1
|
Bian Z, Zhai Y, Zhang Y, Wang T, Li H, Ouyang J, Liu C, Wang S, Hu Z, Chang X, Zhang C, Liu M, Li C. Senescent cartilage endplate stem cells-derived exosomes induce oxidative stress injury in nucleus pulposus cells and aggravate intervertebral disc degeneration by regulating FOXO3. Free Radic Biol Med 2025; 233:39-54. [PMID: 40118349 DOI: 10.1016/j.freeradbiomed.2025.03.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Revised: 03/15/2025] [Accepted: 03/18/2025] [Indexed: 03/23/2025]
Abstract
Intervertebral disc degeneration (IVDD) is the leading cause of low back pain and associated disability worldwide. The cartilage endplate (CEP) is a critical structure in maintaining the homeostasis of the intervertebral disc, by exosomes (Exos)-mediated intracellular communication between cartilage endplate stem cells (CESCs) and nucleus pulposus cells (NPCs). However, whether the senescence of CESCs influences the functionality of CESCs-derived Exos (CESCs-Exos) and participates in the progress of IVDD remains unclear. In this study, we explored the role and mechanism of the Exos-based intracellular communication between senescent CESCs and NPCs in IVDD. CESCs isolated from aged individuals (S-CESCs) exhibited high levels of senescence compared with CESCs isolated from young individuals (Y-CESCs). Exos from Y-CESCs (Y-Exos) and from S-CESCs (S-Exos) were extracted and identified. Surprisingly, we found that S-Exos lost the therapeutic effects as the Y-Exos exhibited in mitigating IVDD, and even aggravated IVDD by inducing oxidative stress injury in NPCs. MicroRNA-sequencing revealed significant upregulation of miR-29b-3p expression in S-Exos. Through microRNA target prediction, dual luciferase assays, RNA-sequencing, lentivirus-mediated overexpression and suppression, we demonstrated that miR-29b-3p regulates the expression of FOXO3 and downstream antioxidant enzymes to induce oxidative stress injury in NPCs. In vivo experiments further verified that countering miR-29b-3p by antagomir reversed the detrimental effects of S-Exos in exacerbating IVDD. This work elucidates the role and mechanism of senescent CESCs in disrupting redox homeostasis in the nucleus pulposus and exacerbating IVDD by Exos-mediated intracellular communication and offers an experimental foundation for the selection of proper CESCs-Exos to obtain better therapeutic effects in IVDD.
Collapse
Affiliation(s)
- Zhiqun Bian
- Department of Orthopedics, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China; Chongqing Municipal Health Commission Key Laboratory of Precise Orthopedics, Chongqing, 400038, China
| | - Yu Zhai
- Department of Orthopedics, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China; Chongqing Municipal Health Commission Key Laboratory of Precise Orthopedics, Chongqing, 400038, China.
| | - Yuyao Zhang
- Department of Orthopedics, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China; Chongqing Municipal Health Commission Key Laboratory of Precise Orthopedics, Chongqing, 400038, China
| | - Tianling Wang
- Department of Orthopedics, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China; Chongqing Municipal Health Commission Key Laboratory of Precise Orthopedics, Chongqing, 400038, China
| | - Hao Li
- Department of Orthopedics, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China; Chongqing Municipal Health Commission Key Laboratory of Precise Orthopedics, Chongqing, 400038, China
| | - Jian Ouyang
- Department of Orthopedics, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China; Chongqing Municipal Health Commission Key Laboratory of Precise Orthopedics, Chongqing, 400038, China
| | - Chao Liu
- Department of Orthopedics, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China; Chongqing Municipal Health Commission Key Laboratory of Precise Orthopedics, Chongqing, 400038, China
| | - Siya Wang
- College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Zhilei Hu
- Department of Orthopedics, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China; Chongqing Municipal Health Commission Key Laboratory of Precise Orthopedics, Chongqing, 400038, China
| | - Xian Chang
- Department of Orthopedics, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China; Chongqing Municipal Health Commission Key Laboratory of Precise Orthopedics, Chongqing, 400038, China
| | - Chao Zhang
- Department of Orthopedics, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China; Chongqing Municipal Health Commission Key Laboratory of Precise Orthopedics, Chongqing, 400038, China.
| | - Minghan Liu
- Department of Orthopedics, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China; Chongqing Municipal Health Commission Key Laboratory of Precise Orthopedics, Chongqing, 400038, China; State Key Laboratory of Trauma and Chemical Poisoning, Chongqing, 400038, China.
| | - Changqing Li
- Department of Orthopedics, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China; Chongqing Municipal Health Commission Key Laboratory of Precise Orthopedics, Chongqing, 400038, China; State Key Laboratory of Trauma and Chemical Poisoning, Chongqing, 400038, China.
| |
Collapse
|
2
|
Kang H, Huang Y, Peng H, Zhang X, Liu Y, Liu Y, Xia Y, Liu S, Wu Y, Wang S, Lei T, Zhang H. Mesenchymal Stem Cell-Loaded Hydrogel Improves Surgical Treatment for Chronic Cerebral Ischemia. Transl Stroke Res 2025; 16:896-913. [PMID: 38977638 DOI: 10.1007/s12975-024-01274-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/11/2024] [Accepted: 06/25/2024] [Indexed: 07/10/2024]
Abstract
Chronic cerebral ischemia (CCI) results in a prolonged insufficient blood supply to the brain tissue, leading to impaired neuronal function and subsequent impairment of cognitive and motor abilities. Our previous research showed that in mice with bilateral carotid artery stenosis, the collateral neovascularization post Encephalo-myo-synangiosis (EMS) treatment could be facilitated by bone marrow mesenchymal stem cells (MSCs) transplantation. Considering the advantages of biomaterials, we synthesized and modified a gelatin hydrogel for MSCs encapsulation. We then applied this hydrogel on the brain surface during EMS operation in rats with CCI, and evaluated its impact on cognitive performance and collateral circulation. Consequently, MSCs encapsulated in hydrogel significantly augment the therapeutic effects of EMS, potentially by promoting neovascularization, facilitating neuronal differentiation, and suppressing neuroinflammation. Furthermore, taking advantage of multi-RNA-sequencing and in silico analysis, we revealed that MSCs loaded in hydrogel regulate PDCD4 and CASP2 through the overexpression of miR-183-5p and miR-96-5p, thereby downregulating the expression of apoptosis-related proteins and inhibiting early apoptosis. In conclusion, a gelatin hydrogel to enhance the functionality of MSCs has been developed, and its combination with EMS treatment can improve the therapeutic effect in rats with CCI, suggesting its potential clinical benefit.
Collapse
Affiliation(s)
- Huayu Kang
- Department of Neurosurgery, Tongji Hospital of Tongji Medical College of Huazhong University Science and Technology, Jiefang Avenue 1095, Wuhan, 430030, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yimin Huang
- Department of Neurosurgery, Tongji Hospital of Tongji Medical College of Huazhong University Science and Technology, Jiefang Avenue 1095, Wuhan, 430030, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Huan Peng
- Cellular Signaling Laboratory, International Research Center for Sensory Biology and Technology of MOST, Key Laboratory of Molecular Biophysics of MOE, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
| | - Xincheng Zhang
- Department of Neurosurgery, Tongji Hospital of Tongji Medical College of Huazhong University Science and Technology, Jiefang Avenue 1095, Wuhan, 430030, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yuan Liu
- Department of Neurosurgery, Tongji Hospital of Tongji Medical College of Huazhong University Science and Technology, Jiefang Avenue 1095, Wuhan, 430030, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yanchao Liu
- Department of Neurosurgery, Tongji Hospital of Tongji Medical College of Huazhong University Science and Technology, Jiefang Avenue 1095, Wuhan, 430030, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yuze Xia
- Department of Neurosurgery, Tongji Hospital of Tongji Medical College of Huazhong University Science and Technology, Jiefang Avenue 1095, Wuhan, 430030, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Shengwen Liu
- Department of Neurosurgery, Tongji Hospital of Tongji Medical College of Huazhong University Science and Technology, Jiefang Avenue 1095, Wuhan, 430030, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yaqi Wu
- Department of Neurosurgery, Tongji Hospital of Tongji Medical College of Huazhong University Science and Technology, Jiefang Avenue 1095, Wuhan, 430030, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Sheng Wang
- Department of Neurosurgery, Tongji Hospital of Tongji Medical College of Huazhong University Science and Technology, Jiefang Avenue 1095, Wuhan, 430030, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ting Lei
- Department of Neurosurgery, Tongji Hospital of Tongji Medical College of Huazhong University Science and Technology, Jiefang Avenue 1095, Wuhan, 430030, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Huaqiu Zhang
- Department of Neurosurgery, Tongji Hospital of Tongji Medical College of Huazhong University Science and Technology, Jiefang Avenue 1095, Wuhan, 430030, China.
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
3
|
Zhang J, Chen K, Chen F. Exploring the impact of the liver-intestine-brain axis on brain function in non-alcoholic fatty liver disease. J Pharm Anal 2025; 15:101077. [PMID: 40433559 PMCID: PMC12104701 DOI: 10.1016/j.jpha.2024.101077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 08/12/2024] [Accepted: 08/16/2024] [Indexed: 05/29/2025] Open
Abstract
This study investigates the molecular complexities of non-alcoholic fatty liver disease (NAFLD)-induced brain dysfunction, with a focus on the liver-intestine-brain axis and potential therapeutic interventions. The main objectives include understanding critical microbiota shifts in NAFLD, exploring altered metabolites, and identifying key regulatory molecules influencing brain function. The methods employed encompassed 16S ribosomal RNA (rRNA) sequencing to scrutinize stool microbiota in NAFLD patients and healthy individuals, non-targeted metabolomics using LC-MS to uncover elevated levels of deoxycholic acid (DCA) in NAFLD mice, and single-cell RNA sequencing (scRNA-seq) to pinpoint the pivotal gene Hpgd in microglial cells and its downstream Janus kinase 2/signal transducer and activator of transcription 3 (JAK2/STAT3) signaling pathway. Behavioral changes and brain function were assessed in NAFLD mice with and without Fecal microbiota transplantation (FMT) treatment, utilizing various assays and analyses. The results revealed significant differences in microbiota composition, with increased levels of Bacteroides in NAFLD patients. Additionally, elevated DCA levels were observed in NAFLD mice, and FMT treatment demonstrated efficacy in ameliorating liver function and brain dysfunction. Hpgd inhibition by DCA activated the JAK2/STAT3 pathway in microglial cells, leading to inflammatory activation, inhibition of mitochondrial autophagy, induction of neuronal apoptosis, and reduction in neuronal action potentials. This study elucidates the intricate molecular mechanisms underlying the liver-gut-brain axis in NAFLD, and the identification of increased DCA and the impact of JAK2/STAT3 signaling on microglial cells highlight potential therapeutic targets for addressing NAFLD-induced brain dysfunction.
Collapse
Affiliation(s)
- Jingting Zhang
- College of Management, Liaoning Economy Vocational and Technical College, Shenyang, 110122, China
- Department of Nutrition and Food Hygiene, School of Public Health, China Medical University, Shenyang, 110122, China
| | - Keyan Chen
- Department of Laboratory Animal Science, China Medical University, Shenyang, 110122, China
| | - Fu Chen
- Department of General Surgery, Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, China
| |
Collapse
|
4
|
de Scordilli M, Bortolot M, Torresan S, Noto C, Rota S, Di Nardo P, Fumagalli A, Guardascione M, Ongaro E, Foltran L, Puglisi F. Precision oncology in biliary tract cancer: the emerging role of liquid biopsy. ESMO Open 2025; 10:105079. [PMID: 40311184 PMCID: PMC12084404 DOI: 10.1016/j.esmoop.2025.105079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 03/01/2025] [Accepted: 04/04/2025] [Indexed: 05/03/2025] Open
Abstract
Liquid biopsy has already proven effective in aiding diagnosis, risk stratification and treatment personalization in several malignancies, and it could represent a practice-changing tool also in biliary tract cancer, even though clinical applications are currently still limited. It is promising for early diagnosis, especially in high-risk populations, and several studies on circulating free DNA (cfDNA), circulating tumour cells and differential microRNA (miRNA) profiles in this setting are ongoing. Circulating tumour DNA (ctDNA) also appears as a feasible noninvasive biomarker in the curative setting, in detecting minimal residual disease after resection and in monitoring disease recurrence. As of today, it can be particularly valuable in biliary tract cancer for genomic profiling, with a good concordance with tissue samples for most molecular alterations. CtDNA analysis may especially be considered in clinical practice when the tumour tissue is not sufficient for next-generation sequencing, or when urgent therapeutic decisions are needed. Moreover, it offers the possibility of providing a real-time picture to monitor treatment response and dynamically identify resistance mutations, potentially representing a way to optimize treatment strategies.
Collapse
Affiliation(s)
- M de Scordilli
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy; Department of Medicine, University of Udine, Udine, Italy
| | - M Bortolot
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy; Department of Medicine, University of Udine, Udine, Italy
| | - S Torresan
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy; Department of Medicine, University of Udine, Udine, Italy
| | - C Noto
- Department of Medicine, University of Udine, Udine, Italy; Medical Oncology, ASUGI, Ospedale Maggiore, Trieste, Italy
| | - S Rota
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy; Department of Medicine, University of Udine, Udine, Italy
| | - P Di Nardo
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy
| | - A Fumagalli
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy
| | - M Guardascione
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy
| | - E Ongaro
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy
| | - L Foltran
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy.
| | - F Puglisi
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy; Department of Medicine, University of Udine, Udine, Italy
| |
Collapse
|
5
|
Nishida N. Biomarkers and Management of Cholangiocarcinoma: Unveiling New Horizons for Precision Therapy. Cancers (Basel) 2025; 17:1243. [PMID: 40227772 PMCID: PMC11987923 DOI: 10.3390/cancers17071243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/31/2025] [Accepted: 04/03/2025] [Indexed: 04/15/2025] Open
Abstract
Cholangiocarcinoma (CCA) is an aggressive malignancy with limited methods for early detection, necessitating the development of reliable biomarkers for diagnosis and management. However, conventional tumor markers, such as CA19-9 and CEA, exhibit insufficient diagnostic accuracy. Recent advancements in molecular genetics have identified several actionable mutations in CCA, enabling molecularly targeted therapies that improve survival in patients harboring these genetic alterations. Cancer panels, which facilitate multiplex genetic profiling, are critical for identifying these mutations. Studies indicate that several actionable mutations are detected in CCA cases, with patients receiving mutation-guided therapies achieving markedly better outcomes. Liquid biopsies, including cell-free DNA and circulating tumor DNA, offer real-time, non-invasive approaches to monitoring tumor dynamics, heterogeneity, and treatment responses. Furthermore, numerous studies have identified non-coding RNAs in serum and bile as promising biomarkers for the diagnosis and management of CCA. On the other hand, immunotherapy, particularly immune checkpoint inhibitors, has shown efficacy in subsets of CCA patients. However, the success of these therapies is often affected by the status of the tumor immune microenvironment (TME), underscoring the need for comprehensive TME analysis to predict responses to immune checkpoint inhibitors. Despite these advances, no single biomarker currently demonstrates sufficient sensitivity or specificity for clinical application. The integration of multi-omics approaches with cutting-edge technologies holds promise for enhancing diagnostic accuracy, optimizing treatment stratification, and advancing precision medicine in CCA. These developments highlight the transformative potential of biomarkers to improve early detection, prognostic assessment, and personalized therapeutic interventions for CCA.
Collapse
Affiliation(s)
- Naoshi Nishida
- Department of Gastroenterology and Hepatology, Faculty of Medicine, Kindai University Osaka 589-8511, Japan
| |
Collapse
|
6
|
Tan Z, Liu J, Hou M, Zhou J, Chen Y, Chen X, Leng Y. Isorhamnetin inhibits cholangiocarcinoma proliferation and metastasis via PI3K/AKT signaling pathway. Discov Oncol 2025; 16:469. [PMID: 40186843 PMCID: PMC11972266 DOI: 10.1007/s12672-025-02217-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 03/24/2025] [Indexed: 04/07/2025] Open
Abstract
BACKGROUND Cholangiocarcinoma (CCA), which is a malignant tumor originating from the epithelial cells of the bile ducts, has witnessed an increasing incidence year by year. Owing to the dearth of effective treatments, the prognosis for CCA is rather poor. Isorhamnetin is known to possess anti-tumor, anti-inflammatory and oxidative stress modulating effects; however, its role in CCA remains unclear. METHODS Firstly, we screened the core targets and pathways of isorhamnetin for the treatment of CCA through a network pharmacology approach. Subsequently, we verified via molecular docking that the core targets could dock stably with isorhamnetin. Finally, we verified the inhibitory effect of isorhamnetin on the malignant biological behavior of CCA in vitro and in vivo experiments. RESULTS Based on the network pharmacology analysis, we came to the conclusion that AKT1 might be a core target of isorhamnetin in the treatment of CCA. Molecular docking indicated that AKT1 was capable of binding stably to isorhamnetin. Subsequently, In vitro experiments demonstrated that isorhamnetin was able to suppress the proliferation and metastasis of CCA cells, and AKT1 played a pivotal role in this process. Mechanistically speaking, isorhamnetin exerts its inhibitory effect on tumor growth via the PI3K/AKT signaling pathway. CONCLUSIONS Our study demonstrated for the first time that isorhamnetin can inhibit the progression of CCA through PI3K/AKT, and that AKT1 may be a target of isorhamnetin for the treatment of CCA.
Collapse
Affiliation(s)
- Zhiguo Tan
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
| | - Jie Liu
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
| | - Min Hou
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
| | - Jia Zhou
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
| | - Yu Chen
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410005, Hunan, People's Republic of China
| | - Xu Chen
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410005, Hunan, People's Republic of China.
| | - Yufang Leng
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China.
- The Department of Anesthesiology, The First Hospital of Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China.
| |
Collapse
|
7
|
Li YC, Gao Q, Tang YC, Shao ZY, Hu JM, Liu ZL, Shi AD, Huang SH, Xu YF, Zhang ZL, Li KS. EEF1AKMT4-eEF1A2 synergistically facilitates the progression of GBC by promoting ribosomal protein output. Genes Dis 2025:101619. [DOI: 10.1016/j.gendis.2025.101619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2025] Open
|
8
|
Putatunda V, Jusakul A, Roberts L, Wang XW. Genetic, Epigenetic, and Microenvironmental Drivers of Cholangiocarcinoma. THE AMERICAN JOURNAL OF PATHOLOGY 2025; 195:362-377. [PMID: 39532242 PMCID: PMC11841490 DOI: 10.1016/j.ajpath.2024.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 10/07/2024] [Accepted: 10/10/2024] [Indexed: 11/16/2024]
Abstract
Cholangiocarcinoma (CCA) is an aggressive and heterogeneous malignancy of the biliary tree that carries a poor prognosis. Multiple features at the genetic, epigenetic, and microenvironmental levels have been identified to better characterize CCA carcinogenesis. Genetic alterations, such as mutations in IDH1/2, BAP1, ARID1A, and FGFR2, play significant roles in CCA pathogenesis, with variations across different subtypes, races/ethnicities, and causes. Epigenetic dysregulation, characterized by DNA methylation and histone modifications, further contributes to the complexity of CCA, influencing gene expression and tumor behavior. Furthermore, CCA cells exchange autocrine and paracrine signals with other cancer cells and the infiltrating cell types that populate the microenvironment, including cancer-associated fibroblasts and tumor-associated macrophages, further contributing to an immunosuppressive niche that supports tumorigenesis. This review explores the multifaceted genetic, epigenetic, and microenvironmental drivers of CCA. Understanding these diverse mechanisms is essential for characterizing the complex pathways of CCA carcinogenesis and developing targeted therapies to improve patient outcomes.
Collapse
Affiliation(s)
- Vijay Putatunda
- Liver Cancer Program, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland; Surgical Oncology Program, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland.
| | - Apinya Jusakul
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand; Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - Lewis Roberts
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Xin Wei Wang
- Liver Cancer Program, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland; Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| |
Collapse
|
9
|
Macias RIR, Kanzaki H, Berasain C, Avila MA, Marin JJG, Hoshida Y. The Search for Risk, Diagnostic, and Prognostic Biomarkers of Cholangiocarcinoma and Their Biological and Clinicopathologic Significance. THE AMERICAN JOURNAL OF PATHOLOGY 2025; 195:422-436. [PMID: 39103092 PMCID: PMC11841489 DOI: 10.1016/j.ajpath.2024.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/01/2024] [Accepted: 06/20/2024] [Indexed: 08/07/2024]
Abstract
Cholangiocarcinomas (CCAs) are a heterogeneous group of malignant tumors that originate from the biliary tract. They are usually diagnosed in advanced stages, leading to a poor prognosis for affected patients. As CCA often arises as a sporadic cancer in individuals lacking specific risk factors or with heterogeneous backgrounds, and there are no defined high-risk groups, the implementation of effective surveillance programs for CCA is problematic. The identification and validation of new biomarkers useful for risk stratification, diagnosis, prognosis, and prediction of treatment response remains an unmet need for patients with CCA, even though numerous studies have been conducted lately to try to discover and validate CCA biomarkers. In this review, we overview the available information about the different types of biomarkers that have been investigated in recent years using minimally invasive biospecimens (blood, serum/plasma, bile, and urine) and their potential usefulness in diagnosis, prognosis, and risk stratification. It is widely accepted that early detection of CCA will impact patients' outcomes, by improving survival rates, quality of life, and the possibility of less invasive and/or curative treatments; however, challenges to its translation and clinical application for patients with CCA need to be resolved.
Collapse
Affiliation(s)
- Rocio I R Macias
- Experimental Hepatology and Drug Targeting Group, University of Salamanca, Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain; Center for the Study of Liver and Gastrointestinal Diseases, Carlos III National Institute of Health, Madrid, Spain.
| | - Hiroaki Kanzaki
- Division of Digestive and Liver Diseases, Department of Internal Medicine, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Carmen Berasain
- Center for the Study of Liver and Gastrointestinal Diseases, Carlos III National Institute of Health, Madrid, Spain; Hepatology Laboratory, Solid Tumors Program, Center for Applied Medical Research, Cancer Center University of Navarra, Pamplona, Spain
| | - Matias A Avila
- Center for the Study of Liver and Gastrointestinal Diseases, Carlos III National Institute of Health, Madrid, Spain; Hepatology Laboratory, Solid Tumors Program, Center for Applied Medical Research, Cancer Center University of Navarra, Pamplona, Spain
| | - Jose J G Marin
- Experimental Hepatology and Drug Targeting Group, University of Salamanca, Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain; Center for the Study of Liver and Gastrointestinal Diseases, Carlos III National Institute of Health, Madrid, Spain
| | - Yujin Hoshida
- Division of Digestive and Liver Diseases, Department of Internal Medicine, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas.
| |
Collapse
|
10
|
He J, Qian J, Li X, Zhao X, Meng W, Zhuang X. Bile-Derived cfDNA of Syncytin-1 and SLC7A11 as a Potential Molecular Marker for Early Diagnosis of Cholangiocarcinoma. J Gastrointest Cancer 2025; 56:55. [PMID: 39875668 DOI: 10.1007/s12029-025-01180-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2025] [Indexed: 01/30/2025]
Abstract
PURPOSE Liquid biopsy technology has received widespread attention in the early diagnosis of cholangiocarcinoma (CCA). METHODS We collected bile samples from 48 patients with CCA and 48 patients with gallstones at Shandong Provincial third Hospital. We quantified bile circulating free DNA (cfDNA) of syncytin-1 and SLC7A11, calculated the correlation between syncytin-1 and SLC7A11 expression and clinical parameters by Spearman rank correlation, plotted Receiver Operating Characteristic (ROC) curves, and compared the Area Under Curve (AUC) values to explored early diagnostic utility in patients. RESULTS We first found the bile cfDNA of syncytin-1 and SLC7A11 levels in CCA were higher than in gallstones (3.06 vs. 1.32, p < 0.001; 2.39 vs. 1.30, p < 0.001). And there was significant correlation between syncytin-1 and SLC7A11 expression (p = 0.025). Additionally, bile cfDNA of syncytin-1 or SLC7A11 was differentially expressed in gallstones, cholangiocarcinoma stage I-II, and cholangiocarcinoma stage III-IV (p < 0.001; p < 0.001). The AUC of bile cfDNA of syncytin-1 was 0.805 (p < 0.001, specificity of 87.0%), the AUC of bile cfDNA of SLC7A11 was 0.755 (p < 0.001, specificity of 80.4%), and combination of bile cDNA of syncytin-1/SLC7A11/CA19-9 markers improved diagnostic efficiency in CCA patients (AUC: 0.927, p < 0.001). CONCLUSION The bile cfDNA of syncytin-1 and SLC7A11 was high expression in cholangiocarcinoma, which may be used as a novel biomarker for early diagnosis.
Collapse
Affiliation(s)
- Jing He
- Second Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
- Department of Clinical Laboratory, Shandong Provincial Third Hospital, Shandong University, Jinan, Shandong, China
| | - Jingrong Qian
- Department of Clinical Laboratory, Shandong Provincial Third Hospital, Shandong University, Jinan, Shandong, China
| | - Xin Li
- Second Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
- Department of Clinical Laboratory, Shandong Provincial Third Hospital, Shandong University, Jinan, Shandong, China
| | - Xiaoyue Zhao
- Second Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
- Department of Clinical Laboratory, Shandong Provincial Third Hospital, Shandong University, Jinan, Shandong, China
| | - Weiwei Meng
- Department of Clinical Laboratory, Shandong Provincial Third Hospital, Shandong University, Jinan, Shandong, China
| | - Xuewei Zhuang
- Department of Clinical Laboratory, Shandong Provincial Third Hospital, Shandong University, Jinan, Shandong, China.
| |
Collapse
|
11
|
Shu F, Yu J, Liu Y, Wang F, Gou G, Wen M, Luo C, Lu X, Hu Y, Du Q, Xu J, Xie R. Mast cells: key players in digestive system tumors and their interactions with immune cells. Cell Death Discov 2025; 11:8. [PMID: 39814702 PMCID: PMC11735678 DOI: 10.1038/s41420-024-02258-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/22/2024] [Accepted: 12/02/2024] [Indexed: 01/18/2025] Open
Abstract
Mast cells (MCs) are critical components of both innate and adaptive immune processes. They play a significant role in protecting human health and in the pathophysiology of various illnesses, including allergies, cardiovascular diseases and autoimmune diseases. Recent studies in tumor-related research have demonstrated that mast cells exert a substantial influence on tumor cell behavior and the tumor microenvironment, exhibiting both pro- and anti-tumor effects. Specifically, mast cells not only secrete mediators related to pro-tumor function such as trypsin-like enzymes, chymotrypsin, vascular endothelial cell growth factor and histamine, but also mediators related to anti-tumor progression such as cystatin C and IL-17F. This dual role of mast cells renders them an under-recognized but very promising target for tumor immunotherapy. Digestive system tumors, characterized by high morbidity and associated mortality rates globally, are increasingly recognized as a significant healthcare burden. This paper examines the influence of mast cell-derived mediators on the development of tumors in the digestive system. It also explores the prognostic significance of mast cells in patients with various gastrointestinal cancers at different stages of the disease. Additionally, the article investigates the interactions between mast cells and immune cells, as well as the potential relationships among intratumoral bacteria, immune cells, and mast cell within digestive system microenvironment. The aim is to propose new strategies for the immunotherapy of digestive system tumors by targeting mast cells.
Collapse
Affiliation(s)
- Feihong Shu
- Department of Endoscopy and Digestive System, Guizhou Provincial People's Hospital, Guiyang, China
- Zunyi Medical University, Zunyi, Guizhou, China
| | - Jie Yu
- Department of Endoscopy and Digestive System, Guizhou Provincial People's Hospital, Guiyang, China
- Zunyi Medical University, Zunyi, Guizhou, China
| | - Youjia Liu
- Zunyi Medical University, Zunyi, Guizhou, China
| | - Fang Wang
- Zunyi Medical University, Zunyi, Guizhou, China
| | - Guoyou Gou
- Zunyi Medical University, Zunyi, Guizhou, China
| | - Min Wen
- Zunyi Medical University, Zunyi, Guizhou, China
| | - Chen Luo
- Zunyi Medical University, Zunyi, Guizhou, China
| | - Xianmin Lu
- Zunyi Medical University, Zunyi, Guizhou, China
| | - Yanxia Hu
- Zunyi Medical University, Zunyi, Guizhou, China
| | - Qian Du
- Department of Endoscopy and Digestive System, Guizhou Provincial People's Hospital, Guiyang, China
| | - Jingyu Xu
- Guizhou Medical University, Guiyang, Guizhou, China
| | - Rui Xie
- Department of Endoscopy and Digestive System, Guizhou Provincial People's Hospital, Guiyang, China.
| |
Collapse
|
12
|
Deng Q, Yao X, Fang S, Sun Y, Liu L, Li C, Li G, Guo Y, Liu J. Mast cell-mediated microRNA functioning in immune regulation and disease pathophysiology. Clin Exp Med 2025; 25:38. [PMID: 39812911 PMCID: PMC11735496 DOI: 10.1007/s10238-024-01554-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 12/28/2024] [Indexed: 01/16/2025]
Abstract
Upon stimulation and activation, mast cells (MCs) release soluble mediators, including histamine, proteases, and cytokines. These mediators are often stored within cytoplasmic granules in MCs and may be released in a granulated form. The secretion of cytokines and chemokines occurs within hours following activation, with the potential to result in chronic inflammation. In addition to their role in allergic inflammation, MCs are components of the tumor microenvironment (TME). MicroRNAs (miRNAs) are small RNA molecules that do not encode proteins, but regulate post-transcriptional gene expression by binding to the 3' non-coding regions of mRNAs. This plays a crucial role in the function of MC, including the key processes of MC proliferation, maturation, apoptosis, and activation. It has been demonstrated that miRNAs are also present in extracellular vesicles (EVs) secreted by MCs. EVs derived from MCs mediate intercellular communication by carrying miRNAs, affecting various diseases including allergic diseases, intestinal disorders, neuroinflammation, and tumors. These findings provide important insights into the therapeutic mechanisms and targets of miRNAs in MCs that affect diseases. This review discusses the relevance of miRNA production by MCs in regulating their own activity and the effect of miRNAs putatively produced by other cells in the control of MC activity and their participation in selected pathologies.
Collapse
Affiliation(s)
- Qiuping Deng
- Department of Clinical Laboratory, Chengdu Jinjiang Hospital for Women's and Children's Health, Chengdu, 610016, Sichuan, China
| | - Xiuju Yao
- Department of Clinical Laboratory, 363 Hospital, Chengdu, 610016, Sichuan, China
| | - Siyun Fang
- Department of Clinical Laboratory, Chengdu Jinjiang Hospital for Women's and Children's Health, Chengdu, 610016, Sichuan, China
| | - Yueshan Sun
- Medical Research Center, The Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, Chengdu, 610031, China
| | - Lei Liu
- Medical Research Center, The Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, Chengdu, 610031, China
| | - Chao Li
- Department of Clinical Laboratory, Chengdu Jinjiang Hospital for Women's and Children's Health, Chengdu, 610016, Sichuan, China
| | - Guangquan Li
- Department of Clinical Laboratory, 363 Hospital, Chengdu, 610016, Sichuan, China
| | - Yuanbiao Guo
- Medical Research Center, The Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, Chengdu, 610031, China.
| | - Jinbo Liu
- The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
13
|
Wang M, Zheng Y, Hao Q, Mao G, Dai Z, Zhai Z, Lin S, Liang B, Kang H, Ma X. Hypoxic BMSC-derived exosomal miR-210-3p promotes progression of triple-negative breast cancer cells via NFIX-Wnt/β-catenin signaling axis. J Transl Med 2025; 23:39. [PMID: 39789572 PMCID: PMC11720919 DOI: 10.1186/s12967-024-05947-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 12/06/2024] [Indexed: 01/12/2025] Open
Abstract
BACKGROUND Bone marrow mesenchymal stem cells (BMSCs) are a crucial component of the tumor microenvironment (TME), with hypoxic conditions promoting their migration to tumors. Exosomes play a vital role in cell-to-cell communication within the TME. Hypoxic TME have a great impact on the release, uptake and biofunctions of exosomes. This study aims to elucidate the communication between BMSC-derived exosomal miRNA and triple-negative breast cancer (TNBC) in a hypoxic environment. METHODS Exosomes were isolated via ultracentrifugation and identified using scanning electron microscopy (SEM), nanoparticle tracking analysis (NTA) and western blot. A range of bioinformatics approaches were used to screen exosomal miRNAs and the target mRNAs of miRNAs and predict the possible signaling pathways. Expression levels of genes and proteins were assessed by quantitative real-time PCR and western blot. Cell proliferation, apoptosis, migration and invasion were analyzed using CCK-8 assay, EDU assay, transwell migration, wound healing assay and invasion assay, respectively. Dual luciferase reporter gene assay was conducted to confirm the binding between miRNAs and the target mRNAs. The impact of hypoxic BMSC-derived exosomal miRNA on TNBC progression in vivo was evaluated using tumor xenograft nude mouse models. Furthermore, the impact of patients' serum exosomal miRNA on TNBC was implemented. RESULTS Exosomes derived from hypoxic BMSCs promotes the proliferation, migration, invasion and epithelial-mesenchymal transition of TNBC and suppresses the apoptosis of TNBC. The expression of miR-210-3p in BMSC-derived exosomes is markedly elevated in hypoxic conditions. Exosome-mediated transfer of miR-210-3p from hypoxic BMSCs to TNBC targets NFIX and activates Wnt/β-Catenin signaling in TNBC. Deletion of miR-210-3p in hypoxic BMSC-derived exosomes attenuates TNBC in vivo. Additionally, human exosomal miR-210-3p from the serum of TNBC patients promotes TNBC progression. Moreover, we notably observed a marked downregulation of NFIX expression levels in cancerous tissues compared to paracancerous tissues. CONCLUSIONS Hypoxic BMSC-derived exosomal miR-210-3p promotes TNBC progression via NFIX-Wnt/β-catenin signaling axis.
Collapse
Affiliation(s)
- Meng Wang
- The Comprehensive Breast Care Center, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Yi Zheng
- The Comprehensive Breast Care Center, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
- Department of Oncology of Xijing Hospital, Air Force Medical University, Xi'an, 710032, China
| | - Qian Hao
- The Comprehensive Breast Care Center, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Guochao Mao
- The Comprehensive Breast Care Center, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Zhijun Dai
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Zhen Zhai
- The Comprehensive Breast Care Center, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Shuai Lin
- The Comprehensive Breast Care Center, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Baobao Liang
- The Comprehensive Breast Care Center, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Huafeng Kang
- The Comprehensive Breast Care Center, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China.
| | - Xiaobin Ma
- The Comprehensive Breast Care Center, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China.
| |
Collapse
|
14
|
Fu S, Du H, Dai Y, Zheng K, Cao G, Xu L, Zhong Y, Niu C, Kong Y, Wang X. Screening and molecular mechanism research on bile microRNAs associated with chemotherapy efficacy in perihilar cholangiocarcinoma. iScience 2024; 27:111437. [PMID: 39717085 PMCID: PMC11664176 DOI: 10.1016/j.isci.2024.111437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 08/22/2024] [Accepted: 11/18/2024] [Indexed: 12/25/2024] Open
Abstract
The efficacy of hepatic arterial infusion chemotherapy (HAIC) with oxaliplatin (OXA) and 5-fluorouracil (5-Fu) for treating advanced perihilar cholangiocarcinoma (pCCA) has been demonstrated, yet the survival benefits of HAIC for pCCA patients vary. Here, we aimed to screen out HAIC resistance-related bile microRNAs (miRNAs) and explore the functions of specific bile miRNAs in pCCA based on high-throughput sequencing. Levels of bile miR-532-3p, miR-1250-5p, and miR-4772-5p were related to the survival of advanced pCCA patients after HAIC. However, only overexpression of miR-532-3p promoted OXA/5-Fu resistance, and downregulation of its expression improved sensitivity to OXA/5-Fu. Mechanistic investigations revealed secreted protein acidic and rich in cysteine (SPARC) as the direct target of miR-532-3p. Our study reveals that bile miR-532-3p, miR-1250-5p, and miR-4772-5p may serve as survival biomarkers in advanced pCCA patients after HAIC and that bile miR-532-3p promotes resistance to HAIC with OXA and 5-Fu via negatively regulating SPARC expression.
Collapse
Affiliation(s)
- Shijie Fu
- Department of Interventional Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing 100000, China
| | - Haizhen Du
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal Cancer and Melanoma, Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Yuyang Dai
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Interventional Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Kanglian Zheng
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Interventional Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Guang Cao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Interventional Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Liang Xu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Interventional Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Yujie Zhong
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Interventional Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Chuanxin Niu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Interventional Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Yan Kong
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal Cancer and Melanoma, Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Xiaodong Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Interventional Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| |
Collapse
|
15
|
Hou C, Huo J, Yan S, Sun F, Yang X. Identification of fibrosis-associated biomarkers in heart failure and human cancers. J Transl Med 2024; 22:1042. [PMID: 39563337 PMCID: PMC11575019 DOI: 10.1186/s12967-024-05759-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 10/11/2024] [Indexed: 11/21/2024] Open
Abstract
BACKGROUND Heart failure (HF) and cancer share common risk factors and pathophysiological mechanisms, including fibrosis. Identifying biomarkers and therapeutic targets for both conditions is crucial. MATERIALS AND METHODS RNA sequencing data from HF patients were analyzed to identify 12 genes associated with myocardial fibrosis. Validation was performed using public datasets, and functional enrichment analyses were conducted. Gene expression patterns and prognostic value in various cancers were assessed. RESULTS Fibromodulin (FMOD), Periostin (POSTN), Latent Transforming Growth Factor Beta Binding Protein 2 (LTBP2), Collagen Type I Alpha 1 Chain (COL1A1), Collagen Type VIII Alpha 1 Chain (COL8A1), Asporin (ASPN), and Hemoglobin Subunit Beta (HBB) showed significant dysregulation in heart failure tissues and were implicated in multiple cancer types. Pan-cancer analysis revealed associations between these genes and prognosis. Correlations with cancer-associated fibroblasts were also observed. CONCLUSION FMOD, POSTN, LTBP2, COL1A1, COL8A1, ASPN, and HBB are potential biomarkers for HF and cancer with fibrotic microenvironments. Targeting fibrosis may offer novel therapeutic approaches. Further validation and mechanistic studies are needed. This study contributes to understanding HF and cancer at the molecular level and suggests personalized treatment strategies.
Collapse
Affiliation(s)
- Can Hou
- Department of Cardiovascular Medicine, The First People's Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu Province, 213000, China
| | - Junyu Huo
- Department of Cardiovascular Medicine, The First People's Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu Province, 213000, China
| | - Si Yan
- Department of Cardiovascular Medicine, The First People's Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu Province, 213000, China
| | - Fei Sun
- Department of Radiotherapy, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, Jiangsu Province, 213000, China.
| | - Xiaoyu Yang
- Department of Cardiovascular Medicine, The First People's Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu Province, 213000, China.
| |
Collapse
|
16
|
Li KS, Liu Y, Zhang TZ, Xu YF, Zhang ZL. Protocol of REACH-01: a single-arm, open label, prospective study of HAIC sequential TAE combined with tislelizumab and surufatinib in unresectable intrahepatic cholangiocarcinoma. Front Pharmacol 2024; 15:1435639. [PMID: 39624833 PMCID: PMC11608944 DOI: 10.3389/fphar.2024.1435639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 11/05/2024] [Indexed: 05/17/2025] Open
Abstract
INTRODUCTION Gemcitabine and cisplatin remain the cornerstone for the treatment of advanced or unresectable biliary tract cancers, but the incidence rate of the grade 3 or 4 toxic effects is high (70.7%). In recent years, significant progress has been achieved in the systemic treatment of cholangiocarcinoma with immune checkpoint inhibitors (ICIs), targeted therapy, and hepatic artery infusion chemotherapy (HAIC). HAIC may elevate the local drug concentration in the liver to 10-100 times the drug plasma concentration; therefore, it may enhance tumor cytotoxicity while minimizing systemic adverse effects. HAIC combined with immunotherapy and targeted therapy resulted in acceptable tumor responses and tolerable toxic effects in the treatment of hepatocellular carcinoma (HCC). However, whether this combination strategy can benefit patients with unresectable intrahepatic cholangiocarcinoma remains unclear. METHODS AND ANALYSIS We describe a single-arm, open label, prospective clinical trial of HAIC sequential transcatheter arterial embolization (TAE) combined with tislelizumab and surufatinib in patients with unresectable intrahepatic cholangiocarcinoma. TAE + HAIC was performed at an interval of at least 3 weeks, and oxaliplatin (85 mg/m2) and rituximab (3 mg/m2) were infused. TAE was performed using undrugged microspheres. Tislelizumab was infused every 3 weeks and surufatinib was administered orally once a day, with 3-5 capsules (50 mg/capsule) each time. We plan to enroll 28 participants in this study. The primary study endpoint was objective response rate (ORR). The secondary endpoints were progression-free survival (PFS), conversion to surgical resection rate, overall survival (OS), 1-year OS rate, disease control rate (DCR), quality of life (QoL), and incidence of adverse events. TRIAL REGISTRATION NUMBER NCT06239532.
Collapse
Affiliation(s)
| | | | | | | | - Zong-li Zhang
- Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| |
Collapse
|
17
|
Sishuai S, Lingui G, Pengtao L, Xinjie B, Junji W. Advances in regulating endothelial-mesenchymal transformation through exosomes. Stem Cell Res Ther 2024; 15:391. [PMID: 39482726 PMCID: PMC11529026 DOI: 10.1186/s13287-024-04010-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 10/22/2024] [Indexed: 11/03/2024] Open
Abstract
Endothelial-mesenchymal transformation (EndoMT) is the process through which endothelial cells transform into mesenchymal cells, affecting their morphology, gene expression, and function. EndoMT is a potential risk factor for cardiovascular and cerebrovascular diseases, tumor metastasis, and fibrosis. Recent research has highlighted the role of exosomes, a mode of cellular communication, in the regulation of EndoMT. Exosomes from diseased tissues and microenvironments can promote EndoMT, increase endothelial permeability, and compromise the vascular barrier. Conversely, exosomes derived from stem cells or progenitor cells can inhibit the EndoMT process and preserve endothelial function. By modifying exosome membranes or contents, we can harness the advantages of exosomes as carriers, enhancing their targeting and ability to inhibit EndoMT. This review aims to systematically summarize the regulation of EndoMT by exosomes in different disease contexts and provide effective strategies for exosome-based EndoMT intervention.
Collapse
Affiliation(s)
- Sun Sishuai
- Department of Neurosurgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Gu Lingui
- Department of Neurosurgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Li Pengtao
- Department of Neurosurgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Bao Xinjie
- Department of Neurosurgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China.
| | - Wei Junji
- Department of Neurosurgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
18
|
Wang J, Li X, Zhao X, Yuan S, Dou H, Cheng T, Huang T, Lv Z, Tu Y, Shi Y, Ding X. Lactobacillus rhamnosus GG-derived extracellular vesicles promote wound healing via miR-21-5p-mediated re-epithelization and angiogenesis. J Nanobiotechnology 2024; 22:644. [PMID: 39427198 PMCID: PMC11490139 DOI: 10.1186/s12951-024-02893-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 10/02/2024] [Indexed: 10/21/2024] Open
Abstract
Extracellular vesicles (EVs), especially those derived from stem cells, have emerged as a novel treatment for promoting wound healing in regenerative medicine. However, the clinical application of mammalian cells-derived EVs is hindered by their high cost and low yields. Inspired by the ability of EVs to mediate interkingdom communication, we explored the therapeutic potential of EVs released by the probiotic strain Lactobacillus rhamnosus GG (LGG) in skin wound healing and elucidated the underlying mechanism involved. Using full-thickness skin wound-healing mouse models, we found that LGG-EVs accelerated wound healing procedures, including increased re-epithelialization and promoted angiogenesis. Using in vitro experiments, we further demonstrated that LGG-EVs boosted the proliferation and migration capacities of both epithelial and endothelial cells, as well as promoted endothelial tube formation. miRNA profiling analysis revealed that miR-21-5p was highly enriched in LGG-EVs and LGG-EV treatment significantly increased miR-21-5p level in recipient cells. Mechanically, LGG-EVs induced regulatory effects via miR-21-5p mediated metabolic signaling rewiring. Our results suggest that EVs derived from LGG could serve as a promising candidate for accelerating wound healing and possibly for treating chronic and impaired healing conditions.
Collapse
Affiliation(s)
- Juan Wang
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, 226011, China
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Xiaojie Li
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, 226011, China
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Xinyue Zhao
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, 226011, China
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Siqi Yuan
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, 226011, China
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Hanyu Dou
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, 226011, China
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Ting Cheng
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
| | - Taomin Huang
- Eye & ENT Hospital, Fudan University, Shanghai, 200031, China
| | - Zhi Lv
- Shanghai Inoherb R&D Center, Shanghai, 200444, China
| | - Yidong Tu
- Shanghai Inoherb R&D Center, Shanghai, 200444, China
| | - Yejiao Shi
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China.
| | - Xiaolei Ding
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, 226011, China.
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai, 200444, China.
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, 200040, China.
| |
Collapse
|
19
|
Zhou H, Jiang Y, Zhou Y, Zhang Z, Li S. miR-182-5p promotes the proliferation and invasion of hilar cholangiocarcinoma cells by inhibiting FBXW7. J Cancer Res Clin Oncol 2024; 150:461. [PMID: 39402299 PMCID: PMC11473565 DOI: 10.1007/s00432-024-05961-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 09/18/2024] [Indexed: 10/19/2024]
Abstract
BACKGROUND Hilar cholangiocarcinoma (HCCA) is a common type of cholangiocarcinoma (CHOL) that originates from the right and/or left hepatic duct near the biliary tract confluence. The objective of this study is to investigate the impact of miR-182-5p on the proliferation and invasion of HCCA cells and identify a potential target for HCCA treatment. METHODS HCCA tissues were collected and HCCA cells were cultured. miR-182-5p and F-box and WD repeat domain containing 7 (FBXW7) were detected. After transfection of miR-182-5p inhibitor into HCCA cells, cell proliferation and invasion were detected by cell counting 8-kit and Transwell assay. FBXW7 expression was detected by Western blot. The targeted relationship between miR-182-5p and FBXW7 3'UTR was verified by dual-luciferase report assay. si-FBXW7 and miR-182-5p inhibitor were transfected into cells for combined experiments. HCCA cells with lowly-expressed miR-182-5p were injected into nude mice to establish the xenograft tumor model, and subsequent observations were made on tumor growth and gene expression changes. RESULTS miR-182-5p exhibited high expression levels in both HCCA tissues and cell lines. Inhibiting miR-182-5p effectively suppressed the proliferation and migration of HCCA cells. miR-182-5p bounded to FBXW7 3 'UTR and inhibited FBWX7 expression. Suppressing FBXW7 expression partially reversed the inhibitory effect of miR-182-5p inhibitor on HCCA cell proliferation and invasion. Silencing miR-182-5p could inhibit the HCCA growth in vivo. CONCLUSION miR-182-5p promoted the proliferation and invasion of HCCA cells by targeting and inhibiting FBXW7 expression.
Collapse
Affiliation(s)
- Hang Zhou
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, No. 50, Jinyu Avenue, Liangjiang New Area, Chongqing, 400016, China
| | - Yong Jiang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, No. 50, Jinyu Avenue, Liangjiang New Area, Chongqing, 400016, China
| | - Yang Zhou
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, No. 50, Jinyu Avenue, Liangjiang New Area, Chongqing, 400016, China
| | - Zhao Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, No. 50, Jinyu Avenue, Liangjiang New Area, Chongqing, 400016, China
| | - Shaoyin Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, No. 50, Jinyu Avenue, Liangjiang New Area, Chongqing, 400016, China.
| |
Collapse
|
20
|
Ba Q, Wang X, Lu Y. Establishment of a prognostic model for pancreatic cancer based on mitochondrial metabolism related genes. Discov Oncol 2024; 15:376. [PMID: 39196457 PMCID: PMC11358576 DOI: 10.1007/s12672-024-01255-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 08/20/2024] [Indexed: 08/29/2024] Open
Abstract
AIM Pancreatic ductal adenocarcinoma (PAAD) is recognized as an exceptionally aggressive cancer that both highly lethal and unfavorable prognosis. The mitochondrial metabolism pathway is intimately involved in oncogenesis and tumor progression, however, much remains unknown in this area. In this study, the bioinformatic tools have been used to construct a prognostic model with mitochondrial metabolism-related genes (MMRGs) to evaluate the survival, immune status, mutation profile, and drug sensitivity of PAAD patients. METHOD Univariate Cox regression and LASSO regression were used to screen the differentially expressed genes (DEGs), and multivariate Cox regression was used to develop the risk model. Kaplan-Meier estimator was employed to identify MMRGs signatures associated with overall survival (OS). ROC curves were utilized to evaluate the model's performance. Maftools, immunedeconv and CIBERSORT R packages were applied to analyze the gene mutation profiles and immune status. The corresponding sensitivity to pharmaceutical agents was assessed using oncoPredict R packages. RESULTS A prognostic model with five MMRGs was developed, which defined the patients as high-risk showed lower survival rates. There was good consistency among individuals categorized as high-risk, showing elevated rates of genetic alterations, particularly in the TP53 and KRAS genes. Furthermore, these patients exhibited increased levels of immunosuppression, characterized by an increased presence of macrophages, neutrophils, Th2 cells, and regulatory T cells. Additionally, high-risk patients showed increased sensitivity to Sabutoclax and Venetoclax. CONCLUSION By utilizing a gene signature associated with mitochondrial metabolism, a prognostic model has been established which could be a highly efficient method for predicting the outcomes of PAAD patients.
Collapse
Affiliation(s)
- Qinwen Ba
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiong Wang
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Yanjun Lu
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
21
|
Shi A, Liu Z, Fan Z, Li K, Liu X, Tang Y, Hu J, Li X, Shu L, Zhao L, Huang L, Zhang Z, Lv G, Zhang Z, Xu Y. Function of mast cell and bile-cholangiocarcinoma interplay in cholangiocarcinoma microenvironment. Gut 2024; 73:1350-1363. [PMID: 38458750 DOI: 10.1136/gutjnl-2023-331715] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 02/25/2024] [Indexed: 03/10/2024]
Abstract
OBJECTIVE The correlation between cholangiocarcinoma (CCA) progression and bile is rarely studied. Here, we aimed to identify differential metabolites in benign and malignant bile ducts and elucidate the generation, function and degradation of bile metabolites. DESIGN Differential metabolites in the bile from CCA and benign biliary stenosis were identified by metabonomics. Biliary molecules able to induce mast cell (MC) degranulation were revealed by in vitro and in vivo experiments, including liquid chromatography-mass spectrometry (MS)/MS and bioluminescence resonance energy transfer assays. Histamine (HA) receptor expression in CCA was mapped using a single-cell mRNA sequence. HA receptor functions were elucidated by patient-derived xenografts (PDX) in humanised mice and orthotopic models in MC-deficient mice. Genes involved in HA-induced proliferation were screened by CRISPR/Cas9. RESULTS Bile HA was elevated in CCA and indicated poorer prognoses. Cancer-associated fibroblasts (CAFs)-derived stem cell factor (SCF) recruited MCs, and bile N,N-dimethyl-1,4-phenylenediamine (DMPD) stimulated MCs to release HA through G protein-coupled receptor subtype 2 (MRGPRX2)-Gαq signalling. Bile-induced MCs released platelet-derived growth factor subunit B (PDGF-B) and angiopoietin 1/2 (ANGPT1/2), which enhanced CCA angiogenesis and lymphangiogenesis. Histamine receptor H1 (HRH1) and HRH2 were predominantly expressed in CCA cells and CAFs, respectively. HA promoted CCA cell proliferation by activating HRH1-Gαq signalling and hastened CAFs to secrete hepatocyte growth factor by stimulating HRH2-Gαs signalling. Solute carrier family 22 member 3 (SLC22A3) inhibited HA-induced CCA proliferation by importing bile HA into cells for degradation, and SLC22A3 deletion resulted in HA accumulation. CONCLUSION Bile HA is released from MCs through DMPD stimulation and degraded via SLC22A3 import. Different HA receptors exhibit a distinct expression profile in CCA and produce different oncogenic effects. MCs promote CCA progression in a CCA-bile interplay pattern.
Collapse
Affiliation(s)
- Anda Shi
- Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Zengli Liu
- Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Department of General Surgery, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Zhongqi Fan
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Kangshuai Li
- Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Xingkai Liu
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Yongchang Tang
- Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Jiaming Hu
- Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Xingyong Li
- Department of Hepatobiliary Surgery, Shandong University, Jinan, Shandong, China
| | - Lizhuang Shu
- Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Liming Zhao
- Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Lingling Huang
- Department of Pharmaceutics, Shandong University, Jinan, Shandong, China
| | - Zhiyue Zhang
- Department of Pharmaceutics, Shandong University, Jinan, Shandong, China
| | - Guoyue Lv
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Zongli Zhang
- Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yunfei Xu
- Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| |
Collapse
|
22
|
Meng YW, Liu JY. Pathological and pharmacological functions of the metabolites of polyunsaturated fatty acids mediated by cyclooxygenases, lipoxygenases, and cytochrome P450s in cancers. Pharmacol Ther 2024; 256:108612. [PMID: 38369063 DOI: 10.1016/j.pharmthera.2024.108612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/19/2024] [Accepted: 02/05/2024] [Indexed: 02/20/2024]
Abstract
Oxylipins have garnered increasing attention because they were consistently shown to play pathological and/or pharmacological roles in the development of multiple cancers. Oxylipins are the metabolites of polyunsaturated fatty acids via both enzymatic and nonenzymatic pathways. The enzymes mediating the metabolism of PUFAs include but not limited to lipoxygenases (LOXs), cyclooxygenases (COXs), and cytochrome P450s (CYPs) pathways, as well as the down-stream enzymes. Here, we systematically summarized the pleiotropic effects of oxylipins in different cancers through pathological and pharmacological aspects, with specific reference to the enzyme-mediated oxylipins. We discussed the specific roles of oxylipins on cancer onset, growth, invasion, and metastasis, as well as the expression changes in the associated metabolic enzymes and the associated underlying mechanisms. In addition, we also discussed the clinical application and potential of oxylipins and related metabolic enzymes as the targets for cancer prevention and treatment. We found the specific function of most oxylipins in cancers, especially the underlying mechanisms and clinic applications, deserves and needs further investigation. We believe that research on oxylipins will provide not only more therapeutic targets for various cancers but also dietary guidance for both cancer patients and healthy humans.
Collapse
Affiliation(s)
- Yi-Wen Meng
- CNTTI of the Institute of Life Sciences & Department of Anesthesia of the Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China; Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention, Ministry of Education, Chongqing 400016, China
| | - Jun-Yan Liu
- CNTTI of the Institute of Life Sciences & Department of Anesthesia of the Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China; Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention, Ministry of Education, Chongqing 400016, China; College of Pharmacy, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
23
|
Zhang N, Shu L, Liu Z, Shi A, Zhao L, Huang S, Sheng G, Yan Z, Song Y, Huang F, Tang Y, Zhang Z. The role of extracellular vesicles in cholangiocarcinoma tumor microenvironment. Front Pharmacol 2024; 14:1336685. [PMID: 38269274 PMCID: PMC10805838 DOI: 10.3389/fphar.2023.1336685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 12/26/2023] [Indexed: 01/26/2024] Open
Abstract
Cholangiocarcinoma (CCA) is a highly aggressive malignant tumor that originates from the biliary system. With restricted treatment options at hand, the challenging aspect of early CCA diagnosis leads to a bleak prognosis. Besides the intrinsic characteristics of tumor cells, the generation and progression of CCA are profoundly influenced by the tumor microenvironment, which engages in intricate interactions with cholangiocarcinoma cells. Of notable significance is the role of extracellular vesicles as key carriers in enabling communication between cancer cells and the tumor microenvironment. This review aims to provide a comprehensive overview of current research examining the interplay between extracellular vesicles and the tumor microenvironment in the context of CCA. Specifically, we will emphasize the significant contributions of extracellular vesicles in molding the CCA microenvironment and explore their potential applications in the diagnosis, prognosis assessment, and therapeutic strategies for this aggressive malignancy.
Collapse
Affiliation(s)
- Nuoqi Zhang
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Lizhuang Shu
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Zengli Liu
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, Shandong, China
- Department of General Surgery, Qilu Hospital, Shandong University, Qingdao, Shandong, China
| | - Anda Shi
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Liming Zhao
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Shaohui Huang
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Guoli Sheng
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Zhangdi Yan
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Yan Song
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Fan Huang
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Yongchang Tang
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Zongli Zhang
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, Shandong, China
| |
Collapse
|
24
|
Wang X, Ye X, Chen Y, Lin J. Mechanism of M2 type macrophage-derived extracellular vesicles regulating PD-L1 expression via the MISP/IQGAP1 axis in hepatocellular carcinoma immunotherapy resistance. Int Immunopharmacol 2023; 124:110848. [PMID: 37633233 DOI: 10.1016/j.intimp.2023.110848] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 08/07/2023] [Accepted: 08/21/2023] [Indexed: 08/28/2023]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is a prevailing cancer affecting human health. M2 macrophages are essential in mediating immune responses in tumors. This study investigated the action of M2 macrophages in immune escape of HCC. METHODS Mitotic spindle positioning (MISP), IQ motif containing GTPase activating protein 1 (IQGAP1) and programmed cell death-1 (PD-L1) levels in primary HCC/tumor-adjacent tissues were determined by Western blot, followed by correlation analysis. M2 macrophage and CD3+CD8+T cell percentages were estimated by flow cytometry. Hep3B and HepG2 cells were treated with M2 macrophage conditioned medium (M2-CM) and M2 macrophage-derived extracellular vesicles (M2-EVs) and/or co-cultured with CD8+T cells, followed by assessment of cell viability and apoptosis. TNF-α and INF-γ levels were measured by ELISA. MISP and IQGAP1 overexpression plasmids were transfected into HCC cells to explore their role in immune escape. The interactions among MISP, IQGAP1, STAT3, and PD-L1 were analyzed by co-immunoprecipitation. The mechanism of M2-EVs in HCC immune escape was verified in nude mice. RESULTS MISP/IQGAP1/PD-L1 were upregulated in HCC tissues. MISP negatively-correlated with IQGAP1/PD-L1 and IQGAP1 positively-correlated with PD-L1. M2 macrophages were reduced but CD8+T cells were increased in HCC tissues with high MISP expression. M2-CM or M2-EVs inhibited the killing ability of CD8+T cells, increased HCC cell viability, impeded HCC cell apoptosis, induced CD8+T cell apoptosis, downregulated TNF-α and INF-γ, and upregulated PD-L1. M2-EVs facilitated HCC cell immune escape by potentiating IQGAP1 nuclear translocation and activating STAT3 phosphorylation through MISP downregulation. In vivo experiments further verified the action of M2-EVs through MISP. CONCLUSION M2-EVs promote HCC cell immune escape by upregulating PD-L1 through the MISP/IQGAP1/STAT3 axis.
Collapse
Affiliation(s)
- Xiaobo Wang
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou, 310053, China
| | - Xuxing Ye
- Department of Traditional Chinese Medicine, Jinhua Municipal Central Hospital, 351 Mingyue Street, Wucheng District, Jinhua, 321001, China
| | - Yanping Chen
- Department of Gastroenterology, Jinhua Municipal Central Hospital, 351 Mingyue Street, Wucheng District, Jinhua, 321001, China
| | - Junmei Lin
- Department of Traditional Chinese Medicine, Jinhua Municipal Central Hospital, 351 Mingyue Street, Wucheng District, Jinhua, 321001, China.
| |
Collapse
|
25
|
Liu F, Hao X, Liu B, Liu S, Yuan Y. Bile liquid biopsy in biliary tract cancer. Clin Chim Acta 2023; 551:117593. [PMID: 37839517 DOI: 10.1016/j.cca.2023.117593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/08/2023] [Accepted: 10/10/2023] [Indexed: 10/17/2023]
Abstract
Biliary tract cancers are heterogeneous in etiology, morphology and molecular characteristics thus impacting disease management. Diagnosis is complex and prognosis poor. The advent of liquid biopsy has provided a unique approach to more thoroughly understand tumor biology in general and biliary tract cancers specifically. Due to their minimally invasive nature, liquid biopsy can be used to serially monitor disease progression and allow real-time monitoring of tumor genetic profiles as well as therapeutic response. Due to the unique anatomic location of biliary tract cancer, bile provides a promising biologic fluid for this purpose. This review focuses on the composition of bile and the use of these various components, ie, cells, extracellular vesicles, nucleic acids, proteins and metabolites as potential biomarkers. Based on the disease characteristics and research status of biliary tract cancer, considerable effort should be made to increase understanding of this disease, promote research and development into early diagnosis, develop efficient diagnostic, therapeutic and prognostic markers.
Collapse
Affiliation(s)
- Fusheng Liu
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, PR China; Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Wuhan, 430071, Hubei, PR China
| | - Xingyuan Hao
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, PR China; Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Wuhan, 430071, Hubei, PR China
| | - Bin Liu
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, PR China; Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Wuhan, 430071, Hubei, PR China
| | - Songmei Liu
- Department of Clinical Laboratory, Center for Gene Diagnosis, and Program of Clinical Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, PR China
| | - Yufeng Yuan
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, PR China; Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Wuhan, 430071, Hubei, PR China; TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430071, Hubei, PR China.
| |
Collapse
|
26
|
Trifylli EM, Kriebardis AG, Koustas E, Papadopoulos N, Vasileiadi S, Fortis SP, Tzounakas VL, Anastasiadi AT, Sarantis P, Papageorgiou EG, Tsagarakis A, Aloizos G, Manolakopoulos S, Deutsch M. The Arising Role of Extracellular Vesicles in Cholangiocarcinoma: A Rundown of the Current Knowledge Regarding Diagnostic and Therapeutic Approaches. Int J Mol Sci 2023; 24:15563. [PMID: 37958547 PMCID: PMC10649642 DOI: 10.3390/ijms242115563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 10/21/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
Cholangiocarcinomas (CCAs) constitute a heterogeneous group of highly malignant epithelial tumors arising from the biliary tree. This cluster of malignant tumors includes three distinct entities, the intrahepatic, perihilar, and distal CCAs, which are characterized by different epidemiological and molecular backgrounds, as well as prognosis and therapeutic approaches. The higher incidence of CCA over the last decades, the late diagnostic time that contributes to a high mortality and poor prognosis, as well as its chemoresistance, intensified the efforts of the scientific community for the development of novel diagnostic tools and therapeutic approaches. Extracellular vesicles (EVs) comprise highly heterogenic, multi-sized, membrane-enclosed nanostructures that are secreted by a large variety of cells via different routes of biogenesis. Their role in intercellular communication via their cargo that potentially contributes to disease development and progression, as well as their prospect as diagnostic biomarkers and therapeutic tools, has become the focus of interest of several current studies for several diseases, including CCA. The aim of this review is to give a rundown of the current knowledge regarding the emerging role of EVs in cholangiocarcinogenesis and their future perspectives as diagnostic and therapeutic tools.
Collapse
Affiliation(s)
- Eleni-Myrto Trifylli
- Laboratory of Reliability and Quality Control in Laboratory Hematology (HemQcR), Department of Biomedical Sciences, Section of Medical Laboratories, School of Health & Caring Sciences, University of West Attica (UniWA), Ag. Spyridonos Str., 12243 Egaleo, Greece; (E.-M.T.); (S.P.F.); (E.G.P.)
- First Department of Internal Medicine, 417 Army Share Fund Hospital, 11521 Athens, Greece;
- 2nd Academic Department of Internal Medicine, Medical School, National and Kapodistrian University of Athens, Hippokration General Hospital of Athens, Vasilissis Sofias Avenue Str., 11527 Athens, Greece; (S.V.); (S.M.); (M.D.)
| | - Anastasios G. Kriebardis
- Laboratory of Reliability and Quality Control in Laboratory Hematology (HemQcR), Department of Biomedical Sciences, Section of Medical Laboratories, School of Health & Caring Sciences, University of West Attica (UniWA), Ag. Spyridonos Str., 12243 Egaleo, Greece; (E.-M.T.); (S.P.F.); (E.G.P.)
| | - Evangelos Koustas
- Oncology Department, General Hospital Evangelismos, 10676 Athens, Greece;
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Nikolaos Papadopoulos
- Second Department of Internal Medicine, 401 General Military Hospital, 115 27 Athens, Greece;
| | - Sofia Vasileiadi
- 2nd Academic Department of Internal Medicine, Medical School, National and Kapodistrian University of Athens, Hippokration General Hospital of Athens, Vasilissis Sofias Avenue Str., 11527 Athens, Greece; (S.V.); (S.M.); (M.D.)
| | - Sotirios P. Fortis
- Laboratory of Reliability and Quality Control in Laboratory Hematology (HemQcR), Department of Biomedical Sciences, Section of Medical Laboratories, School of Health & Caring Sciences, University of West Attica (UniWA), Ag. Spyridonos Str., 12243 Egaleo, Greece; (E.-M.T.); (S.P.F.); (E.G.P.)
| | - Vassilis L. Tzounakas
- Department of Biochemistry, School of Medicine, University of Patras, 26504 Patras, Greece; (V.L.T.); (A.T.A.)
| | - Alkmini T. Anastasiadi
- Department of Biochemistry, School of Medicine, University of Patras, 26504 Patras, Greece; (V.L.T.); (A.T.A.)
| | - Panagiotis Sarantis
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Effie G. Papageorgiou
- Laboratory of Reliability and Quality Control in Laboratory Hematology (HemQcR), Department of Biomedical Sciences, Section of Medical Laboratories, School of Health & Caring Sciences, University of West Attica (UniWA), Ag. Spyridonos Str., 12243 Egaleo, Greece; (E.-M.T.); (S.P.F.); (E.G.P.)
| | - Ariadne Tsagarakis
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA;
| | - Georgios Aloizos
- First Department of Internal Medicine, 417 Army Share Fund Hospital, 11521 Athens, Greece;
| | - Spilios Manolakopoulos
- 2nd Academic Department of Internal Medicine, Medical School, National and Kapodistrian University of Athens, Hippokration General Hospital of Athens, Vasilissis Sofias Avenue Str., 11527 Athens, Greece; (S.V.); (S.M.); (M.D.)
| | - Melanie Deutsch
- 2nd Academic Department of Internal Medicine, Medical School, National and Kapodistrian University of Athens, Hippokration General Hospital of Athens, Vasilissis Sofias Avenue Str., 11527 Athens, Greece; (S.V.); (S.M.); (M.D.)
| |
Collapse
|