1
|
Warner AK, Iskander L, Allen K, Quatela I, Borrelli H, Sachs BD. The effects of brain serotonin deficiency on the behavioral and neurogenesis-promoting effects of voluntary exercise in tryptophan hydroxylase 2 (R439H) knock-in mice. Neuropharmacology 2024; 258:110082. [PMID: 39009217 DOI: 10.1016/j.neuropharm.2024.110082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/11/2024] [Accepted: 07/12/2024] [Indexed: 07/17/2024]
Abstract
Exercise is known to reduce depression and anxiety symptoms. Although the cellular and molecular mechanisms underlying this effect remain unknown, exercise-induced increases in neurotransmitter release and hippocampal neurogenesis have been hypothesized to play key roles. One neurotransmitter that has been implicated in both antidepressant-like effects and the regulation of hippocampal neurogenesis is serotonin (5-HT). Complete loss of function of the brain 5-HT synthesis enzyme (tryptophan hydroxylase 2, Tph2) has been reported to prevent exercise-induced increases in neurogenesis and to block a subset of antidepressant-like responses to selective serotonin reuptake inhibitors (SSRIs), but whether partial loss of Tph2 function blocks the behavioral and neurogenic effects of exercise has not been established. This study used four tests that are predictive of antidepressant efficacy to determine the impact of 5-HT deficiency on responses to exercise in male and female mice. Our results demonstrate that low 5-HT impairs the behavioral effects of exercise in females in the forced swim and novelty-suppressed feeding tests. However, genetic reductions in 5-HT synthesis did not significantly impact exercise-induced alterations in cellular proliferation or immature neuron production in the hippocampus in either sex. These findings highlight the importance of brain 5-HT in mediating behavioral responses to exercise and suggest that individual differences in brain 5-HT synthesis could influence sensitivity to the mental health benefits of exercise. Furthermore, the observed disconnect between neurogenic and behavioral responses to exercise suggests that increased neurogenesis is unlikely to be the primary driver of the behavioral effects of exercise observed here.
Collapse
Affiliation(s)
- Allison K Warner
- Department of Psychological and Brain Sciences, Villanova University, USA
| | - Lauren Iskander
- Department of Psychological and Brain Sciences, Villanova University, USA
| | - Kristen Allen
- Department of Psychological and Brain Sciences, Villanova University, USA
| | - Isabella Quatela
- Department of Psychological and Brain Sciences, Villanova University, USA
| | - Hannah Borrelli
- Department of Psychological and Brain Sciences, Villanova University, USA
| | - Benjamin D Sachs
- Department of Psychological and Brain Sciences, Villanova University, USA.
| |
Collapse
|
2
|
Walker MT, Bloodworth JC, Kountz TS, McCarty SL, Green JE, Ferrie RP, Campbell JA, Averill SH, Beckman KB, Grammer LC, Eng C, Avila PC, Farber HJ, Rodriguez-Cintron W, Rodriguez-Santana JR, Serebrisky D, Thyne SM, Seibold MA, Burchard EG, Kumar R, Cook-Mills JM. 5-HTP inhibits eosinophilia via intracellular endothelial 5-HTRs; SNPs in 5-HTRs associate with asthmatic lung function. FRONTIERS IN ALLERGY 2024; 5:1385168. [PMID: 38845678 PMCID: PMC11153829 DOI: 10.3389/falgy.2024.1385168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 05/08/2024] [Indexed: 06/09/2024] Open
Abstract
Background Previous research showed that 5-hydroxytryptophan (5HTP), a metabolic precursor of serotonin, reduces allergic lung inflammation by inhibiting eosinophil migration across endothelial monolayers. Objective It is unknown if serotonin receptors are involved in mediating this 5HTP function or if serotonin receptor (HTR) single nucleotide polymorphisms (SNPs) associate with lung function in humans. Methods Serotonin receptor subtypes were assessed by qPCR, western blot, confocal microscopy, pharmacological inhibitors and siRNA knockdown. HTR SNPs were assessed in two cohorts. Results Pharmacological inhibition or siRNA knockdown of the serotonin receptors HTR1A or HTR1B in endothelial cells abrogated the inhibitory effects of 5HTP on eosinophil transendothelial migration. In contrast, eosinophil transendothelial migration was not inhibited by siRNA knockdown of HTR1A or HTR1B in eosinophils. Surprisingly, these HTRs were intracellular in endothelial cells and an extracellular supplementation with serotonin did not inhibit eosinophil transendothelial migration. This is consistent with the inability of serotonin to cross membranes, the lack of selective serotonin reuptake receptors on endothelial cells, and the studies showing minimal impact of selective serotonin reuptake inhibitors on asthma. To extend our HTR studies to humans with asthma, we examined the CHIRAH and GALA cohorts for HTR SNPs that affect HTR function or are associated with behavior disorders. A polygenic index of SNPs in HTRs was associated with lower lung function in asthmatics. Conclusions Serotonin receptors mediate 5HTP inhibition of transendothelial migration and HTR SNPs associate with lower lung function. These results may serve to aid in design of novel interventions for allergic inflammation.
Collapse
Affiliation(s)
- Matthew T. Walker
- Allergy-Immunology Division, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Jeffrey C. Bloodworth
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Timothy S. Kountz
- Allergy-Immunology Division, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Samantha L. McCarty
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Jeremy E. Green
- Allergy-Immunology Division, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Ryan P. Ferrie
- Allergy-Immunology Division, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Jackson A. Campbell
- Allergy-Immunology Division, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Samantha H. Averill
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, United States
| | | | - Leslie C. Grammer
- Allergy-Immunology Division, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Celeste Eng
- Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Pedro C. Avila
- Allergy-Immunology Division, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Harold J. Farber
- Department of Pediatrics, Section of Pulmonology, Baylor College of Medicine, Texas Children’s Hospital, Houston, TX, United States
| | | | | | - Denise Serebrisky
- Pediatric Pulmonary Division, Jacobi Medical Center, Bronx, NY, United States
| | - Shannon M. Thyne
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA, United States
| | - Max A. Seibold
- Center for Genes, Environment, and Health and the Department of Pediatrics, National Jewish Health, Denver, CO, United States
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado, Denver, CO, United States
| | - Esteban G. Burchard
- Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Rajesh Kumar
- Allergy-Immunology Division, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Division of Allergy and Clinical Immunology, Ann and Robert H Lurie Children’s Hospital of Chicago, Chicago, IL, United States
| | - Joan M. Cook-Mills
- Allergy-Immunology Division, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
3
|
Khandia R, Gurjar P, Kamal MA, Greig NH. Relative synonymous codon usage and codon pair analysis of depression associated genes. Sci Rep 2024; 14:3502. [PMID: 38346990 PMCID: PMC10861588 DOI: 10.1038/s41598-024-51909-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 01/11/2024] [Indexed: 02/15/2024] Open
Abstract
Depression negatively impacts mood, behavior, and mental and physical health. It is the third leading cause of suicides worldwide and leads to decreased quality of life. We examined 18 genes available at the genetic testing registry (GTR) from the National Center for Biotechnological Information to investigate molecular patterns present in depression-associated genes. Different genotypes and differential expression of the genes are responsible for ensuing depression. The present study, investigated codon pattern analysis, which might play imperative roles in modulating gene expression of depression-associated genes. Of the 18 genes, seven and two genes tended to up- and down-regulate, respectively, and, for the remaining genes, different genotypes, an outcome of SNPs were responsible alone or in combination with differential expression for different conditions associated with depression. Codon context analysis revealed the abundance of identical GTG-GTG and CTG-CTG pairs, and the rarity of methionine-initiated codon pairs. Information based on codon usage, preferred codons, rare, and codon context might be used in constructing a deliverable synthetic construct to correct the gene expression level of the human body, which is altered in the depressive state. Other molecular signatures also revealed the role of evolutionary forces in shaping codon usage.
Collapse
Affiliation(s)
- Rekha Khandia
- Department of Biochemistry and Genetics, Barkatullah University, Bhopal, 462026, MP, India.
| | - Pankaj Gurjar
- Centre for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamilnadu, India
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, NSW, Australia
| | - Mohammad Amjad Kamal
- Joint Laboratory of Artificial Intelligence in Healthcare, Institutes for Systems Genetics and West China School of Nursing, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
- Enzymoics, Novel Global Community Educational Foundation, 7 Peterlee place, Hebersham, NSW, 2770, Australia
| | - Nigel H Greig
- Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, NIH, Baltimore, MD, 21224, USA.
| |
Collapse
|
4
|
Singh P, Srivastava A, Guin D, Thakran S, Yadav J, Chandna P, Sood M, Chadda RK, Kukreti R. Genetic Landscape of Major Depressive Disorder: Assessment of Potential Diagnostic and Antidepressant Response Markers. Int J Neuropsychopharmacol 2023; 26:692-738. [PMID: 36655406 PMCID: PMC10586057 DOI: 10.1093/ijnp/pyad001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 01/18/2023] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND The clinical heterogeneity in major depressive disorder (MDD), variable treatment response, and conflicting findings limit the ability of genomics toward the discovery of evidence-based diagnosis and treatment regimen. This study attempts to curate all genetic association findings to evaluate potential variants for clinical translation. METHODS We systematically reviewed all candidates and genome-wide association studies for both MDD susceptibility and antidepressant response, independently, using MEDLINE, particularly to identify replicated findings. These variants were evaluated for functional consequences using different in silico tools and further estimated their diagnostic predictability by calculating positive predictive values. RESULTS A total of 217 significantly associated studies comprising 1200 variants across 545 genes and 128 studies including 921 variants across 412 genes were included with MDD susceptibility and antidepressant response, respectively. Although the majority of associations were confirmed by a single study, we identified 31 and 18 replicated variants (in at least 2 studies) for MDD and antidepressant response. Functional annotation of these 31 variants predicted 20% coding variants as deleterious/damaging and 80.6% variants with regulatory effect. Similarly, the response-related 18 variants revealed 25% coding variant as damaging and 88.2% with substantial regulatory potential. Finally, we could calculate the diagnostic predictability of 19 and 5 variants whose positive predictive values ranges from 0.49 to 0.66 for MDD and 0.36 to 0.66 for response. CONCLUSIONS The replicated variants presented in our data are promising for disease diagnosis and improved response outcomes. Although these quantitative assessment measures are solely directive of available observational evidence, robust homogenous validation studies are required to strengthen these variants for molecular diagnostic application.
Collapse
Affiliation(s)
- Priyanka Singh
- Genomics and Molecular Medicine Unit, Council of Scientific and Industrial Research (CSIR) - Institute of Genomics and Integrative Biology (IGIB), New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Ankit Srivastava
- Genomics and Molecular Medicine Unit, Council of Scientific and Industrial Research (CSIR) - Institute of Genomics and Integrative Biology (IGIB), New Delhi, India
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Debleena Guin
- Genomics and Molecular Medicine Unit, Council of Scientific and Industrial Research (CSIR) - Institute of Genomics and Integrative Biology (IGIB), New Delhi, India
- Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Delhi, India
| | - Sarita Thakran
- Genomics and Molecular Medicine Unit, Council of Scientific and Industrial Research (CSIR) - Institute of Genomics and Integrative Biology (IGIB), New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Jyoti Yadav
- Genomics and Molecular Medicine Unit, Council of Scientific and Industrial Research (CSIR) - Institute of Genomics and Integrative Biology (IGIB), New Delhi, India
| | - Puneet Chandna
- Indian Society of Colposcopy and Cervical Pathology (ISCCP), Safdarjung Hospital, New Delhi, India
| | - Mamta Sood
- Department of Psychiatry, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | - Rakesh Kumar Chadda
- Department of Psychiatry, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | - Ritushree Kukreti
- Genomics and Molecular Medicine Unit, Council of Scientific and Industrial Research (CSIR) - Institute of Genomics and Integrative Biology (IGIB), New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
5
|
Orrico-Sanchez A, Guiard BP, Manta S, Callebert J, Launay JM, Louis F, Paccard A, Gruszczynski C, Betancur C, Vialou V, Gautron S. Organic cation transporter 2 contributes to SSRI antidepressant efficacy by controlling tryptophan availability in the brain. Transl Psychiatry 2023; 13:302. [PMID: 37775532 PMCID: PMC10542329 DOI: 10.1038/s41398-023-02596-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 09/15/2023] [Accepted: 09/15/2023] [Indexed: 10/01/2023] Open
Abstract
Selective serotonin reuptake inhibitors (SSRI) are common first-line treatments for major depression. However, a significant number of depressed patients do not respond adequately to these pharmacological treatments. In the present preclinical study, we demonstrate that organic cation transporter 2 (OCT2), an atypical monoamine transporter, contributes to the effects of SSRI by regulating the routing of the essential amino acid tryptophan to the brain. Contrarily to wild-type mice, OCT2-invalidated mice failed to respond to prolonged fluoxetine treatment in a chronic depression model induced by corticosterone exposure recapitulating core symptoms of depression, i.e., anhedonia, social withdrawal, anxiety, and memory impairment. After corticosterone and fluoxetine treatment, the levels of tryptophan and its metabolites serotonin and kynurenine were decreased in the brain of OCT2 mutant mice compared to wild-type mice and reciprocally tryptophan and kynurenine levels were increased in mutants' plasma. OCT2 was detected by immunofluorescence in several structures at the blood-cerebrospinal fluid (CSF) or brain-CSF interface. Tryptophan supplementation during fluoxetine treatment increased brain concentrations of tryptophan and, more discreetly, of 5-HT in wild-type and OCT2 mutant mice. Importantly, tryptophan supplementation improved the sensitivity to fluoxetine treatment of OCT2 mutant mice, impacting chiefly anhedonia and short-term memory. Western blot analysis showed that glycogen synthase kinase-3β (GSK3β) and mammalian/mechanistic target of rapamycin (mTOR) intracellular signaling was impaired in OCT2 mutant mice brain after corticosterone and fluoxetine treatment and, conversely, tryptophan supplementation recruited selectively the mTOR protein complex 2. This study provides the first evidence of the physiological relevance of OCT2-mediated tryptophan transport, and its biological consequences on serotonin homeostasis in the brain and SSRI efficacy.
Collapse
Affiliation(s)
| | - Bruno P Guiard
- Université Paul Sabatier, CNRS, Research Center on Animal Cognition, Toulouse, France
| | - Stella Manta
- Université Paul Sabatier, CNRS, Research Center on Animal Cognition, Toulouse, France
| | - Jacques Callebert
- Sorbonne Paris Cité, Hôpital Lariboisière, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Jean-Marie Launay
- Sorbonne Paris Cité, Hôpital Lariboisière, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Franck Louis
- Sorbonne Université, INSERM, CNRS, Neuroscience Paris Seine, Paris, France
| | - Antoine Paccard
- Sorbonne Université, INSERM, CNRS, Neuroscience Paris Seine, Paris, France
| | | | - Catalina Betancur
- Sorbonne Université, INSERM, CNRS, Neuroscience Paris Seine, Paris, France
| | - Vincent Vialou
- Sorbonne Université, INSERM, CNRS, Neuroscience Paris Seine, Paris, France.
| | - Sophie Gautron
- Sorbonne Université, INSERM, CNRS, Neuroscience Paris Seine, Paris, France.
| |
Collapse
|
6
|
Tan T, Xu Z, Gao C, Shen T, Li L, Chen Z, Chen L, Xu M, Chen B, Liu J, Zhang Z, Yuan Y. Influence and interaction of resting state functional magnetic resonance and tryptophan hydroxylase-2 methylation on short-term antidepressant drug response. BMC Psychiatry 2022; 22:218. [PMID: 35337298 PMCID: PMC8957120 DOI: 10.1186/s12888-022-03860-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 03/11/2022] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Most antidepressants have been developed on the basis of the monoamine deficiency hypothesis of depression, in which neuronal serotonin (5-HT) plays a key role. 5-HT biosynthesis is regulated by the rate-limiting enzyme tryptophan hydroxylase-2 (TPH2). TPH2 methylation is correlated with antidepressant effects. Resting-state functional MRI (rs-fMRI) is applied for detecting abnormal brain functional activity in patients with different antidepressant effects. We will investigate the effect of the interaction between rs-fMRI and TPH2 DNA methylation on the early antidepressant effects. METHODS A total of 300 patients with major depressive disorder (MDD) and 100 healthy controls (HCs) were enrolled, of which 60 patients with MDD were subjected to rs-fMRI. Antidepressant responses was assessed by a 50% reduction in 17-item Hamilton Rating Scale for Depression (HAMD-17) scores at baseline and after two weeks of medication. The RESTPlus software in MATLAB was used to analyze the rs-fMRI data. The amplitude of low-frequency fluctuation (ALFF), regional homogeneity (ReHo), fractional ALFF (fALFF), and functional connectivity (FC) were used, and the above results were used as regions of interest (ROIs) to extract the average value of brain ROIs regions in the RESTPlus software. Generalized linear model analysis was performed to analyze the association between abnormal activity found in rs-fMRI and the effect of TPH2 DNA methylation on antidepressant responses. RESULTS Two hundred ninety-one patients with MDD and 100 HCs were included in the methylation statistical analysis, of which 57 patients were included in the further rs-fMRI analysis (3 patients were excluded due to excessive head movement). 57 patients were divided into the responder group (n = 36) and the non-responder group (n = 21). Rs-fMRI results showed that the ALFF of the left inferior frontal gyrus (IFG) was significantly different between the two groups. The results showed that TPH2-1-43 methylation interacted with ALFF of left IFG to affect the antidepressant responses (p = 0.041, false discovery rate (FDR) corrected p = 0.149). CONCLUSIONS Our study demonstrated that the differences in the ALFF of left IFG between the two groups and its association with TPH2 methylation affect short-term antidepressant drug responses.
Collapse
Affiliation(s)
- Tingting Tan
- grid.452290.80000 0004 1760 6316Department of Psychosomatics and Psychiatry, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009 People’s Republic of China ,grid.263826.b0000 0004 1761 0489Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, School of Medicine, Southeast University, Nanjing, 210009 People’s Republic of China
| | - Zhi Xu
- Department of Psychosomatics and Psychiatry, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009, People's Republic of China. .,Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, School of Medicine, Southeast University, Nanjing, 210009, People's Republic of China.
| | - Chenjie Gao
- grid.452290.80000 0004 1760 6316Department of Psychosomatics and Psychiatry, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009 People’s Republic of China ,grid.263826.b0000 0004 1761 0489Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, School of Medicine, Southeast University, Nanjing, 210009 People’s Republic of China
| | - Tian Shen
- grid.452290.80000 0004 1760 6316Department of Psychosomatics and Psychiatry, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009 People’s Republic of China ,grid.89957.3a0000 0000 9255 8984Department of Psychiatric Rehabilitation, Wuxi Mental Health Center, Nanjing Medical University, WuXi, 214123 People’s Republic of China
| | - Lei Li
- grid.263826.b0000 0004 1761 0489School of Medicine, Southeast University, Nanjing, 210009 People’s Republic of China
| | - Zimu Chen
- grid.452290.80000 0004 1760 6316Department of Psychosomatics and Psychiatry, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009 People’s Republic of China ,grid.263826.b0000 0004 1761 0489Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, School of Medicine, Southeast University, Nanjing, 210009 People’s Republic of China
| | - Lei Chen
- grid.452290.80000 0004 1760 6316Department of Psychosomatics and Psychiatry, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009 People’s Republic of China ,Department of Psychology and Psychiatry, School of Medicine, Jinling Hospital, Nanjing University, Nanjing, 210018 People’s Republic of China
| | - Min Xu
- grid.263826.b0000 0004 1761 0489Department of Anatomy, Medical School, Southeast University, Nanjing, 210009 People’s Republic of China
| | - Bingwei Chen
- grid.263826.b0000 0004 1761 0489Department of Epidemiology and Biostatistics, School of Public Health, Southeast University, Nanjing, 210009 People’s Republic of China
| | - Jiacheng Liu
- grid.452290.80000 0004 1760 6316Department of Nuclear Medicine, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009 People’s Republic of China
| | - Zhijun Zhang
- grid.452290.80000 0004 1760 6316Department of Neurology, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009 People’s Republic of China
| | - Yonggui Yuan
- grid.452290.80000 0004 1760 6316Department of Psychosomatics and Psychiatry, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009 People’s Republic of China ,grid.263826.b0000 0004 1761 0489Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, School of Medicine, Southeast University, Nanjing, 210009 People’s Republic of China
| |
Collapse
|
7
|
Fan R, Hua T, Shen T, Jiao Z, Yue Q, Chen B, Xu Z. Identifying patients with major depressive disorder based on tryptophan hydroxylase-2 methylation using machine learning algorithms. Psychiatry Res 2021; 306:114258. [PMID: 34749226 DOI: 10.1016/j.psychres.2021.114258] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 10/15/2021] [Accepted: 10/29/2021] [Indexed: 12/28/2022]
Abstract
OBJECTIVES This study aimed to identify patients with major depressive disorder (MDD) by developing different machine learning (ML) models based on tryptophan hydroxylase-2 (TPH2) methylation and environmental stress. METHODS The data were collected from 291 patients with MDD and 100 healthy control participants: individual basic information, the Negative Life Events Scale (NLES) scores, the Childhood Trauma Questionnaire (CTQ) scores and the methylation level at 38 CpG sites in TPH2. Information gain was used to select critical input variables. Support vector machine (SVM), back propagation neural network (BPNN) and random forest (RF) algorithms were used to build recognition models, which were evaluated by the 10-fold cross-validation. SHapley Additive exPlanations (SHAP) method was used to evaluate features importance. RESULTS Gender, NLES scores, CTQ scores and 13 CpG sites in TPH2 gene were considered as predictors in the models. Three ML algorithms showed satisfactory performance in predicting MDD and the BPNN model indicated best prediction effects. CONCLUSION ML models with TPH2 methylation and environmental stress were identified to possess great performance in identifying patients with MDD, which provided precious experience for artificial intelligence to assist traditional diagnostic methods in the future.
Collapse
Affiliation(s)
- Ru Fan
- Department of Epidemiology and Biostatistics, School of Public health, Southeast University, Nanjing 210009, China
| | - Tiantian Hua
- Department of Epidemiology and Biostatistics, School of Public health, Southeast University, Nanjing 210009, China
| | - Tian Shen
- Department of Psychosomatics and Psychiatry, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Zhigang Jiao
- Department of Epidemiology and Biostatistics, School of Public health, Southeast University, Nanjing 210009, China
| | - Qingqing Yue
- Department of Epidemiology and Biostatistics, School of Public health, Southeast University, Nanjing 210009, China
| | - Bingwei Chen
- Department of Epidemiology and Biostatistics, School of Public health, Southeast University, Nanjing 210009, China.
| | - Zhi Xu
- Department of Psychosomatics and Psychiatry, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China.
| |
Collapse
|
8
|
Nedic Erjavec G, Sagud M, Nikolac Perkovic M, Svob Strac D, Konjevod M, Tudor L, Uzun S, Pivac N. Depression: Biological markers and treatment. Prog Neuropsychopharmacol Biol Psychiatry 2021; 105:110139. [PMID: 33068682 DOI: 10.1016/j.pnpbp.2020.110139] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 10/06/2020] [Accepted: 10/10/2020] [Indexed: 12/14/2022]
Abstract
Nowadays depression is considered as a systemic illness with different biological mechanisms involved in its etiology, including inflammatory response, hypothalamic-pituitary-adrenal (HPA) axis dysregulation and neurotransmitter and neurotrophic systems imbalance. Novel "omics" approaches, such as metabolomics and glycomics provide information about altered metabolic pathways and metabolites, as well as disturbances in glycosylation processes affected by or causing the development of depression. The clinical diagnosis of depression continues to be established based on the presence of the specific symptoms, but due to its heterogeneous underlying biological background, that differs according to the disease stage, there is an unmet need for treatment response biomarkers which would facilitate the process of appropriate treatment selection. This paper provides an overview of the role of major stress response system, the HPA axis, and its dysregulation in depression, possible involvement of neurotrophins, especially brain-derived neurotrophic factor, glial cell line-derived neurotrophic factor and insulin-like growth factor-1, in the development of depression. Article discusses how activated inflammation processes and increased cytokine levels, as well as disturbed neurotransmitter systems can contribute to different stages of depression and could specific metabolomic and glycomic species be considered as potential biomarkers of depression. The second part of the paper includes the most recent findings about available medical treatment of depression. The described biological factors impose an optimistic conclusion that they could represent easy obtainable biomarkers potentially predicting more personalized treatment and diagnostic options.
Collapse
Affiliation(s)
- Gordana Nedic Erjavec
- Rudjer Boskovic Institute, Division of Molecular Medicine, Bijenicka cesta 54, 10000 Zagreb, Croatia
| | - Marina Sagud
- The University of Zagreb School of Medicine, Salata 3, 10000 Zagreb, Croatia; University Hospital Center Zagreb, Department of Psychiatry, Kispaticeva 12, 10000 Zagreb, Croatia
| | - Matea Nikolac Perkovic
- Rudjer Boskovic Institute, Division of Molecular Medicine, Bijenicka cesta 54, 10000 Zagreb, Croatia
| | - Dubravka Svob Strac
- Rudjer Boskovic Institute, Division of Molecular Medicine, Bijenicka cesta 54, 10000 Zagreb, Croatia
| | - Marcela Konjevod
- Rudjer Boskovic Institute, Division of Molecular Medicine, Bijenicka cesta 54, 10000 Zagreb, Croatia
| | - Lucija Tudor
- Rudjer Boskovic Institute, Division of Molecular Medicine, Bijenicka cesta 54, 10000 Zagreb, Croatia
| | - Sandra Uzun
- University Hospital Center Zagreb, Department for Anesthesiology, Reanimatology, and Intensive Care, Kispaticeva 12, 10000 Zagreb, Croatia
| | - Nela Pivac
- Rudjer Boskovic Institute, Division of Molecular Medicine, Bijenicka cesta 54, 10000 Zagreb, Croatia.
| |
Collapse
|
9
|
Fortinguerra S, Sorrenti V, Giusti P, Zusso M, Buriani A. Pharmacogenomic Characterization in Bipolar Spectrum Disorders. Pharmaceutics 2019; 12:E13. [PMID: 31877761 PMCID: PMC7022469 DOI: 10.3390/pharmaceutics12010013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 12/14/2019] [Accepted: 12/19/2019] [Indexed: 12/15/2022] Open
Abstract
The holistic approach of personalized medicine, merging clinical and molecular characteristics to tailor the diagnostic and therapeutic path to each individual, is steadily spreading in clinical practice. Psychiatric disorders represent one of the most difficult diagnostic challenges, given their frequent mixed nature and intrinsic variability, as in bipolar disorders and depression. Patients misdiagnosed as depressed are often initially prescribed serotonergic antidepressants, a treatment that can exacerbate a previously unrecognized bipolar condition. Thanks to the use of the patient's genomic profile, it is possible to recognize such risk and at the same time characterize specific genetic assets specifically associated with bipolar spectrum disorder, as well as with the individual response to the various therapeutic options. This provides the basis for molecular diagnosis and the definition of pharmacogenomic profiles, thus guiding therapeutic choices and allowing a safer and more effective use of psychotropic drugs. Here, we report the pharmacogenomics state of the art in bipolar disorders and suggest an algorithm for therapeutic regimen choice.
Collapse
Affiliation(s)
- Stefano Fortinguerra
- Maria Paola Belloni Center for Personalized Medicine, Data Medica Group (Synlab Limited), 35131 Padova, Italy; (S.F.); (V.S.)
- Department of Pharmaceutical & Pharmacological Sciences, University of Padova, 35131 Padova, Italy; (P.G.); (M.Z.)
| | - Vincenzo Sorrenti
- Maria Paola Belloni Center for Personalized Medicine, Data Medica Group (Synlab Limited), 35131 Padova, Italy; (S.F.); (V.S.)
- Department of Pharmaceutical & Pharmacological Sciences, University of Padova, 35131 Padova, Italy; (P.G.); (M.Z.)
- Bendessere™ Study Center, Solgar Italia Multinutrient S.p.A., 35131 Padova, Italy
| | - Pietro Giusti
- Department of Pharmaceutical & Pharmacological Sciences, University of Padova, 35131 Padova, Italy; (P.G.); (M.Z.)
| | - Morena Zusso
- Department of Pharmaceutical & Pharmacological Sciences, University of Padova, 35131 Padova, Italy; (P.G.); (M.Z.)
| | - Alessandro Buriani
- Maria Paola Belloni Center for Personalized Medicine, Data Medica Group (Synlab Limited), 35131 Padova, Italy; (S.F.); (V.S.)
- Department of Pharmaceutical & Pharmacological Sciences, University of Padova, 35131 Padova, Italy; (P.G.); (M.Z.)
| |
Collapse
|
10
|
TPH2 polymorphisms across the spectrum of psychiatric morbidity: A systematic review and meta-analysis. Neurosci Biobehav Rev 2018; 92:29-42. [PMID: 29775696 DOI: 10.1016/j.neubiorev.2018.05.018] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 05/11/2018] [Accepted: 05/14/2018] [Indexed: 12/19/2022]
Abstract
Tryptophan hydroxylase 2 (TPH2) is the rate-limiting enzyme in brain serotonin synthesis. The TPH2 gene has frequently been investigated in relation to psychiatric morbidity. The aim of the present review is to integrate results from association studies between TPH2 single nucleotide polymorphisms (SNPs) and various psychiatric disorders, which we furthermore quantified with meta-analysis. We reviewed 166 studies investigating 69 TPH2 SNPs in a broad range of psychiatric disorders, including over 30,000 patients. According to our meta-analysis, TPH2 polymorphisms show strongest associations with mood disorders, suicide (attempt) and schizophrenia. Despite small effect sizes, we conclude that TPH2 SNPs in the coding and non-coding areas (rs4570625, rs11178997, rs11178998, rs10748185, rs1843809, rs4290270, rs17110747) are each associated with one or more psychopathological conditions. Our findings highlight the possible common serotonergic mechanisms of the investigated psychiatric disorders. Yet, the functional relevance of most TPH2 polymorphisms is unclear. Characterizing how exactly the different TPH2 variants influence the serotonergic neurotransmission is a next necessary step in understanding the psychiatric disorders where serotonin is implicated.
Collapse
|
11
|
Giau VV, Bagyinszky E, An SSA, Kim S. Clinical genetic strategies for early onset neurodegenerative diseases. Mol Cell Toxicol 2018. [DOI: 10.1007/s13273-018-0015-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
12
|
Ko M, Choi‐Kwon S, Jun S, Kim JH, Cho K, Nah H, Song H, Kim JS. Poststroke emotional disturbances and a tryptophan hydroxylase 2 gene polymorphism. Brain Behav 2018; 8:e00892. [PMID: 29484259 PMCID: PMC5822583 DOI: 10.1002/brb3.892] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 08/22/2017] [Accepted: 11/15/2017] [Indexed: 11/13/2022] Open
Abstract
Objectives Emotional dysfunction is a common finding in stroke patients. Despite reports on serotonergic involvement in the etiology of poststroke emotional dysfunction (PSED), the role of serotonin synthesizing tryptophan hydroxylase 2 (TPH2) genes in the development of PSED remains unclear. Methods Genotyping of TPH2 rs4641528 and rs10879355 was performed from genomic DNA of 383 stroke patients collected previously and stored at -70°C. Potential associations between TPH2 genes and poststroke depression (PSD), poststroke emotional incontinence (PSEI), and poststroke anger proneness (PSAP) were investigated 3 months poststroke. Results Among the 383 patients, 69 (18%) had PSD, 41 (11%) had PSEI, and 93 (24%) had PSAP. The TPH2 rs4641528 genotype frequencies differed significantly between patients with and without either PSD or PSEI, although no significant differences were found between the patients with and without PSAP. In multiple logistic regression analysis, PSD was related to the National Institutes of Health Stroke Scale (NIHSS) score at admission (95% confidence interval [CI]: 1.047-1.230, p < .01), modified Rankin scale score at 3 months (95% CI: 0.135-0.848, p < .05), and TPH2 rs4641528 C allele (95% CI: 1.039-5.631, p < .05), whereas PSEI was associated only with the NIHSS score at admission (95% CI: 1.053-1.259, p < .01) and the TPH2 rs4641528 C allele (95% CI: 1.029-11.678, p < .05). Conclusions Our findings suggest that the TPH2 rs4641528 C allele may play a role in the pathogenesis of PSD and PSEI but not PSAP in Korean stroke patients.
Collapse
Affiliation(s)
- Mihye Ko
- College of NursingThe Research Institute of Nursing ScienceSeoul National UniversitySeoulSouth Korea
| | - Smi Choi‐Kwon
- College of NursingThe Research Institute of Nursing ScienceSeoul National UniversitySeoulSouth Korea
| | - Sang‐Eun Jun
- College of NursingKeimyung UniversityDaeguSouth Korea
| | - Ju Han Kim
- College of MedicineSeoul National UniversitySeoulSouth Korea
| | - Kyung‐Hee Cho
- Department of NeurologyKorea UniversitySeoulSouth Korea
| | | | - Hasup Song
- University of UlsanAsan Medical CenterSeoulSouth Korea
| | - Jong S. Kim
- University of UlsanAsan Medical CenterSeoulSouth Korea
| |
Collapse
|
13
|
Chen Y, Xu H, Zhu M, Liu K, Lin B, Luo R, Chen C, Li M. Stress inhibits tryptophan hydroxylase expression in a rat model of depression. Oncotarget 2017; 8:63247-63257. [PMID: 28968985 PMCID: PMC5609917 DOI: 10.18632/oncotarget.18780] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 05/21/2017] [Indexed: 12/30/2022] Open
Abstract
Serotonin (5-hydroxytryptamine, 5-HT) dysfunction is associated with the pathophysiology of depression. Tryptophan hydroxylase (TPH), the rate-limiting enzyme in 5-HT biosynthesis, is believed to have essential role in many mental disorders, including depression. In the present study, we generated a rat model of depression by exposing the animals to stress, and the rats were then treated with paroxetine. The results indicated that the concentration of 5-HT in the brain and liver tissues were significantly lower in the rat model of depression than in healthy or treated rats. Immunohistochemical analyses of TPH1/2 showed less TPH1 and TPH2 expression, specifically TPH2, in the brain, liver and kidney of the depressive rats than in the healthy rats; In addition, the two TPH isoforms, TPH1 and TPH2, had different spatial distributions,the mRNAs of the TPH1/2 genes were significantly decreased and TPH1/2 were highly methylated in the depressive model rat, but treatment with paroxetine ameliorated the expression and methylation of TPH1/2. All together, stress was able to inhibit expression of TPH1/2 in brain tissue and decrease concentration of 5-HT, the mechanism maybe involve in increasing the methylation of TPH2 genes promoter; Paroxetine has a role in confronting the effect of stress in depressive rat model.
Collapse
Affiliation(s)
- Yi Chen
- Key Laboratory of Molecular Biology, Hainan Medical College, Haikou 571199, Hainan Province, P. R. China
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical College, Haikou 571199, Hainan Province, P. R. China
| | - Haixia Xu
- Key Laboratory of Molecular Biology, Hainan Medical College, Haikou 571199, Hainan Province, P. R. China
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical College, Haikou 571199, Hainan Province, P. R. China
| | - Mingyue Zhu
- Key Laboratory of Molecular Biology, Hainan Medical College, Haikou 571199, Hainan Province, P. R. China
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical College, Haikou 571199, Hainan Province, P. R. China
| | - Kun Liu
- Key Laboratory of Molecular Biology, Hainan Medical College, Haikou 571199, Hainan Province, P. R. China
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical College, Haikou 571199, Hainan Province, P. R. China
| | - Bo Lin
- Key Laboratory of Molecular Biology, Hainan Medical College, Haikou 571199, Hainan Province, P. R. China
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical College, Haikou 571199, Hainan Province, P. R. China
| | - Ruxian Luo
- Department of Psychiatry, Hainan Provincial Anning Hospital, Haikou 571199, Hainan Province, P. R. China
| | - Chuanbai Chen
- Department of Psychiatry, Hainan Provincial Anning Hospital, Haikou 571199, Hainan Province, P. R. China
| | - Mengsen Li
- Key Laboratory of Molecular Biology, Hainan Medical College, Haikou 571199, Hainan Province, P. R. China
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical College, Haikou 571199, Hainan Province, P. R. China
| |
Collapse
|
14
|
Xu Z, Reynolds GP, Yuan Y, Shi Y, Pu M, Zhang Z. TPH-2 Polymorphisms Interact with Early Life Stress to Influence Response to Treatment with Antidepressant Drugs. Int J Neuropsychopharmacol 2016; 19:pyw070. [PMID: 27521242 PMCID: PMC5137282 DOI: 10.1093/ijnp/pyw070] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 08/04/2016] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Variation in genes implicated in monoamine neurotransmission may interact with environmental factors to influence antidepressant response. We aimed to determine how a range of single nucleotide polymorphisms in monoaminergic genes influence this response to treatment and how they interact with childhood trauma and recent life stress in a Chinese sample. An initial study of monoaminergic coding region single nucleotide polymorphisms identified significant associations of TPH2 and HTR1B single nucleotide polymorphisms with treatment response that showed interactions with childhood and recent life stress, respectively (Xu et al., 2012). METHODS A total of 47 further single nucleotide polymorphisms in 17 candidate monoaminergic genes were genotyped in 281 Chinese Han patients with major depressive disorder. Response to 6 weeks' antidepressant treatment was determined by change in the 17-item Hamilton Depression Rating Scale score, and previous stressful events were evaluated by the Life Events Scale and Childhood Trauma Questionnaire-Short Form. RESULTS Three TPH2 single nucleotide polymorphisms (rs11178998, rs7963717, and rs2171363) were significantly associated with antidepressant response in this Chinese sample, as was a haplotype in TPH2 (rs2171363 and rs1487278). One of these, rs2171363, showed a significant interaction with childhood adversity in its association with antidepressant response. CONCLUSIONS These findings provide further evidence that variation in TPH2 is associated with antidepressant response and may also interact with childhood trauma to influence outcome of antidepressant treatment.
Collapse
Affiliation(s)
- Zhi Xu
- Department of Psychosomatics and Psychiatry, ZhongDa Hospital, School of Medicine, Southeast University, Nanjing 210009, PR China (Drs Xu and Yuan); Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, United Kingdom (Dr Reynolds); Department of Neuropsychiatry, Nanjing First Hospital Affiliated to Nanjing Medical University, Nanjing 210000, PR China (Dr Shi); Department of Neurology, Wuxi first people's Hospital, Wuxi 214000, PR China (Dr Pu); Department of Neurology, ZhongDa Hospital, School of Medicine, Southeast University, Nanjing 210009, PR China (Dr Zhang).
| | | | | | | | | | | |
Collapse
|
15
|
Gururajan A, Clarke G, Dinan TG, Cryan JF. Molecular biomarkers of depression. Neurosci Biobehav Rev 2016; 64:101-33. [DOI: 10.1016/j.neubiorev.2016.02.011] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 01/11/2016] [Accepted: 02/12/2016] [Indexed: 12/22/2022]
|
16
|
Genetic variation in the tryptophan hydroxylase 2 gene moderates depressive symptom trajectories and remission over 8 weeks of escitalopram treatment. Int Clin Psychopharmacol 2016; 31:127-33. [PMID: 26745768 DOI: 10.1097/yic.0000000000000115] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The serotonin system plays an important role in the pathogenesis of major depressive disorder (MDD) and genetic variations in serotonin-related genes affect the efficacy of antidepressants. The aim of this study was to investigate the relationship between genotypic variation in six candidate serotonergic genes (ADCY9, HTR1B, GNB3, HTR2A, TPH2, SLC6A4) and depressive and anxiety symptom severity trajectories as well as remission following escitalopram treatment. A total of 166 Chinese patients with MDD were treated with escitalopram (open-label) for 8 weeks. TPH2 rs4570625 GG carriers were more likely to achieve depressive and anxiety symptom remission compared with T-allele carriers. At the trend level (P(corrected)=0.05), depressive symptom severity trajectories were moderated by TPH2 rs4570625. Patients with the GT or the GG genotype showed more favorable depressive symptom severity trajectories compared with TT genotype carriers. Polymorphisms in ADCY9, HTR1B, and HTR2A were nominally associated with symptom remission, but did not withstand correction for multiple comparisons. The HTTLPR polymorphism was not included in our final analysis because of a high percentage of missing data. These results suggested that genotypic variation in TPH2 may moderate the therapeutic response to esciatlopram among Chinese patients with MDD.
Collapse
|
17
|
Helton SG, Lohoff FW. Serotonin pathway polymorphisms and the treatment of major depressive disorder and anxiety disorders. Pharmacogenomics 2016; 16:541-53. [PMID: 25916524 DOI: 10.2217/pgs.15.15] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
While antidepressants are widely used to treat major depressive disorder and anxiety disorders, only half of the patients will respond to antidepressant treatment and only a third of patients will experience a remission of symptoms. Identification of genetic biomarkers that predict antidepressant treatment response could thus greatly improve current clinical practice by providing guidance on which drug to use for which patient. Most antidepressant drugs for the treatment of depression and anxiety disorders have effects on the serotonergic neurotransmitter system; thus, genetic polymorphisms in the genes involved in this pathway represent logical candidates for investigation. This article reviews recent findings on the pharmacogenetics of antidepressant drugs with a focus on serotonergic pathway polymorphisms and discusses future clinical applications.
Collapse
Affiliation(s)
- Sarah G Helton
- Section on Clinical Genomics & Experimental Therapeutics (CGET), Laboratory of Clinical & Translational Studies (LCTS), National Institute on Alcohol Abuse & Alcoholism (NIAAA), NIH, Bethesda, MD 20892-1540, USA
| | | |
Collapse
|
18
|
Serotonin gene polymorphisms and lifetime mood disorders in predicting interferon-induced depression in chronic hepatitis C. J Affect Disord 2015; 183:90-7. [PMID: 26001668 DOI: 10.1016/j.jad.2015.04.056] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 04/29/2015] [Accepted: 04/30/2015] [Indexed: 01/19/2023]
Abstract
BACKGROUND IFN-induced depression is a suitable model for investigating vulnerability to depression. We aimed at investigating the role of two vulnerability factors, lifetime mood disorder (LMD) and 5-HT-related gene polymorphisms in treated patients with infection by Hepatitis C Virus (HCV). METHODS Depressive symptoms of 130 consecutive HCV patients with no current psychopathology were measured during treatment with interferon and ribavirin. At baseline, LMD and 3 genotypes (5-HTTLPR, HTR1A, and TPH2) were also assessed. RESULTS Subgroups of 43 patients with LMD, 96 with HTR1A-G allele, and 12 with both LMD and HTR1A-G homozigosity scored significantly higher to depression compared to the remaining patients during antiviral therapy. At the multiple regression analysis, LMD and HTR1A-G, whether separately or combined together, explained a similar amount of 10-22% of depression score variance, after controlling for the associated variables (age and gender). LIMITATIONS HCV patients referred to a tertiary care center are not representative of all patients with chronic hepatitis C. Mediating factors, including proinflammatory cytokines and other potentially relevant gene polymorphisms, could not be evaluated. Patients were not stratified by degree of liver inflammation. LMD diagnoses were not cross-checked with medical records and IFN-induced depression was measured with a self-report scale only. CONCLUSIONS History of mood disorders and HTR1A G allele variation, the C-1019G polymorphism of the transcriptional control region of the 5-HT1A receptor, independently predicted the incidence of IFN-induced depression in HCV patients, whether separately or jointly considered and although not reciprocally associated.
Collapse
|
19
|
Matsumoto Y, Fabbri C, Pellegrini S, Porcelli S, Politi P, Bellino S, Iofrida C, Mariotti V, Melissari E, Menchetti M, Martinelli V, Cappucciati M, Bozzatello P, Brignolo E, Brambilla P, Balestrieri M, Serretti A. Serotonin transporter gene: a new polymorphism may affect response to antidepressant treatments in major depressive disorder. Mol Diagn Ther 2015; 18:567-77. [PMID: 24958631 DOI: 10.1007/s40291-014-0110-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
BACKGROUND AND OBJECTIVES Several gene variants have been related to major depressive disorder (MDD) treatment outcomes; however, few studies have investigated a possible different effect on pharmacotherapy and brief psychotherapy response. METHODS A total of 137 MDD patients were randomized to either interpersonal counseling (IPC; n = 40) or antidepressant pharmacological treatment (n = 97). Outcomes were remission, response, and symptom improvement at week 8. Five genetic variants were investigated (5HTR2A rs6314, BDNF rs6265, SLC6A4 rs8076005, CREB1 rs2253206, and TPH2 rs11179023) as possible modulators of outcomes. RESULTS The LC6A4 rs8076005 AA genotype and A allele were associated with response rate in the antidepressant group (p = 0.015 and 0.005, respectively) and in the whole sample (p = 0.03 and 0.02, respectively). In the IPC group a non-significant trend in the same direction was observed. The TPH2 rs11179023 A allele showed a marginal association with symptom improvement in the IPC group only. Other gene variants did not impact on outcomes in any treatment group. CONCLUSION Our study suggests that rs8076005 in the SLC6A4 gene may be a modulator of antidepressant response, especially when pharmacological treatment is used.
Collapse
Affiliation(s)
- Yoshihiko Matsumoto
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Viale Carlo Pepoli 5, 40123, Bologna, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Brain 5-HT deficiency increases stress vulnerability and impairs antidepressant responses following psychosocial stress. Proc Natl Acad Sci U S A 2015; 112:2557-62. [PMID: 25675490 DOI: 10.1073/pnas.1416866112] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Brain serotonin (5-HT) deficiency and exposure to psychosocial stress have both been implicated in the etiology of depression and anxiety disorders, but whether 5-HT deficiency influences susceptibility to depression- and anxiety-like phenotypes induced by psychosocial stress has not been formally established. Most clinically effective antidepressants increase the extracellular levels of 5-HT, and thus it has been hypothesized that antidepressant responses result from the reversal of endogenous 5-HT deficiency, but this hypothesis remains highly controversial. Here we evaluated the impact of brain 5-HT deficiency on stress susceptibility and antidepressant-like responses using tryptophan hydroxylase 2 knockin (Tph2KI) mice, which display 60-80% reductions in brain 5-HT. Our results demonstrate that 5-HT deficiency leads to increased susceptibility to social defeat stress (SDS), a model of psychosocial stress, and prevents the fluoxetine (FLX)-induced reversal of SDS-induced social avoidance, suggesting that 5-HT deficiency may impair antidepressant responses. In light of recent clinical and preclinical studies highlighting the potential of inhibiting the lateral habenula (LHb) to achieve antidepressant and antidepressant-like responses, we also examined whether LHb inhibition could achieve antidepressant-like responses in FLX-insensitive Tph2KI mice subjected to SDS. Our data reveal that using designer receptors exclusively activated by designer drugs (DREADDs) to inhibit LHb activity leads to reduced SDS-induced social avoidance behavior in both WT and Tph2KI mice. This observation provides additional preclinical evidence that inhibiting the LHb might represent a promising alternative therapeutic approach under conditions in which selective 5-HT reuptake inhibitors are ineffective.
Collapse
|
21
|
Abstract
Major depressive disorder (MDD) is characterized by mood, vegetative, cognitive, and even psychotic symptoms and signs that can cause substantial impairments in quality of life and functioning. Biomarkers are measurable indicators that could help diagnosing MDD or predicting treatment response. In this chapter, lipid profiles, immune/inflammation, and neurotrophic factor pathways that have long been implicated in the pathogenesis of MDD are discussed. Then, pharmacogenetics and epigenetics of serotonin transport and its metabolism pathway, brain-derived neurotrophic factor, and abnormality of hypothalamo-pituitary-adrenocortical axis also revealed new biomarkers. Lastly, new techniques, such as proteomics and metabolomics, which allow researchers to approach the studying of MDD with new directions and make new discoveries are addressed. In the future, more data are needed regarding pathophysiology of MDD, including protein levels, single nucleotide polymorphism, epigenetic regulation, and clinical data in order to better identify reliable and consistent biomarkers for diagnosis, treatment choice, and outcome prediction.
Collapse
Affiliation(s)
- Tiao-Lai Huang
- Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.
| | - Chin-Chuen Lin
- Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| |
Collapse
|
22
|
Angoa-Pérez M, Kane MJ, Briggs DI, Herrera-Mundo N, Sykes CE, Francescutti DM, Kuhn DM. Mice genetically depleted of brain serotonin do not display a depression-like behavioral phenotype. ACS Chem Neurosci 2014; 5:908-19. [PMID: 25089765 DOI: 10.1021/cn500096g] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Reductions in function within the serotonin (5HT) neuronal system have long been proposed as etiological factors in depression. Selective serotonin reuptake inhibitors (SSRIs) are the most common treatment for depression, and their therapeutic effect is generally attributed to their ability to increase the synaptic levels of 5HT. Tryptophan hydroxylase 2 (TPH2) is the initial and rate-limiting enzyme in the biosynthetic pathway of 5HT in the CNS, and losses in its catalytic activity lead to reductions in 5HT production and release. The time differential between the onset of 5HT reuptake inhibition by SSRIs (minutes) and onset of their antidepressant efficacy (weeks to months), when considered with their overall poor therapeutic effectiveness, has cast some doubt on the role of 5HT in depression. Mice lacking the gene for TPH2 are genetically depleted of brain 5HT and were tested for a depression-like behavioral phenotype using a battery of valid tests for affective-like disorders in animals. The behavior of TPH2(-/-) mice on the sucrose preference test, tail suspension test, and forced swim test and their responses in the unpredictable chronic mild stress and learned helplessness paradigms was the same as wild-type controls. While TPH2(-/-) mice as a group were not responsive to SSRIs, a subset responded to treatment with SSRIs in the same manner as wild-type controls with significant reductions in immobility time on the tail suspension test, indicative of antidepressant drug effects. The behavioral phenotype of the TPH2(-/-) mouse questions the role of 5HT in depression. Furthermore, the TPH2(-/-) mouse may serve as a useful model in the search for new medications that have therapeutic targets for depression that are outside of the 5HT neuronal system.
Collapse
Affiliation(s)
- Mariana Angoa-Pérez
- Research & Development Service, John D. Dingell VA Medical Center, Detroit, Michigan 48201, United States
- Department of Psychiatry & Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, Michigan 48201, United States
| | - Michael J. Kane
- Research & Development Service, John D. Dingell VA Medical Center, Detroit, Michigan 48201, United States
- Department of Psychiatry & Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, Michigan 48201, United States
| | - Denise I. Briggs
- Research & Development Service, John D. Dingell VA Medical Center, Detroit, Michigan 48201, United States
- Department of Psychiatry & Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, Michigan 48201, United States
| | - Nieves Herrera-Mundo
- Research & Development Service, John D. Dingell VA Medical Center, Detroit, Michigan 48201, United States
- Department of Psychiatry & Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, Michigan 48201, United States
| | - Catherine E. Sykes
- Research & Development Service, John D. Dingell VA Medical Center, Detroit, Michigan 48201, United States
- Department of Psychiatry & Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, Michigan 48201, United States
| | - Dina M. Francescutti
- Research & Development Service, John D. Dingell VA Medical Center, Detroit, Michigan 48201, United States
- Department of Psychiatry & Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, Michigan 48201, United States
| | - Donald M. Kuhn
- Research & Development Service, John D. Dingell VA Medical Center, Detroit, Michigan 48201, United States
- Department of Psychiatry & Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, Michigan 48201, United States
| |
Collapse
|
23
|
Lim SW, Won HH, Kim H, Myung W, Kim S, Kim KK, Carroll BJ, Kim JW, Kim DK. Genetic prediction of antidepressant drug response and nonresponse in Korean patients. PLoS One 2014; 9:e107098. [PMID: 25226239 PMCID: PMC4166419 DOI: 10.1371/journal.pone.0107098] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Accepted: 08/12/2014] [Indexed: 11/22/2022] Open
Abstract
Genetic polymorphism contributes to variation in response to drug treatment of depression. We conducted three independent 6-week treatment studies in outpatients with major depressive disorder (MDD) to develop a pharmacogenomic model predicting response and nonresponse. We screened candidate genomic markers for association with response to selective serotonin reuptake inhibitors (SSRIs). No patients had received any antidepressant drug treatment in the current episode of depression. Outcome evaluation was blinded to drug and genotype data. The prediction model derived from a development sample of 239 completer cases treated with SSRIs comprised haplotypes and polymorphisms related to serotonin synthesis, serotonin transport, glutamate receptors, and GABA synthesis. The model was evaluated prospectively for prediction of outcome in a validation sample of 176 new SSRI-treated completer cases. The model gave a prediction in 60% of these cases. Predictive values were 85% for predicted responders and 86% for predicted nonresponders, compared to prior probabilities of 66% for observed response and 34% for observed nonresponse in those cases (both P<0.001). Convergent cross-validation was obtained through failure of the model to predict outcomes in a third independent sample of 189 completer cases who received non-SSRI antidepressants. We suggest proof of principle for genetic guidance to use or avoid SSRIs in a majority of Korean depressed patients.
Collapse
Affiliation(s)
- Shinn-Won Lim
- Center for Clinical Research, Samsung Biomedical Research Institute, Seoul, Korea
| | - Hong-Hee Won
- Center for Clinical Research, Samsung Biomedical Research Institute, Seoul, Korea
| | - Hyeran Kim
- Department of Psychiatry, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Woojae Myung
- Department of Psychiatry, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Seonwoo Kim
- Biostatistics Unit, Samsung Biomedical Research Institute, Seoul, Korea
| | - Ka-Kyung Kim
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Bernard J. Carroll
- Pacific Behavioral Research Foundation, Carmel, California, United States of America
| | - Jong-Won Kim
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
- * E-mail: (DKK); (J-WK)
| | - Doh Kwan Kim
- Department of Psychiatry, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
- * E-mail: (DKK); (J-WK)
| |
Collapse
|
24
|
O'Leary OF, O'Brien FE, O'Connor RM, Cryan JF. Drugs, genes and the blues: Pharmacogenetics of the antidepressant response from mouse to man. Pharmacol Biochem Behav 2014; 123:55-76. [PMID: 24161683 DOI: 10.1016/j.pbb.2013.10.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 10/04/2013] [Accepted: 10/16/2013] [Indexed: 12/11/2022]
|
25
|
Fabbri C, Minarini A, Niitsu T, Serretti A. Understanding the pharmacogenetics of selective serotonin reuptake inhibitors. Expert Opin Drug Metab Toxicol 2014; 10:1093-118. [PMID: 24930681 DOI: 10.1517/17425255.2014.928693] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
INTRODUCTION The genetic background of antidepressant response represents a unique opportunity to identify biological markers of treatment outcome. Encouraging results alternating with inconsistent findings made antidepressant pharmacogenetics a stimulating but often discouraging field that requires careful discussion about cumulative evidence and methodological issues. AREAS COVERED The present review discusses both known and less replicated genes that have been implicated in selective serotonin reuptake inhibitors (SSRIs) efficacy and side effects. Candidate genes studies and genome-wide association studies (GWAS) were collected through MEDLINE database search (articles published till January 2014). Further, GWAS signals localized in promising genetic regions according to candidate gene studies are reported in order to assess the general comparability of results obtained through these two types of pharmacogenetic studies. Finally, a pathway enrichment approach is applied to the top genes (those harboring SNPs with p < 0.0001) outlined by previous GWAS in order to identify possible molecular mechanisms involved in SSRI effect. EXPERT OPINION In order to improve the understanding of SSRI pharmacogenetics, the present review discusses the proposal of moving from the analysis of individual polymorphisms to genes and molecular pathways, and from the separation across different methodological approaches to their combination. Efforts in this direction are justified by the recent evidence of a favorable cost-utility of gene-guided antidepressant treatment.
Collapse
Affiliation(s)
- Chiara Fabbri
- University of Bologna, Institute of Psychiatry, Department of Biomedical and NeuroMotor Sciences , Viale Carlo Pepoli 5, 40123 Bologna , Italy +39 051 6584233 ; +39 051 521030 ;
| | | | | | | |
Collapse
|
26
|
Breitenstein B, Scheuer S, Holsboer F. Are there meaningful biomarkers of treatment response for depression? Drug Discov Today 2014; 19:539-61. [PMID: 24561326 DOI: 10.1016/j.drudis.2014.02.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 01/29/2014] [Accepted: 02/11/2014] [Indexed: 12/18/2022]
Abstract
During the past decades, the prevalence of affective disorders has been on the rise globally, with only one out of three patients achieving remission in acute treatment with antidepressants. The identification of physiological markers that predict treatment course proves useful in increasing therapeutic success. On the basis of well-documented, recent findings in depression research, we highlight and discuss the most promising biomarkers for antidepressant therapy response. These include genetic variants and gene expression profiles, proteomic and metabolomic markers, neuroendocrine function tests, electrophysiology and imaging techniques. Ultimately, this review proposes an integrative use of biomarkers for antidepressant treatment outcome.
Collapse
Affiliation(s)
- Barbara Breitenstein
- HolsboerMaschmeyerNeuroChemie, Munich, Germany; Max Planck Institute of Psychiatry, Munich, Germany
| | | | - Florian Holsboer
- HolsboerMaschmeyerNeuroChemie, Munich, Germany; Max Planck Institute of Psychiatry, Munich, Germany.
| |
Collapse
|
27
|
Keers R, Aitchison KJ. Pharmacogenetics of antidepressant response. Expert Rev Neurother 2014; 11:101-25. [DOI: 10.1586/ern.10.186] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
28
|
Sachs BD, Salahi AA, Caron MG. Congenital brain serotonin deficiency leads to reduced ethanol sensitivity and increased ethanol consumption in mice. Neuropharmacology 2013; 77:177-84. [PMID: 24067926 DOI: 10.1016/j.neuropharm.2013.09.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Revised: 08/07/2013] [Accepted: 09/09/2013] [Indexed: 02/01/2023]
Abstract
Serotonergic dysfunction has been hypothesized to play an important role in the pathophysiology of alcoholism. However, whether congenital serotonin (5-HT) deficiency leads to increased alcohol consumption or affects ethanol-related behaviors has not been established. Here, we use a transgenic mouse line that expresses a hypofunctional variant of the 5-HT synthesis enzyme, tryptophan hydroxylase 2, to examine the impact of 5-HT deficiency on responses to alcohol. We demonstrate that these 5-HT-deficient transgenic animals (Tph2KI mice) recover their righting reflex more rapidly than wild-type controls following a high dose of ethanol and exhibit blunted locomotor retardation in response to repeated ethanol administration. In addition, compared to WT controls, 5-HT-deficient animals consume significantly more ethanol and exhibit increased preference for ethanol in two-bottle choice tests. Our data also suggest that 5-HT plays a critical role in mediating the effects of ethanol on Akt/GSK3β signaling in the nucleus accumbens. Overall, our results corroborate previous theories regarding the importance of brain 5-HT levels in mediating responsiveness to alcohol and demonstrate, for the first time, that congenital 5-HT deficiency leads to increased ethanol consumption and decreased sensitivity to the sedative-like effects of ethanol, perhaps in part through modulating Akt/GSK3β signaling.
Collapse
Affiliation(s)
- Benjamin D Sachs
- Department of Cell Biology, Duke University, Durham, NC 27710, USA.
| | - A Ayten Salahi
- Department of Cell Biology, Duke University, Durham, NC 27710, USA; Research Scholars Program, Duke University, Durham, NC 27710, USA.
| | - Marc G Caron
- Department of Cell Biology, Duke University, Durham, NC 27710, USA; Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA; Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
29
|
Fabbri C, Di Girolamo G, Serretti A. Pharmacogenetics of antidepressant drugs: an update after almost 20 years of research. Am J Med Genet B Neuropsychiatr Genet 2013; 162B:487-520. [PMID: 23852853 DOI: 10.1002/ajmg.b.32184] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2012] [Accepted: 06/19/2013] [Indexed: 12/12/2022]
Abstract
Major depressive disorder (MDD) is an emergent cause of personal and socio-economic burden, both for the high prevalence of the disorder and the unsatisfying response rate of the available antidepressant treatments. No reliable predictor of treatment efficacy and tolerance in the single patient is available, thus drug choice is based on a trial and error principle with poor clinical efficiency. Among modulators of treatment outcome, genetic polymorphisms are thought to explain a significant share of the inter-individual variability. The present review collected the main pharmacogenetic findings primarily about antidepressant response and secondly about antidepressant induced side effects, and discussed the main strengths and limits of both candidate and genome-wide association studies and the most promising methodological opportunities and challenges of the field. Despite clinical applications of antidepressant pharmacogenetics are not available yet, previous findings suggest that genotyping may be applied in the clinical practice. In order to reach this objective, further rigorous pharmacogenetic studies (adequate sample size, study of better defined clinical subtypes of MDD, adequate covering of the genetic variability), their combination with the results obtained through complementary methodologies (e.g., pathway analysis, epigenetics, transcriptomics, and proteomics), and finally cost-effectiveness trials are required.
Collapse
Affiliation(s)
- Chiara Fabbri
- Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy
| | | | | |
Collapse
|
30
|
The effects of congenital brain serotonin deficiency on responses to chronic fluoxetine. Transl Psychiatry 2013; 3:e291. [PMID: 23942622 PMCID: PMC3756292 DOI: 10.1038/tp.2013.65] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 07/10/2013] [Indexed: 12/17/2022] Open
Abstract
The importance of reversing brain serotonin (5-HT) deficiency and promoting hippocampal neurogenesis in the mechanisms of action for antidepressants remain highly controversial. Here we examined the behavioral, neurochemical and neurogenic effects of chronic fluoxetine (FLX) in a mouse model of congenital 5-HT deficiency, the tryptophan hydroxylase 2 (R439H) knock-in (Tph2KI) mouse. Our results demonstrate that congenital 5-HT deficiency prevents a subset of the signature molecular, cellular and behavioral effects of FLX, despite the fact that FLX restores the 5-HT levels of Tph2KI mice to essentially the levels observed in wild-type mice at baseline. These results suggest that inducing supra-physiological levels of 5-HT, not merely reversing 5-HT deficiency, is required for many of the antidepressant-like effects of FLX. We also demonstrate that co-administration of the 5-HT precursor, 5-hydroxytryptophan (5-HTP), along with FLX rescues the novelty suppressed feeding (NSF) anxiolytic-like effect of FLX in Tph2KI mice, despite still failing to induce neurogenesis. Thus, our results indicate that brain 5-HT deficiency reduces the efficacy of FLX and that supplementation with 5-HTP can restore some antidepressant-like responses in the context of 5-HT deficiency. Our findings also suggest that feeding latency reductions in the NSF induced by chronic 5-HT elevation are not mediated by drug-induced increments in neurogenesis in 5-HT-deficient animals. Overall, these findings shed new light on the impact of 5-HT deficiency on responses to FLX and may have important implications for treatment selection in depression and anxiety disorders.
Collapse
|
31
|
Chen GL, Miller GM. Tryptophan hydroxylase-2: an emerging therapeutic target for stress disorders. Biochem Pharmacol 2013; 85:1227-33. [PMID: 23435356 DOI: 10.1016/j.bcp.2013.02.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 02/11/2013] [Accepted: 02/12/2013] [Indexed: 12/18/2022]
Abstract
Serotonin (5-HT) has been long recognized to modulate the stress response, and dysfunction of 5-HT has been implicated in numerous stress disorders. Accordingly, the 5-HT system has been targeted for the treatment of stress disorders. Tryptophan hydroxylase (TPH) is the rate-limiting enzyme in 5-HT synthesis, and the recent identification of a second, neuron-specific TPH isoform (TPH2) opened up a new area of research. With a decade of extensive investigation, it is now recognized that: (1) TPH2 exhibits a highly flexible gene expression that is modulated by an increasing number of internal and external environmental factors including the biological clock, stressors, endogenous hormones, and antidepressant therapies; and (2) genetically determined TPH2 activity is linked to a growing body of stress-related neuronal correlates and behavioral traits. These findings reveal an active role of TPH2 in the stress response and provide new insights into the long recognized but not yet fully understood 5-HT-stress interaction. As a major modulator of 5-HT neurotransmission and the stress response, TPH2 is of both pathophysiological and pharmacological significance, and is emerging as a new therapeutic target for the treatment of stress disorders. Given that numerous antidepressant therapies influence TPH2 gene expression, TPH2 is already inadvertently targeted for the treatment of stress disorders. With increased understanding of the regulation of TPH2 activity we can now purposely utilize TPH2 as a target to develop new or optimize current therapies, which are expected to greatly improve the prevention and treatment of a wide variety of stress disorders.
Collapse
Affiliation(s)
- Guo-Lin Chen
- Harvard Medical School, New England Primate Research Center, Division of Neuroscience, One Pine Hill Drive, Southborough, MA 01772-9102, USA.
| | | |
Collapse
|
32
|
Siesser WB, Sachs BD, Ramsey AJ, Sotnikova TD, Beaulieu JM, Zhang X, Caron MG, Gainetdinov RR. Chronic SSRI treatment exacerbates serotonin deficiency in humanized Tph2 mutant mice. ACS Chem Neurosci 2013; 4:84-8. [PMID: 23336047 DOI: 10.1021/cn300127h] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Accepted: 10/01/2012] [Indexed: 01/12/2023] Open
Abstract
Selective serotonin reuptake inhibitors (SSRIs) are a major class of antidepressants that act by blocking inward transport of serotonin (5-HT) into presynaptic neurons mediated by the serotonin transporter (SERT). Both reuptake and ongoing synthesis are essential in supporting intraneuronal serotonin concentrations in serotonergic neurons. A rare mutation in tryptophan hydroxylase 2 (Tph2), the rate limiting enzyme for 5-HT synthesis, was identified in several patients with major depression, and knock-in mice expressing the analogous mutation (R439H Tph2 KI) show 80% reduction in 5-HT synthesis and tissue levels. Chronic treatment with SSRIs (fluoxetine and paroxetine) resulted in a dramatic further depletion of 5-HT tissue levels in R439H Tph2 KI mice (down to 1-3% of wild type levels) while having little effects in wild-type controls. Treatment with the 5-HT precursor 5-hydroxytryptophan (5-HTP) restored 5-HT tissue content in mutant mice, and cotreatment with 5-HTP and fluoxetine essentially prevented the depleting effect of a chronic SSRI. These data demonstrate that chronic SSRI treatment could further exacerbate the 5-HT deficiency in Tph2 mutation carriers, and this can be prevented by 5-HTP supplementation.
Collapse
Affiliation(s)
- William B. Siesser
- Department of Cell Biology, Duke University, Durham, North Carolina 27710, United
States
| | - Benjamin D. Sachs
- Department of Cell Biology, Duke University, Durham, North Carolina 27710, United
States
| | - Amy J. Ramsey
- Department of Pharmacology
and
Toxicology, University of Toronto, ON,
Canada M5S 1A8
| | - Tatyana D. Sotnikova
- Department
of Neuroscience and
Brain Technologies, Istituto Italiano di Tecnologia (IIT), Via Morego 30, Genova, 16163 Italy
| | - Jean-Martin Beaulieu
- Department of Psychiatry and
Neuroscience, Université Laval/IUSMQ, Québec, Canada
| | - Xiaodong Zhang
- Neuroscience & Behavioral Disorders Program, Duke−NUS Graduate Medical School Singapore, Singapore
- Department of Physiology, National University of Singapore, Singapore
- Department
of Psychiatry and
Behavioral Sciences, Duke University Medical Center, Durham, North Carolina 27710, United States
| | - Marc G. Caron
- Department of Cell Biology, Duke University, Durham, North Carolina 27710, United
States
- Department of Neurobiology, Duke University Medical Center, Durham, North Carolina
27710, United States
| | - Raul R. Gainetdinov
- Department of Cell Biology, Duke University, Durham, North Carolina 27710, United
States
- Department
of Neuroscience and
Brain Technologies, Istituto Italiano di Tecnologia (IIT), Via Morego 30, Genova, 16163 Italy
| |
Collapse
|
33
|
The genetics of selective serotonin reuptake inhibitors. Pharmacol Ther 2012; 136:375-400. [PMID: 22944042 DOI: 10.1016/j.pharmthera.2012.08.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Accepted: 08/21/2012] [Indexed: 12/15/2022]
Abstract
Selective serotonin reuptake inhibitors (SSRIs) are among the most widely prescribed drugs in psychiatry. Based on the fact that SSRIs increase extracellular monoamine levels in the brain, the monoamine hypothesis of depression was introduced, postulating that depression is associated with too low serotonin, dopamine and noradrenaline levels. However, several lines of evidence indicate that this hypothesis is too simplistic and that depression and the efficacy of SSRIs are dependent on neuroplastic changes mediated by changes in gene expression. Because a coherent view on global gene expression is lacking, we aim to provide an overview of the effects of SSRI treatment on the final targets of 5-HT receptor signal transduction pathways, namely the transcriptional regulation of genes. We address gene polymorphisms in humans that affect SSRI efficacy, as well as in vitro studies employing human-derived cells. We also discuss the molecular targets affected by SSRIs in animal models, both in vivo and in vitro. We conclude that serotonin transporter gene variation in humans affects the efficacy and side-effects of SSRIs, whereas SSRIs generally do not affect serotonin transporter gene expression in animals. Instead, SSRIs alter mRNA levels of genes encoding serotonin receptors, components of non-serotonergic neurotransmitter systems, neurotrophic factors, hypothalamic hormones and inflammatory factors. So far little is known about the epigenetic and age-dependent molecular effects of SSRIs, which might give more insights in the working mechanism(s) of SSRIs.
Collapse
|
34
|
Abdala-Valencia H, Berdnikovs S, McCary CA, Urick D, Mahadevia R, Marchese ME, Swartz K, Wright L, Mutlu GM, Cook-Mills JM. Inhibition of allergic inflammation by supplementation with 5-hydroxytryptophan. Am J Physiol Lung Cell Mol Physiol 2012; 303:L642-60. [PMID: 22842218 DOI: 10.1152/ajplung.00406.2011] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Clinical reports indicate that patients with allergy/asthma commonly have associated symptoms of anxiety/depression. Anxiety/depression can be reduced by 5-hydroxytryptophan (5-HTP) supplementation. However, it is not known whether 5-HTP reduces allergic inflammation. Therefore, we determined whether 5-HTP supplementation reduces allergic inflammation. We also determined whether 5-HTP decreases passage of leukocytes through the endothelial barrier by regulating endothelial cell function. For these studies, C57BL/6 mice were supplemented with 5-HTP, treated with ovalbumin fraction V (OVA), house dust mite (HDM) extract, or IL-4, and examined for allergic lung inflammation and OVA-induced airway responsiveness. To determine whether 5-HTP reduces leukocyte or eosinophil transendothelial migration, endothelial cells were pretreated with 5-HTP, washed and then used in an in vitro transendothelial migration assay under laminar flow. Interestingly, 5-HTP reduced allergic lung inflammation by 70-90% and reduced antigen-induced airway responsiveness without affecting body weight, blood eosinophils, cytokines, or chemokines. 5-HTP reduced allergen-induced transglutaminase 2 (TG2) expression and serotonylation (serotonin conjugation to proteins) in lung endothelial cells. Consistent with the regulation of endothelial serotonylation in vivo, in vitro pretreatment of endothelial cells with 5-HTP reduced TNF-α-induced endothelial cell serotonylation and reduced leukocyte transendothelial migration. Furthermore, eosinophil and leukocyte transendothelial migration was reduced by inhibitors of transglutaminase and by inhibition of endothelial cell serotonin synthesis, suggesting that endothelial cell serotonylation is key for leukocyte transendothelial migration. In summary, 5-HTP supplementation inhibits endothelial serotonylation, leukocyte recruitment, and allergic inflammation. These data identify novel potential targets for intervention in allergy/asthma.
Collapse
Affiliation(s)
- Hiam Abdala-Valencia
- Division of Allergy-Immunology, Northwestern Univeristy Feinberg School of Medicine, Chicago, IL 60611, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Jacobsen JPR, Siesser WB, Sachs BD, Peterson S, Cools MJ, Setola V, Folgering JHA, Flik G, Caron MG. Deficient serotonin neurotransmission and depression-like serotonin biomarker alterations in tryptophan hydroxylase 2 (Tph2) loss-of-function mice. Mol Psychiatry 2012; 17:694-704. [PMID: 21537332 PMCID: PMC3536482 DOI: 10.1038/mp.2011.50] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2010] [Revised: 03/11/2011] [Accepted: 03/14/2011] [Indexed: 11/09/2022]
Abstract
Probably the foremost hypothesis of depression is the 5-hydroxytryptamine (5-HT, serotonin) deficiency hypothesis. Accordingly, anomalies in putative 5-HT biomarkers have repeatedly been reported in depression patients. However, whether such anomalies in fact reflect deficient central 5-HT neurotransmission remains unresolved. We employed a naturalistic model of 5-HT deficiency, the tryptophan hydroxylase 2 (Tph2) R439H knockin mouse, to address this question. We report that Tph2 knockin mice have reduced basal and stimulated levels of extracellular 5-HT (5-HT(Ext)). Interestingly, cerebrospinal fluid (CSF) 5-hydroxyindoleacetic acid (5-HIAA) and fenfluramine-induced plasma prolactin levels are markedly diminished in the Tph2 knockin mice. These data seemingly confirm that low CSF 5-HIAA and fenfluramine-induced plasma prolactin reflects chronic, endogenous central nervous system (CNS) 5-HT deficiency. Moreover, 5-HT(1A) receptor agonist-induced hypothermia is blunted and frontal cortex 5-HT(2A) receptors are increased in the Tph2 knockin mice. These data likewise parallel core findings in depression, but are usually attributed to anomalies in the respective receptors rather than resulting from CNS 5-HT deficiency. Further, 5-HT(2A) receptor function is enhanced in the Tph2 knockin mice. In contrast, 5-HT(1A) receptor levels and G-protein coupling is normal in Tph2 knockin mice, indicating that the blunted hypothermic response relates directly to the low 5-HT(Ext). Thus, we show that not only low CSF 5-HIAA and a blunted fenfluramine-induced prolactin response, but also blunted 5-HT(1A) agonist-induced hypothermia and increased 5-HT(2A) receptor levels are bona fide biomarkers of chronic, endogenous 5-HT deficiency. Potentially, some of these biomarkers could identify patients likely to have 5-HT deficiency. This could have clinical research utility or even guide pharmacotherapy.
Collapse
MESH Headings
- Animals
- Behavior, Animal/drug effects
- Behavior, Animal/physiology
- Biomarkers/blood
- Biomarkers/cerebrospinal fluid
- Biomarkers/metabolism
- Corticosterone/blood
- Depression/blood
- Depression/cerebrospinal fluid
- Depression/genetics
- Disease Models, Animal
- Extracellular Fluid/metabolism
- Female
- Fenfluramine/pharmacology
- Frontal Lobe/metabolism
- Gene Knock-In Techniques/methods
- Gene Knock-In Techniques/psychology
- Hippocampus/metabolism
- Hydroxyindoleacetic Acid/cerebrospinal fluid
- Hypothermia/chemically induced
- Hypothermia/physiopathology
- Male
- Mice
- Mice, Inbred C57BL
- Prolactin/blood
- Receptor, Serotonin, 5-HT1A/genetics
- Receptor, Serotonin, 5-HT1A/metabolism
- Receptor, Serotonin, 5-HT2A/genetics
- Receptor, Serotonin, 5-HT2A/metabolism
- Serotonergic Neurons/drug effects
- Serotonergic Neurons/enzymology
- Serotonergic Neurons/physiology
- Serotonin/deficiency
- Serotonin/metabolism
- Serotonin 5-HT1 Receptor Agonists/pharmacology
- Synaptic Transmission/drug effects
- Synaptic Transmission/genetics
- Synaptic Transmission/physiology
- Tryptophan Hydroxylase/genetics
- Tryptophan Hydroxylase/physiology
Collapse
Affiliation(s)
- JPR Jacobsen
- Department of Cell Biology, Duke University, Durham, NC, USA
| | - WB Siesser
- Department of Cell Biology, Duke University, Durham, NC, USA
| | - BD Sachs
- Department of Cell Biology, Duke University, Durham, NC, USA
| | - S Peterson
- Department of Cell Biology, Duke University, Durham, NC, USA
| | - MJ Cools
- Department of Cell Biology, Duke University, Durham, NC, USA
| | - V Setola
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC, USA
| | | | - G Flik
- BrainsOnline, Groningen, The Netherlands
| | - MG Caron
- Department of Cell Biology, Duke University, Durham, NC, USA
- Department of Neurobiology, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
36
|
Xu Z, Zhang Z, Shi Y, Pu M, Yuan Y, Zhang X, Li L, Reynolds GP. Influence and interaction of genetic polymorphisms in the serotonin system and life stress on antidepressant drug response. J Psychopharmacol 2012; 26:349-59. [PMID: 21937687 DOI: 10.1177/0269881111414452] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Variation in genes implicated in serotonin neurotransmission may interact with environmental factors to influence antidepressant response. We aimed to determine how a range of polymorphisms in serotonergic genes determine this response to treatment and how they interact with childhood trauma and recent life stress in a Chinese sample. In total, 14 single nucleotide polymorphisms (SNPs) in coding regions of 10 serotonergic genes (HTR1A, HTR1B, HTR1D, HTR2A, HTR3A, HTR3C, HTR3D, HTR3E, HTR5A and TPH2) were genotyped in 308 Chinese Han patients with major depressive disorder. Response to 6 weeks' antidepressant treatment was determined by change in the 17-item Hamilton Depression Rating Scale (HDRS-17) score, and previous stressful events were evaluated by the Life Events Scale (LES) and Childhood Trauma Questionnaire-Short Form (CTQ-SF). Two 5-HT1B receptor SNPs (rs6296 and rs6298) and one tryptophan hydroxylase2 (rs7305115) SNP were significantly associated with antidepressant response in this Chinese sample, as was a haplotype in TPH2 (rs7305115 and rs4290270). A gene-gene interaction on antidepressant response was found between SNPs in HTR1B, HTR3A and HTR5A in female subjects. The HTR1B SNPs demonstrated interaction with recent stress, while that for TPH2 interacted with childhood trauma to influence antidepressant response.
Collapse
Affiliation(s)
- Zhi Xu
- Department of Neuropsychiatry, Zhongda Hospital, Medical School, Southeast University, Nanjing, China
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Chen GL, Miller GM. Advances in tryptophan hydroxylase-2 gene expression regulation: new insights into serotonin-stress interaction and clinical implications. Am J Med Genet B Neuropsychiatr Genet 2012; 159B:152-71. [PMID: 22241550 PMCID: PMC3587664 DOI: 10.1002/ajmg.b.32023] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Serotonin (5-HT) modulates the stress response by interacting with the hormonal hypothalamic-pituitary-adrenal (HPA) axis and neuronal sympathetic nervous system (SNS). Tryptophan hydroxylase (TPH) is the rate-limiting enzyme in 5-HT biosynthesis, and the recent identification of a second, neuron-specific TPH isoform (TPH2) opened up a new area of research. While TPH2 genetic variance has been linked to numerous behavioral traits and disorders, findings on TPH2 gene expression have not only reinforced, but also provided new insights into, the long-recognized but not yet fully understood 5-HT-stress interaction. In this review, we summarize advances in TPH2 expression regulation and its relevance to the stress response and clinical implications. Particularly, based on findings on rhesus monkey TPH2 genetics and other relevant literature, we propose that: (i) upon activation of adrenal cortisol secretion, the cortisol surge induces TPH2 expression and de novo 5-HT synthesis; (ii) the induced 5-HT in turn inhibits cortisol secretion by modulating the adrenal sensitivity to ACTH via the suprachiasmatic nuclei (SCN)-SNS-adrenal system, such that it contributes to the feedback inhibition of cortisol production; (iii) basal TPH2 expression or 5-HT synthesis, as well as early-life experience, influence basal cortisol primarily via the hormonal HPA axis; and (iv) 5'- and 3'-regulatory polymorphisms of TPH2 may differentially influence the stress response, presumably due to their differential roles in gene expression regulation. Our increasing knowledge of TPH2 expression regulation not only helps us better understand the 5-HT-stress interaction and the pathophysiology of neuropsychiatric disorders, but also provides new strategies for the treatment of stress-associated diseases.
Collapse
Affiliation(s)
- Guo-Lin Chen
- Harvard Medical School, New England Primate Research Center, Division of Neuroscience, Southborough, MA 01772-9102, USA.
| | | |
Collapse
|
38
|
Narasimhan S, Lohoff FW. Pharmacogenetics of antidepressant drugs: current clinical practice and future directions. Pharmacogenomics 2012; 13:441-64. [PMID: 22380000 PMCID: PMC12046622 DOI: 10.2217/pgs.12.1] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
While antidepressants are widely used to treat mood and anxiety disorders, only half of the patients will respond to antidepressant treatment and only one-third of patients experience a full remission of symptoms. The identification of genetic biomarkers that predict antidepressant-treatment response can improve current clinical practice. This is an emerging field known as pharmacogenetics, which comprises of genetic studies on both the pharmacokinetics and pharmacodynamics of treatment response. Recent studies on antidepressant-treatment response have focused on both aspects of pharmacogenetics research, identifying new candidate genes that may predict better treatment response for patients. This paper reviews recent findings on the pharmacogenetics of antidepressant drugs and future clinical applications. Ultimately, these studies should lead to the use of genetic testing to guide the use of antidepressants in clinical practice.
Collapse
Affiliation(s)
| | - Falk W Lohoff
- Department of Psychiatry , Center for Neurobiology & Behavior, Translational Research Laboratories, 125 South 31st Street, Room 2213, Philadelphia, PA 19104, USA
| |
Collapse
|
39
|
Kobayashi H, Ujike H, Iwata N, Inada T, Yamada M, Sekine Y, Uchimura N, Iyo M, Ozaki N, Itokawa M, Sora I. Association analysis of the tryptophan hydroxylase 2 gene polymorphisms in patients with methamphetamine dependence/psychosis. Curr Neuropharmacol 2011; 9:176-82. [PMID: 21886586 PMCID: PMC3137177 DOI: 10.2174/157015911795017335] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2009] [Revised: 04/17/2010] [Accepted: 05/26/2010] [Indexed: 11/23/2022] Open
Abstract
There is a growing evidence that serotoninergic systems modulate dopaminergic neurotransmission. We analyzed the association between the variations in the brain tryptophan hydroxylase 2 (TPH2) gene, a rate limiting enzyme for serotonin biosynthesis, and methamphetamine (METH) dependence/psychosis in a Japanese population. We found ten single nucleotide polymorphisms (SNPs) and two polynucleotide polymorphisms in TPH2 gene exons and exon-intron boundaries. A total of 162 patients and 243 controls were used for the association analysis between these polymorphisms and METH dependence/psychosis. No significant differences were observed in either genotypic or allelic frequencies between METH dependent/psychotic patients and controls. A global test of differentiation among samples based on haplotype frequencies showed no significant association. With respect to latency of psychosis, prognosis of psychosis, and spontaneous relapse, we found no significant association with these SNPs. These results suggest that the TPH2 gene variants may not be a factor in vulnerability to METH dependence/psychosis.
Collapse
Affiliation(s)
- Hideaki Kobayashi
- Department of Biological Psychiatry, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Tryptophan hydroxylase 2 gene is associated with major depressive disorder in a female Chinese population. J Affect Disord 2011; 133:619-24. [PMID: 21620479 DOI: 10.1016/j.jad.2011.04.037] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2011] [Revised: 04/27/2011] [Accepted: 04/27/2011] [Indexed: 12/15/2022]
Abstract
BACKGROUND Previous candidate gene studies of major depressive disorder (MDD) have provided inconclusive evidence of association for genes with strong biological rationale for MDD. In this study, we aimed to investigate the association of tryptophan hydroxylase 2 gene with MDD and its treatment response in the Chinese Han population. METHODS Three hundred and sixty eight depressed patients who met DSM-IV criteria for major depressive disorder were recruited for the study. 371 normal controls were recruited from local community. Patients and normal controls were genotyped for TPH2 (rs4290270 and rs7305115) variants by polymerase chain reaction. Male and female subjects were analyzed separately. RESULTS No differences were found in the frequencies of the single alleles and genotypes of the tested polymorphisms between MDD patients and normal group. The frequency of the A-A haplotype was significantly higher in female MDD compared to healthy female controls (P<0.05). No significant association with treatment response was discovered in haplotype and single-marker analysis. LIMITATIONS This study lacks a placebo control and we cannot definitively exclude the possibility that some patients in the responder group responded to the placebo effect alone. CONCLUSION The result suggests that TPH2 gene may have a gender dependent effect on susceptibility to MDD but not with its treatment response in Chinese Han population. Further studies are needed to replicate the association that we observed.
Collapse
|
41
|
Serretti A, Chiesa A, Porcelli S, Han C, Patkar AA, Lee SJ, Park MH, Pae CU. Influence of TPH2 variants on diagnosis and response to treatment in patients with major depression, bipolar disorder and schizophrenia. Psychiatry Res 2011; 189:26-32. [PMID: 21396719 DOI: 10.1016/j.psychres.2011.02.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Revised: 01/23/2011] [Accepted: 02/02/2011] [Indexed: 11/26/2022]
Abstract
The present study is aimed at exploring whether some single nucleotide polymorphisms (SNPs) within the tryptophan hydroxylase 2 gene (TPH2) could be associated with major depression (MD), bipolar disorder (BD) and schizophrenia and whether they could predict clinical outcomes in Korean in-patients treated with antidepressants, mood stabilizers and antipsychotics, respectively. One hundred forty-five patients with MD, 132 patients with BD, 221 patients with schizophrenia and 170 psychiatrically healthy controls were genotyped for six TPH2 SNPs (rs4570625, rs10748185, rs11179027, rs1386498, rs4469933, and rs17110747). Baseline and final clinical measures, including the Montgomery-Åsberg Depression Rating Scale (MADRS), Young Mania Rating Scale and Positive and Negative Syndrome Scale, for patients with MD, BD and schizophrenia, respectively were recorded. None of the SNPs under investigation were associated with MD, BD and schizophrenia. However, in patients with MD, the rs4570625-rs10748185 G-A haplotype was significantly associated with higher endpoint MADRS severity, though not with response. Our results suggest that TPH2 variants neither have a major role in MD, BD and schizophrenia nor in response to treatments.
Collapse
|
42
|
Kulikov AV, Tikhonova MA, Osipova DV, Kulikov VA, Popova NK. Association between tryptophan hydroxylase-2 genotype and the antidepressant effect of citalopram and paroxetine on immobility time in the forced swim test in mice. Pharmacol Biochem Behav 2011; 99:683-7. [PMID: 21726574 DOI: 10.1016/j.pbb.2011.06.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Revised: 05/25/2011] [Accepted: 06/20/2011] [Indexed: 01/24/2023]
Abstract
Tryptophan hydroxylase-2 (TPH2) is the rate limiting enzyme of serotonin synthesis in the brain. The 1473G allele of the C1473G polymorphism in mTPH2 gene is associated with reduced enzyme activity and serotonin synthesis rate in the mouse brain. Here, the influence of the 1473G allele on the antidepressant effect of selective serotonin reuptake inhibitors (SSRIs), citalopram (2.5 or 5.0mg/kg) and paroxetine (5.0 or 10.0mg/kg), in the forced swim test was studied using B6-1473G and B6-1473C congenic mouse lines with the 1473G (decreased TPH2 activity) or 1473C (normal TPH2 activity) alleles, respectively, transferred to the genome of C57BL/6 mouse strain. Paroxetine (5.0 or 10.0mg/kg) and citalopram (2.5 or 5.0mg/kg) decreased immobility time in B6-1473C mice, while both doses of paroxetine and 2.5mg/kg of citaloprame did not alter immobility time in B6-1473G mice. However, 5.0mg/kg of citalopram reduced immobility in B6-1473G mice. The results provided genetic evidence of moderate association between 1473G allele and reduced sensitivity to SSRIs in mice.
Collapse
Affiliation(s)
- Alexander V Kulikov
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090, Novosibirsk, Russia.
| | | | | | | | | |
Collapse
|
43
|
Sadee W, Wang D, Papp AC, Pinsonneault JK, Smith RM, Moyer RA, Johnson AD. Pharmacogenomics of the RNA world: structural RNA polymorphisms in drug therapy. Clin Pharmacol Ther 2011; 89:355-65. [PMID: 21289622 PMCID: PMC3251919 DOI: 10.1038/clpt.2010.314] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The use of pharmacogenomic biomarkers can enhance treatment outcomes. Regulatory polymorphisms are promising biomarkers that have proven difficult to uncover. They come in two flavors: those that affect transcription (regulatory single-nucleotide polymorphisms (rSNPs)) and those that affect RNA functions such as splicing, turnover, and translation (termed structural RNA SNPs (srSNPs)). This review focuses on the role of srSNPs in drug metabolism, transport, and response. An understanding of the nature and diversity of srSNPs and rSNPs enables clinical scientists to evaluate genetic biomarkers.
Collapse
Affiliation(s)
- W Sadee
- Program in Pharmacogenomics, Department of Pharmacology, The Ohio State University College of Medicine, Columbus, Ohio, USA.
| | | | | | | | | | | | | |
Collapse
|
44
|
Crisafulli C, Fabbri C, Porcelli S, Drago A, Spina E, De Ronchi D, Serretti A. Pharmacogenetics of antidepressants. Front Pharmacol 2011; 2:6. [PMID: 21687501 PMCID: PMC3108562 DOI: 10.3389/fphar.2011.00006] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Accepted: 02/04/2011] [Indexed: 12/28/2022] Open
Abstract
Up to 60% of depressed patients do not respond completely to antidepressants (ADs) and up to 30% do not respond at all. Genetic factors contribute for about 50% of the AD response. During the recent years the possible influence of a set of candidate genes as genetic predictors of AD response efficacy was investigated by us and others. They include the cytochrome P450 superfamily, the P-glycoprotein (ABCB1), the tryptophan hydroxylase, the catechol-O-methyltransferase, the monoamine oxidase A, the serotonin transporter (5-HTTLPR), the norepinephrine transporter, the dopamine transporter, variants in the 5-hydroxytryptamine receptors (5-HT1A, 5-HT2A, 5-HT3A, 5-HT3B, and 5-HT6), adrenoreceptor beta-1 and alpha-2, the dopamine receptors (D2), the G protein beta 3 subunit, the corticotropin releasing hormone receptors (CRHR1 and CRHR2), the glucocorticoid receptors, the c-AMP response-element binding, and the brain-derived neurotrophic factor. Marginal associations were reported for angiotensin I converting enzyme, circadian locomotor output cycles kaput protein, glutamatergic system, nitric oxide synthase, and interleukin 1-beta gene. In conclusion, gene variants seem to influence human behavior, liability to disorders and treatment response. Nonetheless, gene × environment interactions have been hypothesized to modulate several of these effects.
Collapse
|
45
|
Antidepressant response to chronic citalopram treatment in eight inbred mouse strains. Psychopharmacology (Berl) 2011; 213:509-20. [PMID: 21181117 DOI: 10.1007/s00213-010-2140-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2010] [Accepted: 12/03/2010] [Indexed: 10/18/2022]
Abstract
RATIONALE The antidepressant response exhibits a characteristic delay. BALB/cJ mice respond to chronic, but not subchronic, treatment with selective serotonin reuptake inhibitors (SSRIs), providing a model of antidepressant onset. Identification of other mouse strains exhibiting this phenotype will provide additional tools for studying mechanisms of the antidepressant response. OBJECTIVES We aimed to identify inbred mouse strains that respond to chronic, but not subchronic, SSRI treatment in the forced swim test (FST). We also assessed whether response correlated with genotype at the functional C1473G polymorphism in tryptophan hydroxylase-2 (Tph2). METHODS BALB/cJ, three closely related strains (BALB/cByJ, SEA/GnJ, A/J), and four distantly related strains (C57BL/6J, C57BL/10J, CAST/EiJ, SM/J) received the SSRI citalopram (0-30 mg/kg/day in drinking water) for ~4 weeks and were assessed for locomotion and FST behavior. Citalopram-responsive strains were assessed identically following ~1 week of treatment. C1473G genotypes were determined. RESULTS BALB/cJ and related strains carried the 1473G allele and responded to chronic citalopram treatment in the FST. BALB/cJ, BALB/cByJ, and SEA/GnJ mice showed either no response or an attenuated response to subchronic treatment. Distantly related strains carried the 1473C allele and showed no response to citalopram. No relationship was found between the antidepressant response and baseline immobility or locomotion. CONCLUSIONS BALB/cJ and related strains exhibit an antidepressant response to chronic SSRI treatment that emerges over time and is likely a heritable trait. This antidepressant response is associated with carrying the 1473G allele in Tph2. In conclusion, BALB/cJ and related strains provide valuable models for studying the therapeutic mechanisms of SSRIs.
Collapse
|
46
|
Popova NK, Kulikov AV. Targeting tryptophan hydroxylase 2 in affective disorder. Expert Opin Ther Targets 2010; 14:1259-71. [DOI: 10.1517/14728222.2010.524208] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
47
|
Chen GL, Novak MA, Meyer JS, Kelly BJ, Vallender EJ, Miller GM. TPH2 5'- and 3'-regulatory polymorphisms are differentially associated with HPA axis function and self-injurious behavior in rhesus monkeys. GENES, BRAIN, AND BEHAVIOR 2010; 9:335-47. [PMID: 20059554 PMCID: PMC2990963 DOI: 10.1111/j.1601-183x.2010.00564.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Tryptophan hydroxylase-2 (TPH2) synthesizes neuronal serotonin and is linked to numerous behavioral traits. We have previously characterized the functionality of polymorphisms (especially 2051A>C) in 3'-untranslated region (3'-UTR) of rhesus monkey TPH2 (rhTPH2). This study further assessed the functionality of additional polymorphisms (-1605T>C, -1491Tn, -1485(AT)n, -1454A>G, -1325In>Del and -363T>G) in rhTPH2 5'-flanking region (5'-FR), and evaluated the effects of rhTPH2 5' and 3' genotypes on central serotonin turnover, hypothalamic-pituitary-adrenal (HPA) axis function and self-injurious behavior (SIB) in 32 unrelated adult male monkeys of Indian origin. Haplotypes of the rhTPH2 5'-FR polymorphisms exert a significant, cell-dependent effect on reporter gene expression, primarily conferred by -1485(AT)n. The -1485(AT)n and 2051A>C polymorphisms interact to influence cerebrospinal fluid (CSF) 5-HIAA and plasma adrenocorticotropic hormone (ACTH) in the afternoon. While -1485(AT)n exerts significant main effects on the afternoon cortisol level and nocturnal HPA negative feedback, 2051A>C has significant main effects on the morning cortisol level and cortisol response to ACTH challenge, as well as marginally significant main effects on the daytime HPA negative feedback and self-biting rate. In addition, the genotype/allele frequency of the 5'-FR -1325Ins>Del differed significantly between the self-wounders and non-wounders, whereas 3'-UTR 2128S>L polymorphism differed significantly in genotype/allele frequency between the high- and low-frequency biters. This study shows the functionality of rhTPH2 5'-FR polymorphisms, and provides evidence for the differential association of rhTPH2 5'-FR and 3'-UTR polymorphisms with HPA axis function and SIB. Our findings shed light on the role of TPH2 gene variance in physiology and behavioral traits, and also contribute to the understanding of the pathophysiology and genetics of SIB.
Collapse
Affiliation(s)
- Guo-Lin Chen
- Harvard Medical School, New England Primate Research Center, Division of Neurochemistry, One Pine Hill Drive, Southborough, MA 01772–9102, USA
| | - Melinda A. Novak
- Harvard Medical School, New England Primate Research Center, Division of Neurochemistry, One Pine Hill Drive, Southborough, MA 01772–9102, USA
- Department of Psychology, University of Massachusetts at Amherst, Amherst, MA, USA
| | - Jerrold S. Meyer
- Department of Psychology, University of Massachusetts at Amherst, Amherst, MA, USA
| | - Brian J. Kelly
- Harvard Medical School, New England Primate Research Center, Division of Neurochemistry, One Pine Hill Drive, Southborough, MA 01772–9102, USA
| | - Eric J. Vallender
- Harvard Medical School, New England Primate Research Center, Division of Neurochemistry, One Pine Hill Drive, Southborough, MA 01772–9102, USA
| | - Gregory M. Miller
- Harvard Medical School, New England Primate Research Center, Division of Neurochemistry, One Pine Hill Drive, Southborough, MA 01772–9102, USA
| |
Collapse
|
48
|
Nakajima S, Suzuki T, Watanabe K, Kashima H, Uchida H. Accelerating response to antidepressant treatment in depression: a review and clinical suggestions. Prog Neuropsychopharmacol Biol Psychiatry 2010; 34:259-64. [PMID: 19969039 DOI: 10.1016/j.pnpbp.2009.12.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2009] [Revised: 12/01/2009] [Accepted: 12/01/2009] [Indexed: 11/30/2022]
Abstract
OBJECTIVE The primary objective of this article is to review the literature regarding the speed of response to antidepressant drugs and potential strategies to accelerate the antidepressant response in new antidepressant-free patients with depression. Based on these data, we try to propose both an effective and safe antidepressant treatment strategy to alleviate depressive symptoms at the earliest opportunity. DATA SOURCES Data were identified by searches of Medline (1966 to September 2009) and references from relevant articles and books. Search terms included depression, antidepressant, predictor, response, onset, acceleration, and augmentation. As our focus was on the acute phase treatment of depression, articles relevant to treatment-resistant depression were excluded. Only articles written in English or Japanese were consulted. DATA SELECTION Studies, reviews, and books pertaining to the treatment of depression with a special regard to accelerating therapeutic effects were selected. DATA SYNTHESIS Most of the available treatment guidelines for major depressive disorders recommend the continuous use of antidepressants for 4 to 8 weeks based on the idea of a delayed onset of response to these drugs. Contrary to this conventional belief, the recent data indicate that antidepressants start to exert their effects within 2 weeks and early non-response could predict a subsequent unfavorable outcome. CONCLUSIONS These findings suggest the need of revisiting the timing of an antidepressant switch for early non-responders, whereby switching could be commenced in as early as 2 weeks.
Collapse
Affiliation(s)
- Shinichiro Nakajima
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan.
| | | | | | | | | |
Collapse
|
49
|
Brent D, Melhem N, Ferrell R, Emslie G, Wagner KD, Ryan N, Vitiello B, Birmaher B, Mayes T, Zelazny J, Onorato M, Devlin B, Clarke G, DeBar L, Keller M. Association of FKBP5 polymorphisms with suicidal events in the Treatment of Resistant Depression in Adolescents (TORDIA) study. Am J Psychiatry 2010; 167:190-7. [PMID: 20008943 PMCID: PMC2887294 DOI: 10.1176/appi.ajp.2009.09040576] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE The authors sought to assess the relationship between candidate genes and two clinical outcomes, namely, symptomatic improvement and the occurrence of suicidal events, in a sample of treatment-resistant depressed adolescents. METHOD A subsample of depressed adolescents participating in the Treatment of SSRI-Resistant Depression in Adolescents (TORDIA) trial, 155 of whom were of European origin, were genotyped with respect to 21 polymorphisms on 12 genes that have a reported association with depression, treatment response, or suicidal events. Participants had not responded to a previous adequate trial with an antidepressant and were randomized to receive either another selective serotonin reuptake inhibitor or venlafaxine, with or without cognitive-behavioral therapy (CBT). Single-nucleotide polymorphism (SNP) analyses were conducted using PLINK with permutation procedures. RESULTS No relationship was observed between any polymorphism and response to treatment. The FKBP5 (which codes for a protein causing subsensitivity of the glucocorticoid receptor) rs1360780TT and rs3800373GG genotypes were associated with suicidal events (N=18), even after controlling for treatment effects and relevant covariates. These two SNPs were in significant linkage disequilibrium (r=0.91). CONCLUSIONS The FKBP5 genotypes associated with suicidal events in this study have been reported by others to cause the greatest degree of glucocorticoid receptor subsensitivity. These results are consistent with those of other studies linking alterations in the hypothalamic-pituitary-adrenal axis with suicidal behavior. The small number of events and lack of a placebo condition make these results preliminary. Replication with a larger sample and a placebo condition is needed to assess whether these events are related to treatment.
Collapse
Affiliation(s)
- David Brent
- Western Psychiatric Institute and Clinic, 3811 O'Hara St., Rm. 315 Bellefield Towers, Pittsburgh, PA 15213, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Chen GL, Novak MA, Meyer JS, Kelly BJ, Vallender EJ, Miller GM. The effect of rearing experience and TPH2 genotype on HPA axis function and aggression in rhesus monkeys: a retrospective analysis. Horm Behav 2010; 57:184-91. [PMID: 19900455 PMCID: PMC2815197 DOI: 10.1016/j.yhbeh.2009.10.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2009] [Revised: 10/28/2009] [Accepted: 10/29/2009] [Indexed: 01/14/2023]
Abstract
Gene-environment (GxE) interactions contribute to the development of many neuropsychiatric disorders. Tryptophan hydroxylase-2 (TPH2) synthesizes neuronal serotonin and is closely related to the hypothalamic-pituitary-adrenal (HPA) axis, while early life experience is a critical environmental factor programming the HPA axis response to stress. This retrospective study investigated GxE interaction at the TPH2 locus in rhesus monkeys. Twenty-eight adult, male rhesus monkeys of Indian origin, either mother-reared or peer-reared as infants, were involved in this study. These monkeys have been previously genotyped for the functional A2051C polymorphism in rhTPH2, and had been physiologically and behaviorally characterized. rhTPH2 A2051C exerted a significant main effect (CC>AA&AC) on the cerebrospinal fluid (CSF) level of 5-hydroxyindole-3-acetic acid (5-HIAA; F((1,14))=6.42, p=0.024), plasma cortisol level in the morning (F((1,18))=14.63, p=0.002) and cortisol response to ACTH challenge (F((1,17))=6.87, p=0.018), while the rearing experience showed a significant main effect (PR>MR) on CSF CRH (F((1,20))=11.66, p=0.003) and cage shaking behavior (F((1,27))=4.45, p=0.045). The effects of rhTPH2 A2051C on the afternoon cortisol level, plasma ACTH level, dexamethasone suppression of urinary cortisol excretion, and aggression were dependent upon the rearing experience. These results were not confounded by the functional C77G polymorphism in the mu-opioid receptor (MOR). The present study supports the hypothesis that rearing experience and rhTPH2 A2051C interact to influence central 5-HT metabolism, HPA axis function, and aggressive behaviors. Our findings strengthen the involvement of G x E interactions at the loci of serotonergic genes and the utility of the nonhuman primate to model G x E interactions in the development of human neuropsychiatric diseases.
Collapse
Affiliation(s)
- Guo-Lin Chen
- Harvard Medical School, New England Primate Research Center, Division of Neurochemistry, One Pine Hill Drive, Southborough, MA 01772, USA
| | - Melinda A. Novak
- Harvard Medical School, New England Primate Research Center, Division of Neurochemistry, One Pine Hill Drive, Southborough, MA 01772, USA
- Department of Psychology, University of Massachusetts at Amherst, Amherst, MA 01003, USA
| | - Jerrold S. Meyer
- Department of Psychology, University of Massachusetts at Amherst, Amherst, MA 01003, USA
| | - Brian J. Kelly
- Harvard Medical School, New England Primate Research Center, Division of Neurochemistry, One Pine Hill Drive, Southborough, MA 01772, USA
- Department of Psychology, University of Massachusetts at Amherst, Amherst, MA 01003, USA
| | - Eric J. Vallender
- Harvard Medical School, New England Primate Research Center, Division of Neurochemistry, One Pine Hill Drive, Southborough, MA 01772, USA
| | - Gregory M. Miller
- Harvard Medical School, New England Primate Research Center, Division of Neurochemistry, One Pine Hill Drive, Southborough, MA 01772, USA
| |
Collapse
|