1
|
Ali MA, Gioscia-Ryan R, Yang D, Sutton NR, Tyrrell DJ. Cardiovascular aging: spotlight on mitochondria. Am J Physiol Heart Circ Physiol 2024; 326:H317-H333. [PMID: 38038719 PMCID: PMC11219063 DOI: 10.1152/ajpheart.00632.2023] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 12/02/2023]
Abstract
Mitochondria are cellular organelles critical for ATP production and are particularly relevant to cardiovascular diseases including heart failure, atherosclerosis, ischemia-reperfusion injury, and cardiomyopathies. With advancing age, even in the absence of clinical disease, mitochondrial homeostasis becomes disrupted (e.g., redox balance, mitochondrial DNA damage, oxidative metabolism, and mitochondrial quality control). Mitochondrial dysregulation leads to the accumulation of damaged and dysfunctional mitochondria, producing excessive reactive oxygen species and perpetuating mitochondrial dysfunction. In addition, mitochondrial DNA, cardiolipin, and N-formyl peptides are potent activators of cell-intrinsic and -extrinsic inflammatory pathways. These age-related mitochondrial changes contribute to the development of cardiovascular diseases. This review covers the impact of aging on mitochondria and links these mechanisms to therapeutic implications for age-associated cardiovascular diseases.
Collapse
Affiliation(s)
- Md Akkas Ali
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Rachel Gioscia-Ryan
- Department of Anesthesiology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, United States
| | - Dongli Yang
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Nadia R Sutton
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, United States
| | - Daniel J Tyrrell
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, United States
| |
Collapse
|
2
|
Mladenov M, Lubomirov L, Grisk O, Avtanski D, Mitrokhin V, Sazdova I, Keremidarska-Markova M, Danailova Y, Nikolaev G, Konakchieva R, Gagov H. Oxidative Stress, Reductive Stress and Antioxidants in Vascular Pathogenesis and Aging. Antioxidants (Basel) 2023; 12:1126. [PMID: 37237992 PMCID: PMC10215600 DOI: 10.3390/antiox12051126] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/22/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
This review is focused on the mechanisms that regulate health, disease and aging redox status, the signal pathways that counteract oxidative and reductive stress, the role of food components and additives with antioxidant properties (curcumin, polyphenols, vitamins, carotenoids, flavonoids, etc.), and the role of the hormones irisin and melatonin in the redox homeostasis of animal and human cells. The correlations between the deviation from optimal redox conditions and inflammation, allergic, aging and autoimmune responses are discussed. Special attention is given to the vascular system, kidney, liver and brain oxidative stress processes. The role of hydrogen peroxide as an intracellular and paracrine signal molecule is also reviewed. The cyanotoxins β-N-methylamino-l-alanine (BMAA), cylindrospermopsin, microcystins and nodularins are introduced as potentially dangerous food and environment pro-oxidants.
Collapse
Affiliation(s)
- Mitko Mladenov
- Faculty of Natural Sciences and Mathematics, Institute of Biology, “Ss. Cyril and Methodius” University, P.O. Box 162, 1000 Skopje, North Macedonia;
| | - Lubomir Lubomirov
- Institute of Physiology, Brandenburg Medical School Theodor Fontane, 16816 Neuruppin, Germany; (L.L.); (O.G.)
| | - Olaf Grisk
- Institute of Physiology, Brandenburg Medical School Theodor Fontane, 16816 Neuruppin, Germany; (L.L.); (O.G.)
| | - Dimiter Avtanski
- Friedman Diabetes Institute, Lenox Hill Hospital, Northwell Health, 110 E 59th Street, New York, NY 10003, USA;
| | - Vadim Mitrokhin
- Department of Physiology, Pirogov Russian National Research Medical University, 1 Ostrovityanova Street, 117997 Moscow, Russia;
| | - Iliyana Sazdova
- Department of Animal and Human Physiology, Faculty of Biology, Sofia University “St. Kliment Ohridski”, 8 Dragan Tzankov Blvd., 1164 Sofia, Bulgaria; (I.S.); (M.K.-M.); (Y.D.)
| | - Milena Keremidarska-Markova
- Department of Animal and Human Physiology, Faculty of Biology, Sofia University “St. Kliment Ohridski”, 8 Dragan Tzankov Blvd., 1164 Sofia, Bulgaria; (I.S.); (M.K.-M.); (Y.D.)
| | - Yana Danailova
- Department of Animal and Human Physiology, Faculty of Biology, Sofia University “St. Kliment Ohridski”, 8 Dragan Tzankov Blvd., 1164 Sofia, Bulgaria; (I.S.); (M.K.-M.); (Y.D.)
| | - Georgi Nikolaev
- Department of Cell and Developmental Biology, Faculty of Biology, Sofia University “St. Kliment Ohridski”, 8 Dragan Tsankov Blvd., 1164 Sofia, Bulgaria; (G.N.); (R.K.)
| | - Rossitza Konakchieva
- Department of Cell and Developmental Biology, Faculty of Biology, Sofia University “St. Kliment Ohridski”, 8 Dragan Tsankov Blvd., 1164 Sofia, Bulgaria; (G.N.); (R.K.)
| | - Hristo Gagov
- Department of Animal and Human Physiology, Faculty of Biology, Sofia University “St. Kliment Ohridski”, 8 Dragan Tzankov Blvd., 1164 Sofia, Bulgaria; (I.S.); (M.K.-M.); (Y.D.)
| |
Collapse
|
3
|
Mysiewicz S, North KC, Moreira L, Odum SJ, Bukiya AN, Dopico AM. Interspecies and regional variability of alcohol action on large cerebral arteries: regulation by KCNMB1 proteins. Am J Physiol Regul Integr Comp Physiol 2023; 324:R480-R496. [PMID: 36717168 PMCID: PMC10027090 DOI: 10.1152/ajpregu.00103.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 01/23/2023] [Accepted: 01/23/2023] [Indexed: 02/01/2023]
Abstract
Alcohol intake leading to blood ethanol concentrations (BEC) ≥ legal intoxication modifies brain blood flow with increases in some regions and decreases in others. Brain regions receive blood from the Willis' circle branches: anterior, middle (MCA) and posterior cerebral (PCA), and basilar (BA) arteries. Rats and mice have been used to identify the targets mediating ethanol-induced effects on cerebral arteries, with conclusions being freely interchanged, albeit data were obtained in different species/arterial branches. We tested whether ethanol action on cerebral arteries differed between male rat and mouse and/or across different brain regions and identified the targets of alcohol action. In both species and all Willis' circle branches, ethanol evoked reversible and concentration-dependent constriction (EC50s ≈ 37-86 mM; below lethal BEC in alcohol-naïve humans). Although showing similar constriction to depolarization, both species displayed differential responses to ethanol: in mice, MCA constriction was highly sensitive to the presence/absence of the endothelium, whereas in rat PCA was significantly more sensitive to ethanol than its mouse counterpart. In the rat, but not the mouse, BA was more ethanol sensitive than other branches. Both interspecies and regional variability were ameliorated by endothelium. Selective large conductance (BK) channel block in de-endothelialized vessels demonstrated that these channels were the effectors of alcohol-induced cerebral artery constriction across regions and species. Variabilities in alcohol actions did not fully matched KCNMB1 expression across vessels. However, immunofluorescence data from KCNMB1-/- mouse arteries electroporated with KCNMB1-coding cDNA demonstrate that KCNMB1 proteins, which regulate smooth muscle (SM) BK channel function and vasodilation, regulate interspecies and regional variability of brain artery responses to alcohol.
Collapse
Affiliation(s)
- Steven Mysiewicz
- Department of Pharmacology, Addiction Science, and Toxicology, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee, United States
| | - Kelsey C North
- Department of Pharmacology, Addiction Science, and Toxicology, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee, United States
| | - Luiz Moreira
- Department of Pharmacology, Addiction Science, and Toxicology, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee, United States
| | - Schyler J Odum
- Department of Pharmacology, Addiction Science, and Toxicology, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee, United States
| | - Anna N Bukiya
- Department of Pharmacology, Addiction Science, and Toxicology, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee, United States
| | - Alex M Dopico
- Department of Pharmacology, Addiction Science, and Toxicology, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee, United States
| |
Collapse
|
4
|
Kim DL, Lee SE, Kim NH. Renal Protection of Mineralocorticoid Receptor Antagonist, Finerenone, in Diabetic Kidney Disease. Endocrinol Metab (Seoul) 2023; 38:43-55. [PMID: 36891650 PMCID: PMC10008664 DOI: 10.3803/enm.2022.1629] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 01/18/2023] [Indexed: 03/03/2023] Open
Abstract
Chronic kidney disease (CKD) is the most common cause of end-stage renal disease in patients with type 2 diabetes mellitus (T2DM). CKD increases the risk of cardiovascular diseases; therefore, its prevention and treatment are important. The prevention of diabetic kidney disease (DKD) can be achieved through intensive glycemic control and blood pressure management. Additionally, DKD treatment aims to reduce albuminuria and improve kidney function. In patients with T2DM, renin-angiotensin-aldosterone system inhibitors, sodium glucose cotransporter 2 inhibitors, and glucagon-like peptide-1 receptor agonists can delay the progression of DKD. Hence, there is a need for novel treatments that can effectively suppress DKD progression. Finerenone is a first-in-class nonsteroidal mineralocorticoid receptor antagonist with clinically proven efficacy in improving albuminuria, estimated glomerular filtration rate, and risk of cardiovascular events in early and advanced DKD. Therefore, finerenone is a promising treatment option to delay DKD progression. This article reviews the mechanism of renal effects and major clinical outcomes of finerenone in DKD.
Collapse
Affiliation(s)
- Dong-Lim Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Konkuk University School of Medicine, Seoul, Korea
| | - Seung-Eun Lee
- Department of Internal Medicine, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Korea
| | - Nan Hee Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
- Corresponding author: Nan Hee Kim Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University Ansan Hospital, Korea University College of Medicine, 123 Jeokgeum-ro, Danwon-gu, Ansan 15355, Korea Tel: +82-31-412-4274, Fax: +82-31-412-6770, E-mail:
| |
Collapse
|
5
|
Cai X, Li N. Association between Use of Spironolactone and Risk of Stroke in Hypertensive Patients: A Cohort Study. Pharmaceuticals (Basel) 2022; 16:ph16010057. [PMID: 36678555 PMCID: PMC9861555 DOI: 10.3390/ph16010057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/27/2022] [Accepted: 12/28/2022] [Indexed: 01/03/2023] Open
Abstract
Objective: to investigate the relationship between the use of spironolactone and the risk of stroke in hypertensive patients. Methods: a total of 2464 spironolactone users and 12,928 non-users were identified (unmatched original cohort), and 1:1 matched pairs of 2461 spironolactone users and 2461 non-users based on propensity scores were created (propensity-score-matched cohort). Results: In the unmatched original cohort, the unadjusted analysis showed that the use of spironolactone was associated with a lower risk of total stroke (HR, 0.71; 95% CI, 0.61−0.84; p < 0.001), which was sustained in the adjusted analysis. According to stroke type, the association was with ischemic strokes (propensity-score-adjusted HR, 0.71; 95% CI, 0.59−0.85; p < 0.001) and hemorrhagic ones (propensity-score-adjusted HR, 0.63; 95% CI, 0.45−0.88; p = 0.008). Similar results were shown in the propensity-score-matched cohort. The results of the subgroup and sensitivity analyses were consistent with those of the primary analysis. The dose−response analysis demonstrated a dose-dependent association of spironolactone with a lower risk of stroke in hypertensive patients. Conclusions: The use of spironolactone was associated with a significantly lower risk of stroke events in hypertensive patients. Further research, including prospective randomized clinical trials, is needed to validate our findings.
Collapse
|
6
|
Hu XQ, Zhang L. Oxidative Regulation of Vascular Ca v1.2 Channels Triggers Vascular Dysfunction in Hypertension-Related Disorders. Antioxidants (Basel) 2022; 11:antiox11122432. [PMID: 36552639 PMCID: PMC9774363 DOI: 10.3390/antiox11122432] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/28/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
Blood pressure is determined by cardiac output and peripheral vascular resistance. The L-type voltage-gated Ca2+ (Cav1.2) channel in small arteries and arterioles plays an essential role in regulating Ca2+ influx, vascular resistance, and blood pressure. Hypertension and preeclampsia are characterized by high blood pressure. In addition, diabetes has a high prevalence of hypertension. The etiology of these disorders remains elusive, involving the complex interplay of environmental and genetic factors. Common to these disorders are oxidative stress and vascular dysfunction. Reactive oxygen species (ROS) derived from NADPH oxidases (NOXs) and mitochondria are primary sources of vascular oxidative stress, whereas dysfunction of the Cav1.2 channel confers increased vascular resistance in hypertension. This review will discuss the importance of ROS derived from NOXs and mitochondria in regulating vascular Cav1.2 and potential roles of ROS-mediated Cav1.2 dysfunction in aberrant vascular function in hypertension, diabetes, and preeclampsia.
Collapse
|
7
|
Salazar-Enciso R, Guerrero-Hernández A, Gómez AM, Benitah JP, Rueda A. Aldosterone-Induced Sarco/Endoplasmic Reticulum Ca2+ Pump Upregulation Counterbalances Cav1.2-Mediated Ca2+ Influx in Mesenteric Arteries. Front Physiol 2022; 13:834220. [PMID: 35360237 PMCID: PMC8963271 DOI: 10.3389/fphys.2022.834220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 02/08/2022] [Indexed: 11/26/2022] Open
Abstract
In mesenteric arteries (MAs), aldosterone (ALDO) binds to the endogenous mineralocorticoid receptor (MR) and increases the expression of the voltage-gated L-type Cav1.2 channel, an essential ion channel for vascular contraction, sarcoplasmic reticulum (SR) Ca2+ store refilling, and Ca2+ spark generation. In mesenteric artery smooth muscle cells (MASMCs), Ca2+ influx through Cav1.2 is the indirect mechanism for triggering Ca2+ sparks. This process is facilitated by plasma membrane-sarcoplasmic reticulum (PM-SR) nanojunctions that drive Ca2+ from the extracellular space into the SR via Sarco/Endoplasmic Reticulum Ca2+ (SERCA) pump. Ca2+ sparks produced by clusters of Ryanodine receptors (RyRs) at PM-SR nanodomains, decrease contractility by activating large-conductance Ca2+-activated K+ channels (BKCa channels), which generate spontaneous transient outward currents (STOCs). Altogether, Cav1.2, SERCA pump, RyRs, and BKCa channels work as a functional unit at the PM-SR nanodomain, regulating intracellular Ca2+ and vascular function. However, the effect of the ALDO/MR signaling pathway on this functional unit has not been completely explored. Our results show that short-term exposure to ALDO (10 nM, 24 h) increased the expression of Cav1.2 in rat MAs. The depolarization-induced Ca2+ entry increased SR Ca2+ load, and the frequencies of both Ca2+ sparks and STOCs, while [Ca2+]cyt and vasoconstriction remained unaltered in Aldo-treated MAs. ALDO treatment significantly increased the mRNA and protein expression levels of the SERCA pump, which counterbalanced the augmented Cav1.2-mediated Ca2+ influx at the PM-SR nanodomain, increasing SR Ca2+ content, Ca2+ spark and STOC frequencies, and opposing to hyperpolarization-induced vasoconstriction while enhancing Acetylcholine-mediated vasorelaxation. This work provides novel evidence for short-term ALDO-induced upregulation of the functional unit comprising Cav1.2, SERCA2 pump, RyRs, and BKCa channels; in which the SERCA pump buffers ALDO-induced upregulation of Ca2+ entry at the superficial SR-PM nanodomain of MASMCs, preventing ALDO-triggered depolarization-induced vasoconstriction and enhancing vasodilation. Pathological conditions that lead to SERCA pump downregulation, for instance, chronic exposure to ALDO, might favor the development of ALDO/MR-mediated augmented vasoconstriction of mesenteric arteries.
Collapse
Affiliation(s)
- Rogelio Salazar-Enciso
- Departamento de Bioquímica, Centro de Investigación y de Estudios Avanzados del IPN, Mexico City, Mexico
- Signaling and Cardiovascular Pathophysiology - UMR-S 1180, Inserm, Université Paris-Saclay, Châtenay-Malabry, France
| | - Agustín Guerrero-Hernández
- Departamento de Bioquímica, Centro de Investigación y de Estudios Avanzados del IPN, Mexico City, Mexico
| | - Ana M. Gómez
- Signaling and Cardiovascular Pathophysiology - UMR-S 1180, Inserm, Université Paris-Saclay, Châtenay-Malabry, France
| | - Jean-Pierre Benitah
- Signaling and Cardiovascular Pathophysiology - UMR-S 1180, Inserm, Université Paris-Saclay, Châtenay-Malabry, France
| | - Angélica Rueda
- Departamento de Bioquímica, Centro de Investigación y de Estudios Avanzados del IPN, Mexico City, Mexico
- *Correspondence: Angélica Rueda,
| |
Collapse
|
8
|
Lin X, Ullah MHE, Wu X, Xu F, Shan SK, Lei LM, Yuan LQ, Liu J. Cerebro-Cardiovascular Risk, Target Organ Damage, and Treatment Outcomes in Primary Aldosteronism. Front Cardiovasc Med 2022; 8:798364. [PMID: 35187110 PMCID: PMC8847442 DOI: 10.3389/fcvm.2021.798364] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 12/20/2021] [Indexed: 02/03/2023] Open
Abstract
Primary aldosteronism (PA) is the most common type of endocrine hypertension, and numerous experimental and clinical evidence have verified that prolonged exposure to excess aldosterone is responsible for an increased risk of cerebro-cardiovascular events and target organ damage (TOD) in patients with PA. Therefore, focusing on restoring the toxic effects of excess aldosterone on the target organs is very important to reduce cerebro-cardiovascular events. Current evidence convincingly demonstrates that both surgical and medical treatment strategies would benefit cerebro-cardiovascular outcomes and mortality in the long term. Understanding cerebro-cardiovascular risk in PA would help clinical doctors to achieve both early diagnosis and treatment. Therefore, in this review, we will summarize the cerebro-cardiovascular risk in PA, focusing on the TOD of aldosterone, including brain, heart, vascular system, renal, adipose tissues, diabetes, and obstructive sleep apnea (OSA). Furthermore, the various treatment outcomes of adrenalectomy and medical treatment for patients with PA will also be discussed. We hope this knowledge will help improve cerebro-cardiovascular prognosis and reduce the incidence and mortality of cerebro-cardiovascular events in patients with PA.
Collapse
Affiliation(s)
- Xiao Lin
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Muhammad Hasnain Ehsan Ullah
- Department of Endocrinology and Metabolism, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xiong Wu
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Feng Xu
- Department of Endocrinology and Metabolism, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Su-Kang Shan
- Department of Endocrinology and Metabolism, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Li-Min Lei
- Department of Endocrinology and Metabolism, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Ling-Qing Yuan
- Department of Endocrinology and Metabolism, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, Changsha, China
- Ling-Qing Yuan
| | - Jun Liu
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
- Clinical Research Center for Medical Imaging in Hunan Province, Changsha, China
- Department of Radiology Quality Control Center in Hunan Province, Changsha, China
- *Correspondence: Jun Liu
| |
Collapse
|
9
|
Kant S, Tran KV, Kvandova M, Caliz AD, Yoo HJ, Learnard H, Dolan AC, Craige SM, Hall JD, Jiménez JM, St. Hilaire C, Schulz E, Kröller-Schön S, Keaney JF. PGC1α Regulates the Endothelial Response to Fluid Shear Stress via Telomerase Reverse Transcriptase Control of Heme Oxygenase-1. Arterioscler Thromb Vasc Biol 2022; 42:19-34. [PMID: 34789002 PMCID: PMC8702461 DOI: 10.1161/atvbaha.121.317066] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
OBJECTIVE Fluid shear stress (FSS) is known to mediate multiple phenotypic changes in the endothelium. Laminar FSS (undisturbed flow) is known to promote endothelial alignment to flow, which is key to stabilizing the endothelium and rendering it resistant to atherosclerosis and thrombosis. The molecular pathways responsible for endothelial responses to FSS are only partially understood. In this study, we determine the role of PGC1α (peroxisome proliferator gamma coactivator-1α)-TERT (telomerase reverse transcriptase)-HMOX1 (heme oxygenase-1) during shear stress in vitro and in vivo. Approach and Results: Here, we have identified PGC1α as a flow-responsive gene required for endothelial flow alignment in vitro and in vivo. Compared with oscillatory FSS (disturbed flow) or static conditions, laminar FSS (undisturbed flow) showed increased PGC1α expression and its transcriptional coactivation. PGC1α was required for laminar FSS-induced expression of TERT in vitro and in vivo via its association with ERRα(estrogen-related receptor alpha) and KLF (Kruppel-like factor)-4 on the TERT promoter. We found that TERT inhibition attenuated endothelial flow alignment, elongation, and nuclear polarization in response to laminar FSS in vitro and in vivo. Among the flow-responsive genes sensitive to TERT status, HMOX1 was required for endothelial alignment to laminar FSS. CONCLUSIONS These data suggest an important role for a PGC1α-TERT-HMOX1 axis in the endothelial stabilization response to laminar FSS.
Collapse
Affiliation(s)
- Shashi Kant
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115
- Equal contribution
| | - Khanh-Van Tran
- Division of Cardiovascular Medicine, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01655
- Equal contribution
| | - Miroslava Kvandova
- Department of Cardiology, University Medical Center, Mainz, Germany
- Equal contribution
| | - Amada D. Caliz
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115
| | - Hyung-Jin Yoo
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115
| | - Heather Learnard
- Division of Cardiovascular Medicine, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01655
| | - Ana C. Dolan
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115
| | - Siobhan M. Craige
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blackburg, VA 24061
| | - Joshua D. Hall
- Department of Mechanical and Industrial Engineering, University of Massachusetts, Amherst, MA 01003
| | - Juan M. Jiménez
- Department of Mechanical and Industrial Engineering, University of Massachusetts, Amherst, MA 01003
| | - Cynthia St. Hilaire
- Division of Cardiology, Departments of Medicine and Bioengineering, and the Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261
| | - Eberhard Schulz
- Department of Cardiology, Allgemeines Krankenhaus, Celle, Germany
| | | | - John F. Keaney
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
10
|
Youwakim J, Girouard H. Inflammation: A Mediator Between Hypertension and Neurodegenerative Diseases. Am J Hypertens 2021; 34:1014-1030. [PMID: 34136907 DOI: 10.1093/ajh/hpab094] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 05/03/2021] [Accepted: 06/15/2021] [Indexed: 12/14/2022] Open
Abstract
Hypertension is the most prevalent and modifiable risk factor for stroke, vascular cognitive impairment, and Alzheimer's disease. However, the mechanistic link between hypertension and neurodegenerative diseases remains to be understood. Recent evidence indicates that inflammation is a common pathophysiological trait for both hypertension and neurodegenerative diseases. Low-grade chronic inflammation at the systemic and central nervous system levels is now recognized to contribute to the physiopathology of hypertension. This review speculates that inflammation represents a mediator between hypertension and neurodegenerative diseases, either by a decrease in cerebral blood flow or a disruption of the blood-brain barrier which will, in turn, let inflammatory cells and neurotoxic molecules enter the brain parenchyma. This may impact brain functions including cognition and contribute to neurodegenerative diseases. This review will thus discuss the relationship between hypertension, systemic inflammation, cerebrovascular functions, neuroinflammation, and brain dysfunctions. The potential clinical future of immunotherapies against hypertension and associated cerebrovascular risks will also be presented.
Collapse
Affiliation(s)
- Jessica Youwakim
- Département de Pharmacologie et Physiologie, Université de Montréal, Montreal, QC, Canada
- Centre interdisciplinaire de recherche sur le cerveau et l’apprentissage (CIRCA); Montreal, QC, Canada
- Groupe de Recherche sur le Système Nerveux Central, Montreal, QC, Canada
| | - Hélène Girouard
- Département de Pharmacologie et Physiologie, Université de Montréal, Montreal, QC, Canada
- Centre interdisciplinaire de recherche sur le cerveau et l’apprentissage (CIRCA); Montreal, QC, Canada
- Groupe de Recherche sur le Système Nerveux Central, Montreal, QC, Canada
- Centre de recherche de l’Institut Universitaire de Gériaterie de Montréal, Montreal, QC, Canada
| |
Collapse
|
11
|
Abstract
Hypertension is a leading cause of cognitive impairment and dementias. Such loss of brain health has a vascular component, but the mechanisms involved are poorly defined. In this issue of the JCI, Koide et al. provide evidence that end-organ effects of hypertension on capillary endothelium and inward-rectifier K+ channels (Kir2.1) impair integrated propagation of electrical signals and vasodilation upstream, resulting in reduced neurovascular coupling (NVC) despite neural activation. NVC was partly restored by amlodipine, but not losartan. Moreover, NVC was improved by eplerenone in the presence of losartan, suggesting a role for aldosterone. These findings support the concept that endothelial cells and Kir2.1 are potential therapeutic targets to prevent or reverse the loss of NVC and the vascular component of cognitive deficits that occur with increased frequency during hypertension.
Collapse
|
12
|
Aldosterone Negatively Regulates Nrf2 Activity: An Additional Mechanism Contributing to Oxidative Stress and Vascular Dysfunction by Aldosterone. Int J Mol Sci 2021; 22:ijms22116154. [PMID: 34200377 PMCID: PMC8201089 DOI: 10.3390/ijms22116154] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 04/28/2021] [Accepted: 04/29/2021] [Indexed: 12/12/2022] Open
Abstract
High levels of aldosterone (Aldo) trigger oxidative stress and vascular dysfunction independent of effects on blood pressure. We sought to determine whether Aldo disrupts Nrf2 signaling, the main transcriptional factor involved in antioxidant responses that aggravate cell injury. Thoracic aorta from male C57Bl/6J mice and cultured human endothelial cells (EA.hy926) were stimulated with Aldo (100 nM) in the presence of tiron [reactive oxygen species (ROS) scavenger, eplerenone [mineralocorticoid receptor (MR) antagonist], and L-sulforaphane (SFN; Nrf2 activator). Thoracic aortas were also isolated from mice infused with Aldo (600 μg/kg per day) for 14 days. Aldo decreased endothelium-dependent vasorelaxation and increased ROS generation, effects prevented by tiron and MR blockade. Pharmacological activation of Nrf2 with SFN abrogated Aldo-induced vascular dysfunction and ROS generation. In EA.hy926 cells, Aldo increased ROS generation, which was prevented by eplerenone, tiron, and SFN. At short times, Aldo-induced ROS generation was linked to increased Nrf2 activation. However, after three hours, Aldo decreased the nuclear accumulation of Nrf2. Increased Keap1 protein expression, but not activation of p38 MAPK, was linked to Aldo-induced reduced Nrf2 activity. Arteries from Aldo-infused mice also exhibited decreased nuclear Nrf2 and increased Keap1 expression. Our findings suggest that Aldo reduces vascular Nrf2 transcriptional activity by Keap1-dependent mechanisms, contributing to mineralocorticoid-induced vascular dysfunction.
Collapse
|
13
|
Prenatal exposure to methamphetamine in rats induces endothelial dysfunction in male but not female adult offspring. Naunyn Schmiedebergs Arch Pharmacol 2021; 394:981-988. [PMID: 33415505 DOI: 10.1007/s00210-020-02031-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 11/18/2020] [Indexed: 10/22/2022]
Abstract
In utero exposure to methamphetamine results in significant developmental, neurological, and behavioral deficits in offspring. However, very little is known about the cardiovascular effects of prenatal methamphetamine exposure in adult offspring. We hypothesized that prenatal methamphetamine exposure causes adverse cardiovascular effects in adult offspring. The aims of this study were to test the effects of prenatal methamphetamine exposure on blood pressure and endothelial function in male and female adult rat offspring. Pregnant rats were injected with methamphetamine (5 mg kg-1 day-1) or saline throughout pregnancy. Conscious blood pressure and vascular function in mesenteric-resistance arteries were measured in male and female adult offspring using tail cuff and myography, respectively (beginning at 8 weeks old). In adult male offspring, but not in adult female offspring, endothelium-dependent relaxation to acetylcholine was impaired in methamphetamine-exposed compared to saline-exposed rats. Vascular relaxation to diethylamine NONOate diethylammonium salt was not impacted by gender or prenatal exposure. Prenatal methamphetamine exposure had no effect on systolic blood pressure in offspring of either gender. These data suggest that prenatal methamphetamine exposure adversely affects endothelial function in a sex-dependent manner. Clinically, these data suggest that adult males with a history of prenatal methamphetamine exposure may be at greater risk of developing cardiovascular disease due to endothelial dysfunction.
Collapse
|
14
|
Regulator of G-protein signaling 5 protein protects against anxiety- and depression-like behavior. Behav Pharmacol 2020; 30:712-721. [PMID: 31625976 DOI: 10.1097/fbp.0000000000000506] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Anxiety and depression are a major health burden. Angiotensin II, via activation of angiotensin II type 1 receptor (AT1R)-mediated brain oxidative stress and inflammation may contribute to these emotional abnormalities. In this study, we investigated the role of a regulator of G-protein signaling 5 (RGS5) protein, which regulates AT1R activity, in angiotensin II-induced brain oxidative stress, inflammation and anxiety-, and depression-like behavior. We hypothesized that deletion of the RGS5 protein would worsen angiotensin II-induced anxiety- and depression-like behavior, cerebral vascular oxidative stress, and brain inflammation. Adult male wild-type and RGS5-deficient mice were implanted with osmotic minipumps delivering either vehicle (saline) or angiotensin II (1 mg/kg/d) for three weeks. Subsequently, mice were tested for locomotor activity, anxiety-like behavior (using the elevated plus maze), and depression-like behavior (using the tail suspension test). After behavioral testing, brain tissue was collected to assess oxidative stress and inflammatory proteins. RGS5 deletion resulted in anxiety-like but not depression-like behavior when compared to wild-type mice. Combined deletion of RGS5 and angiotensin II treatment did not further worsen anxiety-like behavior observed in RGS5-deficient mice. In contrast, depression-like behavior was worsened in RGS5-deficient mice treated with angiotensin II. Interestingly, RGS5 deficiency and angiotensin II treatment had no effect on cerebral vascular oxidative stress, or on expression of the inflammatory marker vascular cell adhesion molecule-1 in the brain. RGS5 deficiency was also associated with decreased blood pressure and an enhanced pressor response to angiotensin II. These data suggest that RGS5 protects against anxiety-like behavior and against angiotensin II-induced depression-like behavior.
Collapse
|
15
|
Chen Y, Yu Y, Qiao J, Zhu L, Xiao Z. Mineralocorticoid receptor excessive activation involved in glucocorticoid-related brain injury. Biomed Pharmacother 2019; 122:109695. [PMID: 31812016 DOI: 10.1016/j.biopha.2019.109695] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 11/15/2019] [Accepted: 11/22/2019] [Indexed: 02/05/2023] Open
Abstract
The mechanisms involved in brain damage during chronic glucocorticoid exposure are poorly understood. Since mineralocorticoid receptor (MR) activation has been proven to be important in the pathophysiology of vascular damage and MRs are highly expressed in many brain regions, we hypothesized that the cerebral injury observed in subjects with Cushing syndrome is in part associated with the overactivation of MR. The aim of this study was to determine whether the cerebral injury observed in chronic hyperglucocorticoidemia animal models is related to excessive MR activation. Male SD rats were divided into five groups: vehicle, hydrocortisone (HC, 5 mg/kg/day, i.g.), HC + spironolactone (SL, 20 mg/kg/d in chow), dexamethasone (DXM, 0.25 mg/kg/day, i.g.), and DXM + SL (20 mg/kg/d in chow). Compared to the vehicle-treated group, HC-treated rats had higher blood pressure and higher levels of cerebral vascular fibrosis, cortical/hippocampal atrophy, reactive oxygen species (ROS) production and proinflammatory gene expression. However, in HC-treated animals, treatment with SL markedly alleviated ROS production, cerebral and cerebrovascular morphological changes and inflammation but failed to reduce blood pressure. In contrast, DXM induced no cerebral morphological changes except fibrosis in cerebral vessels, an effect that was not ameliorated by SL treatment. These findings demonstrate that the excessive MR activation observed following chronic hyperglucocorticoidemia exposure contributes to cerebrovascular fibrosis and remodeling and promotes neural apoptosis in the cerebral cortex/hippocampus.
Collapse
Affiliation(s)
- Yaxi Chen
- Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yerong Yu
- Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Jingtao Qiao
- Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Leilei Zhu
- Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhen Xiao
- Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
16
|
Chang YH, Chung SD, Wu CH, Chueh JS, Chen L, Lin PC, Lin YH, Huang KH, Wu VC, Chu TS. Surgery decreases the long-term incident stroke risk in patients with primary aldosteronism. Surgery 2019; 167:367-377. [PMID: 31676114 DOI: 10.1016/j.surg.2019.08.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 08/04/2019] [Accepted: 08/30/2019] [Indexed: 01/08/2023]
Abstract
BACKGROUND Hypertension with hyperaldosteronism could be associated with stroke attributable to endothelial injury. Whether the detrimental effect of aldosterone on stroke among primary aldosteronism patients could be mitigated by administration of mineralocorticoid receptor antagonist or by reduction of aldosterone level via adrenalectomy is still inconclusive. METHODS Primary aldosteronism and essential hypertensive patients were enrolled in the Taiwan National Health Insurance from 1997 to 2009. We used a validated algorithm to enroll primary aldosteronism patients. We conducted a competing risk analysis, using a time-varying Cox proportional hazard model. RESULTS We enrolled 3,167 primary aldosteronism patients with a subgroup of 1,047 aldosterone-producing adenoma patients, and matched these with essential hypertensive controls in a 1:4 ratio. The risk of incident stroke, both ischemic and hemorrhagic, was statistically higher in primary aldosteronism patients than in their essential hypertensive control. The differences in stroke incidences between primary aldosteronism and essential hypertensive patients significantly increased as the hypertensive period lengthened. Primary aldosteronism patients who received mineralocorticoid receptor antagonist treatment had higher risk of all stroke (competing hazard ratio = 1.83, P < .001) compared with their essential hypertensive controls. In light of this, aldosterone-producing adenoma patients had a lower risk of incident stroke after adrenalectomy (competing for hazard ratio = 0.75), but a higher cumulative risk of incident stroke after mineralocorticoid receptor antagonist only (competing for hazard ratio = 1.76) than their matched essential hypertensive patients. CONCLUSION We observed an increased stroke risk among primary aldosteronism patients than among their matched essential hypertensive controls. A prolonged duration of hypertension was proportionate to the raised risk of stroke. Our findings emphasize the importance of aldosterone-producing adenoma benefitting from adrenalectomy in attenuating the cerebrovascular event.
Collapse
Affiliation(s)
- Yu-Hsing Chang
- Departments of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Shiu-Dong Chung
- Division of Urology, Department of Surgery, Far-Eastern Memorial Hospital, New Taipei City, Taiwan; Graduate Program in Biomedical Informatics, College of Informatics, Yuan-Ze University, Chung-Li, Taiwan
| | - Che-Hsiung Wu
- Division of Nephrology, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taipei, Taiwan
| | - Jeff S Chueh
- Glickman Urological and Kidney Institute, and Cleveland Clinic Lerner College of Medicine, Cleveland Clinic, OH
| | - Likwang Chen
- Institute of Population Health Sciences, National Health Research Institutes, Zhunan, Taiwan
| | - Po-Chih Lin
- Departments of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Yen-Hung Lin
- Departments of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Kuo-How Huang
- Department of Urology, National Taiwan University Hospital, Taipei, Taiwan
| | - Vin-Cent Wu
- Departments of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan.
| | - Tzong-Shinn Chu
- Departments of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | -
- Taiwan Primary Aldosteronism Investigation (TAIPAI) Study Group, Taipei, Taiwan
| |
Collapse
|
17
|
Chen ZW, Tsai CH, Pan CT, Chou CH, Liao CW, Hung CS, Wu VC, Lin YH. Endothelial Dysfunction in Primary Aldosteronism. Int J Mol Sci 2019; 20:ijms20205214. [PMID: 31640178 PMCID: PMC6829211 DOI: 10.3390/ijms20205214] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 10/10/2019] [Accepted: 10/16/2019] [Indexed: 02/07/2023] Open
Abstract
Primary aldosteronism (PA) is characterized by excess production of aldosterone from the adrenal glands and is the most common and treatable cause of secondary hypertension. Aldosterone is a mineralocorticoid hormone that participates in the regulation of electrolyte balance, blood pressure, and tissue remodeling. The excess of aldosterone caused by PA results in an increase in cardiovascular and cerebrovascular complications, including coronary artery disease, myocardial infarction, stroke, transient ischemic attack, and even arrhythmia and heart failure. Endothelial dysfunction is a well-established fundamental cause of cardiovascular diseases and also a predictor of worse clinical outcomes. Accumulating evidence indicates that aldosterone plays an important role in the initiation and progression of endothelial dysfunction. Several mechanisms have been shown to contribute to aldosterone-induced endothelial dysfunction, including aldosterone-mediated vascular tone dysfunction, aldosterone- and endothelium-mediated vascular inflammation, aldosterone-related atherosclerosis, and vascular remodeling. These mechanisms are activated by aldosterone through genomic and nongenomic pathways in mineralocorticoid receptor-dependent and independent manners. In addition, other cells have also been shown to participate in these mechanisms. The complex interactions among endothelium, inflammatory cells, vascular smooth muscle cells and fibroblasts are crucial for aldosterone-mediated endothelial dysregulation. In this review, we discuss the association between aldosterone and endothelial function and the complex mechanisms from a molecular aspect. Furthermore, we also review current clinical research of endothelial dysfunction in patients with PA.
Collapse
Affiliation(s)
- Zheng-Wei Chen
- Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei 10002, Taiwan.
- Cardiovascular center, National Taiwan University Hospital, Taipei 10002, Taiwan.
- Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital Yun-Lin Branch, Yun-Lin 64041, Taiwan.
| | - Cheng-Hsuan Tsai
- Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei 10002, Taiwan.
- Cardiovascular center, National Taiwan University Hospital, Taipei 10002, Taiwan.
- Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital Jin-Shan Branch, New Taipei City 20844, Taiwan.
| | - Chien-Ting Pan
- Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei 10002, Taiwan.
- Cardiovascular center, National Taiwan University Hospital, Taipei 10002, Taiwan.
- Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital Yun-Lin Branch, Yun-Lin 64041, Taiwan.
| | - Chia-Hung Chou
- Department of Obstetrics and Gynecology, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei 10041, Taiwan.
| | - Che-Wei Liao
- Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital Hsin-Chu Branch, Hsin-Chu 30059, Taiwan.
| | - Chi-Sheng Hung
- Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei 10002, Taiwan.
- Cardiovascular center, National Taiwan University Hospital, Taipei 10002, Taiwan.
| | - Vin-Cent Wu
- Division of Nephrology, Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei 10002, Taiwan.
| | - Yen-Hung Lin
- Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei 10002, Taiwan.
- Cardiovascular center, National Taiwan University Hospital, Taipei 10002, Taiwan.
| |
Collapse
|
18
|
Biwer LA, Wallingford MC, Jaffe IZ. Vascular Mineralocorticoid Receptor: Evolutionary Mediator of Wound Healing Turned Harmful by Our Modern Lifestyle. Am J Hypertens 2019; 32:123-134. [PMID: 30380007 DOI: 10.1093/ajh/hpy158] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 10/30/2018] [Indexed: 12/28/2022] Open
Abstract
The mineralocorticoid receptor (MR) is indispensable for survival through its critical role in maintaining blood pressure in response to sodium scarcity or bleeding. Activation of MR by aldosterone in the kidney controls water and electrolyte homeostasis. This review summarizes recent advances in our understanding of MR function, specifically in vascular endothelial and smooth muscle cells. The evolving roles for vascular MR are summarized in the areas of (i) vascular tone regulation, (ii) thrombosis, (iii) inflammation, and (iv) vascular remodeling/fibrosis. Synthesis of the data supports the concept that vascular MR does not contribute substantially to basal homeostasis but rather, MR is poised to be activated when the vasculature is damaged to coordinate blood pressure maintenance and wound healing. Specifically, MR activation in the vascular wall promotes vasoconstriction, inflammation, and exuberant vascular remodeling with fibrosis. A teleological model is proposed in which these functions of vascular MR may have provided a critical evolutionary survival advantage in the face of mechanical vascular injury with bleeding. However, modern lifestyle is characterized by physical inactivity and high fat/high sodium diet resulting in diffuse vascular damage. Under these modern conditions, diffuse, persistent and unregulated activation of vascular MR contributes to post-reproductive cardiovascular disease in growing populations with hypertension, obesity, and advanced age.
Collapse
MESH Headings
- Animals
- Cardiovascular Diseases/epidemiology
- Cardiovascular Diseases/metabolism
- Cardiovascular Diseases/pathology
- Cardiovascular Diseases/physiopathology
- Diet, High-Fat
- Endothelial Cells/metabolism
- Endothelial Cells/pathology
- Endothelium, Vascular/metabolism
- Endothelium, Vascular/pathology
- Endothelium, Vascular/physiopathology
- Evolution, Molecular
- Hemodynamics
- Humans
- Life Style
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/physiopathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Receptors, Mineralocorticoid/metabolism
- Risk Factors
- Sedentary Behavior
- Signal Transduction
- Sodium, Dietary/adverse effects
- Vascular Remodeling
- Wound Healing
Collapse
Affiliation(s)
- Lauren A Biwer
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, Massachusetts, USA
| | - Mary C Wallingford
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, Massachusetts, USA
- Mother Infant Research Institute, Tufts Medical Center, Boston, Massachusetts, USA
| | - Iris Z Jaffe
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, Massachusetts, USA
| |
Collapse
|
19
|
Diaz-Otero JM, Yen TC, Fisher C, Bota D, Jackson WF, Dorrance AM. Mineralocorticoid receptor antagonism improves parenchymal arteriole dilation via a TRPV4-dependent mechanism and prevents cognitive dysfunction in hypertension. Am J Physiol Heart Circ Physiol 2018; 315:H1304-H1315. [PMID: 30118343 PMCID: PMC6297805 DOI: 10.1152/ajpheart.00207.2018] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 08/08/2018] [Accepted: 08/15/2018] [Indexed: 02/07/2023]
Abstract
Hypertension and mineralocorticoid receptor activation cause cerebral parenchymal arteriole remodeling; this can limit cerebral perfusion and contribute to cognitive dysfunction. We used a mouse model of angiotensin II-induced hypertension to test the hypothesis that mineralocorticoid receptor activation impairs both transient receptor potential vanilloid (TRPV)4-mediated dilation of cerebral parenchymal arterioles and cognitive function. Mice (16-18 wk old, male, C57Bl/6) were treated with angiotensin II (800 ng·kg-1·min-1) with or without the mineralocorticoid receptor antagonist eplerenone (100 mg·kg-1·day-1) for 4 wk; sham mice served as controls. Data are presented as means ± SE; n = 5-14 mice/group. Eplerenone prevented the increased parenchymal arteriole myogenic tone and impaired carbachol-induced (10-9-10-5 mol/l) dilation observed during hypertension. The carbachol-induced dilation was endothelium-derived hyperpolarization mediated because it could not be blocked by N-nitro-l-arginine methyl ester (10-5 mol/l) and indomethacin (10-4 mol/l). We used GSK2193874 (10-7 mol/l) to confirm that in all groups this dilation was dependent on TRPV4 activation. Dilation in response to the TRPV4 agonist GSK1016790A (10-9-10-5 mol/l) was also reduced in hypertensive mice, and this defect was corrected by eplerenone. In hypertensive and eplerenone-treated animals, TRPV4 inhibition reduced myogenic tone, an effect that was not observed in arterioles from control animals. Eplerenone treatment also improved cognitive function and reduced microglia density in hypertensive mice. These data suggest that the mineralocorticoid receptor is a potential therapeutic target to improve cerebrovascular function and cognition during hypertension. NEW & NOTEWORTHY Vascular dementia is a growing public health issue that lacks effective treatments. Transient receptor potential vanilloid (TRPV)4 channels are important regulators of parenchymal arteriole dilation, and they modulate myogenic tone. The data presented here suggest that TRPV4 channel expression is regulated by the mineralocorticoid receptor (MR). MR blockade also improves cognitive function during hypertension. MR blockade might be a potential therapeutic approach to improve cerebrovascular function and cognition in patients with hypertension.
Collapse
Affiliation(s)
- Janice M Diaz-Otero
- Department of Pharmacology and Toxicology, Michigan State University , East Lansing, Michigan
| | - Ting-Chieh Yen
- Department of Pharmacology and Toxicology, Michigan State University , East Lansing, Michigan
| | - Courtney Fisher
- Department of Pharmacology and Toxicology, Michigan State University , East Lansing, Michigan
| | - Daniel Bota
- Department of Pharmacology and Toxicology, Michigan State University , East Lansing, Michigan
| | - William F Jackson
- Department of Pharmacology and Toxicology, Michigan State University , East Lansing, Michigan
| | - Anne M Dorrance
- Department of Pharmacology and Toxicology, Michigan State University , East Lansing, Michigan
| |
Collapse
|
20
|
Horsburgh K, Wardlaw JM, van Agtmael T, Allan SM, Ashford MLJ, Bath PM, Brown R, Berwick J, Cader MZ, Carare RO, Davis JB, Duncombe J, Farr TD, Fowler JH, Goense J, Granata A, Hall CN, Hainsworth AH, Harvey A, Hawkes CA, Joutel A, Kalaria RN, Kehoe PG, Lawrence CB, Lockhart A, Love S, Macleod MR, Macrae IM, Markus HS, McCabe C, McColl BW, Meakin PJ, Miller A, Nedergaard M, O'Sullivan M, Quinn TJ, Rajani R, Saksida LM, Smith C, Smith KJ, Touyz RM, Trueman RC, Wang T, Williams A, Williams SCR, Work LM. Small vessels, dementia and chronic diseases - molecular mechanisms and pathophysiology. Clin Sci (Lond) 2018; 132:851-868. [PMID: 29712883 PMCID: PMC6700732 DOI: 10.1042/cs20171620] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 02/08/2018] [Accepted: 02/21/2018] [Indexed: 12/14/2022]
Abstract
Cerebral small vessel disease (SVD) is a major contributor to stroke, cognitive impairment and dementia with limited therapeutic interventions. There is a critical need to provide mechanistic insight and improve translation between pre-clinical research and the clinic. A 2-day workshop was held which brought together experts from several disciplines in cerebrovascular disease, dementia and cardiovascular biology, to highlight current advances in these fields, explore synergies and scope for development. These proceedings provide a summary of key talks at the workshop with a particular focus on animal models of cerebral vascular disease and dementia, mechanisms and approaches to improve translation. The outcomes of discussion groups on related themes to identify the gaps in knowledge and requirements to advance knowledge are summarized.
Collapse
Affiliation(s)
- Karen Horsburgh
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, U.K.
| | - Joanna M Wardlaw
- Centre for Clinical Brain Sciences, UK Dementia Research Institute, University of Edinburgh, Edinburgh, U.K
| | - Tom van Agtmael
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, U.K
| | - Stuart M Allan
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, U.K
| | | | - Philip M Bath
- Stroke Trials Unit, Division of Clinical Neuroscience, University of Nottingham, Nottingham, U.K
| | - Rosalind Brown
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, U.K
| | - Jason Berwick
- Department of Psychology, University of Sheffield, Sheffield, U.K
| | - M Zameel Cader
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Roxana O Carare
- Faculty of Medicine, University of Southampton, Southampton, U.K
| | - John B Davis
- Alzheimer's Research UK Oxford Drug Discovery Institute, University of Oxford, Oxford, U.K
| | - Jessica Duncombe
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, U.K
| | - Tracy D Farr
- School of Life Sciences, Nottingham University, Nottingham, U.K
| | - Jill H Fowler
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, U.K
| | - Jozien Goense
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, U.K
| | - Alessandra Granata
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, U.K
| | | | - Atticus H Hainsworth
- Molecular and Clinical Sciences Research Institute, St Georges University of London, London, U.K
| | - Adam Harvey
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, U.K
| | - Cheryl A Hawkes
- Faculty of Science, Technology, Engineering & Mathematics, Open University, Milton Keynes, U.K
| | - Anne Joutel
- Genetics and Pathogenesis of Cerebrovascular Diseases, INSERM, Université Paris Diderot-Paris 7, Paris, France
| | - Rajesh N Kalaria
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, U.K
| | | | - Catherine B Lawrence
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, U.K
| | | | - Seth Love
- Clinical Neurosciences, University of Bristol, Bristol, U.K
| | - Malcolm R Macleod
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, U.K
| | - I Mhairi Macrae
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, U.K
| | - Hugh S Markus
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, U.K
| | - Chris McCabe
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, U.K
| | - Barry W McColl
- The Roslin Institute & R(D)SVS, UK Dementia Research Institute, University of Edinburgh, Edinburgh, U.K
| | - Paul J Meakin
- Division of Molecular & Clinical Medicine, School of Medicine, University of Dundee, Dundee, U.K
| | - Alyson Miller
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, U.K
| | - Maiken Nedergaard
- University of Rochester Medical Center, Rochester, NY, USA and University of Copenhagen's Center of Basic and Translational Neuroscience, Copenhagen, Denmark
| | - Michael O'Sullivan
- Mater Centre for Neuroscience and Queensland Brain Institute, Brisbane, Australia
| | - Terry J Quinn
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, U.K
| | - Rikesh Rajani
- Genetics and Pathogenesis of Cerebrovascular Diseases, INSERM, Université Paris Diderot-Paris 7, Paris, France
| | - Lisa M Saksida
- Robarts Research Institute, Western University, London, Ontario, Canada
| | - Colin Smith
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, U.K
| | - Kenneth J Smith
- Department of Neuroinflammation, UCL Institute of Neurology, London, U.K
| | - Rhian M Touyz
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, U.K
| | | | - Tao Wang
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, U.K
| | - Anna Williams
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, U.K
| | | | - Lorraine M Work
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, U.K
| |
Collapse
|
21
|
Hu X, De Silva TM, Chen J, Faraci FM. Cerebral Vascular Disease and Neurovascular Injury in Ischemic Stroke. Circ Res 2017; 120:449-471. [PMID: 28154097 PMCID: PMC5313039 DOI: 10.1161/circresaha.116.308427] [Citation(s) in RCA: 290] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 10/13/2016] [Accepted: 10/26/2016] [Indexed: 12/13/2022]
Abstract
The consequences of cerebrovascular disease are among the leading health issues worldwide. Large and small cerebral vessel disease can trigger stroke and contribute to the vascular component of other forms of neurological dysfunction and degeneration. Both forms of vascular disease are driven by diverse risk factors, with hypertension as the leading contributor. Despite the importance of neurovascular disease and subsequent injury after ischemic events, fundamental knowledge in these areas lag behind our current understanding of neuroprotection and vascular biology in general. The goal of this review is to address select key structural and functional changes in the vasculature that promote hypoperfusion and ischemia, while also affecting the extent of injury and effectiveness of therapy. In addition, as damage to the blood-brain barrier is one of the major consequences of ischemia, we discuss cellular and molecular mechanisms underlying ischemia-induced changes in blood-brain barrier integrity and function, including alterations in endothelial cells and the contribution of pericytes, immune cells, and matrix metalloproteinases. Identification of cell types, pathways, and molecules that control vascular changes before and after ischemia may result in novel approaches to slow the progression of cerebrovascular disease and lessen both the frequency and impact of ischemic events.
Collapse
Affiliation(s)
- Xiaoming Hu
- Center of Cerebrovascular Disease Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213
| | - T. Michael De Silva
- Biomedicine Discovery Institute, Department of Pharmacology, 9 Ancora Imparo Way, Monash University, Clayton, Vic, Australia
| | - Jun Chen
- Center of Cerebrovascular Disease Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213
| | - Frank M. Faraci
- Departments of Internal Medicine and Pharmacology, Carver College of Medicine, University of Iowa, Iowa City Veterans Affairs Healthcare System, Iowa City, IA, USA
| |
Collapse
|
22
|
Seto SW, Chang D, Ko WM, Zhou X, Kiat H, Bensoussan A, Lee SMY, Hoi MPM, Steiner GZ, Liu J. Sailuotong Prevents Hydrogen Peroxide (H₂O₂)-Induced Injury in EA.hy926 Cells. Int J Mol Sci 2017; 18:E95. [PMID: 28067784 PMCID: PMC5297729 DOI: 10.3390/ijms18010095] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 12/15/2016] [Accepted: 12/22/2016] [Indexed: 12/20/2022] Open
Abstract
Sailuotong (SLT) is a standardised three-herb formulation consisting of Panax ginseng, Ginkgo biloba, and Crocus sativus designed for the management of vascular dementia. While the latest clinical trials have demonstrated beneficial effects of SLT in vascular dementia, the underlying cellular mechanisms have not been fully explored. The aim of this study was to assess the ability and mechanisms of SLT to act against hydrogen peroxide (H₂O₂)-induced oxidative damage in cultured human vascular endothelial cells (EAhy926). SLT (1-50 µg/mL) significantly suppressed the H₂O₂-induced cell death and abolished the H₂O₂-induced reactive oxygen species (ROS) generation in a concentration-dependent manner. Similarly, H₂O₂ (0.5 mM; 24 h) caused a ~2-fold increase in lactate dehydrogenase (LDH) release from the EA.hy926 cells which were significantly suppressed by SLT (1-50 µg/mL) in a concentration-dependent manner. Incubation of SLT (50 µg/mL) increased superoxide dismutase (SOD) activity and suppressed the H₂O₂-enhanced Bax/Bcl-2 ratio and cleaved caspase-3 expression. In conclusion, our results suggest that SLT protects EA.hy916 cells against H₂O₂-mediated injury via direct reduction of intracellular ROS generation and an increase in SOD activity. These protective effects are closely associated with the inhibition of the apoptotic death cascade via the suppression of caspase-3 activation and reduction of Bax/Bcl-2 ratio, thereby indicating a potential mechanism of action for the clinical effects observed.
Collapse
Affiliation(s)
- Sai Wang Seto
- National Institute of Complementary Medicine (NICM), Western Sydney University, Penrith, NSW 2571, Australia.
| | - Dennis Chang
- National Institute of Complementary Medicine (NICM), Western Sydney University, Penrith, NSW 2571, Australia.
| | - Wai Man Ko
- National Institute of Complementary Medicine (NICM), Western Sydney University, Penrith, NSW 2571, Australia.
| | - Xian Zhou
- National Institute of Complementary Medicine (NICM), Western Sydney University, Penrith, NSW 2571, Australia.
| | - Hosen Kiat
- Faculty of Medicine, University of New South Wales, NSW 2052, Australia.
- School of Medicine, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia.
- Faculty of Medicine and Health Sciences, Macquarie University, NSW 2109, Australia.
| | - Alan Bensoussan
- National Institute of Complementary Medicine (NICM), Western Sydney University, Penrith, NSW 2571, Australia.
| | - Simon M Y Lee
- State Key Laboratory Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China.
| | - Maggie P M Hoi
- State Key Laboratory Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China.
| | - Genevieve Z Steiner
- National Institute of Complementary Medicine (NICM), Western Sydney University, Penrith, NSW 2571, Australia.
| | - Jianxun Liu
- National Institute of Complementary Medicine (NICM), Western Sydney University, Penrith, NSW 2571, Australia.
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China.
| |
Collapse
|
23
|
De Silva TM, Faraci FM. Reactive Oxygen Species and the Regulation of Cerebral Vascular Tone. STUDIES ON ATHEROSCLEROSIS 2017. [DOI: 10.1007/978-1-4899-7693-2_6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
24
|
The opposing roles of NO and oxidative stress in cardiovascular disease. Pharmacol Res 2016; 116:57-69. [PMID: 27988384 DOI: 10.1016/j.phrs.2016.12.017] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 11/15/2016] [Accepted: 12/13/2016] [Indexed: 02/07/2023]
Abstract
Nitric oxide (NO) plays a pivotal role in the maintenance of cardiovascular homeostasis. A reduction in the bioavailability of endogenous NO, manifest as a decrease in the production and/or impaired signaling, is associated with many cardiovascular diseases including hypertension, atherosclerosis, stroke and heart failure. There is substantial evidence that reactive oxygen species (ROS), generated predominantly from NADPH oxidases (Nox), are responsible for the reduced NO bioavailability in vascular and cardiac pathologies. ROS can compromise NO function via a direct inactivation of NO, together with a reduction in NO synthesis and oxidation of its receptor, soluble guanylyl cyclase. Whilst nitrovasodilators are administered to compensate for the ROS-mediated loss in NO bioactivity, their clinical utility is limited due to the development of tolerance and resistance and systemic hypotension. Moreover, efforts to directly scavenge ROS with antioxidants has had limited clinical efficacy. This review outlines the therapeutic utility of NO-based therapeutics in cardiovascular diseases and describes the source and impact of ROS in these pathologies, with particular focus on the interaction with NO. Future therapeutic approaches in the treatment of cardiovascular diseases are highlighted with a focus on nitroxyl (HNO) donors as an alternative to traditional NO donors and the development of novel Nox inhibitors.
Collapse
|
25
|
Dinh QN, Drummond GR, Sobey CG, Chrissobolis S. Cell-specific mineralocorticoid receptors: future therapeutic targets for stroke? Neural Regen Res 2016; 11:1230-1. [PMID: 27651763 PMCID: PMC5020814 DOI: 10.4103/1673-5374.189173] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Affiliation(s)
- Quynh N Dinh
- Vascular Biology & Immunopharmacology Group, Cardiovascular Disease Program and Department of Pharmacology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Grant R Drummond
- Vascular Biology & Immunopharmacology Group, Cardiovascular Disease Program and Department of Pharmacology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Christopher G Sobey
- Vascular Biology & Immunopharmacology Group, Cardiovascular Disease Program and Department of Pharmacology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Sophocles Chrissobolis
- Department of Pharmaceutical and Biomedical Sciences, Raabe College of Pharmacy, Ohio Northern University, Ada, OH, USA
| |
Collapse
|
26
|
Minas JN, Thorwald MA, Conte D, Vázquez-Medina JP, Nishiyama A, Ortiz RM. Angiotensin and mineralocorticoid receptor antagonism attenuates cardiac oxidative stress in angiotensin II-infused rats. Clin Exp Pharmacol Physiol 2016; 42:1178-88. [PMID: 26234762 DOI: 10.1111/1440-1681.12473] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 06/30/2015] [Accepted: 06/30/2015] [Indexed: 11/30/2022]
Abstract
Angiotensin II (Ang II) and aldosterone contribute to hypertension, oxidative stress and cardiovascular damage, but the contributions of aldosterone during Ang II-dependent hypertension are not well defined because of the difficulty to assess each independently. To test the hypothesis that during Ang II infusion, oxidative and nitrosative damage is mediated through both the mineralocorticoid receptor (MR) and angiotensin type 1 receptor (AT1), five groups of Sprague-Dawley rats were studied: (i) control; (ii) Ang II infused (80 ng/min × 28 days); (iii) Ang II + AT1 receptor blocker (ARB; 10 mg losartan/kg per day × 21 days); (iv) Ang II + mineralocorticoid receptor (MR) antagonist (Epl; 100 mg eplerenone/day × 21 days); and (v) Ang II + ARB + Epl (Combo; × 21 days). Both ARB and combination treatments completely alleviated the Ang II-induced hypertension, whereas eplerenone treatment only prolonged the onset of the hypertension. Eplerenone treatment exacerbated the Ang II-mediated increase in plasma and heart aldosterone 2.3- and 1.8-fold, respectively, while ARB treatment reduced both. Chronic MR blockade was sufficient to ameliorate the AT1-mediated increase in oxidative damage. All treatments normalized protein oxidation (nitrotyrosine) levels; however, only ARB and Combo treatments completely reduced lipid peroxidation (4-hydroxynonenal) to control levels. Collectively, these data suggest that receptor signalling, and not the elevated arterial blood pressure, is the principal culprit in the oxidative stress-associated cardiovascular damage in Ang II-dependent hypertension.
Collapse
Affiliation(s)
- Jacqueline N Minas
- Molecular Cell Biology, School of Natural Sciences, University of California, Merced, CA, USA
| | - Max A Thorwald
- Molecular Cell Biology, School of Natural Sciences, University of California, Merced, CA, USA
| | - Debra Conte
- Molecular Cell Biology, School of Natural Sciences, University of California, Merced, CA, USA
| | | | - Akira Nishiyama
- Department of Pharmacology, Kagawa Medical University, Kagawa, Japan
| | - Rudy M Ortiz
- Molecular Cell Biology, School of Natural Sciences, University of California, Merced, CA, USA
| |
Collapse
|
27
|
Dinh QN, Young MJ, Evans MA, Drummond GR, Sobey CG, Chrissobolis S. Aldosterone-induced oxidative stress and inflammation in the brain are mediated by the endothelial cell mineralocorticoid receptor. Brain Res 2016; 1637:146-153. [DOI: 10.1016/j.brainres.2016.02.034] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 01/29/2016] [Accepted: 02/18/2016] [Indexed: 10/22/2022]
|
28
|
Saiki H, Sugimoto M, Kuwata S, Kurishima C, Iwamoto Y, Ishido H, Masutani S, Senzaki H. Novel mechanisms for cerebral blood flow regulation in patients with congenital heart disease. Am Heart J 2016; 172:152-9. [PMID: 26856227 DOI: 10.1016/j.ahj.2015.11.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 11/14/2015] [Indexed: 01/24/2023]
Abstract
BACKGROUND The mechanisms that regulate cerebral flow in patients after surgery for congenital heart diseases (CHDs) remain poorly understood. We tested our hypothesis that postoperative patients with CHD have disease- or hemodynamic-specific compensatory mechanisms for maintaining cerebral perfusion. METHODS A total of 89 children with specific hemodynamics including Glenn (n = 14), Fontan (n = 19), repaired tetralogy of Fallot (n = 24), and control patients (n = 32) were enrolled. The resistance and blood flow distribution between the brain (Rc and CIc) and lower body (Rs and CIs) were calculated by measuring the hemodynamic changes resulting from inferior vena cava occlusion during cardiac catheterization. RESULTS Despite considerable differences in cardiac index and superior vena cava pressure (SVCp), cerebral blood flow was preserved in all noncontrol groups, with a ratio between the vascular resistances in the cerebral and lower body circulation (Rc/Rs) that was significantly lower than that in controls. Interestingly, the reduced Rc/Rs of Glenn patients was mediated by the reduced Rc, whereas augmented Rs was conducive to the reduced Rc/Rs in the Fontan and tetralogy of Fallot groups. Multivariate analysis revealed that high SVCp was significantly associated with low Rc. Although low cardiac index was significantly associated with increased Rc and Rs, its impact was much greater on Rs than on Rc. CONCLUSIONS Compensatory mechanisms for cerebral flow regulation occur according to hemodynamic abnormality type in postoperative patients with CHD. Because such a regulation mechanism implies cerebral circulation fragility, further investigations are needed to address the impacts of cerebral circulation properties on neurodevelopmental outcomes.
Collapse
Affiliation(s)
- Hirofumi Saiki
- Department of Pediatric Cardiology, Saitama Medical Center, Saitama Medical University, Saitama, Japan
| | - Masaya Sugimoto
- Department of Pediatrics, Asahikawa Medical University, Asahikawa, Japan
| | - Seiko Kuwata
- Department of Pediatric Cardiology, Saitama Medical Center, Saitama Medical University, Saitama, Japan
| | - Clara Kurishima
- Department of Pediatric Cardiology, Saitama Medical Center, Saitama Medical University, Saitama, Japan
| | - Yoichi Iwamoto
- Department of Pediatric Cardiology, Saitama Medical Center, Saitama Medical University, Saitama, Japan
| | - Hirotaka Ishido
- Department of Pediatric Cardiology, Saitama Medical Center, Saitama Medical University, Saitama, Japan
| | - Satoshi Masutani
- Department of Pediatric Cardiology, Saitama Medical Center, Saitama Medical University, Saitama, Japan
| | - Hideaki Senzaki
- Department of Pediatric Cardiology, Saitama Medical Center, Saitama Medical University, Saitama, Japan.
| |
Collapse
|