [Accepted: 11/20/2021] [Indexed: 12/23/2022] Open
Abstract
Breast cancer resistance protein (BCRP) mediates pharmacokinetic drug interactions. This study evaluated the potential of quercetin to inhibit and induce BCRP in vitro and in vivo. The inhibition of BCRP was investigated for quercetin and its metabolites using BCRP/mBcrp1-overexpressing MDCKII cells by flow cytometry. The induction of BCRP was investigated in LS174T cells using quantitative PCR. The expression of rat BCRP in rat small intestine, liver, and kidney was also measured after multiple administrations of quercetin in rats (50, 100, and 250 mg/kg, seven days). The in vivo pharmacokinetic changes of sulfasalazine following single or multiple administration of quercetin in rats and beagles were investigated. Although the induction effect of quercetin on BCRP was observed in vitro, the in vivo expression of rat BCRP was not changed by multiple quercetin administrations. Oral administration of quercetin did not affect the plasma concentration or pharmacokinetic parameters of sulfasalazine, regardless of dose and dosing period in either rats or beagles. In addition, the inhibitory effect of quercetin metabolites on BCRP/mBcrp1 was not observed. These results suggest that the in vivo drug interaction caused by quercetin via BCRP was negligible, and it may be related to the metabolic inactivation of quercetin for the inhibition of BCRP.
Collapse
|
12
|
Bruckmueller H, Cascorbi I. ABCB1, ABCG2, ABCC1, ABCC2, and ABCC3 drug transporter polymorphisms and their impact on drug bioavailability: what is our current understanding? Expert Opin Drug Metab Toxicol 2021; 17:369-396. [PMID: 33459081 DOI: 10.1080/17425255.2021.1876661] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Interindividual differences in drug response are a frequent clinical challenge partly due to variation in pharmacokinetics. ATP-binding cassette (ABC) transporters are crucial determinants of drug disposition. They are subject of gene regulation and drug-interaction; however, it is still under debate to which extend genetic variants in these transporters contribute to interindividual variability of a wide range of drugs. AREAS COVERED This review discusses the current literature on the impact of genetic variants in ABCB1, ABCG2 as well as ABCC1, ABCC2, and ABCC3 on pharmacokinetics and drug response. The aim was to evaluate if results from recent studies would increase the evidence for potential clinically relevant pharmacogenetic effects. EXPERT OPINION Although enormous efforts have been made to investigate effects of ABC transporter genotypes on drug pharmacokinetics and response, the majority of studies showed only weak if any associations. Despite few unique results, studies mostly failed to confirm earlier findings or still remained inconsistent. The impact of genetic variants on drug bioavailability is only minor and other factors regulating the transporter expression and function seem to be more critical. In our opinion, the findings on the so far investigated genetic variants in ABC efflux transporters are not suitable as predictive biomarkers.
Collapse
Affiliation(s)
- Henrike Bruckmueller
- Institute of Experimental and Clinical Pharmacology, University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
| | - Ingolf Cascorbi
- Institute of Experimental and Clinical Pharmacology, University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
| |
Collapse
|
13
|
Michiba K, Maeda K, Kurimori K, Enomoto T, Shimomura O, Takeuchi T, Nishiyama H, Oda T, Kusuhara H. Characterization of the Human Intestinal Drug Transport with Ussing Chamber System Incorporating Freshly Isolated Human Jejunum. Drug Metab Dispos 2021; 49:84-93. [PMID: 33087448 DOI: 10.1124/dmd.120.000138] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 10/02/2020] [Indexed: 02/13/2025] Open
Abstract
Intestinal permeability is a critical factor for orally administered drugs. It can be facilitated by uptake transporters or limited by efflux transporters and metabolic enzymes in the intestine. The present study aimed to characterize the Ussing chamber system incorporating human intestinal tissue as an in vitro model for investigating the impact of intestinal uptake/efflux transporters on the intestinal absorption of substrate drugs in humans. We confirmed the functions of major intestinal uptake/efflux drug transporters in freshly isolated human jejunum sections by demonstrating a significant decrease in the mucosal uptake of cefadroxil (peptide transporter 1) and methotrexate (proton-coupled folate transporter), mucosal-to-serosal permeability of ribavirin (concentrative nucleoside transporters/equilibrative nucleoside transporters), and serosal-to-mucosal permeability of P-glycoprotein and breast cancer resistance protein substrates in the presence of their typical inhibitors. The mucosal-to-serosal apparent permeability coefficients (Papp) of 19 drugs, including substrates of drug transporters and cytochrome P450 3A, ranged from 0.60 × 10-6 to 29 × 10-6 cm/s and showed a good correlation with reported fraction of an oral dose that enters the gut wall and passes into the portal circulation with escaping intestinal metabolism (FaFg) values in humans. Furthermore, the Papp values for cefadroxil, methotrexate, and ribavirin in the presence of the corresponding transporter inhibitors underestimated the FaFg of these drugs, which clearly showed that intestinal uptake transporters facilitate their intestinal absorption in humans. In conclusion, the functions of major intestinal uptake/efflux drug transporters could be maintained in freshly isolated human jejunum sections. The Ussing chamber system incorporating human intestinal tissue would be useful for evaluating the impact of intestinal uptake/efflux transporters on the intestinal absorption of various types of drugs in humans. SIGNIFICANCE STATEMENT: Although previous studies have predicted the intestinal absorption of drugs in humans using the Ussing chamber system incorporating human intestinal tissue, there is little systematic information about drug transport mediated by multiple transporters in this system. We confirmed the functions of major intestinal uptake/efflux transporters in freshly isolated human jejunum sections and demonstrated that the mucosal-to-serosal apparent permeability coefficient of various types of drugs showed a good correlation with reported human FaFg values.
Collapse
Affiliation(s)
- Kazuyoshi Michiba
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan (K.Mi., K.Ma., H.K.); Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan (K.K., T.E., O.S., T.O.); and Tsukuba Human Tissue Biobank Center, University of Tsukuba Hospital, Ibaraki, Japan (T.T., H.N.)
| | - Kazuya Maeda
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan (K.Mi., K.Ma., H.K.); Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan (K.K., T.E., O.S., T.O.); and Tsukuba Human Tissue Biobank Center, University of Tsukuba Hospital, Ibaraki, Japan (T.T., H.N.)
| | - Ko Kurimori
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan (K.Mi., K.Ma., H.K.); Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan (K.K., T.E., O.S., T.O.); and Tsukuba Human Tissue Biobank Center, University of Tsukuba Hospital, Ibaraki, Japan (T.T., H.N.)
| | - Tsuyoshi Enomoto
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan (K.Mi., K.Ma., H.K.); Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan (K.K., T.E., O.S., T.O.); and Tsukuba Human Tissue Biobank Center, University of Tsukuba Hospital, Ibaraki, Japan (T.T., H.N.)
| | - Osamu Shimomura
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan (K.Mi., K.Ma., H.K.); Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan (K.K., T.E., O.S., T.O.); and Tsukuba Human Tissue Biobank Center, University of Tsukuba Hospital, Ibaraki, Japan (T.T., H.N.)
| | - Tomoyo Takeuchi
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan (K.Mi., K.Ma., H.K.); Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan (K.K., T.E., O.S., T.O.); and Tsukuba Human Tissue Biobank Center, University of Tsukuba Hospital, Ibaraki, Japan (T.T., H.N.)
| | - Hiroyuki Nishiyama
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan (K.Mi., K.Ma., H.K.); Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan (K.K., T.E., O.S., T.O.); and Tsukuba Human Tissue Biobank Center, University of Tsukuba Hospital, Ibaraki, Japan (T.T., H.N.)
| | - Tatsuya Oda
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan (K.Mi., K.Ma., H.K.); Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan (K.K., T.E., O.S., T.O.); and Tsukuba Human Tissue Biobank Center, University of Tsukuba Hospital, Ibaraki, Japan (T.T., H.N.)
| | - Hiroyuki Kusuhara
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan (K.Mi., K.Ma., H.K.); Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan (K.K., T.E., O.S., T.O.); and Tsukuba Human Tissue Biobank Center, University of Tsukuba Hospital, Ibaraki, Japan (T.T., H.N.)
| |
Collapse
|
14
|
Gulilat M, Keller D, Linton B, Pananos AD, Lizotte D, Dresser GK, Alfonsi J, Tirona RG, Kim RB, Schwarz UI. Drug interactions and pharmacogenetic factors contribute to variation in apixaban concentration in atrial fibrillation patients in routine care. J Thromb Thrombolysis 2020; 49:294-303. [PMID: 31564018 DOI: 10.1007/s11239-019-01962-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Factor Xa-inhibitor apixaban is an oral anticoagulant prescribed in atrial fibrillation (AF) for stroke prevention. Its pharmacokinetic profile is known to be affected by cytochrome P450 (CYP)3A metabolism, while it is also a substrate of the efflux transporters ATP-binding cassette (ABC)B1 (P-glycoprotein) and ABCG2 (breast cancer resistance protein, BCRP). In this study, we assessed the impact of interacting medication and pharmacogenetic variation to better explain apixaban concentration differences among 358 Caucasian AF patients. Genotyping (ABCG2, ABCB1, CYP3A4*22, CYP3A5*3) was performed by TaqMan assays, and apixaban quantified by mass spectrometry. The typical patient was on average 77.2 years old, 85.5 kg, and had a serum creatinine of 103.1 µmol/L. Concomitant amiodarone, an antiarrhythmic agent and moderate CYP3A/ABCB1 inhibitor, the impaired-function variant ABCG2 c.421C > A, and sex predicted higher apixaban concentrations when controlling for age, weight and serum creatinine (multivariate regression; R2 = 0.34). Our findings suggest that amiodarone and ABCG2 genotype contribute to interpatient apixaban variability beyond known clinical factors.
Collapse
Affiliation(s)
- Markus Gulilat
- Division of Clinical Pharmacology, Department of Medicine, Western University, London, ON, Canada
| | - Denise Keller
- Division of Clinical Pharmacology, Department of Medicine, Western University, London, ON, Canada
| | - Bradley Linton
- Division of Clinical Pharmacology, Department of Medicine, Western University, London, ON, Canada
| | - A Demetri Pananos
- Department of Epidemiology and Biostatistics, Western University, London, ON, Canada
| | - Daniel Lizotte
- Department of Epidemiology and Biostatistics, Western University, London, ON, Canada
| | - George K Dresser
- Division of Clinical Pharmacology, Department of Medicine, Western University, London, ON, Canada.,Department of Physiology and Pharmacology, Western University, London, ON, Canada
| | - Jeffrey Alfonsi
- Division of Clinical Pharmacology, Department of Medicine, Western University, London, ON, Canada
| | - Rommel G Tirona
- Division of Clinical Pharmacology, Department of Medicine, Western University, London, ON, Canada.,Department of Physiology and Pharmacology, Western University, London, ON, Canada
| | - Richard B Kim
- Division of Clinical Pharmacology, Department of Medicine, Western University, London, ON, Canada.,Department of Physiology and Pharmacology, Western University, London, ON, Canada
| | - Ute I Schwarz
- Division of Clinical Pharmacology, Department of Medicine, Western University, London, ON, Canada. .,Department of Physiology and Pharmacology, Western University, London, ON, Canada. .,London Health Sciences Centre, University Hospital, Western University, 339 Windermere Road, London, ON, N6A 5A5, Canada.
| |
Collapse
|
15
|
Beaudoin JJ, Brouwer KLR, Malinen MM. Novel insights into the organic solute transporter alpha/beta, OSTα/β: From the bench to the bedside. Pharmacol Ther 2020; 211:107542. [PMID: 32247663 PMCID: PMC7480074 DOI: 10.1016/j.pharmthera.2020.107542] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 03/25/2020] [Indexed: 12/14/2022]
Abstract
Organic solute transporter alpha/beta (OSTα/β) is a heteromeric solute carrier protein that transports bile acids, steroid metabolites and drugs into and out of cells. OSTα/β protein is expressed in various tissues, but its expression is highest in the gastrointestinal tract where it facilitates the recirculation of bile acids from the gut to the liver. Previous studies established that OSTα/β is upregulated in liver tissue of patients with extrahepatic cholestasis, obstructive cholestasis, and primary biliary cholangitis (PBC), conditions that are characterized by elevated bile acid concentrations in the liver and/or systemic circulation. The discovery that OSTα/β is highly upregulated in the liver of patients with nonalcoholic steatohepatitis (NASH) further highlights the clinical relevance of this transporter because the incidence of NASH is increasing at an alarming rate with the obesity epidemic. Since OSTα/β is closely linked to the homeostasis of bile acids, and tightly regulated by the nuclear receptor farnesoid X receptor, OSTα/β is a potential drug target for treatment of cholestatic liver disease, and other bile acid-related metabolic disorders such as obesity and diabetes. Obeticholic acid, a semi-synthetic bile acid used to treat PBC, under review for the treatment of NASH, and in development for the treatment of other metabolic disorders, induces OSTα/β. Some drugs associated with hepatotoxicity inhibit OSTα/β, suggesting a possible role for OSTα/β in drug-induced liver injury (DILI). Furthermore, clinical cases of homozygous genetic defects in both OSTα/β subunits resulting in diarrhea and features of cholestasis have been reported. This review article has been compiled to comprehensively summarize the recent data emerging on OSTα/β, recapitulating the available literature on the structure-function and expression-function relationships of OSTα/β, the regulation of this important transporter, the interaction of drugs and other compounds with OSTα/β, and the comparison of OSTα/β with other solute carrier transporters as well as adenosine triphosphate-binding cassette transporters. Findings from basic to more clinically focused research efforts are described and discussed.
Collapse
Affiliation(s)
- James J Beaudoin
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kim L R Brouwer
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Melina M Malinen
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
16
|
Human variability in influx and efflux transporters in relation to uncertainty factors for chemical risk assessment. Food Chem Toxicol 2020; 140:111305. [DOI: 10.1016/j.fct.2020.111305] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 03/20/2020] [Accepted: 03/23/2020] [Indexed: 12/11/2022]
|
17
|
Russell LE, Schwarz UI. Variant discovery using next-generation sequencing and its future role in pharmacogenetics. Pharmacogenomics 2020; 21:471-486. [DOI: 10.2217/pgs-2019-0190] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Next-generation sequencing (NGS) has enabled the discovery of a multitude of novel and mostly rare variants in pharmacogenes that may alter a patient’s therapeutic response to drugs. In addition to single nucleotide variants, structural variation affecting the number of copies of whole genes or parts of genes can be detected. While current guidelines concerning clinical implementation mostly act upon well-documented, common single nucleotide variants to guide dosing or drug selection, in silico and large-scale functional assessment of rare variant effects on protein function are at the forefront of pharmacogenetic research to facilitate their clinical integration. Here, we discuss the role of NGS in variant discovery, paving the way for more comprehensive genotype-guided pharmacotherapy that can translate to improved clinical care.
Collapse
Affiliation(s)
- Laura E Russell
- Department of Physiology & Pharmacology, Western University, Medical Sciences Building, London, ON, N6A 5C1, Canada
| | - Ute I Schwarz
- Department of Physiology & Pharmacology, Western University, Medical Sciences Building, London, ON, N6A 5C1, Canada
- Division of Clinical Pharmacology, Department of Medicine, Western University, London Health Sciences Centre – University Hospital, 339 Windermere Road, London, ON, N6A 5A5, Canada
| |
Collapse
|
18
|
Lee N, Maeda K, Fukizawa S, Ieiri I, Tomaru A, Akao H, Takeda K, Iwadare M, Niwa O, Masauji T, Yamane N, Kajinami K, Kusuhara H, Sugiyama Y. Microdosing clinical study to clarify pharmacokinetic and pharmacogenetic characteristics of atorvastatin in Japanese hypercholesterolemic patients. Drug Metab Pharmacokinet 2019; 34:387-395. [DOI: 10.1016/j.dmpk.2019.08.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 07/28/2019] [Accepted: 08/13/2019] [Indexed: 10/26/2022]
|
19
|
Mózner O, Bartos Z, Zámbó B, Homolya L, Hegedűs T, Sarkadi B. Cellular Processing of the ABCG2 Transporter-Potential Effects on Gout and Drug Metabolism. Cells 2019; 8:E1215. [PMID: 31597297 PMCID: PMC6830335 DOI: 10.3390/cells8101215] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 10/04/2019] [Accepted: 10/05/2019] [Indexed: 02/07/2023] Open
Abstract
The human ABCG2 is an important plasma membrane multidrug transporter, involved in uric acid secretion, modulation of absorption of drugs, and in drug resistance of cancer cells. Variants of the ABCG2 transporter, affecting cellular processing and trafficking, have been shown to cause gout and increased drug toxicity. In this paper, we overview the key cellular pathways involved in the processing and trafficking of large membrane proteins, focusing on ABC transporters. We discuss the information available for disease-causing polymorphic variants and selected mutations of ABCG2, causing increased degradation and impaired travelling of the transporter to the plasma membrane. In addition, we provide a detailed in silico analysis of an as yet unrecognized loop region of the ABCG2 protein, in which a recently discovered mutation may actually promote ABCG2 membrane expression. We suggest that post-translational modifications in this unstructured loop at the cytoplasmic surface of the protein may have special influence on ABCG2 processing and trafficking.
Collapse
Affiliation(s)
- Orsolya Mózner
- Institute of Enzymology, Research Centre for Natural Sciences, Magyar Tudosok krt. 2, 1117 Budapest, Hungary.
| | - Zsuzsa Bartos
- Institute of Enzymology, Research Centre for Natural Sciences, Magyar Tudosok krt. 2, 1117 Budapest, Hungary.
- MTA-SE Molecular Biophysics Research Group, Hungarian Academy of Sciences, Tűzoltó u. 37-47, 1094 Budapest, Hungary.
| | - Boglárka Zámbó
- Institute of Enzymology, Research Centre for Natural Sciences, Magyar Tudosok krt. 2, 1117 Budapest, Hungary.
| | - László Homolya
- Institute of Enzymology, Research Centre for Natural Sciences, Magyar Tudosok krt. 2, 1117 Budapest, Hungary.
| | - Tamás Hegedűs
- MTA-SE Molecular Biophysics Research Group, Hungarian Academy of Sciences, Tűzoltó u. 37-47, 1094 Budapest, Hungary.
- Department of Biophysics and Radiation Biology, Semmelweis University, Tűzoltó u. 37-47, 1094 Budapest, Hungary.
| | - Balázs Sarkadi
- Institute of Enzymology, Research Centre for Natural Sciences, Magyar Tudosok krt. 2, 1117 Budapest, Hungary.
- Department of Biophysics and Radiation Biology, Semmelweis University, Tűzoltó u. 37-47, 1094 Budapest, Hungary.
| |
Collapse
|
20
|
Membrane Transporters in Human Parotid Gland-Targeted Proteomics Approach. Int J Mol Sci 2019; 20:ijms20194825. [PMID: 31569384 PMCID: PMC6801960 DOI: 10.3390/ijms20194825] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 09/26/2019] [Indexed: 01/03/2023] Open
Abstract
Salivary glands provide secretory functions, including secretion of xenobiotics and among them drugs. However, there is no published information about protein abundance of drug transporters measured using reliable protein quantification methods. Therefore, mRNA expression and absolute protein content of clinically relevant ABC (n = 6) and SLC (n = 15) family member transporters in the human parotid gland, using the qRT-PCR and liquid chromatography‒tandem mass spectrometry (LC−MS/MS) method, were studied. The abundance of nearly all measured proteins ranged between 0.04 and 0.45 pmol/mg (OCT3 > MRP1 > PEPT2 > MRP4 > MATE1 > BCRP). mRNAs of ABCB1, ABCC2, ABCC3, SLC10A1, SLC10A2, SLC22A1, SLC22A5, SLC22A6, SLC22A7, SLC22A8, SLCO1A2, SLCO1B1, SLCO1B3 and SLCO2B1 were not detected. The present study provides, for the first time, information about the protein abundance of membrane transporters in the human parotid gland, which could further be used to define salivary bidirectional transport (absorption and secretion) mechanisms of endogenous compounds and xenobiotics.
Collapse
|
21
|
Safar Z, Kis E, Erdo F, Zolnerciks JK, Krajcsi P. ABCG2/BCRP: variants, transporter interaction profile of substrates and inhibitors. Expert Opin Drug Metab Toxicol 2019; 15:313-328. [PMID: 30856014 DOI: 10.1080/17425255.2019.1591373] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
INTRODUCTION ABCG2 has a broad substrate specificity and is one of the most important efflux proteins modulating pharmacokinetics of drugs, nutrients and toxicokinetics of toxicants. ABCG2 is an important player in transporter-mediated drug-drug interactions (tDDI). Areas covered: The aims of the review are i) to cover transporter interaction profile of substrates and inhibitors that can be utilized to test interaction of drug candidates with ABCG2, ii) to highlight main characteristics of in vitro testing and iii) to describe the structural basis of the broad substrate specificity of the protein. Preclinical data utilizing Abcg2/Bcrp1 knockouts and clinical studies showing effect of ABCG2 c.421C>A polymorphism on pharmacokinetics of drugs have provided evidence for a broad array of drug substrates and support drug - ABCG2 interaction testing. A consensus on using rosuvastatin and sulfasalazine as intestinal substrates for clinical studies is in the formation. Other substrates relevant to the therapeutic area can be considered. Monolayer efflux assays and vesicular transport assays have been extensively utilized in vitro. Expert opinion: Clinical substrates display complex pharmacokinetics due to broad interaction profiles with multiple transporters and metabolic enzymes. Substrate-dependent inhibition has been observed for several inhibitors. Harmonization of in vitro and in vivo testing makes sense. However, rosuvastatin and sulfasalazine are not efficiently transported in either MDCKII or LLC-PK1-based monolayers. Caco-2 monolayer assays and vesicular transport assays are potential alternatives.
Collapse
Affiliation(s)
| | - Emese Kis
- a SOLVO Biotechnology , Szeged , Hungary
| | - Franciska Erdo
- b Faculty of Information Technology and Bionics , Pázmány Péter Catholic University , Budapest , Hungary
| | | | - Peter Krajcsi
- a SOLVO Biotechnology , Szeged , Hungary.,d Department of Morphology and Physiology. Faculty of Health Sciences , Semmelweis University , Budapest , Hungary
| |
Collapse
|
22
|
Malfará BN, Benzi JRDL, de Oliveira Filgueira GC, Zanelli CF, Duarte G, de Carvalho Cavalli R, de Moraes NV. ABCG2 c.421C>A polymorphism alters nifedipine transport to breast milk in hypertensive breastfeeding women. Reprod Toxicol 2019; 85:1-5. [PMID: 30659932 DOI: 10.1016/j.reprotox.2019.01.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 11/30/2018] [Accepted: 01/15/2019] [Indexed: 01/16/2023]
Abstract
Nifedipine, a known substrate to breast cancer resistance protein (ABCG2/BCRP), is used for the treatment of hypertension during breastfeeding. This study aimed to evaluate the effect of ABCG2 c.421C>A on nifedipine transfer to breast milk (BM) in hypertensive women. Nineteen hypertensive breastfeeding women treated with 20 mg nifedipine every 12 hours were investigated. Blood and BM samples were collected simultaneously 15-30 days after delivery and at least 15 days after drug treatment. Patients genotyped as ABCG2 c.421CC showed nifedipine plasma and BM concentrations ranging from 8.32-178.1 ng/mL and 4.8-58.5 ng/mL, respectively. ABCG2 c.421C>A showed a trend towards significance (p = 0.0793) on nifedipine in BM, with concentrations approximately 3 times higher in the heterozygous 421 CA (29 ng/mL) in comparison to 421 CC (10.5 ng/mL). Nifedipine BM/plasma ratio was significantly lower in 421CC when compared to 421CA (p = 0.01). In conclusion, ABCG2 c.421C>A polymorphism is associated with higher transfer of nifedipine to BM.
Collapse
Affiliation(s)
- Bianca Nayra Malfará
- Department of Natural Products and Toxicology, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| | | | | | - Cleslei Fernando Zanelli
- Department of Biological Sciences, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| | - Geraldo Duarte
- Department of Gynecology and Obstetrics, School of Medicine of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| | - Ricardo de Carvalho Cavalli
- Department of Gynecology and Obstetrics, School of Medicine of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| | - Natália Valadares de Moraes
- Department of Natural Products and Toxicology, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil.
| |
Collapse
|
23
|
Drozdzik M, Busch D, Lapczuk J, Müller J, Ostrowski M, Kurzawski M, Oswald S. Protein Abundance of Clinically Relevant Drug Transporters in the Human Liver and Intestine: A Comparative Analysis in Paired Tissue Specimens. Clin Pharmacol Ther 2019; 105:1204-1212. [PMID: 30447067 DOI: 10.1002/cpt.1301] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 10/20/2018] [Indexed: 11/11/2022]
Abstract
Bioavailability of orally administered drugs is partly determined by function of drug transporters in the liver and intestine. Therefore, we explored adenosine triphosphate-binding cassette (ABC) and solute carriers family transporters expression (quantitative polymerase chain reaction) and protein abundance (liquid chromatography tandem mass spectrometry (LC-MS/MS)) in human liver and duodenum, jejunum, ileum, and colon in paired tissue specimens from nine organ donors. The transporter proteins were detected in the liver (permeability-glycoprotein (P-gp), multidrug resistance protein (MRP)2, MRP3, breast cancer resistance protein (BCRP), organic anion-transporting polypeptide (OATP)1B1, OATP1B3, OATP2B1, organic cation transporter (OCT)1, OCT3, organic anion transporter 2, Na+-taurocholate cotransporting polypeptide, monocarboxylate transporter (MCT)1, and multidrug and toxin extrusion 1) and the intestine (P-gp, multidrug-resistance protein (MRP)2, MRP3, MRP4, BCRP, OATP2B1, OCT1, apical sodium-bile acid transporter (only ileum), MCT1, and peptide transporter (PEPT1)). Significantly higher hepatic gene expression and protein abundance of ABCC2/MRP2, SLC22A1/OCT1, and SLCO2B1/OATP2B1 were found, as compared to all intestinal segments. No correlations between hepatic and small intestinal protein levels were observed. These observations provide a description of drug transporters distribution without the impact of interindividual variability bias and may help in construction of superior physiologically based pharmacokinetic and humanized animal models.
Collapse
Affiliation(s)
- Marek Drozdzik
- Department of Experimental and Clinical Pharmacology, Pomeranian Medical University, Szczecin, Poland
| | - Diana Busch
- Department of Clinical Pharmacology, University Medicine of Greifswald, Greifswald, Germany
| | - Joanna Lapczuk
- Department of Experimental and Clinical Pharmacology, Pomeranian Medical University, Szczecin, Poland
| | - Janett Müller
- Department of Clinical Pharmacology, University Medicine of Greifswald, Greifswald, Germany
| | - Marek Ostrowski
- Department of General and Transplantation Surgery, Pomeranian Medical University, Szczecin, Poland
| | - Mateusz Kurzawski
- Department of Experimental and Clinical Pharmacology, Pomeranian Medical University, Szczecin, Poland
| | - Stefan Oswald
- Department of Clinical Pharmacology, University Medicine of Greifswald, Greifswald, Germany
| |
Collapse
|
24
|
Heyes N, Kapoor P, Kerr ID. Polymorphisms of the Multidrug Pump ABCG2: A Systematic Review of Their Effect on Protein Expression, Function, and Drug Pharmacokinetics. Drug Metab Dispos 2018; 46:1886-1899. [PMID: 30266733 DOI: 10.1124/dmd.118.083030] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 09/20/2018] [Indexed: 12/11/2022] Open
Abstract
The widespread expression and polyspecificity of the multidrug ABCG2 efflux transporter make it an important determinant of the pharmacokinetics of a variety of substrate drugs. Null ABCG2 expression has been linked to the Junior blood group. Polymorphisms affecting the expression or function of ABCG2 may have clinically important roles in drug disposition and efficacy. The most well-studied single nucleotide polymorphism (SNP), Q141K (421C>A), is shown to decrease ABCG2 expression and activity, resulting in increased total drug exposure and decreased resistance to various substrates. The effect of Q141K can be rationalized by inspection of the ABCG2 structure, and the effects of this SNP on protein processing may make it a target for pharmacological intervention. The V12M SNP (34G>A) appears to improve outcomes in cancer patients treated with tyrosine kinase inhibitors, but the reasons for this are yet to be established, and this residue's role in the mechanism of the protein is unexplored by current biochemical and structural approaches. Research into the less-common polymorphisms is confined to in vitro studies, with several polymorphisms shown to decrease resistance to anticancer agents such as SN-38 and mitoxantrone. In this review, we present a systematic analysis of the effects of ABCG2 polymorphisms on ABCG2 function and drug pharmacokinetics. Where possible, we use recent structural advances to present a molecular interpretation of the effects of SNPs and indicate where we need further in vitro experiments to fully resolve how SNPs impact ABCG2 function.
Collapse
Affiliation(s)
- Niall Heyes
- School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, United Kingdom
| | - Parth Kapoor
- School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, United Kingdom
| | - Ian D Kerr
- School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
25
|
Liu YC, Li YY, Yao XJ, Qi HL, Wei XX, Liu JN. Binding Performance of Human Intravenous Immunoglobulin and 20( S)-7-Ethylcamptothecin. Molecules 2018; 23:2389. [PMID: 30231526 PMCID: PMC6225142 DOI: 10.3390/molecules23092389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 08/20/2018] [Accepted: 09/12/2018] [Indexed: 11/25/2022] Open
Abstract
A previous study showed that intravenous immunoglobulin (IVIG) could preserve higher levels of biologically active lactone moieties of topotecan, 7-ethyl-10-hydroxycamptothecin (SN-38) and 10-hydroxycamptothecin at physiological pH 7.40. As one of camptothecin analogues (CPTs), the interaction of 7-ethylcamptothecin and IVIG was studied in vitro in this study. It was shown that the main binding mode of IVIG to 7-ethylcamptothecin was hydrophobic interaction and hydrogen bonding, which is a non-specific and spontaneous interaction. The hydrophobic antigen-binding cavity of IgG would enwrap the drug into a host-guest inclusion complex and prevent hydrolysis of the encapsulated drug, while the drug is adjacent to the chromophores of IgG and may exchange energy with chromophores and quench the fluorescence of the protein. Also, the typical β-sheet structure of IVIG unfolded partially after binding to 7-ethylcamptothecin. Additionally, the binding properties of IVIG and six CPTs with different substituents at A-ring and/or B-ring including camptothecin, topotecan, irinotecan, 10-hydroxycamptothecin, 7-ethylcamptothecin and SN-38 were collected together and compared each other. Synergizing with anti-cancer drugs, IVIG could be used as a transporter protein for 7-ethylcamptothecin and other CPTs, allowing clinicians to devise new treatment protocols for patients.
Collapse
Affiliation(s)
- Yong-Chun Liu
- College of Chemistry and Chemical Engineering, Longdong University, Qingyang 745000, China.
- Longdong University & FLUOBON Collaborative Innovation Center, Longdong University, Qingyang 745000, China.
| | - Ying-Ying Li
- College of Chemistry and Chemical Engineering, Longdong University, Qingyang 745000, China.
- Longdong University & FLUOBON Collaborative Innovation Center, Longdong University, Qingyang 745000, China.
| | - Xiao-Jun Yao
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China.
| | - Hui-Li Qi
- College of Chemistry and Chemical Engineering, Longdong University, Qingyang 745000, China.
- Longdong University & FLUOBON Collaborative Innovation Center, Longdong University, Qingyang 745000, China.
| | - Xiao-Xia Wei
- College of Chemistry and Chemical Engineering, Longdong University, Qingyang 745000, China.
- Longdong University & FLUOBON Collaborative Innovation Center, Longdong University, Qingyang 745000, China.
| | - Jian-Ning Liu
- College of Chemistry and Chemical Engineering, Longdong University, Qingyang 745000, China.
- Longdong University & FLUOBON Collaborative Innovation Center, Longdong University, Qingyang 745000, China.
| |
Collapse
|
26
|
Eclov RJ, Kim MJ, Smith R, Ahituv N, Kroetz DL. Rare Variants in the ABCG2 Promoter Modulate In Vivo Activity. Drug Metab Dispos 2018; 46:636-642. [PMID: 29467213 PMCID: PMC5896364 DOI: 10.1124/dmd.117.079541] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 02/15/2018] [Indexed: 11/22/2022] Open
Abstract
ABCG2 encodes the breast cancer resistance protein (BCRP), an efflux membrane transporter important in the detoxification of xenobiotics. In the present study, the basal activity of the ABCG2 promoter in liver, kidney, intestine, and breast cell lines was examined using luciferase reporter assays. The promoter activities of reference and variant ABCG2 sequences were compared in human hepatocellular carcinoma cell (HepG2), human embryonic kidney cell (HEK293T), human colorectal carcinoma cell (HCT116), and human breast adenocarcinoma cell (MCF-7) lines. The ABCG2 promoter activity was strongest in the kidney and intestine cell lines. Four variants in the basal ABCG2 promoter (rs76656413, rs66664036, rs139256004, and rs59370292) decreased the promoter activity by 25%-50% in at least three of the four cell lines. The activity of these four variants was also examined in vivo using the hydrodynamic tail vein assay, and two single nucleotide polymorphisms (rs76656413 and rs59370292) significantly decreased in vivo liver promoter activity by 50%-80%. Electrophoretic mobility shift assays confirmed a reduction in nuclear protein binding to the rs59370292 variant probe, whereas the rs76656413 probe had a shift in transcription factor binding specificity. Although both rs59370292 and rs76656413 are rare variants in all populations, they could contribute to patient-level variation in ABCG2 expression in the kidney, liver, and intestine.
Collapse
Affiliation(s)
- Rachel J Eclov
- Department of Bioengineering and Therapeutic Sciences (R.J.E., M.J.K., R.S., N.A., D.L.K.) and Institute for Human Genetics (N.A., M.J.K., R.S., D.L.K.), University of California San Francisco, San Francisco, California
| | - Mee J Kim
- Department of Bioengineering and Therapeutic Sciences (R.J.E., M.J.K., R.S., N.A., D.L.K.) and Institute for Human Genetics (N.A., M.J.K., R.S., D.L.K.), University of California San Francisco, San Francisco, California
| | - Robin Smith
- Department of Bioengineering and Therapeutic Sciences (R.J.E., M.J.K., R.S., N.A., D.L.K.) and Institute for Human Genetics (N.A., M.J.K., R.S., D.L.K.), University of California San Francisco, San Francisco, California
| | - Nadav Ahituv
- Department of Bioengineering and Therapeutic Sciences (R.J.E., M.J.K., R.S., N.A., D.L.K.) and Institute for Human Genetics (N.A., M.J.K., R.S., D.L.K.), University of California San Francisco, San Francisco, California
| | - Deanna L Kroetz
- Department of Bioengineering and Therapeutic Sciences (R.J.E., M.J.K., R.S., N.A., D.L.K.) and Institute for Human Genetics (N.A., M.J.K., R.S., D.L.K.), University of California San Francisco, San Francisco, California
| |
Collapse
|
27
|
Karibe T, Imaoka T, Abe K, Ando O. Curcumin as an In Vivo Selective Intestinal Breast Cancer Resistance Protein Inhibitor in Cynomolgus Monkeys. Drug Metab Dispos 2018; 46:667-679. [PMID: 29358184 DOI: 10.1124/dmd.117.078931] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 01/19/2018] [Indexed: 01/16/2023] Open
Abstract
To estimate the clinical impact of pharmacokinetic modulation via breast cancer resistance protein (BCRP), in vivo approaches in nonclinical settings are desired in drug development. Clinical observation has identified curcumin as a promising candidate for in vivo selective BCRP inhibition, in addition to several well known inhibitors, such as lapatinib and pantoprazole. This study aimed to confirm the inhibitory efficacy of curcumin on gastrointestinal BCRP function in cynomolgus monkeys and to perform comparisons with lapatinib and pantoprazole. Oral area under the plasma concentration-time curve (AUC) and bioavailability of well known BCRP (sulfasalazine and rosuvastatin), P-glycoprotein (fexofenadine, aliskiren, and talinolol), and CYP3A (midazolam) substrates were investigated in the presence and absence of inhibitors. Oral exposures of sulfasalazine and rosuvastatin were markedly elevated by curcumin with minimal changes in systemic clearance, whereas pharmacokinetic alterations after fexofenadine, aliskiren, and talinolol oral exposure were limited. Curcumin increased oral midazolam exposure without affecting systemic clearance, presumably owing to partial inhibition of intestinal CYP3A. Lapatinib increased the oral AUC for sulfasalazine to a greater extent than curcumin did, whereas pantoprazole had a smaller effect. However, lapatinib also exerted significant effects on fexofenadine, failed to selectively discriminate between BCRP and P-glycoprotein inhibition, and had an effect on oral midazolam exposure comparable with that of curcumin. Thus, pharmacokinetic evaluation in monkeys demonstrated that pretreatment with curcumin as an in vivo selective BCRP inhibitor was more appropriate than pretreatment with lapatinib and pantoprazole for the assessment of the impact of BCRP on gastrointestinal absorption in nonrodent models.
Collapse
Affiliation(s)
- Tsuyoshi Karibe
- Drug Metabolism and Pharmacokinetics Research Laboratories, Daiichi Sankyo Co., Ltd., Tokyo, Japan
| | - Tomoki Imaoka
- Drug Metabolism and Pharmacokinetics Research Laboratories, Daiichi Sankyo Co., Ltd., Tokyo, Japan
| | - Koji Abe
- Drug Metabolism and Pharmacokinetics Research Laboratories, Daiichi Sankyo Co., Ltd., Tokyo, Japan
| | - Osamu Ando
- Drug Metabolism and Pharmacokinetics Research Laboratories, Daiichi Sankyo Co., Ltd., Tokyo, Japan
| |
Collapse
|
28
|
Futatsugi A, Toshimoto K, Yoshikado T, Sugiyama Y, Kato Y. Evaluation of Alteration in Hepatic and Intestinal BCRP Function In Vivo from ABCG2 c.421C>A Polymorphism Based on PBPK Analysis of Rosuvastatin. Drug Metab Dispos 2018; 46:749-757. [PMID: 29440178 DOI: 10.1124/dmd.117.078816] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 02/08/2018] [Indexed: 01/06/2023] Open
Abstract
Polymorphism c.421C>A in the ABCG2 gene is thought to reduce the activity of breast cancer resistance protein (BCRP), a xenobiotic transporter, although it is not clear which organ(s) contributes to the polymorphism-associated pharmacokinetic change. The aim of the present study was to estimate quantitatively the influence of c.421C>A on intestinal and hepatic BCRP activity using a physiologically based pharmacokinetic (PBPK) model of rosuvastatin developed from clinical data and several in vitro studies. Simultaneous fitting of clinical data for orally and intravenously administered rosuvastatin, obtained in human subjects without genotype information, was first performed with the PBPK model to estimate intrinsic clearance for hepatic elementary process. The fraction of BCRP activity in 421CA and 421AA (fca and faa values, respectively) with respect to that in 421CC subjects was then estimated based on extended clearance concepts and simultaneous fitting to oral administration data for the three genotypes (421CC, 421CA, and 421AA). On the assumption that c.421C>A affects both intestinal and hepatic BCRP, clinical data in each genotype were well reproduced by the model, and the estimated terminal half-life was compatible with the observed values. The assumption that c.421C>A affects only either intestinal or hepatic BCRP gave poorer agreement with observed values. The faa values obtained on the former assumption were 0.48-0.54. Thus, PBPK model analysis enabled quantitative evaluation of alteration in BCRP activity owing to c.421C>A, and BCRP activity in 421AA was estimated as half that in 421CC.
Collapse
Affiliation(s)
- Azusa Futatsugi
- Sugiyama Laboratory, RIKEN Innovation Center, RIKEN Cluster for Industry Partnerships, RIKEN (A.F., K.T., T.Y., Y.S.), and Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University (A.F., Y.K.), Kanazawa, Japan
| | - Kota Toshimoto
- Sugiyama Laboratory, RIKEN Innovation Center, RIKEN Cluster for Industry Partnerships, RIKEN (A.F., K.T., T.Y., Y.S.), and Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University (A.F., Y.K.), Kanazawa, Japan
| | - Takashi Yoshikado
- Sugiyama Laboratory, RIKEN Innovation Center, RIKEN Cluster for Industry Partnerships, RIKEN (A.F., K.T., T.Y., Y.S.), and Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University (A.F., Y.K.), Kanazawa, Japan
| | - Yuichi Sugiyama
- Sugiyama Laboratory, RIKEN Innovation Center, RIKEN Cluster for Industry Partnerships, RIKEN (A.F., K.T., T.Y., Y.S.), and Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University (A.F., Y.K.), Kanazawa, Japan
| | - Yukio Kato
- Sugiyama Laboratory, RIKEN Innovation Center, RIKEN Cluster for Industry Partnerships, RIKEN (A.F., K.T., T.Y., Y.S.), and Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University (A.F., Y.K.), Kanazawa, Japan
| |
Collapse
|
29
|
Liu Y, Li Y, Yao X, Li Y, Qi H, Zhang K, Lei R, Liu J. Interaction of intravenous immunoglobulin and three 20(S)-camptothecin analogs: maintaining higher circulatory levels of the biologically active species. Med Chem Res 2017; 26:3286-3295. [DOI: 10.1007/s00044-017-2021-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
30
|
Bicker J, Fortuna A, Alves G, Soares-da-Silva P, Falcão A. Elucidation of the Impact of P-glycoprotein and Breast Cancer Resistance Protein on the Brain Distribution of Catechol- O-Methyltransferase Inhibitors. Drug Metab Dispos 2017; 45:1282-1291. [PMID: 28916530 DOI: 10.1124/dmd.117.077883] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 09/13/2017] [Indexed: 12/14/2022] Open
Abstract
P-glycoprotein (P-gp) and breast cancer resistance protein (BCRP) are clinically important efflux transporters that act cooperatively at the blood-brain barrier, limiting the entry of several drugs into the central nervous system (CNS) and affecting their pharmacokinetics, therapeutic efficacy, and safety. In the present study, the interactions of catechol-O-methyltransferase (COMT) inhibitors (BIA 9-1059, BIA 9-1079, entacapone, nebicapone, opicapone, and tolcapone) with P-gp and BCRP were investigated to determine the contribution of these transporters in their access to the brain. In vitro cellular accumulation and bidirectional transport assays were conducted in Madin-Darby canine kidney (MDCK) II, MDCK-MDR1, and MDCK-BCRP cells. In vivo pharmacokinetic studies were carried out for tolcapone and BIA 9-1079 in rats, with and without elacridar, a well-known P-gp and BCRP modulator. The results suggest that BIA 9-1079, nebicapone, and tolcapone inhibit BCRP in a concentration-dependent manner. Moreover, with net flux ratios higher than 2 and decreased over 50% in the presence of verapamil or Ko143, BIA 9-1079 was identified as a P-gp substrate while BIA 9-1059, entacapone, opicapone, and nebicapone were revealed to be BCRP substrates. In vivo, brain exposure was limited for tolcapone and BIA 9-1079, although tolcapone crossed the blood-brain barrier at a greater rate and to a greater extent than BIA 9-1079. The extent of brain distribution of both compounds was significantly increased in the presence of elacridar, attesting to the involvement of efflux transporters. These findings provide relevant information and improve the understanding of the mechanisms that govern the access of these COMT inhibitors to the CNS.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B/metabolism
- ATP Binding Cassette Transporter, Subfamily B, Member 1/antagonists & inhibitors
- ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism
- ATP Binding Cassette Transporter, Subfamily G, Member 2/antagonists & inhibitors
- ATP Binding Cassette Transporter, Subfamily G, Member 2/metabolism
- Animals
- Benzophenones/pharmacokinetics
- Benzophenones/pharmacology
- Blood-Brain Barrier/metabolism
- Brain/metabolism
- Catechol O-Methyltransferase Inhibitors/pharmacokinetics
- Cell Survival
- Dogs
- Dose-Response Relationship, Drug
- Drug Interactions
- Madin Darby Canine Kidney Cells
- Male
- Neoplasm Proteins/antagonists & inhibitors
- Neoplasm Proteins/metabolism
- Nitrophenols/pharmacokinetics
- Nitrophenols/pharmacology
- Protein Binding
- Rats
- Rats, Wistar
- Tolcapone
Collapse
Affiliation(s)
- Joana Bicker
- Laboratory of Pharmacology, Faculty of Pharmacy (J.B., A.Fo., A.Fa.), and Center for Neuroscience and Cell Biology (J.B., A.Fo., G.A., A.Fa.), University of Coimbra, Coimbra, Portugal; Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal (G.A.); Department of Research and Development, BIAL, Sao Mamede do Coronado, Portugal (P.S.-d.S.); and Department of Pharmacology and Therapeutics, Faculty of Medicine, University of Porto, Porto, Portugal (P.S.-d.S.)
| | - Ana Fortuna
- Laboratory of Pharmacology, Faculty of Pharmacy (J.B., A.Fo., A.Fa.), and Center for Neuroscience and Cell Biology (J.B., A.Fo., G.A., A.Fa.), University of Coimbra, Coimbra, Portugal; Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal (G.A.); Department of Research and Development, BIAL, Sao Mamede do Coronado, Portugal (P.S.-d.S.); and Department of Pharmacology and Therapeutics, Faculty of Medicine, University of Porto, Porto, Portugal (P.S.-d.S.)
| | - Gilberto Alves
- Laboratory of Pharmacology, Faculty of Pharmacy (J.B., A.Fo., A.Fa.), and Center for Neuroscience and Cell Biology (J.B., A.Fo., G.A., A.Fa.), University of Coimbra, Coimbra, Portugal; Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal (G.A.); Department of Research and Development, BIAL, Sao Mamede do Coronado, Portugal (P.S.-d.S.); and Department of Pharmacology and Therapeutics, Faculty of Medicine, University of Porto, Porto, Portugal (P.S.-d.S.)
| | - Patrício Soares-da-Silva
- Laboratory of Pharmacology, Faculty of Pharmacy (J.B., A.Fo., A.Fa.), and Center for Neuroscience and Cell Biology (J.B., A.Fo., G.A., A.Fa.), University of Coimbra, Coimbra, Portugal; Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal (G.A.); Department of Research and Development, BIAL, Sao Mamede do Coronado, Portugal (P.S.-d.S.); and Department of Pharmacology and Therapeutics, Faculty of Medicine, University of Porto, Porto, Portugal (P.S.-d.S.)
| | - Amílcar Falcão
- Laboratory of Pharmacology, Faculty of Pharmacy (J.B., A.Fo., A.Fa.), and Center for Neuroscience and Cell Biology (J.B., A.Fo., G.A., A.Fa.), University of Coimbra, Coimbra, Portugal; Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal (G.A.); Department of Research and Development, BIAL, Sao Mamede do Coronado, Portugal (P.S.-d.S.); and Department of Pharmacology and Therapeutics, Faculty of Medicine, University of Porto, Porto, Portugal (P.S.-d.S.)
| |
Collapse
|
31
|
Kashihara Y, Ieiri I, Yoshikado T, Maeda K, Fukae M, Kimura M, Hirota T, Matsuki S, Irie S, Izumi N, Kusuhara H, Sugiyama Y. Small-Dosing Clinical Study: Pharmacokinetic, Pharmacogenomic ( SLCO2B1 and ABCG2 ), and Interaction (Atorvastatin and Grapefruit Juice) Profiles of 5 Probes for OATP2B1 and BCRP. J Pharm Sci 2017; 106:2688-2694. [DOI: 10.1016/j.xphs.2017.03.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 03/10/2017] [Accepted: 03/13/2017] [Indexed: 12/18/2022]
|
32
|
Kumar V, Nguyen TB, Tóth B, Juhasz V, Unadkat JD. Optimization and Application of a Biotinylation Method for Quantification of Plasma Membrane Expression of Transporters in Cells. AAPS JOURNAL 2017; 19:1377-1386. [DOI: 10.1208/s12248-017-0121-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 07/03/2017] [Indexed: 01/12/2023]
|
33
|
Eclov RJ, Kim MJ, Smith RP, Liang X, Ahituv N, Kroetz DL. In Vivo Hepatic Enhancer Elements in the Human ABCG2 Locus. Drug Metab Dispos 2017; 45:208-215. [PMID: 27856528 PMCID: PMC5267518 DOI: 10.1124/dmd.116.072033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 11/02/2016] [Indexed: 12/21/2022] Open
Abstract
ABCG2 encodes the mitoxantrone resistance protein (MXR; breast cancer resistance protein), an ATP-binding cassette (ABC) efflux membrane transporter. Computational analysis of the ∼300 kb region of DNA surrounding ABCG2 (chr4:88911376-89220011, hg19) identified 30 regions with potential cis-regulatory capabilities. These putative regulatory regions were tested for their enhancer and suppressor activity in a human liver cell line using luciferase reporter assays. The in vitro enhancer and suppressor assays identified four regions that decreased gene expression and five regions that increased expression >1.6-fold. Four of five human hepatic in vitro enhancers were confirmed as in vivo liver enhancers using the mouse hydrodynamic tail vein injection assay. Two of the in vivo liver enhancers (ABCG2RE1 and ABCG2RE9) responded to 17β-estradiol or rifampin in human cell lines, and ABCG2RE9 had ChIP-seq evidence to support the binding of several transcription factors and the transcriptional coactivator p300 in human hepatocytes. This study identified genomic regions surrounding human ABCG2 that can function as regulatory elements, some with the capacity to alter gene expression upon environmental stimulus. The results from this research will drive future investigations of interindividual variation in ABCG2 expression and function that contribute to differences in drug response.
Collapse
Affiliation(s)
- Rachel J Eclov
- Department of Bioengineering and Therapeutic Sciences (R.J.E., M.J.K., R.P.S., X.L., N.A., D.L.K.); and Institute for Human Genetics (M.J.K., R.P.S., N.A., D.L.K.), University of California, San Francisco, San Francisco, California
| | - Mee J Kim
- Department of Bioengineering and Therapeutic Sciences (R.J.E., M.J.K., R.P.S., X.L., N.A., D.L.K.); and Institute for Human Genetics (M.J.K., R.P.S., N.A., D.L.K.), University of California, San Francisco, San Francisco, California
| | - Robin P Smith
- Department of Bioengineering and Therapeutic Sciences (R.J.E., M.J.K., R.P.S., X.L., N.A., D.L.K.); and Institute for Human Genetics (M.J.K., R.P.S., N.A., D.L.K.), University of California, San Francisco, San Francisco, California
| | - Xiaomin Liang
- Department of Bioengineering and Therapeutic Sciences (R.J.E., M.J.K., R.P.S., X.L., N.A., D.L.K.); and Institute for Human Genetics (M.J.K., R.P.S., N.A., D.L.K.), University of California, San Francisco, San Francisco, California
| | - Nadav Ahituv
- Department of Bioengineering and Therapeutic Sciences (R.J.E., M.J.K., R.P.S., X.L., N.A., D.L.K.); and Institute for Human Genetics (M.J.K., R.P.S., N.A., D.L.K.), University of California, San Francisco, San Francisco, California
| | - Deanna L Kroetz
- Department of Bioengineering and Therapeutic Sciences (R.J.E., M.J.K., R.P.S., X.L., N.A., D.L.K.); and Institute for Human Genetics (M.J.K., R.P.S., N.A., D.L.K.), University of California, San Francisco, San Francisco, California
| |
Collapse
|
34
|
Application of a Human Intestinal Epithelial Cell Monolayer to the Prediction of Oral Drug Absorption in Humans as a Superior Alternative to the Caco-2 Cell Monolayer. J Pharm Sci 2016; 105:915-924. [PMID: 26869436 DOI: 10.1016/j.xphs.2015.11.035] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 10/28/2015] [Accepted: 11/18/2015] [Indexed: 11/22/2022]
Abstract
A human small intestinal epithelial cell (HIEC) monolayer was recently established in our laboratories as a novel system to evaluate the Papp (apparent permeability coefficient) of compounds during their absorption in humans. An effusion-based analysis using polyethylene glycol oligomers with molecular weights ranging from 194-898 indicated that HIEC and Caco-2 cell monolayers both had paracellular pores with 2 distinct radiuses (∼ 5 and 9-14 Å), whereas the porosity of large pores was 11-fold higher in the HIEC monolayer (44 × 10(-8)) than in the Caco-2 cells (4 × 10(-8)). A comparison between the fraction-absorbed (Fa) values observed in humans and those predicted from Papp values in both monolayers indicated that the HIEC monolayer had markedly higher precision to predict Fa values with root mean square error of 9.40 than the Caco-2 cells (root mean square error = 16.90) for 10 paracellularly absorbed compounds. Furthermore, the accuracy of the HIEC monolayer to classify the absorption of 23 test drugs with diverse absorption properties, including different pathways in the presence or absence of susceptibility to efflux transporters, was higher than that of the Caco-2 cell monolayer. In conclusion, the HIEC monolayer exhibited advantages over Caco-2 cells in the ranking and prediction of absorption of compounds in humans.
Collapse
|
35
|
Brief Report: High Peak Level of Plasma Raltegravir Concentration in Patients With ABCB1 and ABCG2 Genetic Variants. J Acquir Immune Defic Syndr 2016; 72:11-4. [PMID: 27097364 DOI: 10.1097/qai.0000000000000893] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Raltegravir was recently identified to be a substrate of ATP-binding cassette transporter B1 (ABCB1) and G2 (ABCG2), which are efflux transporters and expressed in the intestines. We analyzed the relations between plasma raltegravir concentrations and single nucleotide polymorphism of ABCB1 and ABCG2 genes. The peak plasma concentration of raltegravir was significantly higher in the patients with ABCB1 4036 AG/GG and ABCG2 421 CA/AA than in other genotype holders (P = 0.0052), though no difference was identified in trough raltegravir concentrations, which may be explained by reduced expression of efflux transporters in intestine by these genetic variants.
Collapse
|
36
|
Momper JD, Tsunoda SM, Ma JD. Evaluation of Proposed In Vivo Probe Substrates and Inhibitors for Phenotyping Transporter Activity in Humans. J Clin Pharmacol 2016; 56 Suppl 7:S82-98. [DOI: 10.1002/jcph.736] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 02/23/2016] [Accepted: 03/07/2016] [Indexed: 01/10/2023]
Affiliation(s)
- Jeremiah D. Momper
- University of California, San Diego; Skaggs School of Pharmacy & Pharmaceutical Sciences; La Jolla CA USA
| | - Shirley M. Tsunoda
- University of California, San Diego; Skaggs School of Pharmacy & Pharmaceutical Sciences; La Jolla CA USA
| | - Joseph D. Ma
- University of California, San Diego; Skaggs School of Pharmacy & Pharmaceutical Sciences; La Jolla CA USA
| |
Collapse
|
37
|
Fukuda K, Shimazu S, Yoshida T. Application of therapeutic drug monitoring of imatinib for individual treatment of gastrointestinal stromal tumor. INTERNATIONAL JOURNAL OF CANCER THERAPY AND ONCOLOGY 2016. [DOI: 10.14319/ijcto.42.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
38
|
Kopp TI, Andersen V, Tjonneland A, Vogel U. Polymorphisms in ATP-binding cassette transporter genes and interaction with diet and life style factors in relation to colorectal cancer in a Danish prospective case-cohort study. Scand J Gastroenterol 2016; 50:1469-81. [PMID: 26109419 DOI: 10.3109/00365521.2015.1056224] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND AND AIMS The ATP-binding cassette (ABC) transporter family transports various molecules across the enterocytes in the gut protecting the intestine against potentially harmful substances. Moreover, ABC transporters are involved in mucosal immune defence through interaction with cytokines. The study aimed to assess whether polymorphisms in ABCB1, ABCC2 and ABCG2 were associated with risk of colorectal cancer (CRC) and to investigate gene-environment (dietary factors, smoking and use of non-steroidal anti-inflammatory drugs) and gene-gene interactions between previously studied polymorphisms in IL1B and IL10 and ABC transporter genes in relation to CRC risk. MATERIALS AND METHODS We used a Danish prospective case-cohort study of 1010 CRC cases and 1829 randomly selected participants from the Danish Diet, Cancer and Health cohort. Incidence rate ratios were calculated based on Cox' proportional hazards model. RESULTS None of the polymorphisms were associated with CRC, but ABCB1 and ABCG2 haplotypes were associated with risk of CRC. ABCB1/rs1045642 interacted with intake of cereals and fiber (p-Value for interaction (P(int)) = 0.001 and 0.01, respectively). In a three-way analysis, both ABCB1/rs1045642 and ABCG2/rs2231137 in combination with IL10/rs3024505 interacted with fiber intake in relation to risk of CRC (P(int) = 0.0007 and 0.009). CONCLUSIONS Our results suggest that the ABC transporters P-glycoprotein/multidrug resistance 1 and BRCP, in cooperation with IL-10, are involved in the biological mechanism underlying the protective effect of fiber intake in relation to CRC. These results should be replicated in other cohorts to rule out chance findings.
Collapse
Affiliation(s)
- Tine Iskov Kopp
- National Food Institute, Technical University of Denmark , Søborg , Denmark
| | | | | | | |
Collapse
|
39
|
Dallas S, Salphati L, Gomez-Zepeda D, Wanek T, Chen L, Chu X, Kunta J, Mezler M, Menet MC, Chasseigneaux S, Declèves X, Langer O, Pierre E, DiLoreto K, Hoft C, Laplanche L, Pang J, Pereira T, Andonian C, Simic D, Rode A, Yabut J, Zhang X, Scheer N. Generation and Characterization of a Breast Cancer Resistance Protein Humanized Mouse Model. Mol Pharmacol 2016; 89:492-504. [PMID: 26893303 DOI: 10.1124/mol.115.102079] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 02/17/2016] [Indexed: 12/17/2022] Open
Abstract
Breast cancer resistance protein (BCRP) is expressed in various tissues, such as the gut, liver, kidney and blood brain barrier (BBB), where it mediates the unidirectional transport of substrates to the apical/luminal side of polarized cells. Thereby BCRP acts as an efflux pump, mediating the elimination or restricting the entry of endogenous compounds or xenobiotics into tissues and it plays important roles in drug disposition, efficacy and safety. Bcrp knockout mice (Bcrp(-/-)) have been used widely to study the role of this transporter in limiting intestinal absorption and brain penetration of substrate compounds. Here we describe the first generation and characterization of a mouse line humanized for BCRP (hBCRP), in which the mouse coding sequence from the start to stop codon was replaced with the corresponding human genomic region, such that the human transporter is expressed under control of the murineBcrppromoter. We demonstrate robust human and loss of mouse BCRP/Bcrp mRNA and protein expression in the hBCRP mice and the absence of major compensatory changes in the expression of other genes involved in drug metabolism and disposition. Pharmacokinetic and brain distribution studies with several BCRP probe substrates confirmed the functional activity of the human transporter in these mice. Furthermore, we provide practical examples for the use of hBCRP mice to study drug-drug interactions (DDIs). The hBCRP mouse is a promising model to study the in vivo role of human BCRP in limiting absorption and BBB penetration of substrate compounds and to investigate clinically relevant DDIs involving BCRP.
Collapse
Affiliation(s)
- Shannon Dallas
- DMPK and Bioanalytical Research, Abbvie Deutschland GmbH & Co. KG, Ludwigshafen, Germany (M.M., C.H., L.L.); Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, CA (L.S., J.P., X.Z.); Drug Metabolism and Pharmacokinetics, GlaxoSmithKline Pharmaceuticals, King of Prussia, Pennsylvania (L.C., C.A., E.P.); Health and Environment Department, AIT Austrian Institute of Technology GmbH, Seibersdorf, Austria (T.W., O.L.); Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria (O.L.), Preclinical Development and Safety, Janssen Research and Development, LLC, Spring House, PA (S.D., J.K., K.D., D.S.). Merck Sharp and Dohme Corporation, Whitehouse Station, New Jersey (X.C., T.P., J.Y.); Université Paris Descartes, UMR-S 1144, Paris, France (D.G.-Z., M.-C.M., S.C., X.D.); Taconic Biosciences GmbH, Koeln, Germany (A.R., N.S.)
| | - Laurent Salphati
- DMPK and Bioanalytical Research, Abbvie Deutschland GmbH & Co. KG, Ludwigshafen, Germany (M.M., C.H., L.L.); Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, CA (L.S., J.P., X.Z.); Drug Metabolism and Pharmacokinetics, GlaxoSmithKline Pharmaceuticals, King of Prussia, Pennsylvania (L.C., C.A., E.P.); Health and Environment Department, AIT Austrian Institute of Technology GmbH, Seibersdorf, Austria (T.W., O.L.); Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria (O.L.), Preclinical Development and Safety, Janssen Research and Development, LLC, Spring House, PA (S.D., J.K., K.D., D.S.). Merck Sharp and Dohme Corporation, Whitehouse Station, New Jersey (X.C., T.P., J.Y.); Université Paris Descartes, UMR-S 1144, Paris, France (D.G.-Z., M.-C.M., S.C., X.D.); Taconic Biosciences GmbH, Koeln, Germany (A.R., N.S.)
| | - David Gomez-Zepeda
- DMPK and Bioanalytical Research, Abbvie Deutschland GmbH & Co. KG, Ludwigshafen, Germany (M.M., C.H., L.L.); Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, CA (L.S., J.P., X.Z.); Drug Metabolism and Pharmacokinetics, GlaxoSmithKline Pharmaceuticals, King of Prussia, Pennsylvania (L.C., C.A., E.P.); Health and Environment Department, AIT Austrian Institute of Technology GmbH, Seibersdorf, Austria (T.W., O.L.); Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria (O.L.), Preclinical Development and Safety, Janssen Research and Development, LLC, Spring House, PA (S.D., J.K., K.D., D.S.). Merck Sharp and Dohme Corporation, Whitehouse Station, New Jersey (X.C., T.P., J.Y.); Université Paris Descartes, UMR-S 1144, Paris, France (D.G.-Z., M.-C.M., S.C., X.D.); Taconic Biosciences GmbH, Koeln, Germany (A.R., N.S.)
| | - Thomas Wanek
- DMPK and Bioanalytical Research, Abbvie Deutschland GmbH & Co. KG, Ludwigshafen, Germany (M.M., C.H., L.L.); Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, CA (L.S., J.P., X.Z.); Drug Metabolism and Pharmacokinetics, GlaxoSmithKline Pharmaceuticals, King of Prussia, Pennsylvania (L.C., C.A., E.P.); Health and Environment Department, AIT Austrian Institute of Technology GmbH, Seibersdorf, Austria (T.W., O.L.); Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria (O.L.), Preclinical Development and Safety, Janssen Research and Development, LLC, Spring House, PA (S.D., J.K., K.D., D.S.). Merck Sharp and Dohme Corporation, Whitehouse Station, New Jersey (X.C., T.P., J.Y.); Université Paris Descartes, UMR-S 1144, Paris, France (D.G.-Z., M.-C.M., S.C., X.D.); Taconic Biosciences GmbH, Koeln, Germany (A.R., N.S.)
| | - Liangfu Chen
- DMPK and Bioanalytical Research, Abbvie Deutschland GmbH & Co. KG, Ludwigshafen, Germany (M.M., C.H., L.L.); Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, CA (L.S., J.P., X.Z.); Drug Metabolism and Pharmacokinetics, GlaxoSmithKline Pharmaceuticals, King of Prussia, Pennsylvania (L.C., C.A., E.P.); Health and Environment Department, AIT Austrian Institute of Technology GmbH, Seibersdorf, Austria (T.W., O.L.); Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria (O.L.), Preclinical Development and Safety, Janssen Research and Development, LLC, Spring House, PA (S.D., J.K., K.D., D.S.). Merck Sharp and Dohme Corporation, Whitehouse Station, New Jersey (X.C., T.P., J.Y.); Université Paris Descartes, UMR-S 1144, Paris, France (D.G.-Z., M.-C.M., S.C., X.D.); Taconic Biosciences GmbH, Koeln, Germany (A.R., N.S.)
| | - Xiaoyan Chu
- DMPK and Bioanalytical Research, Abbvie Deutschland GmbH & Co. KG, Ludwigshafen, Germany (M.M., C.H., L.L.); Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, CA (L.S., J.P., X.Z.); Drug Metabolism and Pharmacokinetics, GlaxoSmithKline Pharmaceuticals, King of Prussia, Pennsylvania (L.C., C.A., E.P.); Health and Environment Department, AIT Austrian Institute of Technology GmbH, Seibersdorf, Austria (T.W., O.L.); Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria (O.L.), Preclinical Development and Safety, Janssen Research and Development, LLC, Spring House, PA (S.D., J.K., K.D., D.S.). Merck Sharp and Dohme Corporation, Whitehouse Station, New Jersey (X.C., T.P., J.Y.); Université Paris Descartes, UMR-S 1144, Paris, France (D.G.-Z., M.-C.M., S.C., X.D.); Taconic Biosciences GmbH, Koeln, Germany (A.R., N.S.)
| | - Jeevan Kunta
- DMPK and Bioanalytical Research, Abbvie Deutschland GmbH & Co. KG, Ludwigshafen, Germany (M.M., C.H., L.L.); Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, CA (L.S., J.P., X.Z.); Drug Metabolism and Pharmacokinetics, GlaxoSmithKline Pharmaceuticals, King of Prussia, Pennsylvania (L.C., C.A., E.P.); Health and Environment Department, AIT Austrian Institute of Technology GmbH, Seibersdorf, Austria (T.W., O.L.); Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria (O.L.), Preclinical Development and Safety, Janssen Research and Development, LLC, Spring House, PA (S.D., J.K., K.D., D.S.). Merck Sharp and Dohme Corporation, Whitehouse Station, New Jersey (X.C., T.P., J.Y.); Université Paris Descartes, UMR-S 1144, Paris, France (D.G.-Z., M.-C.M., S.C., X.D.); Taconic Biosciences GmbH, Koeln, Germany (A.R., N.S.)
| | - Mario Mezler
- DMPK and Bioanalytical Research, Abbvie Deutschland GmbH & Co. KG, Ludwigshafen, Germany (M.M., C.H., L.L.); Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, CA (L.S., J.P., X.Z.); Drug Metabolism and Pharmacokinetics, GlaxoSmithKline Pharmaceuticals, King of Prussia, Pennsylvania (L.C., C.A., E.P.); Health and Environment Department, AIT Austrian Institute of Technology GmbH, Seibersdorf, Austria (T.W., O.L.); Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria (O.L.), Preclinical Development and Safety, Janssen Research and Development, LLC, Spring House, PA (S.D., J.K., K.D., D.S.). Merck Sharp and Dohme Corporation, Whitehouse Station, New Jersey (X.C., T.P., J.Y.); Université Paris Descartes, UMR-S 1144, Paris, France (D.G.-Z., M.-C.M., S.C., X.D.); Taconic Biosciences GmbH, Koeln, Germany (A.R., N.S.)
| | - Marie-Claude Menet
- DMPK and Bioanalytical Research, Abbvie Deutschland GmbH & Co. KG, Ludwigshafen, Germany (M.M., C.H., L.L.); Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, CA (L.S., J.P., X.Z.); Drug Metabolism and Pharmacokinetics, GlaxoSmithKline Pharmaceuticals, King of Prussia, Pennsylvania (L.C., C.A., E.P.); Health and Environment Department, AIT Austrian Institute of Technology GmbH, Seibersdorf, Austria (T.W., O.L.); Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria (O.L.), Preclinical Development and Safety, Janssen Research and Development, LLC, Spring House, PA (S.D., J.K., K.D., D.S.). Merck Sharp and Dohme Corporation, Whitehouse Station, New Jersey (X.C., T.P., J.Y.); Université Paris Descartes, UMR-S 1144, Paris, France (D.G.-Z., M.-C.M., S.C., X.D.); Taconic Biosciences GmbH, Koeln, Germany (A.R., N.S.)
| | - Stephanie Chasseigneaux
- DMPK and Bioanalytical Research, Abbvie Deutschland GmbH & Co. KG, Ludwigshafen, Germany (M.M., C.H., L.L.); Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, CA (L.S., J.P., X.Z.); Drug Metabolism and Pharmacokinetics, GlaxoSmithKline Pharmaceuticals, King of Prussia, Pennsylvania (L.C., C.A., E.P.); Health and Environment Department, AIT Austrian Institute of Technology GmbH, Seibersdorf, Austria (T.W., O.L.); Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria (O.L.), Preclinical Development and Safety, Janssen Research and Development, LLC, Spring House, PA (S.D., J.K., K.D., D.S.). Merck Sharp and Dohme Corporation, Whitehouse Station, New Jersey (X.C., T.P., J.Y.); Université Paris Descartes, UMR-S 1144, Paris, France (D.G.-Z., M.-C.M., S.C., X.D.); Taconic Biosciences GmbH, Koeln, Germany (A.R., N.S.)
| | - Xavier Declèves
- DMPK and Bioanalytical Research, Abbvie Deutschland GmbH & Co. KG, Ludwigshafen, Germany (M.M., C.H., L.L.); Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, CA (L.S., J.P., X.Z.); Drug Metabolism and Pharmacokinetics, GlaxoSmithKline Pharmaceuticals, King of Prussia, Pennsylvania (L.C., C.A., E.P.); Health and Environment Department, AIT Austrian Institute of Technology GmbH, Seibersdorf, Austria (T.W., O.L.); Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria (O.L.), Preclinical Development and Safety, Janssen Research and Development, LLC, Spring House, PA (S.D., J.K., K.D., D.S.). Merck Sharp and Dohme Corporation, Whitehouse Station, New Jersey (X.C., T.P., J.Y.); Université Paris Descartes, UMR-S 1144, Paris, France (D.G.-Z., M.-C.M., S.C., X.D.); Taconic Biosciences GmbH, Koeln, Germany (A.R., N.S.)
| | - Oliver Langer
- DMPK and Bioanalytical Research, Abbvie Deutschland GmbH & Co. KG, Ludwigshafen, Germany (M.M., C.H., L.L.); Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, CA (L.S., J.P., X.Z.); Drug Metabolism and Pharmacokinetics, GlaxoSmithKline Pharmaceuticals, King of Prussia, Pennsylvania (L.C., C.A., E.P.); Health and Environment Department, AIT Austrian Institute of Technology GmbH, Seibersdorf, Austria (T.W., O.L.); Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria (O.L.), Preclinical Development and Safety, Janssen Research and Development, LLC, Spring House, PA (S.D., J.K., K.D., D.S.). Merck Sharp and Dohme Corporation, Whitehouse Station, New Jersey (X.C., T.P., J.Y.); Université Paris Descartes, UMR-S 1144, Paris, France (D.G.-Z., M.-C.M., S.C., X.D.); Taconic Biosciences GmbH, Koeln, Germany (A.R., N.S.)
| | - Esaie Pierre
- DMPK and Bioanalytical Research, Abbvie Deutschland GmbH & Co. KG, Ludwigshafen, Germany (M.M., C.H., L.L.); Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, CA (L.S., J.P., X.Z.); Drug Metabolism and Pharmacokinetics, GlaxoSmithKline Pharmaceuticals, King of Prussia, Pennsylvania (L.C., C.A., E.P.); Health and Environment Department, AIT Austrian Institute of Technology GmbH, Seibersdorf, Austria (T.W., O.L.); Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria (O.L.), Preclinical Development and Safety, Janssen Research and Development, LLC, Spring House, PA (S.D., J.K., K.D., D.S.). Merck Sharp and Dohme Corporation, Whitehouse Station, New Jersey (X.C., T.P., J.Y.); Université Paris Descartes, UMR-S 1144, Paris, France (D.G.-Z., M.-C.M., S.C., X.D.); Taconic Biosciences GmbH, Koeln, Germany (A.R., N.S.)
| | - Karen DiLoreto
- DMPK and Bioanalytical Research, Abbvie Deutschland GmbH & Co. KG, Ludwigshafen, Germany (M.M., C.H., L.L.); Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, CA (L.S., J.P., X.Z.); Drug Metabolism and Pharmacokinetics, GlaxoSmithKline Pharmaceuticals, King of Prussia, Pennsylvania (L.C., C.A., E.P.); Health and Environment Department, AIT Austrian Institute of Technology GmbH, Seibersdorf, Austria (T.W., O.L.); Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria (O.L.), Preclinical Development and Safety, Janssen Research and Development, LLC, Spring House, PA (S.D., J.K., K.D., D.S.). Merck Sharp and Dohme Corporation, Whitehouse Station, New Jersey (X.C., T.P., J.Y.); Université Paris Descartes, UMR-S 1144, Paris, France (D.G.-Z., M.-C.M., S.C., X.D.); Taconic Biosciences GmbH, Koeln, Germany (A.R., N.S.)
| | - Carolin Hoft
- DMPK and Bioanalytical Research, Abbvie Deutschland GmbH & Co. KG, Ludwigshafen, Germany (M.M., C.H., L.L.); Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, CA (L.S., J.P., X.Z.); Drug Metabolism and Pharmacokinetics, GlaxoSmithKline Pharmaceuticals, King of Prussia, Pennsylvania (L.C., C.A., E.P.); Health and Environment Department, AIT Austrian Institute of Technology GmbH, Seibersdorf, Austria (T.W., O.L.); Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria (O.L.), Preclinical Development and Safety, Janssen Research and Development, LLC, Spring House, PA (S.D., J.K., K.D., D.S.). Merck Sharp and Dohme Corporation, Whitehouse Station, New Jersey (X.C., T.P., J.Y.); Université Paris Descartes, UMR-S 1144, Paris, France (D.G.-Z., M.-C.M., S.C., X.D.); Taconic Biosciences GmbH, Koeln, Germany (A.R., N.S.)
| | - Loic Laplanche
- DMPK and Bioanalytical Research, Abbvie Deutschland GmbH & Co. KG, Ludwigshafen, Germany (M.M., C.H., L.L.); Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, CA (L.S., J.P., X.Z.); Drug Metabolism and Pharmacokinetics, GlaxoSmithKline Pharmaceuticals, King of Prussia, Pennsylvania (L.C., C.A., E.P.); Health and Environment Department, AIT Austrian Institute of Technology GmbH, Seibersdorf, Austria (T.W., O.L.); Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria (O.L.), Preclinical Development and Safety, Janssen Research and Development, LLC, Spring House, PA (S.D., J.K., K.D., D.S.). Merck Sharp and Dohme Corporation, Whitehouse Station, New Jersey (X.C., T.P., J.Y.); Université Paris Descartes, UMR-S 1144, Paris, France (D.G.-Z., M.-C.M., S.C., X.D.); Taconic Biosciences GmbH, Koeln, Germany (A.R., N.S.)
| | - Jodie Pang
- DMPK and Bioanalytical Research, Abbvie Deutschland GmbH & Co. KG, Ludwigshafen, Germany (M.M., C.H., L.L.); Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, CA (L.S., J.P., X.Z.); Drug Metabolism and Pharmacokinetics, GlaxoSmithKline Pharmaceuticals, King of Prussia, Pennsylvania (L.C., C.A., E.P.); Health and Environment Department, AIT Austrian Institute of Technology GmbH, Seibersdorf, Austria (T.W., O.L.); Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria (O.L.), Preclinical Development and Safety, Janssen Research and Development, LLC, Spring House, PA (S.D., J.K., K.D., D.S.). Merck Sharp and Dohme Corporation, Whitehouse Station, New Jersey (X.C., T.P., J.Y.); Université Paris Descartes, UMR-S 1144, Paris, France (D.G.-Z., M.-C.M., S.C., X.D.); Taconic Biosciences GmbH, Koeln, Germany (A.R., N.S.)
| | - Tony Pereira
- DMPK and Bioanalytical Research, Abbvie Deutschland GmbH & Co. KG, Ludwigshafen, Germany (M.M., C.H., L.L.); Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, CA (L.S., J.P., X.Z.); Drug Metabolism and Pharmacokinetics, GlaxoSmithKline Pharmaceuticals, King of Prussia, Pennsylvania (L.C., C.A., E.P.); Health and Environment Department, AIT Austrian Institute of Technology GmbH, Seibersdorf, Austria (T.W., O.L.); Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria (O.L.), Preclinical Development and Safety, Janssen Research and Development, LLC, Spring House, PA (S.D., J.K., K.D., D.S.). Merck Sharp and Dohme Corporation, Whitehouse Station, New Jersey (X.C., T.P., J.Y.); Université Paris Descartes, UMR-S 1144, Paris, France (D.G.-Z., M.-C.M., S.C., X.D.); Taconic Biosciences GmbH, Koeln, Germany (A.R., N.S.)
| | - Clara Andonian
- DMPK and Bioanalytical Research, Abbvie Deutschland GmbH & Co. KG, Ludwigshafen, Germany (M.M., C.H., L.L.); Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, CA (L.S., J.P., X.Z.); Drug Metabolism and Pharmacokinetics, GlaxoSmithKline Pharmaceuticals, King of Prussia, Pennsylvania (L.C., C.A., E.P.); Health and Environment Department, AIT Austrian Institute of Technology GmbH, Seibersdorf, Austria (T.W., O.L.); Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria (O.L.), Preclinical Development and Safety, Janssen Research and Development, LLC, Spring House, PA (S.D., J.K., K.D., D.S.). Merck Sharp and Dohme Corporation, Whitehouse Station, New Jersey (X.C., T.P., J.Y.); Université Paris Descartes, UMR-S 1144, Paris, France (D.G.-Z., M.-C.M., S.C., X.D.); Taconic Biosciences GmbH, Koeln, Germany (A.R., N.S.)
| | - Damir Simic
- DMPK and Bioanalytical Research, Abbvie Deutschland GmbH & Co. KG, Ludwigshafen, Germany (M.M., C.H., L.L.); Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, CA (L.S., J.P., X.Z.); Drug Metabolism and Pharmacokinetics, GlaxoSmithKline Pharmaceuticals, King of Prussia, Pennsylvania (L.C., C.A., E.P.); Health and Environment Department, AIT Austrian Institute of Technology GmbH, Seibersdorf, Austria (T.W., O.L.); Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria (O.L.), Preclinical Development and Safety, Janssen Research and Development, LLC, Spring House, PA (S.D., J.K., K.D., D.S.). Merck Sharp and Dohme Corporation, Whitehouse Station, New Jersey (X.C., T.P., J.Y.); Université Paris Descartes, UMR-S 1144, Paris, France (D.G.-Z., M.-C.M., S.C., X.D.); Taconic Biosciences GmbH, Koeln, Germany (A.R., N.S.)
| | - Anja Rode
- DMPK and Bioanalytical Research, Abbvie Deutschland GmbH & Co. KG, Ludwigshafen, Germany (M.M., C.H., L.L.); Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, CA (L.S., J.P., X.Z.); Drug Metabolism and Pharmacokinetics, GlaxoSmithKline Pharmaceuticals, King of Prussia, Pennsylvania (L.C., C.A., E.P.); Health and Environment Department, AIT Austrian Institute of Technology GmbH, Seibersdorf, Austria (T.W., O.L.); Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria (O.L.), Preclinical Development and Safety, Janssen Research and Development, LLC, Spring House, PA (S.D., J.K., K.D., D.S.). Merck Sharp and Dohme Corporation, Whitehouse Station, New Jersey (X.C., T.P., J.Y.); Université Paris Descartes, UMR-S 1144, Paris, France (D.G.-Z., M.-C.M., S.C., X.D.); Taconic Biosciences GmbH, Koeln, Germany (A.R., N.S.)
| | - Jocelyn Yabut
- DMPK and Bioanalytical Research, Abbvie Deutschland GmbH & Co. KG, Ludwigshafen, Germany (M.M., C.H., L.L.); Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, CA (L.S., J.P., X.Z.); Drug Metabolism and Pharmacokinetics, GlaxoSmithKline Pharmaceuticals, King of Prussia, Pennsylvania (L.C., C.A., E.P.); Health and Environment Department, AIT Austrian Institute of Technology GmbH, Seibersdorf, Austria (T.W., O.L.); Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria (O.L.), Preclinical Development and Safety, Janssen Research and Development, LLC, Spring House, PA (S.D., J.K., K.D., D.S.). Merck Sharp and Dohme Corporation, Whitehouse Station, New Jersey (X.C., T.P., J.Y.); Université Paris Descartes, UMR-S 1144, Paris, France (D.G.-Z., M.-C.M., S.C., X.D.); Taconic Biosciences GmbH, Koeln, Germany (A.R., N.S.)
| | - Xiaolin Zhang
- DMPK and Bioanalytical Research, Abbvie Deutschland GmbH & Co. KG, Ludwigshafen, Germany (M.M., C.H., L.L.); Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, CA (L.S., J.P., X.Z.); Drug Metabolism and Pharmacokinetics, GlaxoSmithKline Pharmaceuticals, King of Prussia, Pennsylvania (L.C., C.A., E.P.); Health and Environment Department, AIT Austrian Institute of Technology GmbH, Seibersdorf, Austria (T.W., O.L.); Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria (O.L.), Preclinical Development and Safety, Janssen Research and Development, LLC, Spring House, PA (S.D., J.K., K.D., D.S.). Merck Sharp and Dohme Corporation, Whitehouse Station, New Jersey (X.C., T.P., J.Y.); Université Paris Descartes, UMR-S 1144, Paris, France (D.G.-Z., M.-C.M., S.C., X.D.); Taconic Biosciences GmbH, Koeln, Germany (A.R., N.S.)
| | - Nico Scheer
- DMPK and Bioanalytical Research, Abbvie Deutschland GmbH & Co. KG, Ludwigshafen, Germany (M.M., C.H., L.L.); Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, CA (L.S., J.P., X.Z.); Drug Metabolism and Pharmacokinetics, GlaxoSmithKline Pharmaceuticals, King of Prussia, Pennsylvania (L.C., C.A., E.P.); Health and Environment Department, AIT Austrian Institute of Technology GmbH, Seibersdorf, Austria (T.W., O.L.); Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria (O.L.), Preclinical Development and Safety, Janssen Research and Development, LLC, Spring House, PA (S.D., J.K., K.D., D.S.). Merck Sharp and Dohme Corporation, Whitehouse Station, New Jersey (X.C., T.P., J.Y.); Université Paris Descartes, UMR-S 1144, Paris, France (D.G.-Z., M.-C.M., S.C., X.D.); Taconic Biosciences GmbH, Koeln, Germany (A.R., N.S.)
| |
Collapse
|
40
|
Bircsak KM, Gupta V, Yuen PYS, Gorczyca L, Weinberger BI, Vetrano AM, Aleksunes LM. Genetic and Dietary Regulation of Glyburide Efflux by the Human Placental Breast Cancer Resistance Protein Transporter. J Pharmacol Exp Ther 2016; 357:103-13. [PMID: 26850786 PMCID: PMC4809313 DOI: 10.1124/jpet.115.230185] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 02/02/2016] [Indexed: 12/16/2022] Open
Abstract
Glyburide is frequently used to treat gestational diabetes owing to its low fetal accumulation resulting from placental efflux by the breast cancer resistance protein (BCRP)/ABCG2 transporter. Here we sought to determine how exposure to the dietary phytoestrogen genistein and expression of a loss-of-function polymorphism in the ABCG2 gene (C421A) impacted the transport of glyburide by BCRP using stably transfected human embryonic kidney 293 (HEK) cells, human placental choriocarcinoma BeWo cells, and human placental explants. Genistein competitively inhibited the BCRP-mediated transport of (3)H-glyburide in both wild-type (WT) and C421A-BCRP HEK-expressing cells, with greater accumulation of (3)H-glyburide in cells expressing the C421A variant. In BeWo cells, exposure to genistein for 60 minutes increased the accumulation of (3)H-glyburide 30%-70% at concentrations relevant to dietary exposure (IC50 ∼180 nM). Continuous exposure of BeWo cells to genistein for 48 hours reduced the expression of BCRP mRNA and protein by up to 40%, which impaired BCRP transport activity. Pharmacologic antagonism of the estrogen receptor attenuated the genistein-mediated downregulation of BCRP expression, suggesting that phytoestrogens may reduce BCRP levels through this hormone receptor pathway in BeWo cells. Interestingly, genistein treatment for 48 hours did not alter BCRP protein expression in explants dissected from healthy term placentas. These data suggest that whereas genistein can act as a competitive inhibitor of BCRP-mediated transport, its ability to downregulate placental BCRP expression may only occur in choriocarcinoma cells. Overall, this research provides important mechanistic data regarding how the environment (dietary genistein) and a frequent genetic variant (ABCG2, C421A) may alter the maternal-fetal disposition of glyburide.
Collapse
Affiliation(s)
- Kristin M Bircsak
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy (K.M.B., L.M.A., L.G.), and Environmental and Occupational Health Sciences Institute, Rutgers, The State University of New Jersey (L.M.A.), Piscataway, New Jersey; Departments of Obstetrics and Gynecology (V.G.) and Pediatrics (P.Y.S.Y., A.M.V.), Rutgers University Robert Wood Johnson Medical School, New Brunswick, New Jersey; Hofstra North Shore-LIJ School of Medicine, Cohen Children's Medical Center of New York, New Hyde Park, New York (B.I.W.)
| | - Vivek Gupta
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy (K.M.B., L.M.A., L.G.), and Environmental and Occupational Health Sciences Institute, Rutgers, The State University of New Jersey (L.M.A.), Piscataway, New Jersey; Departments of Obstetrics and Gynecology (V.G.) and Pediatrics (P.Y.S.Y., A.M.V.), Rutgers University Robert Wood Johnson Medical School, New Brunswick, New Jersey; Hofstra North Shore-LIJ School of Medicine, Cohen Children's Medical Center of New York, New Hyde Park, New York (B.I.W.)
| | - Poi Yu Sofia Yuen
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy (K.M.B., L.M.A., L.G.), and Environmental and Occupational Health Sciences Institute, Rutgers, The State University of New Jersey (L.M.A.), Piscataway, New Jersey; Departments of Obstetrics and Gynecology (V.G.) and Pediatrics (P.Y.S.Y., A.M.V.), Rutgers University Robert Wood Johnson Medical School, New Brunswick, New Jersey; Hofstra North Shore-LIJ School of Medicine, Cohen Children's Medical Center of New York, New Hyde Park, New York (B.I.W.)
| | - Ludwik Gorczyca
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy (K.M.B., L.M.A., L.G.), and Environmental and Occupational Health Sciences Institute, Rutgers, The State University of New Jersey (L.M.A.), Piscataway, New Jersey; Departments of Obstetrics and Gynecology (V.G.) and Pediatrics (P.Y.S.Y., A.M.V.), Rutgers University Robert Wood Johnson Medical School, New Brunswick, New Jersey; Hofstra North Shore-LIJ School of Medicine, Cohen Children's Medical Center of New York, New Hyde Park, New York (B.I.W.)
| | - Barry I Weinberger
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy (K.M.B., L.M.A., L.G.), and Environmental and Occupational Health Sciences Institute, Rutgers, The State University of New Jersey (L.M.A.), Piscataway, New Jersey; Departments of Obstetrics and Gynecology (V.G.) and Pediatrics (P.Y.S.Y., A.M.V.), Rutgers University Robert Wood Johnson Medical School, New Brunswick, New Jersey; Hofstra North Shore-LIJ School of Medicine, Cohen Children's Medical Center of New York, New Hyde Park, New York (B.I.W.)
| | - Anna M Vetrano
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy (K.M.B., L.M.A., L.G.), and Environmental and Occupational Health Sciences Institute, Rutgers, The State University of New Jersey (L.M.A.), Piscataway, New Jersey; Departments of Obstetrics and Gynecology (V.G.) and Pediatrics (P.Y.S.Y., A.M.V.), Rutgers University Robert Wood Johnson Medical School, New Brunswick, New Jersey; Hofstra North Shore-LIJ School of Medicine, Cohen Children's Medical Center of New York, New Hyde Park, New York (B.I.W.)
| | - Lauren M Aleksunes
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy (K.M.B., L.M.A., L.G.), and Environmental and Occupational Health Sciences Institute, Rutgers, The State University of New Jersey (L.M.A.), Piscataway, New Jersey; Departments of Obstetrics and Gynecology (V.G.) and Pediatrics (P.Y.S.Y., A.M.V.), Rutgers University Robert Wood Johnson Medical School, New Brunswick, New Jersey; Hofstra North Shore-LIJ School of Medicine, Cohen Children's Medical Center of New York, New Hyde Park, New York (B.I.W.)
| |
Collapse
|
41
|
Harwood MD, Neuhoff S, Rostami-Hodjegan A, Warhurst G. Breast Cancer Resistance Protein Abundance, but Not mRNA Expression, Correlates With Estrone-3-Sulfate Transport in Caco-2. J Pharm Sci 2016; 105:1370-5. [PMID: 26952881 DOI: 10.1016/j.xphs.2016.01.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 12/17/2015] [Accepted: 01/14/2016] [Indexed: 01/31/2023]
Abstract
Transporter mRNA and protein expression data are used to extrapolate in vitro transporter kinetics to in vivo drug disposition predictions. Breast cancer resistance protein (BCRP) possesses broad substrate specificity; therefore, understanding BCRP expression-activity relationships are necessary for the translation to in vivo. Bidirectional transport of estrone-3-sulfate (E-3-S), a BCRP probe, was evaluated with respect to relative BCRP mRNA expression and absolute protein abundance in 10- and 29-day cultured Caco-2 cells. BCRP mRNA expression was quantified by real-time PCR against a housekeeper gene, Cyclophilin A. The BCRP protein abundance in total membrane fractions was quantified by targeted proteomics, and [(3)H]-E-3-S bidirectional transport was determined in the presence or absence of Ko143, a potent BCRP inhibitor. BCRP mRNA expression was 1.5-fold higher in 29- versus 10-day cultured cells (n = 3), whereas a 2.4-fold lower (p < 0.001) BCRP protein abundance was observed in 29- versus 10-day cultured cells (1.28 ± 0.33 and 3.06 ± 0.22 fmol/μg protein, n = 6, respectively). This correlated to a 2.45-fold lower (p < 0.01) efflux ratio for E-3-S in 29- versus 10-day cultured cells (8.97 ± 2.51 and 3.32 ± 0.66, n = 6, respectively). Caco-2 cell BCRP protein abundance, but not mRNA levels, correlates with BCRP activity, suggesting that extrapolation strategies incorporating BCRP protein abundance-activity relationships may be more successful.
Collapse
Affiliation(s)
- Matthew D Harwood
- Gut Barrier Group, Inflammation and Repair, University of Manchester, Salford Royal NHS Trust, Salford M6 8HD, UK; Simcyp Limited (a Certara Company), Blades Enterprise Centre, Sheffield S2 4SU, UK.
| | - Sibylle Neuhoff
- Simcyp Limited (a Certara Company), Blades Enterprise Centre, Sheffield S2 4SU, UK
| | - Amin Rostami-Hodjegan
- Simcyp Limited (a Certara Company), Blades Enterprise Centre, Sheffield S2 4SU, UK; Centre for Applied Pharmacokinetic Research, Manchester Pharmacy School, Manchester M13 9PT, UK
| | - Geoffrey Warhurst
- Gut Barrier Group, Inflammation and Repair, University of Manchester, Salford Royal NHS Trust, Salford M6 8HD, UK
| |
Collapse
|
42
|
Tang C, Hochman J, Prueksaritanont T. Drug–Drug Interactions: Regulatory and Theoretical Considerations, and an Industry Perspective. NEW HORIZONS IN PREDICTIVE DRUG METABOLISM AND PHARMACOKINETICS 2015:263-282. [DOI: 10.1039/9781782622376-00263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
In this review, a number of theoretical bases and regulatory framework are presented for drug–drug interactions (DDIs), with emphasis on those related to absorption and distribution. Also presented is an industry perspective on how to approach these issues in support of drug development. Overall, holistic integration and understanding of the pharmaceutical (e.g., pH-dependent solubility) and pharmacological (e.g., gastrointestinal physiology and therapeutic margin) profiles, as well as pharmacokinetics and underlying absorption and disposition determinants (e.g., clearance, volume of distribution, permeability and protein binding) of drug candidates in various clinical setting should be considered as this can be valuable in ensuring the safe and effective use of new drugs.
Collapse
Affiliation(s)
- Cuyue Tang
- Forum Pharmaceuticals Inc. 225 2nd Avenue Waltham MA USA
| | - Jerome Hochman
- Merck Research Laboratories One Merck Drive, White House Station NJ USA
| | | |
Collapse
|
43
|
Andersen V, Svenningsen K, Knudsen LA, Hansen AK, Holmskov U, Stensballe A, Vogel U. Novel understanding of ABC transporters ABCB1/MDR/P-glycoprotein, ABCC2/MRP2, and ABCG2/BCRP in colorectal pathophysiology. World J Gastroenterol 2015; 21:11862-11876. [PMID: 26557010 PMCID: PMC4631984 DOI: 10.3748/wjg.v21.i41.11862] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 08/07/2015] [Accepted: 09/30/2015] [Indexed: 02/06/2023] Open
Abstract
AIM: To evaluate ATP-binding cassette (ABC) transporters in colonic pathophysiology as they had recently been related to colorectal cancer (CRC) development.
METHODS: Literature search was conducted on PubMed using combinations of the following terms: ABC transporters, ATP binding cassette transporter proteins, inflammatory bowel disease, ulcerative, colitis, Crohns disease, colorectal cancer, colitis, intestinal inflammation, intestinal carcinogenesis, ABCB1/P-glycoprotein (P-gp/CD243/MDR1), ABCC2/multidrug resistance protein 2 (MRP2) and ABCG2/breast cancer resistance protein (BCRP), Abcb1/Mdr1a, abcc2/Mrp2, abcg2/Bcrp, knock-out mice, tight junction, membrane lipid function.
RESULTS: Recently, human studies reported that changes in the levels of ABC transporters were early events in the adenoma-carcinoma sequence leading to CRC. A link between ABCB1, high fat diet and gut microbes in relation to colitis was suggested by the animal studies. The finding that colitis was preceded by altered gut bacterial composition suggests that deletion of Abcb1 leads to fundamental changes of host-microbiota interaction. Also, high fat diet increases the frequency and severity of colitis in specific pathogen-free Abcb1 KO mice. The Abcb1 KO mice might thus serve as a model in which diet/environmental factors and microbes may be controlled and investigated in relation to intestinal inflammation. Potential molecular mechanisms include defective transport of inflammatory mediators and/or phospholipid translocation from one side to the other of the cell membrane lipid bilayer by ABC transporters affecting inflammatory response and/or function of tight junctions, phagocytosis and vesicle trafficking. Also, diet and microbes give rise to molecules which are potential substrates for the ABC transporters and which may additionally affect ABC transporter function through nuclear receptors and transcriptional regulation. Another critical role of ABCB1 was suggested by the finding that ABCB1 expression identifies a subpopulation of pro-inflammatory Th17 cells which were resistant to treatment with glucocorticoids. The evidence for the involvement of ABCC2 and ABCG2 in colonic pathophysiology was weak.
CONCLUSION: ABCB1, diet, and gut microbes mutually interact in colonic inflammation, a well-known risk factor for CRC. Further insight may be translated into preventive and treatment strategies.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B/genetics
- ATP Binding Cassette Transporter, Subfamily B/metabolism
- ATP Binding Cassette Transporter, Subfamily G, Member 2
- ATP-Binding Cassette Transporters/genetics
- ATP-Binding Cassette Transporters/metabolism
- Animals
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Cell Transformation, Neoplastic/pathology
- Colorectal Neoplasms/genetics
- Colorectal Neoplasms/metabolism
- Colorectal Neoplasms/pathology
- Colorectal Neoplasms/physiopathology
- Disease Models, Animal
- Genetic Predisposition to Disease
- Humans
- Inflammatory Bowel Diseases/genetics
- Inflammatory Bowel Diseases/metabolism
- Inflammatory Bowel Diseases/pathology
- Inflammatory Bowel Diseases/physiopathology
- Mice, Transgenic
- Multidrug Resistance-Associated Protein 2
- Multidrug Resistance-Associated Proteins/genetics
- Multidrug Resistance-Associated Proteins/metabolism
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- Phenotype
- Polymorphism, Genetic
- Tumor Microenvironment
Collapse
|
44
|
Wan Z, Wang G, Li T, Xu B, Pei Q, Peng Y, Sun H, Cheng L, Zeng Y, Yang G, Zhu YS. Marked Alteration of Rosuvastatin Pharmacokinetics in Healthy Chinese with ABCG2 34G>A and 421C>A Homozygote or Compound Heterozygote. J Pharmacol Exp Ther 2015; 354:310-315. [PMID: 26081159 DOI: 10.1124/jpet.115.225045] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 06/12/2015] [Indexed: 01/06/2023] Open
Abstract
Rosuvastatin, a 3-hydroxy-3-methylglutaryl-coenzyme A reductase inhibitor used to lower blood low-density lipoprotein cholesterol, is a substrate of the membrane ABCG2 exporter. ABCG2 variants have been shown to alter rosuvastatin disposition. The objective of this study is to determine the impact of ABCG2 34/421 compound haplotypes on rosuvastatin pharmacokinetics in healthy Chinese volunteer subjects. Eight hundred healthy Chinese males were genotyped by polymerase chain reaction-pyrosequencing for ABCG2 34G>A, ABCG2 421C>A, SLCO1B1 521T>C, and CYP2C9*3 variants. Sixty-two male subjects with wild-type SLCO1B1 c.521TT and CYP2C9*3 were recruited for this pharmacokinetic study of rosuvastatin. A single oral dose of 10 mg rosuvastatin was administrated to each subject, and blood samples were collected before and at various time points after drug administration. Plasma concentration of rosuvastatin was determined by high-performance liquid chromatography-tandem mass spectrometry, and pharmacokinetic analysis was carried out using the WinNonlin program. In Chinese males, high allele frequency of ABCG2 c.34G>A (0.275) and c.421C>A (0.282) was observed, resulting in a considerable portion (23.3%) of subjects being ABCG2 34/421 compound heterozygotes. Compared with subjects with ABCG2 wild-type (c.34GG/421CC), plasma rosuvastatin Cmax and area under the curve, AUC0-∞, were significantly higher, while the apparent oral clearance, CL/F, was significantly lower in subjects with c.34AA, c.421AA, and c.34GA/421CA genotypes. Both t1/2 and Tmax were similar among subjects with different genotypes. A high frequency of ABCG2 c.34G>A and c.421C>A variants was present in Chinese males, and the disposition of rosuvastatin was significantly affected by both variants. These data suggest that it is advisable to genotype these variants when prescribing rosuvastatin to Chinese subjects, leading to a precise dose for each individual.
Collapse
Affiliation(s)
- Zirui Wan
- Department of Clinical Pharmacology of Xiangya Hospital, Central South University, Changsha, Hunan, China (Z.W., G.W., T.L., B.X., Y.P., H.S., Y.Z., Y.-S.Z.); Institute of Clinical Pharmacology, Central South University, Changsha, Hunan, China (Z.W., G.W., T.L., B.X., Y.P., H.S., Y.Z., Y.-S.Z.); Hunan Key Laboratory of Pharmacogenetics, Changsha, Hunan, China (Z.W., G.W., T.L., B.X., Y.P., H.S., Y.Z., Y.-S.Z.); Department of Pharmacy, Third Xiangya Hospital, Central South University, Changsha, Hunan, China (Q.P., G.Y.); Department of Biochemistry and Molecular Biology, Hunan University of Chinese Medicine, Changsha, Hunan, China (L.C.); and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China (Z.W.)
| | - Guo Wang
- Department of Clinical Pharmacology of Xiangya Hospital, Central South University, Changsha, Hunan, China (Z.W., G.W., T.L., B.X., Y.P., H.S., Y.Z., Y.-S.Z.); Institute of Clinical Pharmacology, Central South University, Changsha, Hunan, China (Z.W., G.W., T.L., B.X., Y.P., H.S., Y.Z., Y.-S.Z.); Hunan Key Laboratory of Pharmacogenetics, Changsha, Hunan, China (Z.W., G.W., T.L., B.X., Y.P., H.S., Y.Z., Y.-S.Z.); Department of Pharmacy, Third Xiangya Hospital, Central South University, Changsha, Hunan, China (Q.P., G.Y.); Department of Biochemistry and Molecular Biology, Hunan University of Chinese Medicine, Changsha, Hunan, China (L.C.); and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China (Z.W.)
| | - Tailin Li
- Department of Clinical Pharmacology of Xiangya Hospital, Central South University, Changsha, Hunan, China (Z.W., G.W., T.L., B.X., Y.P., H.S., Y.Z., Y.-S.Z.); Institute of Clinical Pharmacology, Central South University, Changsha, Hunan, China (Z.W., G.W., T.L., B.X., Y.P., H.S., Y.Z., Y.-S.Z.); Hunan Key Laboratory of Pharmacogenetics, Changsha, Hunan, China (Z.W., G.W., T.L., B.X., Y.P., H.S., Y.Z., Y.-S.Z.); Department of Pharmacy, Third Xiangya Hospital, Central South University, Changsha, Hunan, China (Q.P., G.Y.); Department of Biochemistry and Molecular Biology, Hunan University of Chinese Medicine, Changsha, Hunan, China (L.C.); and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China (Z.W.)
| | - Biaobo Xu
- Department of Clinical Pharmacology of Xiangya Hospital, Central South University, Changsha, Hunan, China (Z.W., G.W., T.L., B.X., Y.P., H.S., Y.Z., Y.-S.Z.); Institute of Clinical Pharmacology, Central South University, Changsha, Hunan, China (Z.W., G.W., T.L., B.X., Y.P., H.S., Y.Z., Y.-S.Z.); Hunan Key Laboratory of Pharmacogenetics, Changsha, Hunan, China (Z.W., G.W., T.L., B.X., Y.P., H.S., Y.Z., Y.-S.Z.); Department of Pharmacy, Third Xiangya Hospital, Central South University, Changsha, Hunan, China (Q.P., G.Y.); Department of Biochemistry and Molecular Biology, Hunan University of Chinese Medicine, Changsha, Hunan, China (L.C.); and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China (Z.W.)
| | - Qi Pei
- Department of Clinical Pharmacology of Xiangya Hospital, Central South University, Changsha, Hunan, China (Z.W., G.W., T.L., B.X., Y.P., H.S., Y.Z., Y.-S.Z.); Institute of Clinical Pharmacology, Central South University, Changsha, Hunan, China (Z.W., G.W., T.L., B.X., Y.P., H.S., Y.Z., Y.-S.Z.); Hunan Key Laboratory of Pharmacogenetics, Changsha, Hunan, China (Z.W., G.W., T.L., B.X., Y.P., H.S., Y.Z., Y.-S.Z.); Department of Pharmacy, Third Xiangya Hospital, Central South University, Changsha, Hunan, China (Q.P., G.Y.); Department of Biochemistry and Molecular Biology, Hunan University of Chinese Medicine, Changsha, Hunan, China (L.C.); and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China (Z.W.)
| | - Yan Peng
- Department of Clinical Pharmacology of Xiangya Hospital, Central South University, Changsha, Hunan, China (Z.W., G.W., T.L., B.X., Y.P., H.S., Y.Z., Y.-S.Z.); Institute of Clinical Pharmacology, Central South University, Changsha, Hunan, China (Z.W., G.W., T.L., B.X., Y.P., H.S., Y.Z., Y.-S.Z.); Hunan Key Laboratory of Pharmacogenetics, Changsha, Hunan, China (Z.W., G.W., T.L., B.X., Y.P., H.S., Y.Z., Y.-S.Z.); Department of Pharmacy, Third Xiangya Hospital, Central South University, Changsha, Hunan, China (Q.P., G.Y.); Department of Biochemistry and Molecular Biology, Hunan University of Chinese Medicine, Changsha, Hunan, China (L.C.); and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China (Z.W.)
| | - Hong Sun
- Department of Clinical Pharmacology of Xiangya Hospital, Central South University, Changsha, Hunan, China (Z.W., G.W., T.L., B.X., Y.P., H.S., Y.Z., Y.-S.Z.); Institute of Clinical Pharmacology, Central South University, Changsha, Hunan, China (Z.W., G.W., T.L., B.X., Y.P., H.S., Y.Z., Y.-S.Z.); Hunan Key Laboratory of Pharmacogenetics, Changsha, Hunan, China (Z.W., G.W., T.L., B.X., Y.P., H.S., Y.Z., Y.-S.Z.); Department of Pharmacy, Third Xiangya Hospital, Central South University, Changsha, Hunan, China (Q.P., G.Y.); Department of Biochemistry and Molecular Biology, Hunan University of Chinese Medicine, Changsha, Hunan, China (L.C.); and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China (Z.W.)
| | - Lijuan Cheng
- Department of Clinical Pharmacology of Xiangya Hospital, Central South University, Changsha, Hunan, China (Z.W., G.W., T.L., B.X., Y.P., H.S., Y.Z., Y.-S.Z.); Institute of Clinical Pharmacology, Central South University, Changsha, Hunan, China (Z.W., G.W., T.L., B.X., Y.P., H.S., Y.Z., Y.-S.Z.); Hunan Key Laboratory of Pharmacogenetics, Changsha, Hunan, China (Z.W., G.W., T.L., B.X., Y.P., H.S., Y.Z., Y.-S.Z.); Department of Pharmacy, Third Xiangya Hospital, Central South University, Changsha, Hunan, China (Q.P., G.Y.); Department of Biochemistry and Molecular Biology, Hunan University of Chinese Medicine, Changsha, Hunan, China (L.C.); and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China (Z.W.)
| | - Ying Zeng
- Department of Clinical Pharmacology of Xiangya Hospital, Central South University, Changsha, Hunan, China (Z.W., G.W., T.L., B.X., Y.P., H.S., Y.Z., Y.-S.Z.); Institute of Clinical Pharmacology, Central South University, Changsha, Hunan, China (Z.W., G.W., T.L., B.X., Y.P., H.S., Y.Z., Y.-S.Z.); Hunan Key Laboratory of Pharmacogenetics, Changsha, Hunan, China (Z.W., G.W., T.L., B.X., Y.P., H.S., Y.Z., Y.-S.Z.); Department of Pharmacy, Third Xiangya Hospital, Central South University, Changsha, Hunan, China (Q.P., G.Y.); Department of Biochemistry and Molecular Biology, Hunan University of Chinese Medicine, Changsha, Hunan, China (L.C.); and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China (Z.W.)
| | - Guoping Yang
- Department of Clinical Pharmacology of Xiangya Hospital, Central South University, Changsha, Hunan, China (Z.W., G.W., T.L., B.X., Y.P., H.S., Y.Z., Y.-S.Z.); Institute of Clinical Pharmacology, Central South University, Changsha, Hunan, China (Z.W., G.W., T.L., B.X., Y.P., H.S., Y.Z., Y.-S.Z.); Hunan Key Laboratory of Pharmacogenetics, Changsha, Hunan, China (Z.W., G.W., T.L., B.X., Y.P., H.S., Y.Z., Y.-S.Z.); Department of Pharmacy, Third Xiangya Hospital, Central South University, Changsha, Hunan, China (Q.P., G.Y.); Department of Biochemistry and Molecular Biology, Hunan University of Chinese Medicine, Changsha, Hunan, China (L.C.); and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China (Z.W.)
| | - Yuan-Shan Zhu
- Department of Clinical Pharmacology of Xiangya Hospital, Central South University, Changsha, Hunan, China (Z.W., G.W., T.L., B.X., Y.P., H.S., Y.Z., Y.-S.Z.); Institute of Clinical Pharmacology, Central South University, Changsha, Hunan, China (Z.W., G.W., T.L., B.X., Y.P., H.S., Y.Z., Y.-S.Z.); Hunan Key Laboratory of Pharmacogenetics, Changsha, Hunan, China (Z.W., G.W., T.L., B.X., Y.P., H.S., Y.Z., Y.-S.Z.); Department of Pharmacy, Third Xiangya Hospital, Central South University, Changsha, Hunan, China (Q.P., G.Y.); Department of Biochemistry and Molecular Biology, Hunan University of Chinese Medicine, Changsha, Hunan, China (L.C.); and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China (Z.W.)
| |
Collapse
|
45
|
Rosenberg MF, Bikadi Z, Hazai E, Starborg T, Kelley L, Chayen NE, Ford RC, Mao Q. Three-dimensional structure of the human breast cancer resistance protein (BCRP/ABCG2) in an inward-facing conformation. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2015; 71:1725-35. [PMID: 26249353 PMCID: PMC4528803 DOI: 10.1107/s1399004715010676] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 06/02/2015] [Indexed: 11/10/2022]
Abstract
ABCG2 is an efflux drug transporter that plays an important role in drug resistance and drug disposition. In this study, the first three-dimensional structure of human full-length ABCG2 analysed by electron crystallography from two-dimensional crystals in the absence of nucleotides and transported substrates is reported at 2 nm resolution. In this state, ABCG2 forms a symmetric homodimer with a noncrystallographic twofold axis perpendicular to the two-dimensional crystal plane, as confirmed by subtomogram averaging. This configuration suggests an inward-facing configuration similar to murine ABCB1, with the nucleotide-binding domains (NBDs) widely separated from each other. In the three-dimensional map, densities representing the long cytoplasmic extensions from the transmembrane domains that connect the NBDs are clearly visible. The structural data have allowed the atomic model of ABCG2 to be refined, in which the two arms of the V-shaped ABCG2 homodimeric complex are in a more closed and narrower conformation. The structural data and the refined model of ABCG2 are compatible with the biochemical analysis of the previously published mutagenesis studies, providing novel insight into the structure and function of the transporter.
Collapse
Affiliation(s)
- Mark F. Rosenberg
- Faculty of Life Science, The University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, England
- Computational and Systems Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Sir Alexander Fleming Building, London SW7 2AZ, England
| | | | - Eszter Hazai
- Faculty of Life Science, The University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, England
| | - Tobias Starborg
- Faculty of Life Science, The University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, England
| | - Lawrence Kelley
- Centre for Bioinformatics, Division of Molecular Biosciences, Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London SW7 2AZ, England
| | - Naomi E. Chayen
- Computational and Systems Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Sir Alexander Fleming Building, London SW7 2AZ, England
| | - Robert C. Ford
- Faculty of Life Science, The University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, England
| | - Qingcheng Mao
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
46
|
Terada T, Hira D. Intestinal and hepatic drug transporters: pharmacokinetic, pathophysiological, and pharmacogenetic roles. J Gastroenterol 2015; 50:508-19. [PMID: 25773773 DOI: 10.1007/s00535-015-1061-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 02/24/2015] [Indexed: 02/04/2023]
Abstract
The efficacy and safety of pharmacotherapies are determined by the complex processes involved in the interactions between drugs with the human body, including pharmacokinetic aspects. Among pharmacokinetic factors, it has been recognized that drug transporters play critical roles for absorption, distribution and excretion of drugs, regulating the membrane transport of drugs. The vast amounts of information on drug transporters collected in the past 20 years have been organized according to biochemical, molecular, genetic, and clinical analyses. Novel technologies, public databases, and regulatory guidelines have advanced the use of such information in drug development and clinical practice. In this review, we selected some clinically important drug transporters expressed in the intestine and liver, and introduced the research history and current knowledge of their pharmacokinetic, pathophysiological, and pharmacogenetic implications.
Collapse
Affiliation(s)
- Tomohiro Terada
- Department of Pharmacy, Shiga University of Medical Science Hospital, Otsu, Shiga, 520-2192, Japan,
| | | |
Collapse
|
47
|
Lee CA, O'Connor MA, Ritchie TK, Galetin A, Cook JA, Ragueneau-Majlessi I, Ellens H, Feng B, Taub ME, Paine MF, Polli JW, Ware JA, Zamek-Gliszczynski MJ. Breast cancer resistance protein (ABCG2) in clinical pharmacokinetics and drug interactions: practical recommendations for clinical victim and perpetrator drug-drug interaction study design. Drug Metab Dispos 2015; 43:490-509. [PMID: 25587128 DOI: 10.1124/dmd.114.062174] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025] Open
Abstract
Breast cancer resistance protein (BCRP; ABCG2) limits intestinal absorption of low-permeability substrate drugs and mediates biliary excretion of drugs and metabolites. Based on clinical evidence of BCRP-mediated drug-drug interactions (DDIs) and the c.421C>A functional polymorphism affecting drug efficacy and safety, both the US Food and Drug Administration and European Medicines Agency recommend preclinical evaluation and, when appropriate, clinical assessment of BCRP-mediated DDIs. Although many BCRP substrates and inhibitors have been identified in vitro, clinical translation has been confounded by overlap with other transporters and metabolic enzymes. Regulatory recommendations for BCRP-mediated clinical DDI studies are challenging, as consensus is lacking on the choice of the most robust and specific human BCRP substrates and inhibitors and optimal study design. This review proposes a path forward based on a comprehensive analysis of available data. Oral sulfasalazine (1000 mg, immediate-release tablet) is the best available clinical substrate for intestinal BCRP, oral rosuvastatin (20 mg) for both intestinal and hepatic BCRP, and intravenous rosuvastatin (4 mg) for hepatic BCRP. Oral curcumin (2000 mg) and lapatinib (250 mg) are the best available clinical BCRP inhibitors. To interrogate the worst-case clinical BCRP DDI scenario, study subjects harboring the BCRP c.421C/C reference genotype are recommended. In addition, if sulfasalazine is selected as the substrate, subjects having the rapid acetylator phenotype are recommended. In the case of rosuvastatin, subjects with the organic anion-transporting polypeptide 1B1 c.521T/T genotype are recommended, together with monitoring of rosuvastatin's cholesterol-lowering effect at baseline and DDI phase. A proof-of-concept clinical study is being planned by a collaborative consortium to evaluate the proposed BCRP DDI study design.
Collapse
Affiliation(s)
- Caroline A Lee
- Drug Metabolism and Pharmacokinetics, QPS LLC, Research Triangle Park, North Carolina (C.A.L.); Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut (M.A.O., M.E.T.); Centre for Applied Pharmacokinetic Research, Manchester Pharmacy School, The University of Manchester, Manchester, United Kingdom (A.G.); Pharmacokinetics and Drug Metabolism (B.F.) and Clinical Pharmacology, Global Innovative Pharma Business (J.A.C.), Pfizer Inc., Groton, Connecticut; School of Pharmacy, University of Washington, Seattle, Washington (I.R.-M., T.K.R.); Drug Metabolism and Pharmacokinetics, GlaxoSmithKline, Research Triangle Park, North Carolina (M.J.Z.-G., J.W.P.) and King of Prussia, Pennsylvania (H.E.); College of Pharmacy, Washington State University, Spokane, Washington (M.F.P.); and Clinical Pharmacology, Genentech, South San Francisco, California (J.A.W.)
| | - Meeghan A O'Connor
- Drug Metabolism and Pharmacokinetics, QPS LLC, Research Triangle Park, North Carolina (C.A.L.); Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut (M.A.O., M.E.T.); Centre for Applied Pharmacokinetic Research, Manchester Pharmacy School, The University of Manchester, Manchester, United Kingdom (A.G.); Pharmacokinetics and Drug Metabolism (B.F.) and Clinical Pharmacology, Global Innovative Pharma Business (J.A.C.), Pfizer Inc., Groton, Connecticut; School of Pharmacy, University of Washington, Seattle, Washington (I.R.-M., T.K.R.); Drug Metabolism and Pharmacokinetics, GlaxoSmithKline, Research Triangle Park, North Carolina (M.J.Z.-G., J.W.P.) and King of Prussia, Pennsylvania (H.E.); College of Pharmacy, Washington State University, Spokane, Washington (M.F.P.); and Clinical Pharmacology, Genentech, South San Francisco, California (J.A.W.)
| | - Tasha K Ritchie
- Drug Metabolism and Pharmacokinetics, QPS LLC, Research Triangle Park, North Carolina (C.A.L.); Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut (M.A.O., M.E.T.); Centre for Applied Pharmacokinetic Research, Manchester Pharmacy School, The University of Manchester, Manchester, United Kingdom (A.G.); Pharmacokinetics and Drug Metabolism (B.F.) and Clinical Pharmacology, Global Innovative Pharma Business (J.A.C.), Pfizer Inc., Groton, Connecticut; School of Pharmacy, University of Washington, Seattle, Washington (I.R.-M., T.K.R.); Drug Metabolism and Pharmacokinetics, GlaxoSmithKline, Research Triangle Park, North Carolina (M.J.Z.-G., J.W.P.) and King of Prussia, Pennsylvania (H.E.); College of Pharmacy, Washington State University, Spokane, Washington (M.F.P.); and Clinical Pharmacology, Genentech, South San Francisco, California (J.A.W.)
| | - Aleksandra Galetin
- Drug Metabolism and Pharmacokinetics, QPS LLC, Research Triangle Park, North Carolina (C.A.L.); Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut (M.A.O., M.E.T.); Centre for Applied Pharmacokinetic Research, Manchester Pharmacy School, The University of Manchester, Manchester, United Kingdom (A.G.); Pharmacokinetics and Drug Metabolism (B.F.) and Clinical Pharmacology, Global Innovative Pharma Business (J.A.C.), Pfizer Inc., Groton, Connecticut; School of Pharmacy, University of Washington, Seattle, Washington (I.R.-M., T.K.R.); Drug Metabolism and Pharmacokinetics, GlaxoSmithKline, Research Triangle Park, North Carolina (M.J.Z.-G., J.W.P.) and King of Prussia, Pennsylvania (H.E.); College of Pharmacy, Washington State University, Spokane, Washington (M.F.P.); and Clinical Pharmacology, Genentech, South San Francisco, California (J.A.W.)
| | - Jack A Cook
- Drug Metabolism and Pharmacokinetics, QPS LLC, Research Triangle Park, North Carolina (C.A.L.); Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut (M.A.O., M.E.T.); Centre for Applied Pharmacokinetic Research, Manchester Pharmacy School, The University of Manchester, Manchester, United Kingdom (A.G.); Pharmacokinetics and Drug Metabolism (B.F.) and Clinical Pharmacology, Global Innovative Pharma Business (J.A.C.), Pfizer Inc., Groton, Connecticut; School of Pharmacy, University of Washington, Seattle, Washington (I.R.-M., T.K.R.); Drug Metabolism and Pharmacokinetics, GlaxoSmithKline, Research Triangle Park, North Carolina (M.J.Z.-G., J.W.P.) and King of Prussia, Pennsylvania (H.E.); College of Pharmacy, Washington State University, Spokane, Washington (M.F.P.); and Clinical Pharmacology, Genentech, South San Francisco, California (J.A.W.)
| | - Isabelle Ragueneau-Majlessi
- Drug Metabolism and Pharmacokinetics, QPS LLC, Research Triangle Park, North Carolina (C.A.L.); Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut (M.A.O., M.E.T.); Centre for Applied Pharmacokinetic Research, Manchester Pharmacy School, The University of Manchester, Manchester, United Kingdom (A.G.); Pharmacokinetics and Drug Metabolism (B.F.) and Clinical Pharmacology, Global Innovative Pharma Business (J.A.C.), Pfizer Inc., Groton, Connecticut; School of Pharmacy, University of Washington, Seattle, Washington (I.R.-M., T.K.R.); Drug Metabolism and Pharmacokinetics, GlaxoSmithKline, Research Triangle Park, North Carolina (M.J.Z.-G., J.W.P.) and King of Prussia, Pennsylvania (H.E.); College of Pharmacy, Washington State University, Spokane, Washington (M.F.P.); and Clinical Pharmacology, Genentech, South San Francisco, California (J.A.W.)
| | - Harma Ellens
- Drug Metabolism and Pharmacokinetics, QPS LLC, Research Triangle Park, North Carolina (C.A.L.); Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut (M.A.O., M.E.T.); Centre for Applied Pharmacokinetic Research, Manchester Pharmacy School, The University of Manchester, Manchester, United Kingdom (A.G.); Pharmacokinetics and Drug Metabolism (B.F.) and Clinical Pharmacology, Global Innovative Pharma Business (J.A.C.), Pfizer Inc., Groton, Connecticut; School of Pharmacy, University of Washington, Seattle, Washington (I.R.-M., T.K.R.); Drug Metabolism and Pharmacokinetics, GlaxoSmithKline, Research Triangle Park, North Carolina (M.J.Z.-G., J.W.P.) and King of Prussia, Pennsylvania (H.E.); College of Pharmacy, Washington State University, Spokane, Washington (M.F.P.); and Clinical Pharmacology, Genentech, South San Francisco, California (J.A.W.)
| | - Bo Feng
- Drug Metabolism and Pharmacokinetics, QPS LLC, Research Triangle Park, North Carolina (C.A.L.); Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut (M.A.O., M.E.T.); Centre for Applied Pharmacokinetic Research, Manchester Pharmacy School, The University of Manchester, Manchester, United Kingdom (A.G.); Pharmacokinetics and Drug Metabolism (B.F.) and Clinical Pharmacology, Global Innovative Pharma Business (J.A.C.), Pfizer Inc., Groton, Connecticut; School of Pharmacy, University of Washington, Seattle, Washington (I.R.-M., T.K.R.); Drug Metabolism and Pharmacokinetics, GlaxoSmithKline, Research Triangle Park, North Carolina (M.J.Z.-G., J.W.P.) and King of Prussia, Pennsylvania (H.E.); College of Pharmacy, Washington State University, Spokane, Washington (M.F.P.); and Clinical Pharmacology, Genentech, South San Francisco, California (J.A.W.)
| | - Mitchell E Taub
- Drug Metabolism and Pharmacokinetics, QPS LLC, Research Triangle Park, North Carolina (C.A.L.); Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut (M.A.O., M.E.T.); Centre for Applied Pharmacokinetic Research, Manchester Pharmacy School, The University of Manchester, Manchester, United Kingdom (A.G.); Pharmacokinetics and Drug Metabolism (B.F.) and Clinical Pharmacology, Global Innovative Pharma Business (J.A.C.), Pfizer Inc., Groton, Connecticut; School of Pharmacy, University of Washington, Seattle, Washington (I.R.-M., T.K.R.); Drug Metabolism and Pharmacokinetics, GlaxoSmithKline, Research Triangle Park, North Carolina (M.J.Z.-G., J.W.P.) and King of Prussia, Pennsylvania (H.E.); College of Pharmacy, Washington State University, Spokane, Washington (M.F.P.); and Clinical Pharmacology, Genentech, South San Francisco, California (J.A.W.)
| | - Mary F Paine
- Drug Metabolism and Pharmacokinetics, QPS LLC, Research Triangle Park, North Carolina (C.A.L.); Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut (M.A.O., M.E.T.); Centre for Applied Pharmacokinetic Research, Manchester Pharmacy School, The University of Manchester, Manchester, United Kingdom (A.G.); Pharmacokinetics and Drug Metabolism (B.F.) and Clinical Pharmacology, Global Innovative Pharma Business (J.A.C.), Pfizer Inc., Groton, Connecticut; School of Pharmacy, University of Washington, Seattle, Washington (I.R.-M., T.K.R.); Drug Metabolism and Pharmacokinetics, GlaxoSmithKline, Research Triangle Park, North Carolina (M.J.Z.-G., J.W.P.) and King of Prussia, Pennsylvania (H.E.); College of Pharmacy, Washington State University, Spokane, Washington (M.F.P.); and Clinical Pharmacology, Genentech, South San Francisco, California (J.A.W.)
| | - Joseph W Polli
- Drug Metabolism and Pharmacokinetics, QPS LLC, Research Triangle Park, North Carolina (C.A.L.); Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut (M.A.O., M.E.T.); Centre for Applied Pharmacokinetic Research, Manchester Pharmacy School, The University of Manchester, Manchester, United Kingdom (A.G.); Pharmacokinetics and Drug Metabolism (B.F.) and Clinical Pharmacology, Global Innovative Pharma Business (J.A.C.), Pfizer Inc., Groton, Connecticut; School of Pharmacy, University of Washington, Seattle, Washington (I.R.-M., T.K.R.); Drug Metabolism and Pharmacokinetics, GlaxoSmithKline, Research Triangle Park, North Carolina (M.J.Z.-G., J.W.P.) and King of Prussia, Pennsylvania (H.E.); College of Pharmacy, Washington State University, Spokane, Washington (M.F.P.); and Clinical Pharmacology, Genentech, South San Francisco, California (J.A.W.)
| | - Joseph A Ware
- Drug Metabolism and Pharmacokinetics, QPS LLC, Research Triangle Park, North Carolina (C.A.L.); Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut (M.A.O., M.E.T.); Centre for Applied Pharmacokinetic Research, Manchester Pharmacy School, The University of Manchester, Manchester, United Kingdom (A.G.); Pharmacokinetics and Drug Metabolism (B.F.) and Clinical Pharmacology, Global Innovative Pharma Business (J.A.C.), Pfizer Inc., Groton, Connecticut; School of Pharmacy, University of Washington, Seattle, Washington (I.R.-M., T.K.R.); Drug Metabolism and Pharmacokinetics, GlaxoSmithKline, Research Triangle Park, North Carolina (M.J.Z.-G., J.W.P.) and King of Prussia, Pennsylvania (H.E.); College of Pharmacy, Washington State University, Spokane, Washington (M.F.P.); and Clinical Pharmacology, Genentech, South San Francisco, California (J.A.W.)
| | - Maciej J Zamek-Gliszczynski
- Drug Metabolism and Pharmacokinetics, QPS LLC, Research Triangle Park, North Carolina (C.A.L.); Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut (M.A.O., M.E.T.); Centre for Applied Pharmacokinetic Research, Manchester Pharmacy School, The University of Manchester, Manchester, United Kingdom (A.G.); Pharmacokinetics and Drug Metabolism (B.F.) and Clinical Pharmacology, Global Innovative Pharma Business (J.A.C.), Pfizer Inc., Groton, Connecticut; School of Pharmacy, University of Washington, Seattle, Washington (I.R.-M., T.K.R.); Drug Metabolism and Pharmacokinetics, GlaxoSmithKline, Research Triangle Park, North Carolina (M.J.Z.-G., J.W.P.) and King of Prussia, Pennsylvania (H.E.); College of Pharmacy, Washington State University, Spokane, Washington (M.F.P.); and Clinical Pharmacology, Genentech, South San Francisco, California (J.A.W.)
| |
Collapse
|
48
|
Hochman J, Tang C, Prueksaritanont T. Drug–Drug Interactions Related to Altered Absorption and Plasma Protein Binding: Theoretical and Regulatory Considerations, and an Industry Perspective. J Pharm Sci 2015; 104:916-29. [DOI: 10.1002/jps.24306] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 11/13/2014] [Accepted: 11/14/2014] [Indexed: 01/28/2023]
|
49
|
Tanaka Y, Kitamura Y, Maeda K, Sugiyama Y. Quantitative Analysis of the ABCG2 c.421C>A Polymorphism Effect on In Vivo Transport Activity of Breast Cancer Resistance Protein (BCRP) Using an Intestinal Absorption Model. J Pharm Sci 2015; 104:3039-48. [PMID: 25639366 DOI: 10.1002/jps.24366] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 12/08/2014] [Accepted: 01/05/2015] [Indexed: 12/26/2022]
Abstract
ABCG2 c.421C>A is one of the most frequent polymorphisms in ABCG2, which encodes the breast cancer resistance protein (BCRP). Clinical pharmacogenetic studies have shown that the plasma area under the concentration-time curve (AUC) values after oral administration of BCRP substrate drugs are significantly higher in subjects homozygous for the c.421C>A polymorphism (421AA) than in wild-type subjects (421CC). The aim of this study was to quantitatively estimate the in vivo decrease of BCRP function caused by the c.421C>A polymorphism based on clinical pharmacokinetic data. Assuming that the pharmacokinetic alteration is accounted for by intestinal BCRP, the ratio of the transport activity of the mutated BCRP to that of the wild-type was optimized by comparing calculations from an intestinal absorption model and clinical pharmacokinetic data. In conclusion, the in vivo intestinal BCRP transport activity in 421AA subjects is estimated to be approximately 23% of that in the 421CC subjects.
Collapse
Affiliation(s)
- Yuta Tanaka
- Discovery Research Laboratories, Kyorin Pharmaceutical Company, Ltd, Tochigi, Japan
| | - Yoshiaki Kitamura
- Discovery Research Laboratories, Kyorin Pharmaceutical Company, Ltd, Tochigi, Japan
| | - Kazuya Maeda
- Department of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Yuichi Sugiyama
- Sugiyama Laboratory, RIKEN Innovation Center, RIKEN Research Cluster for Innovation, Yokohama, Japan
| |
Collapse
|
50
|
Ware JA, Urquhart BL, Sugiyama Y, Zamek-Gliszczynski MJ. Breast cancer resistance protein substrate and inhibition evaluation: why, when, and how? Drug Metab Dispos 2014; 42:1979-80. [PMID: 25362071 DOI: 10.1124/dmd.114.060970] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Joseph A Ware
- Clinical Pharmacology, Genentech, South San Francisco, California (J.A.W.); University of Western Ontario, London, Ontario, Canada (B.L.U.); RIKEN Innovation Center, Yokohama, Kanagawa, Japan (Y.S.); and Drug Metabolism and Pharmacokinetics, GlaxoSmithKline, Research Triangle Park, North Carolina (M.J.Z.-G.)
| | - Bradley L Urquhart
- Clinical Pharmacology, Genentech, South San Francisco, California (J.A.W.); University of Western Ontario, London, Ontario, Canada (B.L.U.); RIKEN Innovation Center, Yokohama, Kanagawa, Japan (Y.S.); and Drug Metabolism and Pharmacokinetics, GlaxoSmithKline, Research Triangle Park, North Carolina (M.J.Z.-G.)
| | - Yuichi Sugiyama
- Clinical Pharmacology, Genentech, South San Francisco, California (J.A.W.); University of Western Ontario, London, Ontario, Canada (B.L.U.); RIKEN Innovation Center, Yokohama, Kanagawa, Japan (Y.S.); and Drug Metabolism and Pharmacokinetics, GlaxoSmithKline, Research Triangle Park, North Carolina (M.J.Z.-G.)
| | - Maciej J Zamek-Gliszczynski
- Clinical Pharmacology, Genentech, South San Francisco, California (J.A.W.); University of Western Ontario, London, Ontario, Canada (B.L.U.); RIKEN Innovation Center, Yokohama, Kanagawa, Japan (Y.S.); and Drug Metabolism and Pharmacokinetics, GlaxoSmithKline, Research Triangle Park, North Carolina (M.J.Z.-G.)
| |
Collapse
|