1
|
Fowden AL, Vaughan OR, Forhead AJ. Early-life programming of livestock metabolism by glucocorticoids. J Dev Orig Health Dis 2025; 16:e16. [PMID: 40104937 DOI: 10.1017/s2040174425000091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Adverse environmental conditions during early life are known to determine adult metabolic phenotype in laboratory species and human populations. However, less is known about developmental programming of adult metabolic phenotype in livestock, given their size and longevity compared to laboratory animals. As maternal and/or fetal glucocorticoid (GC) concentrations rise in stressful conditions during pregnancy, GCs may act as a common mechanism linking early-life environmental conditions to the subsequent metabolic phenotype. This review examines prenatal and longer-term postnatal programming of metabolism by early-life GC overexposure in livestock species with a particular emphasis on sheep. It examines the effects of both cortisol, the natural glucocorticoid and more potent synthetic GCs used clinically to treat threatened pre-term delivery and other conditions during pregnancy. It considers the effects of early- life GC overexposure on the metabolism of specific feto-placental and adult tissues in relation to changes in the growth trajectory, other metabolic hormones and in the functioning of the hypothalamic-pituitary-adrenal axis itself. It highlights the role of GCs as maturational and environmental signals in programming development of a metabolic phenotype fit for survival at birth and future homeostatic challenges. However, the ensuing metabolic phenotype induced by early GC overexposure may become inappropriate for the prevailing postnatal conditions and lead to metabolic dysfunction as functional reserves decline with age. Further studies are needed in livestock to establish whether the metabolic outcomes of early-life GC overexposure are sex-linked, more pronounced in old age and inherited transgenerationally in these species.
Collapse
Affiliation(s)
- Abigail L Fowden
- Department of Physiology Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Owen R Vaughan
- Institute of Women's Health, University College London, London, UK
| | - Alison J Forhead
- Department of Physiology Development and Neuroscience, University of Cambridge, Cambridge, UK
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK
| |
Collapse
|
2
|
Tagami K, Iwama N, Hamada H, Tomita H, Kudo R, Kumagai N, Wang H, Izumi S, Watanabe Z, Ishikuro M, Obara T, Tatsuta N, Metoki H, Ota C, Sugiyama T, Kuriyama S, Arima T, Yaegashi N, Saito M. Maternal birth weight as an indicator of early and late gestational diabetes mellitus: The Japan Environment and Children's Study. J Diabetes Investig 2024; 15:751-761. [PMID: 38391358 PMCID: PMC11143417 DOI: 10.1111/jdi.14159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/20/2024] [Accepted: 01/25/2024] [Indexed: 02/24/2024] Open
Abstract
AIMS This study aimed to investigate the association of maternal birth weight (MBW) with early and late gestational diabetes mellitus (GDM). METHODS A total of 69318 pregnant Japanese women were included in this birth cohort study. The associations between maternal birth weight and early gestational diabetes mellitus (diagnosed at <24 gestational weeks) and late GDM (diagnosed at ≥24 gestational weeks) were investigated using a multinomial logistic regression model, with an maternal birth weight of 3000-3499 g as the reference category. RESULTS Lower maternal birth weight was associated with higher odds of developing early and late gestational diabetes mellitus (P < 0.0001 and P < 0.0001, respectively). The adjusted odds ratios (aORs) for early gestational diabetes mellitus in participants with a MBW of <2500 g and 2500-2999 g were 1.345 (95% confidence interval [CI]: 0.912-1.984) and 1.338 (95% CI: 1.098-1.629), respectively. The aORs for late gestational diabetes mellitus in participants with a MBW of <2500 g and 2500-2999 g were, 1.657 (95% CI: 1.298-2.115) and 1.218 (95% CI: 1.058-1.402), respectively. CONCLUSIONS Regardless of the gestational age when gestational diabetes mellitus was diagnosed, a lower maternal birth weight was associated with an increased risk of gestational diabetes mellitus. Furthermore, the association of a MBW <2500 g with late gestational diabetes mellitus tended to be stronger than that with early gestational diabetes mellitus.
Collapse
Affiliation(s)
- Kazuma Tagami
- Department of Obstetrics and Gynecology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Noriyuki Iwama
- Department of Obstetrics and Gynecology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
- Division of Molecular Epidemiology, Department of Preventive Medicine and Epidemiology, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Miyagi, Japan
| | - Hirotaka Hamada
- Department of Obstetrics and Gynecology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Hasumi Tomita
- Department of Obstetrics and Gynecology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Rie Kudo
- Department of Obstetrics and Gynecology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Natsumi Kumagai
- Department of Obstetrics and Gynecology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Hongxin Wang
- Department of Obstetrics and Gynecology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Seiya Izumi
- Department of Obstetrics and Gynecology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Zen Watanabe
- Department of Obstetrics and Gynecology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Mami Ishikuro
- Division of Molecular Epidemiology, Department of Preventive Medicine and Epidemiology, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Miyagi, Japan
- Division of Molecular Epidemiology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Taku Obara
- Division of Molecular Epidemiology, Department of Preventive Medicine and Epidemiology, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Miyagi, Japan
- Division of Molecular Epidemiology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Nozomi Tatsuta
- Environment and Genome Research Center, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Hirohito Metoki
- Division of Public Health, Hygiene and Epidemiology, Tohoku Medical Pharmaceutical University, Sendai, Miyagi, Japan
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Miyagi, Japan
| | - Chiharu Ota
- Environment and Genome Research Center, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
- Department of Pediatrics, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Takashi Sugiyama
- Department of Obstetrics and Gynecology, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | - Shinichi Kuriyama
- Division of Molecular Epidemiology, Department of Preventive Medicine and Epidemiology, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Miyagi, Japan
- Division of Molecular Epidemiology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
- International Research Institute of Disaster Science, Tohoku University, Sendai, Miyagi, Japan
| | - Takahiro Arima
- Environment and Genome Research Center, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Nobuo Yaegashi
- Environment and Genome Research Center, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Miyagi, Japan
| | - Masatoshi Saito
- Department of Obstetrics and Gynecology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
- Department of Maternal and Fetal Therapeutics, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| |
Collapse
|
3
|
Wang W, Chen S, Qiao L, Zhang S, Liu Q, Yang K, Pan Y, Liu J, Liu W. Four Markers Useful for the Distinction of Intrauterine Growth Restriction in Sheep. Animals (Basel) 2023; 13:3305. [PMID: 37958061 PMCID: PMC10648371 DOI: 10.3390/ani13213305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/14/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
Intrauterine growth restriction (IUGR) is a common perinatal complication in animal reproduction, with long-lasting negative effects on neonates and postnatal animals, which seriously negatively affects livestock production. In this study, we aimed to identify potential genes associated with the diagnosis of IUGR through bioinformatics analysis. Based on the 73 differentially expressed related genes obtained by differential analysis and weighted gene co-expression network analysis, we used three machine learning algorithms to identify 4 IUGR-related hub genes (IUGR-HGs), namely, ADAM9, CRYL1, NDP52, and SERPINA7, whose ROC curves showed that they are a good diagnostic target for IUGR. Next, we identified two molecular subtypes of IUGR through consensus clustering analysis and constructed a gene scoring system based on the IUGR-HGs. The results showed that the IUGR score was positively correlated with the risk of IUGR. The AUC value of IUGR scoring accuracy was 0.970. Finally, we constructed a new artificial neural network model based on the four IUGR-HGs to diagnose sheep IUGR, and its accuracy reached 0.956. In conclusion, the IUGR-HGs we identified provide new potential molecular markers and models for the diagnosis of IUGR in sheep; they can better diagnose whether sheep have IUGR. The present findings provide new perspectives on the diagnosis of IUGR.
Collapse
Affiliation(s)
- Wannian Wang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, Shanxi Agricultural University, Taigu, Jinzhong 030801, China; (W.W.); (S.C.); (L.Q.); (S.Z.); (K.Y.); (Y.P.); (J.L.)
| | - Sijia Chen
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, Shanxi Agricultural University, Taigu, Jinzhong 030801, China; (W.W.); (S.C.); (L.Q.); (S.Z.); (K.Y.); (Y.P.); (J.L.)
| | - Liying Qiao
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, Shanxi Agricultural University, Taigu, Jinzhong 030801, China; (W.W.); (S.C.); (L.Q.); (S.Z.); (K.Y.); (Y.P.); (J.L.)
| | - Siying Zhang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, Shanxi Agricultural University, Taigu, Jinzhong 030801, China; (W.W.); (S.C.); (L.Q.); (S.Z.); (K.Y.); (Y.P.); (J.L.)
| | - Qiaoxia Liu
- Shanxi Animal Husbandry Technology Extension Service Center, Taiyuan 030001, China;
| | - Kaijie Yang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, Shanxi Agricultural University, Taigu, Jinzhong 030801, China; (W.W.); (S.C.); (L.Q.); (S.Z.); (K.Y.); (Y.P.); (J.L.)
| | - Yangyang Pan
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, Shanxi Agricultural University, Taigu, Jinzhong 030801, China; (W.W.); (S.C.); (L.Q.); (S.Z.); (K.Y.); (Y.P.); (J.L.)
| | - Jianhua Liu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, Shanxi Agricultural University, Taigu, Jinzhong 030801, China; (W.W.); (S.C.); (L.Q.); (S.Z.); (K.Y.); (Y.P.); (J.L.)
| | - Wenzhong Liu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, Shanxi Agricultural University, Taigu, Jinzhong 030801, China; (W.W.); (S.C.); (L.Q.); (S.Z.); (K.Y.); (Y.P.); (J.L.)
- Key Laboratory of Farm Animal Genetic Resources Exploration and Breeding of Shanxi Province, Jinzhong 030801, China
| |
Collapse
|
4
|
Mizuno S, Nagaie S, Tamiya G, Kuriyama S, Obara T, Ishikuro M, Tanaka H, Kinoshita K, Sugawara J, Yamamoto M, Yaegashi N, Ogishima S. Establishment of the early prediction models of low-birth-weight reveals influential genetic and environmental factors: a prospective cohort study. BMC Pregnancy Childbirth 2023; 23:628. [PMID: 37653383 PMCID: PMC10472725 DOI: 10.1186/s12884-023-05919-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 08/12/2023] [Indexed: 09/02/2023] Open
Abstract
BACKGROUND Low birth weight (LBW) is a leading cause of neonatal morbidity and mortality, and increases various disease risks across life stages. Prediction models of LBW have been developed before, but have limitations including small sample sizes, absence of genetic factors and no stratification of neonate into preterm and term birth groups. In this study, we challenged the development of early prediction models of LBW based on environmental and genetic factors in preterm and term birth groups, and clarified influential variables for LBW prediction. METHODS We selected 22,711 neonates, their 21,581 mothers and 8,593 fathers from the Tohoku Medical Megabank Project Birth and Three-Generation cohort study. To establish early prediction models of LBW for preterm birth and term birth groups, we trained AI-based models using genetic and environmental factors of lifestyles. We then clarified influential environmental and genetic factors for predicting LBW in the term and preterm groups. RESULTS We identified 2,327 (10.22%) LBW neonates consisting of 1,077 preterm births and 1,248 term births. Our early prediction models archived the area under curve 0.96 and 0.95 for term LBW and preterm LBW models, respectively. We revealed that environmental factors regarding eating habits and genetic features related to fetal growth were influential for predicting LBW in the term LBW model. On the other hand, we identified that genomic features related to toll-like receptor regulations and infection reactions are influential genetic factors for prediction in the preterm LBW model. CONCLUSIONS We developed precise early prediction models of LBW based on lifestyle factors in the term birth group and genetic factors in the preterm birth group. Because of its accuracy and generalisability, our prediction model could contribute to risk assessment of LBW in the early stage of pregnancy and control LBW risk in the term birth group. Our prediction model could also contribute to precise prediction of LBW based on genetic factors in the preterm birth group. We then identified parental genetic and maternal environmental factors during pregnancy influencing LBW prediction, which are major targets for understanding the LBW to address serious burdens on newborns' health throughout life.
Collapse
Affiliation(s)
- Satoshi Mizuno
- Department of Informatics for Genomic Medicine, Group of Integrated Database Systems, Tohoku Medical Megabank Organization, Tohoku University, 2-1, Seiryo-Machi, Aoba-Ku, Sendai, Miyagi, 980-8575, Japan
| | - Satoshi Nagaie
- Department of Informatics for Genomic Medicine, Group of Integrated Database Systems, Tohoku Medical Megabank Organization, Tohoku University, 2-1, Seiryo-Machi, Aoba-Ku, Sendai, Miyagi, 980-8575, Japan
| | - Gen Tamiya
- Department of Statistical Genetics and Genomics, Group of Disease Risk Prediction, Tohoku Medical Megabank Organization, Tohoku University, Miyagi, Japan
| | - Shinichi Kuriyama
- Department of Molecular Epidemiology, Group of the Birth and Three-Generation Cohort Study, Tohoku Medical Megabank Organization, Tohoku University, Miyagi, Japan
| | - Taku Obara
- Department of Molecular Epidemiology, Group of the Birth and Three-Generation Cohort Study, Tohoku Medical Megabank Organization, Tohoku University, Miyagi, Japan
| | - Mami Ishikuro
- Department of Molecular Epidemiology, Group of the Birth and Three-Generation Cohort Study, Tohoku Medical Megabank Organization, Tohoku University, Miyagi, Japan
| | - Hiroshi Tanaka
- Medical Data Science Promotion, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kengo Kinoshita
- Department of Statistical Genetics and Genomics, Group of Systems Bioinformatics, Tohoku Medical Megabank Organization, Tohoku University, Miyagi, Japan
| | - Junichi Sugawara
- Department of Gynecology and Obstetrics, Tohoku University Graduate School of Medicine, Tohoku University, Miyagi, Japan
- Department of Feto-Maternal Medical Science, Group of Community Medical Supports, Tohoku Medical Megabank Organization, Tohoku University, Miyagi, Japan
- Suzuki Memorial Hospital 3-5-5, Satonomori, Iwanumashi, Miyagi, 989-2481, Japan
| | - Masayuki Yamamoto
- Department of Medical Biochemistry, Graduate School of Medicine, Tohoku University, Sendai, Japan
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Miyagi, Japan
| | - Nobuo Yaegashi
- Department of Gynecology and Obstetrics, Tohoku University Graduate School of Medicine, Tohoku University, Miyagi, Japan
| | - Soichi Ogishima
- Department of Informatics for Genomic Medicine, Group of Integrated Database Systems, Tohoku Medical Megabank Organization, Tohoku University, 2-1, Seiryo-Machi, Aoba-Ku, Sendai, Miyagi, 980-8575, Japan.
| |
Collapse
|
5
|
Batra A, Cuesta S, Alves MB, Restrepo JM, Giroux M, Laureano DP, Mucellini Lovato AB, Miguel PM, Machado TD, Molle RD, Flores C, Silveira PP. Relationship between insulin and Netrin-1/DCC guidance cue pathway regulation in the prefrontal cortex of rodents exposed to prenatal dietary restriction. J Dev Orig Health Dis 2023; 14:501-507. [PMID: 37431265 PMCID: PMC10988268 DOI: 10.1017/s204017442300017x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
Fetal restriction (FR) alters insulin sensitivity, but it is unknown how the metabolic profile associated with restriction affects development of the dopamine (DA) system and DA-related behaviors. The Netrin-1/DCC guidance cue system participates in maturation of the mesocorticolimbic DA circuitry. Therefore, our objective was to identify if FR modifies Netrin-1/DCC receptor protein expression in the prefrontal cortex (PFC) at birth and mRNA in adulthood in rodent males. We used cultured HEK293 cells to assess if levels of miR-218, microRNA regulator of DCC, are sensitive to insulin. To assess this, pregnant dams were subjected to a 50% FR diet from gestational day 10 until birth. Medial PFC (mPFC) DCC/Netrin-1 protein expression was measured at P0 at baseline and Dcc/Netrin-1 mRNA levels were quantified in adults 15 min after a saline/insulin injection. miR-218 levels in HEK-293 cells were measured in response to insulin exposure. At P0, Netrin-1 levels are downregulated in FR animals in comparison to controls. In adult rodents, insulin administration results in an increase in Dcc mRNA levels in control but not FR rats. In HEK293 cells, there is a positive correlation between insulin concentration and miR-218 levels. Since miR-218 is a Dcc gene expression regulator and our in vitro results show that insulin regulates miR-218 levels, we suggest that FR-induced changes in insulin sensitivity could be affecting Dcc expression via miR-218, impacting DA system maturation and organization. As fetal adversity is linked to nonadaptive behaviors later in life, this may contribute to early identification of vulnerability to chronic diseases associated with fetal adversity.
Collapse
Affiliation(s)
- Aashita Batra
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
- Ludmer Centre for Neuroinformatics and Mental Health, McGill University, Montreal, QC, Canada
- Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
| | - Santiago Cuesta
- Department of Cell Biology and Neuroscience, Rutgers University, New Brunswick, NJ, USA
- Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Marcio Bonesso Alves
- Ludmer Centre for Neuroinformatics and Mental Health, McGill University, Montreal, QC, Canada
- Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
- Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Jose Maria Restrepo
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
- Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
| | - Michel Giroux
- Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
| | - Daniela Pereira Laureano
- Programa de Pós-Graduação em Saúde da Criança e do Adolescente, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Amanda Brondani Mucellini Lovato
- Programa de Pós-Graduação em Psiquiatria e Ciências do Comportamento, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Patrícia Maidana Miguel
- Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
- Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Tania Diniz Machado
- Programa de Pós-Graduação em Saúde da Criança e do Adolescente, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Roberta Dalle Molle
- Ludmer Centre for Neuroinformatics and Mental Health, McGill University, Montreal, QC, Canada
- Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
| | - Cecilia Flores
- Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
- Department of Psychiatry, McGill University, Montreal, QC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Patricia Pelufo Silveira
- Ludmer Centre for Neuroinformatics and Mental Health, McGill University, Montreal, QC, Canada
- Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
- Department of Psychiatry, McGill University, Montreal, QC, Canada
| |
Collapse
|
6
|
Jin WY, Chen XY, Han T, Jin Y, Chen TT, Wang ZH, Zhao ZY, Zhu ZW. Associations between cord blood metabolic factors and early-childhood growth and overweight and obesity. Front Endocrinol (Lausanne) 2023; 14:1164747. [PMID: 37497350 PMCID: PMC10366685 DOI: 10.3389/fendo.2023.1164747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 06/23/2023] [Indexed: 07/28/2023] Open
Abstract
Objective This prospective cohort study was aimed at investigating the associations between cord blood metabolic factors and early-childhood growth, further elucidating the relationships between cord blood metabolites and overweight and obesity in early life. Methods A total of 2,267 pairs of mothers and offspring were recruited in our study. Cord blood plasma was assayed for triglycerides (TGs), total cholesterol (TC), low-density lipoprotein-cholesterol (LDL-C), high-density lipoprotein-cholesterol (HDL-C), C-peptide, insulin, and glycosylated hemoglobin type A1C (HbA1c) levels. Data of anthropometric measurements were collected from offspring at birth, 6 months, 12 months, and 18 months. Multiple linear regression models were used to evaluate the correlations between cord blood metabolic factors and weight Z-scores, body mass index (BMI) Z-scores, and weight gains at the early stage of life. Forward stepwise logistic regression analyses were applied to explore the associations between cord blood metabolic factors and early-childhood overweight and obesity. Receiver operating characteristic (ROC) curve analyses were applied to determine the optimal cutoff points for cord blood metabolic factors in predicting early-childhood overweight and obesity. Results After adjustments for covariates, cord blood TG concentrations and TG/TC ratios were negatively associated with weight Z-scores from birth to 18 months. Cord blood C-peptide and HbA1c levels were inversely associated with weight Z-scores at 6 months and 18 months. Cord blood TG concentrations and TG/TC ratios were negatively correlated with BMI Z-scores up to 18 months. Cord blood C-peptide levels and HbA1c levels were inversely correlated with BMI Z-scores at 18 months. Cord blood TG, TG/TC ratios, C-peptide, and HbA1c had negative correlations with weight gains from birth to 6 months, but the correlations attenuated as time went on. Increase in cord blood TG and HbA1c levels and TG/TC ratios were significantly associated with decreased risks of overweight and obesity at 6 months, 12 months, and 18 months. Conclusions Cord blood metabolic factors were significantly associated with early-childhood growth patterns.
Collapse
Affiliation(s)
- Wen-Yuan Jin
- Department of Developmental Behavioral Pediatrics, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Xiao-Yang Chen
- Department of Developmental Behavioral Pediatrics, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Ting Han
- Department of Developmental Behavioral Pediatrics, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Yan Jin
- Department of Developmental Behavioral Pediatrics, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Ting-Ting Chen
- Department of Developmental Behavioral Pediatrics, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Zi-Han Wang
- Department of Developmental Behavioral Pediatrics, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Zheng-Yan Zhao
- Department of Genetic and Metabolism, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Zhi-Wei Zhu
- Department of Developmental Behavioral Pediatrics, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| |
Collapse
|
7
|
Jing Y, Gan M, Xie Z, Ma J, Chen L, Zhang S, Zhao Y, Niu L, Wang Y, Zhu L, Shen L. Characteristics of microRNAs in Skeletal Muscle of Intrauterine Growth-Restricted Pigs. Genes (Basel) 2023; 14:1372. [PMID: 37510277 PMCID: PMC10379088 DOI: 10.3390/genes14071372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/20/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
microRNAs are a class of small RNAs that have been extensively studied, which are involved in many biological processes and disease occurrence. The incidence of intrauterine growth restriction is higher in mammals, especially multiparous mammals. In this study, we found that the weight of the longissimus dorsi of intrauterine growth-restricted pigs was significantly lower than that of normal pigs. Then, intrauterine growth-restricted pig longissimus dorsi were used to characterize miRNA expression profiles by RNA sequencing. A total of 333 miRNAs were identified, of which 26 were differentially expressed. Functional enrichment analysis showed that these differentially expressed miRNAs regulate the expression of their target genes (such as PIK3R1, CCND2, AKT3, and MAP3K7), and these target genes play an important role in the proliferation and differentiation of skeletal muscle through signaling pathways such as the PI3K-Akt, MAPK, and FoxO signaling pathways. Furthermore, miRNA-451 was significantly upregulated in IUGR pig skeletal muscle. Overexpression of miR-451 in C2C12 cells significantly promoted the expression of Mb, Myod, Myog, Myh1, and Myh7, suggesting that miR-451 may be involved in the regulation of the myoblastic differentiation of C2C12 cells. Our results reveal the role of miRNA-451 in regulating myogenic differentiation of skeletal muscle in pigs with intrauterine growth restriction.
Collapse
Affiliation(s)
- Yunhong Jing
- Key Laboratory of Livestock and Poultry Multi-Omics, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Mailin Gan
- Key Laboratory of Livestock and Poultry Multi-Omics, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhongwei Xie
- Key Laboratory of Livestock and Poultry Multi-Omics, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Jianfeng Ma
- Key Laboratory of Livestock and Poultry Multi-Omics, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Lei Chen
- Key Laboratory of Livestock and Poultry Multi-Omics, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Shunhua Zhang
- Key Laboratory of Livestock and Poultry Multi-Omics, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Ye Zhao
- Key Laboratory of Livestock and Poultry Multi-Omics, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Lili Niu
- Key Laboratory of Livestock and Poultry Multi-Omics, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Yan Wang
- Key Laboratory of Livestock and Poultry Multi-Omics, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Li Zhu
- Key Laboratory of Livestock and Poultry Multi-Omics, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Linyuan Shen
- Key Laboratory of Livestock and Poultry Multi-Omics, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
8
|
Dai Y, Kou H, Gui S, Guo X, Liu H, Gong Z, Sun X, Wang H, Guo Y. Prenatal dexamethasone exposure induced pancreatic β-cell dysfunction and glucose intolerance of male offspring rats: Role of the epigenetic repression of ACE2. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 826:154095. [PMID: 35219660 DOI: 10.1016/j.scitotenv.2022.154095] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 02/01/2022] [Accepted: 02/19/2022] [Indexed: 06/14/2023]
Abstract
The prevalence of diabetes in children and adolescents has been rising gradually, which is relevant to adverse environment during development, especially prepartum. We aimed to explore the effects of prenatal dexamethasone exposure (PDE) on β-cell function and glucose homeostasis in juvenile offspring rats. Pregnant Wistar rats were subcutaneously administered with dexamethasone [0.1, 0.2, 0.4mg/(kg.d)] from gestational day 9 to 20. PDE impaired glucose tolerance in the male offspring rather than the females. In male offspring, PDE impaired the development and function of β-cells, accompanied with lower H3K9ac, H3K14ac and H3K27ac levels in the promoter region of angiotensin-converting enzyme 2 (ACE2) as well as suppressed ACE2 expression. Meanwhile, PDE increased expression of glucocorticoid receptor (GR) and histone deacetylase 3 (HDAC3) in fetal pancreas. Dexamethasone also inhibited ACE2 expression and insulin production in vitro. Recombinant expression of ACE2 restored insulin production inhibited by dexamethasone. In addition, dexamethasone activated GR and HDAC3, increased protein interaction of GR with HDAC3, and promoted the binding of GR-HDAC3 complex to ACE2 promoter region. Both RU486 and TSA abolished dexamethasone-induced decline of histone acetylation and ACE2 expression. In summary, suppression of ACE2 is involved in PDE induced β-cell dysfunction and glucose intolerance in juvenile male offspring rats.
Collapse
Affiliation(s)
- Yongguo Dai
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, Hubei Province, People's Republic of China.
| | - Hao Kou
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, Wuhan 430060, Hubei Province, People's Republic of China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, Hubei Province, People's Republic of China
| | - Shuxia Gui
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, Hubei Province, People's Republic of China
| | - Xiaoling Guo
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, Hubei Province, People's Republic of China
| | - Heze Liu
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, Hubei Province, People's Republic of China
| | - Zheng Gong
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, Hubei Province, People's Republic of China
| | - Xiaoxiang Sun
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, Hubei Province, People's Republic of China
| | - Hui Wang
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, Hubei Province, People's Republic of China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, Hubei Province, People's Republic of China.
| | - Yu Guo
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, Hubei Province, People's Republic of China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, Hubei Province, People's Republic of China.
| |
Collapse
|
9
|
Camacho LE, Davis MA, Kelly AC, Steffens NR, Anderson MJ, Limesand SW. Prenatal Oxygen and Glucose Therapy Normalizes Insulin Secretion and Action in Growth Restricted Fetal Sheep. Endocrinology 2022; 163:6585511. [PMID: 35560217 PMCID: PMC9113332 DOI: 10.1210/endocr/bqac053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Indexed: 11/19/2022]
Abstract
Placental insufficiency (PI) lowers fetal oxygen and glucose concentrations, which disrupts glucose-insulin homeostasis and promotes fetal growth restriction (FGR). To date, prenatal treatments for FGR have not attempted to correct the oxygen and glucose supply simultaneously. Therefore, we investigated whether a five-day correction of oxygen and glucose concentrations in PI-FGR fetuses would normalize insulin secretion and glucose metabolism. Experiments were performed in near-term FGR fetal sheep with maternal hyperthermia-induced PI. Fetal arterial oxygen tension was increased to normal levels by increasing the maternal inspired oxygen fraction and glucose was infused into FGR fetuses (FGR-OG). FGR-OG fetuses were compared to maternal air insufflated, saline-infused fetuses (FGR-AS) and control fetuses. Prior to treatment, FGR fetuses were hypoxemic and hypoglycemic and had reduced glucose-stimulated insulin secretion (GSIS). During treatment, oxygen, glucose, and insulin concentrations increased, and norepinephrine concentrations decreased in FGR-OG fetuses, whereas FGR-AS fetuses were unaffected. On treatment day 4, glucose fluxes were measured with euglycemic and hyperinsulinemic-euglycemic clamps. During both clamps, rates of glucose utilization and production were greater in FGR-AS than FGR-OG fetuses, while glucose fluxes in FGR-OG fetuses were not different than control rates. After five-days of treatment, GSIS increased in FGR-OG fetuses to control levels and their ex vivo islet GSIS was greater than FGR-AS islets. Despite normalization in fetal characteristics, GSIS, and glucose fluxes, FGR-OG and FGR-AS fetuses weighed less than controls. These findings show that sustained, simultaneous correction of oxygen and glucose normalized GSIS and whole-body glucose fluxes in PI-FGR fetuses after the onset of FGR.
Collapse
Affiliation(s)
- Leticia E Camacho
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, Arizona 85719, USA
| | - Melissa A Davis
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, Arizona 85719, USA
| | - Amy C Kelly
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, Arizona 85719, USA
| | - Nathan R Steffens
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, Arizona 85719, USA
| | - Miranda J Anderson
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, Arizona 85719, USA
| | - Sean W Limesand
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, Arizona 85719, USA
- Correspondence: Sean W. Limesand, PhD, Animal and Comparative Biomedical Sciences, The University of Arizona, 1650 E Limberlost Dr, Tucson AZ 85719, USA.
| |
Collapse
|
10
|
Mutamba AK, He X, Wang T. Therapeutic advances in overcoming intrauterine growth restriction induced metabolic syndrome. Front Pediatr 2022; 10:1040742. [PMID: 36714657 PMCID: PMC9875160 DOI: 10.3389/fped.2022.1040742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 12/21/2022] [Indexed: 01/13/2023] Open
Abstract
Intrauterine growth restriction (IUGR) remains a great public health challenge as it affects neonatal survival and influences their normal biological development and metabolism. Several clinical researches have revealed the occurrence of metabolic syndrome, such as insulin resistance, obesity, type 2 diabetes mellitus, oxidative stress, dyslipidemia, as direct results of IUGR. Therefore, it is essential to understand its underlying mechanism, impact and develop effective therapies. The purpose of this work is to review the current knowledge on IUGR induced metabolic syndrome and relevant therapies. Here in, we elaborate on the characteristics and causes of IUGR by pointing out recent research findings. Furthermore, we discuss the impact of IUGR on different organs of the body, followed by preclinical studies on IUGR using suitable animal models. Additionally, various metabolic disorders with their genetic implications, such as insulin resistance, type 2 diabetes mellitus, dyslipidemia, obesity are detailed. Finally, the current therapeutic options used in the treatment of IUGR are summarized with some prospective therapies highlighted.
Collapse
Affiliation(s)
- Alpha Kalonda Mutamba
- Department of Pediatrics, Neonatology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xiaori He
- Department of Pediatrics, Neonatology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Tao Wang
- Laboratory of Neonatal Disease, Institute of Pediatrics, Central South University, Changsha, China
| |
Collapse
|
11
|
Lacey TA, Gibbs RL, Most MS, Beer HN, Hicks ZM, Grijalva PC, Petersen JL, Yates DT. Decreased fetal biometrics and impaired β-cell function in IUGR fetal sheep are improved by daily ω-3 PUFA infusion. Transl Anim Sci 2021. [DOI: 10.1093/tas/txab168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Taylor A Lacey
- Department of Animal Science, University of Nebraska – Lincoln, NE 68583, USA
| | - Rachel L Gibbs
- Department of Animal Science, University of Nebraska – Lincoln, NE 68583, USA
| | - Micah S Most
- Department of Animal Science, University of Nebraska – Lincoln, NE 68583, USA
| | - Haley N Beer
- Department of Animal Science, University of Nebraska – Lincoln, NE 68583, USA
| | - Zena M Hicks
- Department of Animal Science, University of Nebraska – Lincoln, NE 68583, USA
| | - Pablo C Grijalva
- Department of Animal Science, University of Nebraska – Lincoln, NE 68583, USA
| | - Jessica L Petersen
- Department of Animal Science, University of Nebraska – Lincoln, NE 68583, USA
| | - Dustin T Yates
- Department of Animal Science, University of Nebraska – Lincoln, NE 68583, USA
| |
Collapse
|
12
|
Mucellini AB, Miguel PM, Dalle Molle R, Rodrigues DM, Machado TD, Reis RS, Toazza R, Salum GA, Bortoluzzi A, Franco AR, Buchweitz A, Barth B, Agranonik M, Nassim M, Meaney MJ, Manfro GG, Silveira PP. Diminished insulin sensitivity is associated with altered brain activation to food cues and with risk for obesity - Implications for individuals born small for gestational age. Appetite 2021; 169:105799. [PMID: 34767841 DOI: 10.1016/j.appet.2021.105799] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 10/14/2021] [Accepted: 11/05/2021] [Indexed: 11/02/2022]
Abstract
While classically linked to memory, the hippocampus is also a feeding behavior modulator due to its multiple interconnected pathways with other brain regions and expression of receptors for metabolic hormones. Here we tested whether variations in insulin sensitivity would be correlated with differential brain activation following exposure to palatable food cues, as well as with variations in implicit food memory in a cohort of healthy adolescents, some of whom were born small for gestational age (SGA). Homeostatic Model Assessment of Insulin Resistance (HOMA-IR) was positively correlated with activation in the cuneus, and negatively correlated with activation in the middle frontal lobe, superior frontal gyrus and precuneus when presented with palatable food images versus non-food images in healthy adolescents. Additionally, HOMA-IR and insulinemia were higher in participants with impaired food memory. SGA individuals had higher snack caloric density and greater chance for impaired food memory. There was also an interaction between the HOMA-IR and birth weight ratio influencing external eating behavior. We suggest that diminished insulin sensitivity correlates with activation in visual attention areas and inactivation in inhibitory control areas in healthy adolescents. Insulin resistance also associated with less consistency in implicit memory for a consumed meal, which may suggest lower ability to establish a dietary pattern, and can contribute to obesity. Differences in feeding behavior in SGA individuals were associated with insulin sensitivity and hippocampal alterations, suggesting that cognition and hormonal regulation are important components involved in their food intake modifications throughout life.
Collapse
Affiliation(s)
- Amanda B Mucellini
- Graduate Program in Psychiatry and Behavioral Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Patrícia M Miguel
- Graduate Program in Neuroscience, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| | - Roberta Dalle Molle
- Graduate Program in Child and Adolescent Health, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Danitsa M Rodrigues
- Graduate Program in Neuroscience, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Tania D Machado
- Graduate Program in Child and Adolescent Health, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Roberta S Reis
- Graduate Program in Child and Adolescent Health, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Rudinéia Toazza
- Graduate Program in Neuroscience, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Giovanni A Salum
- Graduate Program in Psychiatry and Behavioral Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Andressa Bortoluzzi
- Graduate Program in Neuroscience, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Alexandre R Franco
- Brain Institute of Rio Grande do Sul, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Augusto Buchweitz
- Brain Institute of Rio Grande do Sul, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Barbara Barth
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Mental Health University Institute, McGill University, Montreal, Quebec, Canada; Integrated Program in Neurosciences, McGill University, Montreal, QC, Canada
| | - Marilyn Agranonik
- Fundação de Economia e Estatística Siegfried Emanuel Heuser, Porto Alegre, Brazil
| | - Marouane Nassim
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Mental Health University Institute, McGill University, Montreal, Quebec, Canada
| | - Michael J Meaney
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Mental Health University Institute, McGill University, Montreal, Quebec, Canada; Department of Psychiatry, McGill University, Montreal, Quebec, Canada; Translational Neuroscience Programme, Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Gisele G Manfro
- Graduate Program in Psychiatry and Behavioral Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Graduate Program in Neuroscience, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Patrícia P Silveira
- Graduate Program in Neuroscience, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Ludmer Centre for Neuroinformatics and Mental Health, Douglas Mental Health University Institute, McGill University, Montreal, Quebec, Canada; Department of Psychiatry, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
13
|
Buckels EJ, Bloomfield FH, Oliver MH, Spiroski AM, Harding JE, Jaquiery AL. Sexually dimorphic changes in the endocrine pancreas and skeletal muscle in young adulthood following intra-amniotic IGF-I treatment of growth-restricted fetal sheep. Am J Physiol Endocrinol Metab 2021; 321:E530-E542. [PMID: 34459219 DOI: 10.1152/ajpendo.00111.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Fetal growth restriction (FGR) is associated with decreased insulin secretory capacity and decreased insulin sensitivity in muscle in adulthood. We investigated whether intra-amniotic IGF-I treatment in late gestation mitigated the adverse effects of FGR on the endocrine pancreas and skeletal muscle at 18 mo of age. Singleton-bearing ewes underwent uterine artery embolization between 103 and 107 days of gestational age, followed by 5 once-weekly intra-amniotic injections of 360-µg IGF-I (FGRI) or saline (FGRS) and were compared with an unmanipulated control group (CON). We measured offspring pancreatic endocrine cell mass and pancreatic and skeletal muscle mRNA expression at 18 mo of age (n = 7-9/sex/group). Total α-cell mass was increased ∼225% in FGRI males versus CON and FGRS males, whereas β-cell mass was not different between groups of either sex. Pancreatic mitochondria-related mRNA expression was increased in FGRS females versus CON (NRF1, MTATP6, UCP2), and FGRS males versus CON (TFAM, NRF1, UCP2) but was largely unchanged in FGRI males versus CON. In skeletal muscle, mitochondria-related mRNA expression was decreased in FGRS females versus CON (PPARGC1A, TFAM, NRF1, UCP2, MTATP6), FGRS males versus CON (NRF1 and UCP2), and FGRI females versus CON (TFAM and UCP2), with only MTATP6 expression decreased in FGRI males versus CON. Although the window during which IGF-I treatment was delivered was limited to the final 5 wk of gestation, IGF-I therapy of FGR altered the endocrine pancreas and skeletal muscle in a sex-specific manner in young adulthood.NEW & NOTEWORTHY Fetal growth restriction (FGR) is associated with compromised metabolic function throughout adulthood. Here, we explored the long-term effects of fetal IGF-I therapy on the adult pancreas and skeletal muscle. This is the first study demonstrating that IGF-I therapy of FGR has sex-specific long-term effects at both the tissue and molecular level on metabolically active tissues in adult sheep.
Collapse
Affiliation(s)
- Emma J Buckels
- The Liggins Institute, University of Auckland, Auckland, New Zealand
| | | | - Mark H Oliver
- The Liggins Institute, University of Auckland, Auckland, New Zealand
| | | | - Jane E Harding
- The Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Anne L Jaquiery
- The Liggins Institute, University of Auckland, Auckland, New Zealand
| |
Collapse
|
14
|
The Role of Long Non-Coding RNAs in Trophoblast Regulation in Preeclampsia and Intrauterine Growth Restriction. Genes (Basel) 2021; 12:genes12070970. [PMID: 34201957 PMCID: PMC8305149 DOI: 10.3390/genes12070970] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/06/2021] [Accepted: 06/16/2021] [Indexed: 12/13/2022] Open
Abstract
Preeclampsia (PE) and Intrauterine Growth Restriction (IUGR) are two pregnancy-specific placental disorders with high maternal, fetal, and neonatal morbidity and mortality rates worldwide. The identification biomarkers involved in the dysregulation of PE and IUGR are fundamental for developing new strategies for early detection and management of these pregnancy pathologies. Several studies have demonstrated the importance of long non-coding RNAs (lncRNAs) as essential regulators of many biological processes in cells and tissues, and the placenta is not an exception. In this review, we summarize the importance of lncRNAs in the regulation of trophoblasts during the development of PE and IUGR, and other placental disorders.
Collapse
|
15
|
Posont RJ, Cadaret CN, Beard JK, Swanson RM, Gibbs RL, Marks-Nelson ES, Petersen JL, Yates DT. Maternofetal inflammation induced for 2 wk in late gestation reduced birth weight and impaired neonatal growth and skeletal muscle glucose metabolism in lambs. J Anim Sci 2021; 99:6199898. [PMID: 33780540 DOI: 10.1093/jas/skab102] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 03/24/2021] [Indexed: 12/22/2022] Open
Abstract
Intrauterine stress impairs growth and metabolism in the fetus and offspring. We recently found that sustained maternofetal inflammation resulted in intrauterine growth-restricted (MI-IUGR) fetuses with asymmetric body composition, impaired muscle glucose metabolism, and β-cell dysfunction near term. These fetuses also exhibited heightened inflammatory tone, which we postulated was a fetal programming mechanism for the IUGR phenotype. Thus, the objective of this study was to determine whether poor growth and metabolism persisted in MI-IUGR lambs after birth. Polypay ewes received serial lipopolysaccharide or saline injections in the first 2 wk of the third trimester of pregnancy to produce MI-IUGR (n = 13) and control (n = 12) lambs, respectively. Lambs were catheterized at 25 d of age. β-Cell function was assessed at 29 d, hindlimb glucose metabolism at 30 d, and daily blood parameters from day 26 to 31. Glucose metabolism was also assessed in flexor digitorum superficialis (FDS) muscle isolated at necropsy on day 31. Asymmetric body composition persisted in MI-IUGR neonates, as these lambs were lighter (P < 0.05) than controls at birth and 31 d, but body and cannon bone lengths did not differ at either age. FDS muscles from MI-IUGR lambs were smaller (P < 0.05) and exhibited reduced (P < 0.05) glucose oxidation and Akt phosphorylation but similar glucose uptake compared with controls when incubated in basal or insulin-spiked media. Similarly, hindlimb glucose oxidation was reduced (P < 0.05) in MI-IUGR lambs under basal and hyperinsulinemic conditions, but hindlimb glucose utilization did not differ from controls. Circulating urea nitrogen and cholesterol were reduced (P < 0.05), and triglycerides, high-density lipoprotein cholesterol, and glucose-to-insulin ratios were increased (P < 0.05) in MI-IUGR lambs. Glucose and insulin concentrations did not differ between groups during basal or hyperglycemic conditions. Although circulating monocyte and granulocyte concentrations were greater (P < 0.05) in MI-IUGR lambs, plasma tumor necrosis factor α (TNFα) was reduced (P < 0.05). FDS muscle contained greater (P < 0.05) TNF receptor 1 (TNFR1) and IκBα protein content. These findings indicate that maternofetal inflammation in late pregnancy results in fetal programming that impairs growth capacity, muscle glucose oxidation, and lipid homeostasis in offspring. Inflammatory indicators measured in this study appear to reflect heightened cytokine sensitivity in muscle and compensatory systemic responses to it.
Collapse
Affiliation(s)
- Robert J Posont
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Caitlin N Cadaret
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Joslyn K Beard
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Rebecca M Swanson
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Rachel L Gibbs
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Eileen S Marks-Nelson
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Jessica L Petersen
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Dustin T Yates
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| |
Collapse
|
16
|
Huang JS, Chen QZ, Zheng SY, Ramakrishnan R, Zeng JY, Zhuo CP, Lai YM, Kuang YS, Lu JH, He JR, Qiu X. Associations of Longitudinal Fetal Growth Patterns With Cardiometabolic Factors at Birth. Front Endocrinol (Lausanne) 2021; 12:771193. [PMID: 34956083 PMCID: PMC8696025 DOI: 10.3389/fendo.2021.771193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 11/16/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Birth weight is associated with cardiometabolic factors at birth. However, it is unclear when these associations occur in fetal life. We aimed to investigate the associations between fetal growth in different gestational periods and cord blood cardiometabolic factors. METHODS We included 1,458 newborns from the Born in Guangzhou Cohort Study, China. Z-scores of fetal size parameters [weight, abdominal circumference (AC), and femur length (FL)] at 22 weeks and growth at 22-27, 28-36, and ≥37 weeks were calculated from multilevel linear spline models. Multiple linear regression was used to examine the associations between fetal growth variables and z-scores of cord blood cardiometabolic factors. RESULTS Fetal weight at each period was positively associated with insulin levels, with stronger association at 28-36 weeks (β, 0.31; 95% CI, 0.23 to 0.39) and ≥37 weeks (β, 0.15; 95% CI, 0.10 to 0.20) compared with earlier gestational periods. Fetal weight at 28-36 (β, -0.32; 95% CI, -0.39 to -0.24) and ≥37 weeks (β, -0.26; 95% CI, -0.31 to -0.21) was negatively associated with triglyceride levels, whereas weight at 28-36 weeks was positively associated with HDL levels (β, 0.12; 95% CI, 0.04 to 0.20). Similar results were observed for AC. Fetal FL at 22 and 22-27 weeks was associated with increased levels of insulin, glucose, and HDL. CONCLUSIONS Fetal growth at different gestational periods was associated with cardiometabolic factors at birth, suggesting that an interplay between fetal growth and cardiometabolic factors might exist early in pregnancy.
Collapse
Affiliation(s)
- Jia-Shuan Huang
- Division of Birth Cohort Study, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
- Paediatrics School, Guangzhou Medical University, Guangzhou, China
| | - Qiao-Zhu Chen
- Department of Obstetrics and Gynecology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Si-Yu Zheng
- Division of Birth Cohort Study, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
- Paediatrics School, Guangzhou Medical University, Guangzhou, China
| | - Rema Ramakrishnan
- National Perinatal Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Ji-Yuan Zeng
- Division of Birth Cohort Study, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
- Paediatrics School, Guangzhou Medical University, Guangzhou, China
| | - Can-Peng Zhuo
- Division of Birth Cohort Study, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
- Paediatrics School, Guangzhou Medical University, Guangzhou, China
| | - Yu-Mian Lai
- Department of Obstetrics and Gynecology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Ya-Shu Kuang
- Division of Birth Cohort Study, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Jin-Hua Lu
- Division of Birth Cohort Study, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
- Department of Women and Child Health Care and Provincial Key Clinical Specialty of Woman and Child Health, Guangzhou, China
| | - Jian-Rong He
- Division of Birth Cohort Study, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
- Department of Women and Child Health Care and Provincial Key Clinical Specialty of Woman and Child Health, Guangzhou, China
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford, United Kingdom
- *Correspondence: Xiu Qiu, ; Jian-Rong He,
| | - Xiu Qiu
- Division of Birth Cohort Study, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
- Department of Women and Child Health Care and Provincial Key Clinical Specialty of Woman and Child Health, Guangzhou, China
- *Correspondence: Xiu Qiu, ; Jian-Rong He,
| |
Collapse
|
17
|
Glastras SJ, Valvi D, Bansal A. Editorial: Developmental Programming of Metabolic Diseases. Front Endocrinol (Lausanne) 2021; 12:781361. [PMID: 34745018 PMCID: PMC8566724 DOI: 10.3389/fendo.2021.781361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 10/05/2021] [Indexed: 12/01/2022] Open
Affiliation(s)
- Sarah J. Glastras
- Department of Diabetes, Metabolism and Endocrinology, and Kolling Institute, Royal North Shore Hospital, Sydney, NSW, Australia
- Sydney Medical School, University of Sydney, NSW, Australia
| | - Damaskini Valvi
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- *Correspondence: Damaskini Valvi, ; Amita Bansal,
| | - Amita Bansal
- Australian National University (ANU) Medical School, and John Curtin School of Medical Research, College of Health and Medicine, Australian National University, Canberra, ACT, Australia
- *Correspondence: Damaskini Valvi, ; Amita Bansal,
| |
Collapse
|
18
|
Wu Y, Yin G, Wang P, Huang Z, Lin S. Effects of different diet-induced postnatal catch-up growth on glycolipid metabolism in intrauterine growth retardation male rats. Exp Ther Med 2020; 20:134. [PMID: 33082866 PMCID: PMC7560533 DOI: 10.3892/etm.2020.9263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Accepted: 06/24/2020] [Indexed: 02/05/2023] Open
Abstract
A number of studies have reported the occurrence of long-term metabolic disorders in mammals following intrauterine growth retardation (IUGR). However, the effects of dietary patterns during IUGR have not been fully elucidated. The present study aimed to evaluate the effects of different dietary patterns during critical growth windows on metabolic outcomes in the offspring of rats with IUGR. Male offspring rats from mothers fed either a normal or low-protein diet were randomly assigned to one of the following groups: Normal diet throughout pregnancy, lactation and after weaning (CON); normal diet throughout pregnancy and high-fat diet throughout lactation and after weaning (N + H + H); low-protein diet throughout pregnancy and high-fat diet throughout lactation and after weaning (IUGR + H + H); low-protein diet throughout pregnancy and lactation and high-fat diet after weaning (IUGR + L + H); and low-protein diet throughout pregnancy and normal diet throughout lactation and after weaning. During lactation, the male offspring in the N + H + H group exhibited the fastest growth rate, whereas the slowest rate was in the IUGR + L + H group. Following weaning, all IUGR groups demonstrated significant catch-up growth. Abnormal insulin tolerance were observed in the N + H + H, IUGR + H + H and IUGR + L + H groups and insulin sensitivity was decreased in IUGR + L + H group. The triglycerides/high-density lipoprotein ratio in the IUGR + L + H group was significantly higher compared with in the other groups. The abdominal circumference, Lee's index and adipocyte diameter of IUGR groups were significantly increased compared with the CON group. High levels of leptin and interleukin-6 in adipose tissues, and low adiponectin were observed in the IUGR + L + H group. Different dietary patterns during specific growth windows showed numerous impacts on glycolipid metabolism in IUGR offspring. The present study elucidated the mechanisms and potential options for IUGR treatment and prevention.
Collapse
Affiliation(s)
- Yixi Wu
- Department of Endocrinology, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515000, P.R. China
| | - Guoshu Yin
- Department of Endocrinology, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515000, P.R. China
| | - Ping Wang
- Center of Reproductive Medicine, Shantou University Medical College, Shantou, Guangdong 515000, P.R. China
| | - Zhihua Huang
- Center of Reproductive Medicine, Shantou University Medical College, Shantou, Guangdong 515000, P.R. China
| | - Shaoda Lin
- Department of Endocrinology, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515000, P.R. China
- Correspondence to: Dr Shaoda Lin, Department of Endocrinology, The First Affiliated Hospital of Shantou University Medical College, 57 Changping Road, Shantou, Guangdong 515000, P.R. China
| |
Collapse
|
19
|
Alejandro EU, Jo S, Akhaphong B, Llacer PR, Gianchandani M, Gregg B, Parlee SD, MacDougald OA, Bernal-Mizrachi E. Maternal low-protein diet on the last week of pregnancy contributes to insulin resistance and β-cell dysfunction in the mouse offspring. Am J Physiol Regul Integr Comp Physiol 2020; 319:R485-R496. [PMID: 32877242 PMCID: PMC7717124 DOI: 10.1152/ajpregu.00284.2019] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 08/17/2020] [Accepted: 08/17/2020] [Indexed: 12/17/2022]
Abstract
Maternal low-protein diet (LP) throughout gestation affects pancreatic β-cell fraction of the offspring at birth, thus increasing their susceptibility to metabolic dysfunction and type 2 diabetes in adulthood. The present study sought to strictly examine the effects of LP during the last week of gestation (LP12.5) alone as a developmental window for β-cell programming and metabolic dysfunction in adulthood. Islet morphology analysis revealed normal β-cell fraction in LP12.5 newborns. Normal glucose tolerance was observed in 6- to 8-wk-old male and female LP12.5 offspring. However, male LP12.5 offspring displayed glucose intolerance and reduced insulin sensitivity associated with β-cell dysfunction with aging. High-fat diet exposure of metabolically normal 12-wk-old male LP12.5 induced glucose intolerance due to increased body weight, insulin resistance, and insufficient β-cell mass adaptation despite higher insulin secretion. Assessment of epigenetic mechanisms through microRNAs (miRs) by a real-time PCR-based microarray in islets revealed elevation in miRs that regulate insulin secretion (miRs 342, 143), insulin resistance (miR143), and obesity (miR219). In the islets, overexpression of miR143 reduced insulin secretion in response to glucose. In contrast to the model of LP exposure throughout pregnancy, islet protein levels of mTOR and pancreatic and duodenal homeobox 1 were normal in LP12.5 islets. Collectively, these data suggest that LP diet during the last week of pregnancy is critical and sufficient to induce specific and distinct developmental programming effects of tissues that control glucose homeostasis, thus causing permanent changes in specific set of microRNAs that may contribute to the overall vulnerability of the offspring to obesity, insulin resistance, and type 2 diabetes.
Collapse
Affiliation(s)
- Emilyn U Alejandro
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, Minnesota
- Division of Metabolism, Endocrinology, and Diabetes, Department of Internal Medicine, Brehm Center for Diabetes Research, University of Michigan Medical School, Ann Arbor, Michigan
| | - Seokwon Jo
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, Minnesota
| | - Brian Akhaphong
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, Minnesota
| | - Pau Romaguera Llacer
- Division of Endocrinology, Metabolism and Diabetes, University of Miami, Miami, Florida
| | - Maya Gianchandani
- Division of Metabolism, Endocrinology, and Diabetes, Department of Internal Medicine, Brehm Center for Diabetes Research, University of Michigan Medical School, Ann Arbor, Michigan
| | - Brigid Gregg
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, Michigan
| | - Sebastian D Parlee
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Ormond A MacDougald
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Ernesto Bernal-Mizrachi
- Division of Metabolism, Endocrinology, and Diabetes, Department of Internal Medicine, Brehm Center for Diabetes Research, University of Michigan Medical School, Ann Arbor, Michigan
- Veterans Affairs Ann Arbor Healthcare System, Ann Arbor, Michigan
- Miami Veterans Affairs Healthcare System University of Miami, Miami, Florida
- Division of Endocrinology, Metabolism and Diabetes, University of Miami, Miami, Florida
| |
Collapse
|
20
|
Kou H, Gui S, Dai Y, Guo Y, Wang H. Epigenetic repression of AT2 receptor is involved in β cell dysfunction and glucose intolerance of adult female offspring rats exposed to dexamethasone prenatally. Toxicol Appl Pharmacol 2020; 404:115187. [PMID: 32791177 DOI: 10.1016/j.taap.2020.115187] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 07/22/2020] [Accepted: 08/07/2020] [Indexed: 12/30/2022]
Abstract
Prenatal exposure to dexamethasone (PDE) impairs pancreatic β cell development and glucose homeostasis in offspring especially females. To explore the underlying intrauterine programming mechanism, pregnant Wistar rats were subcutaneously administered with dexamethasone (0, 0.2 and 0.8 mg/kg·d) from gestational days (GD) 9 to 20. Female offspring were collected on GD20 (fetus) and in postnatal week 28 (adult), respectively. PDE reduced the serum insulin levels, β cell mass, and pancreatic insulin expressions in fetuses and adults, causing glucose intolerance after maturity. The persistent suppression of pancreatic angiotensin II receptor type 2 (AT2R) expression before and after birth could be observed in the PDE females, which is accompanied with decreased histone 3 lysine 14 acetylation (H3K14ac) and H3K27ac levels in AT2R promoter. PDE increased the gene expressions of glucocorticoid receptor (GR) and histone deacetylase 2 (HDAC2) in fetal pancreas. Furthermore, dexamethasone inhibited insulin biosynthesis while activated GR and HDAC2 expression in the rat INS-1 cells. The AT2R expression was repressed by dexamethasone in vitro but only H3K27ac levels in AT2R promoter were lowered. Dexamethasone enhanced the interaction between GR and HDAC2 proteins as well as the binding of GR/HDAC2 complex to AT2R promoter. Moreover, overexpression of AT2R could restore the suppressed insulin biosynthesis induced by dexamethasone in vitro, and both GR antagonist and histone deacetylase abolished the decreased H3K27ac level and gene expression of AT2R. In conclusion, continuous epigenetic repression of AT2R before and after birth may be involved in β cell dysfunction and glucose intolerance of the PDE adult female offspring.
Collapse
Affiliation(s)
- Hao Kou
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China; Department of Pharmacy, Zhongnan Hospital of Wuhan University, Wuhan 40071, China; Hubei Provincial Key Laboratory of Developmentally Originated Diseases, Wuhan 430071, China
| | - Shuxia Gui
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Yongguo Dai
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Yu Guo
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Diseases, Wuhan 430071, China.
| | - Hui Wang
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Diseases, Wuhan 430071, China.
| |
Collapse
|
21
|
Reynolds LP, Borowicz PP, Caton JS, Crouse MS, Dahlen CR, Ward AK. Developmental Programming of Fetal Growth and Development. Vet Clin North Am Food Anim Pract 2019; 35:229-247. [PMID: 31103178 DOI: 10.1016/j.cvfa.2019.02.006] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Maternal stressors that affect fetal development result in "developmental programming," which is associated with increased risk of various chronic pathologic conditions in the offspring, including metabolic syndrome; growth abnormalities; and reproductive, immune, behavioral, or cognitive dysfunction that can persist throughout their lifetime and even across subsequent generations. Developmental programming thus can lead to poor health, reduced longevity, and reduced productivity. Current research aims to develop management and therapeutic strategies to optimize fetal growth and development and thereby overcome the negative consequences of developmental programming, leading to improved health, longevity, and productivity of offspring.
Collapse
Affiliation(s)
- Lawrence P Reynolds
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, NDSU Department 7630, Fargo, ND 58108-6050, USA.
| | - Pawel P Borowicz
- Advanced Imaging and Microscopy Core Lab, Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, NDSU Department 7630, Fargo, ND 58108-6050, USA
| | - Joel S Caton
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, NDSU Department 7630, Fargo, ND 58108-6050, USA
| | - Matthew S Crouse
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, NDSU Department 7630, Fargo, ND 58108-6050, USA
| | - Carl R Dahlen
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, NDSU Department 7630, Fargo, ND 58108-6050, USA
| | - Alison K Ward
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, NDSU Department 7630, Fargo, ND 58108-6050, USA
| |
Collapse
|
22
|
Xiao D, Kou H, Gui S, Ji Z, Guo Y, Wu Y, Wang H. Age-Characteristic Changes of Glucose Metabolism, Pancreatic Morphology and Function in Male Offspring Rats Induced by Prenatal Ethanol Exposure. Front Endocrinol (Lausanne) 2019; 10:34. [PMID: 30778335 PMCID: PMC6369175 DOI: 10.3389/fendo.2019.00034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 01/16/2019] [Indexed: 01/05/2023] Open
Abstract
Intrauterine growth restricted offspring suffer from abnormal glucose homeostasis and β cell dysfunction. In this study, we observed the dynamic changes of glucose metabolic phenotype, pancreatic morphology, and insulin synthesis in prenatal ethanol exposure (PEE) male offspring rats, and to explore the potential intrauterine programming mechanism of the glucocorticoid-insulin-like growth factor 1 (GC-IGF1) axis. Ethanol (4 g/kg·d) was administered through oral gavage during gestational day (GD) 9-20. Serum glucose and insulin levels, pancreatic β cell mass, and expression of glucocorticoid receptor (GR), IGF1 and insulin were determined on GD20, postnatal week (PW) 6, PW12 with/without chronic stress (CS), and PW24, respectively. Both intraperitoneal glucose and insulin tolerance tests were conducted at PW12 and PW24. Results showed that the serum glucose and insulin levels as well as pancreatic β cell mass were reduced on GD20 in PEE males compared with the controls, while pancreatic GR expression was enhanced but IGF1 and INS1/2 expression were suppressed. After birth, compared with the controls, β cell mass in the PEE males was initially decreased at PW6 and gradually recovered from PW12 to PW24, which was accompanied by increased serum glucose/insulin levels and insulin resistance index (IRI) at PW6 and decreased serum glucose contents at PW12, as well as unchanged serum glucose/insulin concentrations at PW24. In addition, both improved glucose tolerance and impaired insulin sensitivity of the PEE males at PW12 were inversed at PW24. Moreover, at PW6 and PW12, pancreatic GR expression in the PEE group was decreased, while IGF1 expression was reversely increased, resulting in a compensatory increase of insulin expression. Moreover, CS induced pancreatic GR activation and inhibited IGF1 expression, resulting in impaired insulin biosynthesis. Conclusively, the above changes were associated with age and the intrauterine programming alteration of GC-IGF1 axis may be involved in prenatal and postnatal pancreatic dysplasia and impaired insulin biosynthesis in PEE male offspring.
Collapse
Affiliation(s)
- Di Xiao
- Department of Pharmacology, School of Basic Medical Sciences of Wuhan University, Wuhan, China
| | - Hao Kou
- Department of Pharmacy, Zhongnan Hospital, Wuhan University, Wuhan, China
- Hubei Provincial Key Laboratory of Developmentally Originated Diseases, Wuhan, China
| | - Shuxia Gui
- Department of Pharmacology, School of Basic Medical Sciences of Wuhan University, Wuhan, China
| | - Zhenyu Ji
- Department of Pharmacology, School of Basic Medical Sciences of Wuhan University, Wuhan, China
| | - Yu Guo
- Department of Pharmacology, School of Basic Medical Sciences of Wuhan University, Wuhan, China
- Hubei Provincial Key Laboratory of Developmentally Originated Diseases, Wuhan, China
| | - Yin Wu
- Department of Pharmacology, School of Basic Medical Sciences of Wuhan University, Wuhan, China
- Hubei Provincial Key Laboratory of Developmentally Originated Diseases, Wuhan, China
| | - Hui Wang
- Department of Pharmacology, School of Basic Medical Sciences of Wuhan University, Wuhan, China
- Hubei Provincial Key Laboratory of Developmentally Originated Diseases, Wuhan, China
- *Correspondence: Hui Wang
| |
Collapse
|
23
|
Mohan R, Baumann D, Alejandro EU. Fetal undernutrition, placental insufficiency, and pancreatic β-cell development programming in utero. Am J Physiol Regul Integr Comp Physiol 2018; 315:R867-R878. [PMID: 30110175 DOI: 10.1152/ajpregu.00072.2018] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The prevalence of obesity and type 2 (T2D) diabetes is a major health concern in the United States and around the world. T2D is a complex disease characterized by pancreatic β-cell failure in association with obesity and insulin resistance in peripheral tissues. Although several genes associated with T2D have been identified, it is speculated that genetic variants account for only <10% of the risk for this disease. A strong body of data from both human epidemiological and animal studies shows that fetal nutrient factors in utero confer significant susceptibility to T2D. Numerous studies done in animals have shown that suboptimal maternal environment or placental insufficiency causes intrauterine growth restriction (IUGR) in the fetus, a critical factor known to predispose offspring to obesity and T2D, in part by causing permanent consequences in total functional β-cell mass. This review will focus on the potential contribution of the placenta in fetal programming of obesity and TD and its likely impact on pancreatic β-cell development and growth.
Collapse
Affiliation(s)
- Ramkumar Mohan
- Department of Integrative Biology and Physiology, University of Minnesota , Minneapolis, Minnesota
| | - Daniel Baumann
- Department of Integrative Biology and Physiology, University of Minnesota , Minneapolis, Minnesota
| | - Emilyn Uy Alejandro
- Department of Integrative Biology and Physiology, University of Minnesota , Minneapolis, Minnesota
| |
Collapse
|
24
|
Wallace JM, Milne JS, Aitken RP, Horgan GW, Adam CL. Ovine prenatal growth restriction impacts glucose metabolism and body composition throughout life in both sexes. Reproduction 2018; 156:103-119. [PMID: 29789442 DOI: 10.1530/rep-18-0048] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 05/21/2018] [Indexed: 12/28/2022]
Abstract
Low birthweight is a risk factor for later adverse health. Here the impact of placentally mediated prenatal growth restriction followed by postnatal nutrient abundance on growth, glucose metabolism and body composition was assessed in both sexes at key stages from birth to mid-adult life. Singleton-bearing adolescent dams were fed control or high nutrient intakes to induce normal or growth-restricted pregnancies respectively. Restricted lambs had ~40% reduced birthweight. Fractional growth rates were higher in restricted lambs of both sexes predominantly during suckling/juvenile phases. Thereafter, rates and patterns of growth differed by sex. Absolute catch-up was not achieved and restricted offspring had modestly reduced weight and stature at mid-adulthood necropsy (~109 weeks). Dual-energy X-ray absorptiometry revealed lower bone mineral density in restricted vs normal lambs at 11, 41, 64 and 107 weeks, with males > females from 41 weeks onwards. Body fat percentage was higher in females vs males throughout, in restricted vs normal lambs at weaning (both sexes) and in restricted vs normal females at mid-adulthood. Insulin secretion after glucose challenge was greater in restricted vs normal of both sexes at 7 weeks and in restricted males at 32 weeks. In both sexes, fasting glucose concentrations were greater in restricted offspring across the life course, while glucose area under the curve after challenge was higher in restricted offspring at 32, 60, 85 and 106 weeks, indicative of persistent glucose intolerance. Therefore, prenatal growth restriction has negative consequences for body composition and metabolism throughout the life course with the effects modulated by sex differences in postnatal growth rates, fat deposition and bone mass accrual.
Collapse
Affiliation(s)
| | - John S Milne
- Rowett InstituteUniversity of Aberdeen, Aberdeen, UK
| | | | | | - Clare L Adam
- Rowett InstituteUniversity of Aberdeen, Aberdeen, UK
| |
Collapse
|
25
|
Le Stunff C, Castell AL, Todd N, Mille C, Belot MP, Frament N, Brailly-Tabard S, Benachi A, Fradin D, Bougnères P. Fetal growth is associated with CpG methylation in the P2 promoter of the IGF1 gene. Clin Epigenetics 2018; 10:57. [PMID: 29713392 PMCID: PMC5909239 DOI: 10.1186/s13148-018-0489-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 04/04/2018] [Indexed: 12/31/2022] Open
Abstract
Background There are many reasons to think that epigenetics is a key determinant of fetal growth variability across the normal population. Since IGF1 and INS genes are major determinants of intrauterine growth, we examined the methylation of selected CpGs located in the regulatory region of these two genes. Methods Cord blood was sampled in 159 newborns born to mothers prospectively followed during their pregnancy. A 142-item questionnaire was filled by mothers at inclusion, during the last trimester of the pregnancy and at the delivery. The methylation of selected CpGs located in the promoters of the IGF1 and INS genes was measured in cord blood mononuclear cells collected at birth using bisulfite-PCR-pyrosequencing. Results Methylation at IGF1 CpG-137 correlated negatively with birth length (r = 0.27, P = 3.5 × 10−4). The same effect size was found after adjustment for maternal age, parity, and smoking: a 10% increase in CpG-137 methylation was associated with a decrease of length by 0.23 SDS. Conclusion The current results suggest that the methylation of IGF1 CpG-137 contributes to the individual variation of fetal growth by regulating IGF1 expression in fetal tissues. Electronic supplementary material The online version of this article (10.1186/s13148-018-0489-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Catherine Le Stunff
- 1Institut National de la Santé et de la Recherche Médicale U1169, Bicêtre Hospital, Paris Sud University, Le Kremlin-Bicêtre, France
| | - Anne-Laure Castell
- 2Service de Médecine des Adolescents, Bicêtre Hospital, Paris Sud University, Le Kremlin-Bicêtre, France
| | - Nicolas Todd
- 1Institut National de la Santé et de la Recherche Médicale U1169, Bicêtre Hospital, Paris Sud University, Le Kremlin-Bicêtre, France
| | - Clémence Mille
- 1Institut National de la Santé et de la Recherche Médicale U1169, Bicêtre Hospital, Paris Sud University, Le Kremlin-Bicêtre, France
| | - Marie-Pierre Belot
- 1Institut National de la Santé et de la Recherche Médicale U1169, Bicêtre Hospital, Paris Sud University, Le Kremlin-Bicêtre, France
| | - Nathalie Frament
- 1Institut National de la Santé et de la Recherche Médicale U1169, Bicêtre Hospital, Paris Sud University, Le Kremlin-Bicêtre, France
| | - Sylvie Brailly-Tabard
- 3Service de BiologieMoléculaire et Hormonologie, Bicêtre Hospital, Paris Sud University, Le Kremlin-Bicêtre, France
| | - Alexandra Benachi
- 4Service de Gynécologie-Obstétrique, Antoine Béclère Hospital, Paris Sud University, Clamart, France
| | | | - Pierre Bougnères
- 1Institut National de la Santé et de la Recherche Médicale U1169, Bicêtre Hospital, Paris Sud University, Le Kremlin-Bicêtre, France
| |
Collapse
|
26
|
Preliminary report of altered insulin secretion pattern in monochorionic twin pregnancies complicated with selective intrauterine growth restriction. Taiwan J Obstet Gynecol 2017; 56:51-54. [PMID: 28254226 DOI: 10.1016/j.tjog.2015.11.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/10/2015] [Indexed: 11/20/2022] Open
Abstract
OBJECTIVE Fetuses with intrauterine growth restriction (IUGR) have adaptive hormonal changes including changes in insulin, which may increase their future risks for developing diabetes mellitus. This study compared cord blood insulin concentrations in IUGR and appropriate for gestational age (AGA) fetuses in a monochorionic (MC) twin model. MATERIALS AND METHODS Ten pairs were classified as selective IUGR (sIUGR) based on having one twin weight below the 10th percentile and with an intertwin birth weight discordance>20%. Fourteen pairs without IUGR were included as a comparison group. Pregnancies with twin-twin transfusion syndrome, congenital structural malformations, and genetic abnormalities were excluded. Insulin and glucose concentrations were measured in cord venous blood at the time of delivery. RESULTS Cord blood insulin concentrations of sIUGR fetuses were significantly lower than those of AGA counterpart fetuses in MC twins affected by sIUGR (5.1±4.1 mU/L, range: 0.7-9.9 mU/L for sIUGR fetuses and 12.2±7.6 mU/L, range: 3.5-23.7 mU/L for AGA fetuses, p=0.019). No significant difference in insulin concentrations between larger and smaller fetuses in MC twins without IUGR was observed. Insulin concentration was inversely correlated with gestational age of delivery in all fetuses except in those with sIUGR. We did not find any difference in cord blood glucose concentrations between the two fetuses in both groups. CONCLUSION Our data show reduced insulin secretion and loss of the physiological decline in concentration over time as gestational age increases in fetuses with sIUGR compared to AGA counterparts.
Collapse
|
27
|
Harris SE, De Blasio MJ, Davis MA, Kelly AC, Davenport HM, Wooding FBP, Blache D, Meredith D, Anderson M, Fowden AL, Limesand SW, Forhead AJ. Hypothyroidism in utero stimulates pancreatic beta cell proliferation and hyperinsulinaemia in the ovine fetus during late gestation. J Physiol 2017; 595:3331-3343. [PMID: 28144955 PMCID: PMC5451716 DOI: 10.1113/jp273555] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 01/11/2017] [Indexed: 12/17/2022] Open
Abstract
Key points Thyroid hormones are important regulators of growth and maturation before birth, although the extent to which their actions are mediated by insulin and the development of pancreatic beta cell mass is unknown. Hypothyroidism in fetal sheep induced by removal of the thyroid gland caused asymmetric organ growth, increased pancreatic beta cell mass and proliferation, and was associated with increased circulating concentrations of insulin and leptin. In isolated fetal sheep islets studied in vitro, thyroid hormones inhibited beta cell proliferation in a dose‐dependent manner, while high concentrations of insulin and leptin stimulated proliferation. The developing pancreatic beta cell is therefore sensitive to thyroid hormone, insulin and leptin before birth, with possible consequences for pancreatic function in fetal and later life. The findings of this study highlight the importance of thyroid hormones during pregnancy for normal development of the fetal pancreas.
Abstract Development of pancreatic beta cell mass before birth is essential for normal growth of the fetus and for long‐term control of carbohydrate metabolism in postnatal life. Thyroid hormones are also important regulators of fetal growth, and the present study tested the hypotheses that thyroid hormones promote beta cell proliferation in the fetal ovine pancreatic islets, and that growth retardation in hypothyroid fetal sheep is associated with reductions in pancreatic beta cell mass and circulating insulin concentration in utero. Organ growth and pancreatic islet cell proliferation and mass were examined in sheep fetuses following removal of the thyroid gland in utero. The effects of triiodothyronine (T3), insulin and leptin on beta cell proliferation rates were determined in isolated fetal ovine pancreatic islets in vitro. Hypothyroidism in the sheep fetus resulted in an asymmetric pattern of organ growth, pancreatic beta cell hyperplasia, and elevated plasma insulin and leptin concentrations. In pancreatic islets isolated from intact fetal sheep, beta cell proliferation in vitro was reduced by T3 in a dose‐dependent manner and increased by insulin at high concentrations only. Leptin induced a bimodal response whereby beta cell proliferation was suppressed at the lowest, and increased at the highest, concentrations. Therefore, proliferation of beta cells isolated from the ovine fetal pancreas is sensitive to physiological concentrations of T3, insulin and leptin. Alterations in these hormones may be responsible for the increased beta cell proliferation and mass observed in the hypothyroid sheep fetus and may have consequences for pancreatic function in later life. Thyroid hormones are important regulators of growth and maturation before birth, although the extent to which their actions are mediated by insulin and the development of pancreatic beta cell mass is unknown. Hypothyroidism in fetal sheep induced by removal of the thyroid gland caused asymmetric organ growth, increased pancreatic beta cell mass and proliferation, and was associated with increased circulating concentrations of insulin and leptin. In isolated fetal sheep islets studied in vitro, thyroid hormones inhibited beta cell proliferation in a dose‐dependent manner, while high concentrations of insulin and leptin stimulated proliferation. The developing pancreatic beta cell is therefore sensitive to thyroid hormone, insulin and leptin before birth, with possible consequences for pancreatic function in fetal and later life. The findings of this study highlight the importance of thyroid hormones during pregnancy for normal development of the fetal pancreas.
Collapse
Affiliation(s)
- Shelley E Harris
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK
| | - Miles J De Blasio
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3EG, UK
| | - Melissa A Davis
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, 85721, USA
| | - Amy C Kelly
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, 85721, USA
| | - Hailey M Davenport
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, 85721, USA
| | - F B Peter Wooding
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3EG, UK
| | - Dominique Blache
- School of Animal Biology, University of Western Australia, 6009, Crawley, Australia
| | - David Meredith
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK
| | - Miranda Anderson
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, 85721, USA
| | - Abigail L Fowden
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3EG, UK
| | - Sean W Limesand
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, 85721, USA
| | - Alison J Forhead
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK.,Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3EG, UK
| |
Collapse
|
28
|
Abstract
Intrauterine growth restriction (IUGR) has been defined in several ways, but in general describes a condition in which the fetus exhibits poor growth in utero. This complication of pregnancy poses a significant public health burden as well as increased morbidity and mortality for the offspring. In human IUGR, alteration in fetal glucose and insulin homeostasis occurs in an effort to conserve energy and survive at the expense of fetal growth in an environment of inadequate nutrient provision. Several animal models of IUGR have been utilized to study the effects of IUGR on fetal glucose handling, as well as the postnatal reprogramming of energy metabolite handling, which may be unmasked in adulthood as a maladaptive propensity for cardiometabolic disease. This developmental programming may be mediated in part by epigenetic modification of essential regulators of glucose homeostasis. Several pharmacological therapies and nonpharmacological lifestyle modifications have shown early promise in mitigating the risk for or severity of adult metabolic phenotypes but still require further study of unanticipated and/or untoward side effects.
Collapse
Affiliation(s)
- Sherin U Devaskar
- Department of Pediatrics, Division of Neonatology, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Alison Chu
- Department of Pediatrics, Division of Neonatology, David Geffen School of Medicine at UCLA, Los Angeles, California
| |
Collapse
|
29
|
Kopec G, Shekhawat PS, Mhanna MJ. Prevalence of diabetes and obesity in association with prematurity and growth restriction. Diabetes Metab Syndr Obes 2017; 10:285-295. [PMID: 28740412 PMCID: PMC5505541 DOI: 10.2147/dmso.s115890] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Intrauterine growth restriction (IUGR) is when fetuses and newborn infants have not reached their true growth potential as genetically defined. Fetuses with IUGR develop in a less than ideal environment that leads to epigenetic changes and marks infants' metabolism for the rest of their lives. Epigenetic changes affect insulin-like growth factor-1 (IGF-1) levels and lead to insulin resistance and ultimately to a metabolic syndrome. The metabolic syndrome is a constellation of illnesses that raise one's risk for type 2 diabetes mellitus, coronary artery disease, and ischemic heart disease, including hypertension, dyslipidemia, central obesity, insulin resistance, and inflammation. The association between IUGR or prematurity and long-term insulin resistance, obesity, hypertension, and metabolic syndrome remains unclear. While studies have shown an association, others have not supported such association. If alteration of intrauterine growth can ultimately lead to the development of metabolic derangements in childhood and adulthood, and if such association is true, then early interventions targeting the health of pregnant women will ensure the health of the population to follow.
Collapse
Affiliation(s)
- Gretchen Kopec
- Department of Pediatrics, MetroHealth Medical Centre, Case Western Reserve University, Cleveland, OH, USA
| | - Prem S Shekhawat
- Department of Pediatrics, MetroHealth Medical Centre, Case Western Reserve University, Cleveland, OH, USA
| | - Maroun J Mhanna
- Department of Pediatrics, MetroHealth Medical Centre, Case Western Reserve University, Cleveland, OH, USA
- Correspondence: Maroun J Mhanna, Department of Pediatrics, MetroHealth Medical Center, 2500 MetroHealth Drive, Cleveland, OH 44109, USA, Tel +1 216 778 1346, Fax +1 216 778 4223, Email
| |
Collapse
|
30
|
Jin YY, He MZ, Wu ZY, Huang K, Shen Y, Liang L, Mao JH. Dysregulation of calcium channels decreases parasecretion in pancreatic β-cells in rats born small for gestational age. Growth Factors 2016; 34:159-165. [PMID: 27681688 DOI: 10.3109/08977194.2016.1145677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE To investigate the role of intrauterine malnourishment in the development and function of pancreatic islet β-cells. METHODS Whole-cell patch clamping was used to record voltage-gated calcium channel (VGCC)-mediated currents. Insulin secretion was detected by measuring capacitance using a sequence of sine wave stimuli. VGCC currents and insulin secretion were measured in the small for gestational age (SGA) group treated with human recombinant growth hormone (hGH). RESULTS The membrane capacitance in the SGA group (6.4 ± 0.9 fF/Pf) was significantly reduced. Calcium current density and peak current density in the SGA group were also markedly decreased, whereas other measurements of calcium channels were unaltered. Treatment with hGH significantly rescued the membrane capacitance, whereas calcium channels were not affected. CONCLUSION Our data suggest that decreased β-cell secretion is caused by a decreased expression of calcium channels and reduced calcium currents. hGH restores β-cell secretion in SGA animals, possibly independently of VGCC.
Collapse
Affiliation(s)
- Yan-Yan Jin
- a Children's Hospital of Zhejiang University School of Medicine , Hangzhou , China
| | - Meng-Zao He
- b Department of Pediatrics , Hangzhou First People's Hospital, Nanjing Medical University , Hangzhou , China
| | - Zhen-Yong Wu
- c Department of Neurobiology , Zhejiang University School of Medicine , Hangzhou , China , and
| | - Ke Huang
- a Children's Hospital of Zhejiang University School of Medicine , Hangzhou , China
| | - Ying Shen
- c Department of Neurobiology , Zhejiang University School of Medicine , Hangzhou , China , and
| | - Li Liang
- d The First Affiliated Hospital, Zhejiang University School of Medicine , Hangzhou , China
| | - Jian-Hua Mao
- a Children's Hospital of Zhejiang University School of Medicine , Hangzhou , China
| |
Collapse
|
31
|
Affiliation(s)
- L. T. Dalgaard
- Department of Science and Environment; Roskilde University; Roskilde Denmark
| |
Collapse
|
32
|
Mainigi MA, Sapienza C, Butts S, Coutifaris C. A Molecular Perspective on Procedures and Outcomes with Assisted Reproductive Technologies. Cold Spring Harb Perspect Med 2016; 6:a023416. [PMID: 26747835 DOI: 10.1101/cshperspect.a023416] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The emerging association of assisted reproductive technologies with adverse perinatal outcomes has prompted the in-depth examination of clinical and laboratory protocols and procedures and their possible effects on epigenetic regulatory mechanism(s). The application of various approaches to study epigenetic regulation to problems in reproductive medicine has the potential to identify relative risk indicators for particular conditions, diagnostic biomarkers of disease state, and prognostic indicators of outcome. Moreover, when applied genome-wide, these techniques are likely to find novel pathways of disease pathogenesis and identify new targets for intervention. The analysis of DNA methylation, histone modifications, transcription factors, enhancer binding and other chromatin proteins, DNase-hypersensitivity and, micro- and other noncoding RNAs all provide overlapping and often complementary snapshots of chromatin structure and resultant "gene activity." In terms of clinical application, the predictive power and utility of epigenetic information will depend on the power of individual techniques to discriminate normal levels of interindividual variation from variation linked to a disease state. At present, quantitative analysis of DNA methylation at multiple loci seems likely to hold the greatest promise for achieving the level of precision, reproducibility, and throughput demanded in a clinical setting.
Collapse
Affiliation(s)
- Monica A Mainigi
- Department of Obstetrics and Gynecology and the Center for Research on Reproduction and Women's Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Carmen Sapienza
- Fels Institute for Cancer Research and Molecular Biology and Department of Pathology and Laboratory Medicine, Temple University School of Medicine, Philadelphia, Pennsylvania 19140
| | - Samantha Butts
- Department of Obstetrics and Gynecology and the Center for Research on Reproduction and Women's Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Christos Coutifaris
- Department of Obstetrics and Gynecology and the Center for Research on Reproduction and Women's Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| |
Collapse
|
33
|
Hepatic IGF1 DNA methylation is influenced by gender but not by intrauterine growth restriction in the young lamb. J Dev Orig Health Dis 2015; 6:558-72. [DOI: 10.1017/s2040174415001415] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Intrauterine growth restriction (IUGR) and postnatal catch-up growth confer an increased risk of adult-onset disease. Overnourishment of adolescent ewes generates IUGR in ∼50% of lambs, which subsequently exhibit increased fractional growth rates. We investigated putative epigenetic changes underlying this early postnatal phenotype by quantifying gene-specific methylation at cytosine:guanine (CpG) dinucleotides. Hepatic DNA/RNA was extracted from IUGR [eight male (M)/nine female (F)] and normal birth weight (12 M/9 F) lambs. Polymerase chain reaction was performed using primers targeting CpG islands in 10 genes: insulin, growth hormone, insulin-like growth factor (IGF)1, IGF2, H19, insulin receptor, growth hormone receptor, IGF receptors 1 and 2, and the glucocorticoid receptor. Using pyrosequencing, methylation status was determined by quantifying cytosine:thymine ratios at 57 CpG sites. Messenger RNA (mRNA) expression of IGF system genes and plasma IGF1/insulin were determined. DNA methylation was independent of IUGR status but sexual dimorphism in IGF1 methylation was evident (M<F, P=0.008). IGF1 mRNA:18S and plasma IGF1 were M>F (both P<0.001). IGF1 mRNA expression correlated negatively with IGF1 methylation (r=−0.507, P=0.002) and positively with plasma IGF1 (r=0.884, P<0.001). Carcass and empty body weights were greater in males (P=0.002–0.014) and this gender difference in early body conformation was mirrored by sexual dimorphism in hepatic IGF1 DNA methylation, mRNA expression and plasma IGF1 concentrations.
Collapse
|
34
|
Talchai SC, Accili D. Legacy Effect of Foxo1 in Pancreatic Endocrine Progenitors on Adult β-Cell Mass and Function. Diabetes 2015; 64:2868-79. [PMID: 25784544 PMCID: PMC4512230 DOI: 10.2337/db14-1696] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 03/04/2015] [Indexed: 01/02/2023]
Abstract
β-Cell dysfunction in diabetes results from abnormalities of insulin production, secretion, and cell number. These abnormalities may partly arise from altered developmental programming of β-cells. Foxo1 is important to maintain adult β-cells, but little is known about its role in pancreatic progenitor cells as determinants of future β-cell function. We addressed this question by generating an allelic series of somatic Foxo1 knockouts at different stages of pancreatic development in mice. Surprisingly, ablation of Foxo1 in pancreatic progenitors resulted in delayed appearance of Neurogenin3(+) progenitors and their persistence into adulthood as a self-replicating pool, causing a fourfold increase of β-cell mass. Similarly, Foxo1 ablation in endocrine progenitors increased their numbers, extended their survival, and expanded β-cell mass. In contrast, ablation of Foxo1 in terminally differentiated β-cells did not increase β-cell mass nor did it affect Neurogenin3 expression. Despite the increased β-cell mass, islets from mice lacking Foxo1 in pancreatic or endocrine progenitors responded poorly to glucose, resulting in glucose intolerance. We conclude that Foxo1 integrates cues that determine developmental timing, pool size, and functional features of endocrine progenitor cells, resulting in a legacy effect on adult β-cell mass and function. Our results illustrate how developmental programming predisposes to β-cell dysfunction in adults and raise questions on the desirability of increasing β-cell mass for therapeutic purposes in type 2 diabetes.
Collapse
Affiliation(s)
- Shivatra Chutima Talchai
- Department of Medicine and Naomi Berrie Diabetes Center, Columbia University, New York, NY Faculty of Science, King Mongkut's University of Technology Thonburi, Bangkok, Thailand
| | - Domenico Accili
- Department of Medicine and Naomi Berrie Diabetes Center, Columbia University, New York, NY
| |
Collapse
|
35
|
Abstract
Low birth weight serves as a crude proxy for impaired growth during fetal life and indicates a failure for the fetus to achieve its full growth potential. Low birth weight can occur in response to numerous etiologies that include complications during pregnancy, poor prenatal care, parental smoking, maternal alcohol consumption, or stress. Numerous epidemiological and experimental studies demonstrate that birth weight is inversely associated with blood pressure and coronary heart disease. Sex and age impact the developmental programming of hypertension. In addition, impaired growth during fetal life also programs enhanced vulnerability to a secondary insult. Macrosomia, which occurs in response to maternal obesity, diabetes, and excessive weight gain during gestation, is also associated with increased cardiovascular risk. Yet, the exact mechanisms that permanently change the structure, physiology, and endocrine health of an individual across their lifespan following altered growth during fetal life are not entirely clear. Transmission of increased risk from one generation to the next in the absence of an additional prenatal insult indicates an important role for epigenetic processes. Experimental studies also indicate that the sympathetic nervous system, the renin angiotensin system, increased production of oxidative stress, and increased endothelin play an important role in the developmental programming of blood pressure in later life. Thus, this review will highlight how adverse influences during fetal life and early development program an increased risk for cardiovascular disease including high blood pressure and provide an overview of the underlying mechanisms that contribute to the fetal origins of cardiovascular pathology.
Collapse
Affiliation(s)
- Barbara T Alexander
- Department of Physiology and Biophysics, Women's Health Research Center, Center for Cardiovascular-Renal Research, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | | | | |
Collapse
|
36
|
Corvino SB, Netto AO, Sinzato YK, Campos KE, Calderon IMP, Rudge MVC, Volpato GT, Zambrano E, Damasceno DC. Intrauterine Growth Restricted Rats Exercised at Pregnancy. Reprod Sci 2015; 22:991-9. [DOI: 10.1177/1933719115570905] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- S. B. Corvino
- Laboratory of Experimental Research on Gynecology and Obstetrics and Graduate Program on Gynecology, Obstetrics and Mastology, Botucatu Medical School, Univ Estadual Paulista_Unesp, Botucatu, São Paulo, Brazil
| | - A. O. Netto
- Laboratory of Experimental Research on Gynecology and Obstetrics and Graduate Program on Gynecology, Obstetrics and Mastology, Botucatu Medical School, Univ Estadual Paulista_Unesp, Botucatu, São Paulo, Brazil
| | - Y. K. Sinzato
- Laboratory of Experimental Research on Gynecology and Obstetrics and Graduate Program on Gynecology, Obstetrics and Mastology, Botucatu Medical School, Univ Estadual Paulista_Unesp, Botucatu, São Paulo, Brazil
| | - K. E. Campos
- Laboratory of Experimental Research on Gynecology and Obstetrics and Graduate Program on Gynecology, Obstetrics and Mastology, Botucatu Medical School, Univ Estadual Paulista_Unesp, Botucatu, São Paulo, Brazil
- Institute of Biological and Health Sciences, University Center of Araguaia, Mato Grosso Federal University, Barra do Garças, Mato Grosso, Brazil
| | - I. M. P. Calderon
- Laboratory of Experimental Research on Gynecology and Obstetrics and Graduate Program on Gynecology, Obstetrics and Mastology, Botucatu Medical School, Univ Estadual Paulista_Unesp, Botucatu, São Paulo, Brazil
| | - M. V. C. Rudge
- Laboratory of Experimental Research on Gynecology and Obstetrics and Graduate Program on Gynecology, Obstetrics and Mastology, Botucatu Medical School, Univ Estadual Paulista_Unesp, Botucatu, São Paulo, Brazil
| | - G. T. Volpato
- Laboratory of Experimental Research on Gynecology and Obstetrics and Graduate Program on Gynecology, Obstetrics and Mastology, Botucatu Medical School, Univ Estadual Paulista_Unesp, Botucatu, São Paulo, Brazil
- Institute of Biological and Health Sciences, University Center of Araguaia, Mato Grosso Federal University, Barra do Garças, Mato Grosso, Brazil
| | - E. Zambrano
- Department of Reproductive Biology, Instituto Nacional de Ciencias Médicas y Nutrición, Salvador, Zubirán, Mexico
| | - D. C. Damasceno
- Laboratory of Experimental Research on Gynecology and Obstetrics and Graduate Program on Gynecology, Obstetrics and Mastology, Botucatu Medical School, Univ Estadual Paulista_Unesp, Botucatu, São Paulo, Brazil
| |
Collapse
|
37
|
Andrews SE, Brown LD, Thorn SR, Limesand SW, Davis M, Hay WW, Rozance PJ. Increased adrenergic signaling is responsible for decreased glucose-stimulated insulin secretion in the chronically hyperinsulinemic ovine fetus. Endocrinology 2015; 156:367-76. [PMID: 25343274 PMCID: PMC4272391 DOI: 10.1210/en.2014-1393] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Insulin may stimulate its own insulin secretion and is a potent growth factor for the pancreatic β-cell. Complications of pregnancy, such as diabetes and intrauterine growth restriction, are associated with changes in fetal insulin concentrations, secretion, and β-cell mass. However, glucose concentrations are also abnormal in these conditions. The direct effect of chronic fetal hyperinsulinemia with euglycemia on fetal insulin secretion and β-cell mass has not been tested. We hypothesized that chronic fetal hyperinsulinemia with euglycemia would increase glucose-stimulated insulin secretion (GSIS) and β-cell mass in the ovine fetus. Singleton ovine fetuses were infused with iv insulin to produce high physiological insulin concentrations, or saline for 7-10 days. The hyperinsulinemic animals also received a direct glucose infusion to maintain euglycemia. GSIS, measured at 133 ± 1 days of gestation, was significantly attenuated in the hyperinsulinemic fetuses (P < .05). There was no change in β-cell mass. The hyperinsulinemic fetuses also had decreased oxygen (P < .05) and higher norepinephrine (1160 ± 438 vs 522 ± 106 pg/mL; P < .005). Acute pharmacologic adrenergic blockade restored GSIS in the hyperinsulinemic-euglycemic fetuses, demonstrating that increased adrenergic signaling mediates decreased GSIS in these fetuses.
Collapse
Affiliation(s)
- Sasha E Andrews
- Department of Obstetrics and Gynecology (S.E.A.), University of Colorado School of Medicine, Aurora, Colorado 80045; Perinatal Research Center (L.D.B., S.R.T., W.W.H., P.J.R.), Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado 80045; Center for Women's Health Research (L.D.B., P.J.R.), University of Colorado School of Medicine, Aurora, Colorado 80045; and School of Animal and Comparative Biomedical Sciences (S.W.L., M.D.), University of Arizona, Tucson, Arizona 85719
| | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
PURPOSE OF REVIEW Intrauterine growth restriction (IUGR) is responsible for the higher rates of fetal, perinatal, and neonatal morbidity and mortality. This review details the IUGR risk factors, its short and long-term sequel, the mechanism underlying the long-term consequences, and the strategies to tackle IUGR burden. RECENT FINDINGS Short-term consequences of IUGR involve metabolic, thermal, and hematological disturbances leading to morbidities. Long term consequences due to changes in the fetal nutritional environment is associated with increased risk of developing metabolic syndrome and cardiovascular disease, systolic hypertension, obesity, insulin resistance, and diabetes type II in adulthood. There are no effective therapies to reverse IUGR, and antenatal management is aimed at determining the ideal time and mode of delivery. In order to prevent complications associated with IUGR, it is important to first detect the condition and institute appropriate surveillance to assess fetal well-being coupled with suitable intervention in case of fetal distress. SUMMARY Reliable prediction of IUGR may be achieved by combining clinical risk factors with Doppler abnormalities, fetal growth, and biomarkers. If this can be achieved, there is potential to reduce future perinatal morbidity, mortality and long-term consequences, but steps geared toward the prevention of IUGR are of unparalleled importance.
Collapse
Affiliation(s)
- Rehana A Salam
- aDivision of Woman and Child Health, Aga Khan University, Karachi, Pakistan bProgram for Global Pediatric Research, Hospital for Sick Children, Toronto, Ontario, Canada
| | | | | |
Collapse
|