1
|
Xu X, Chen H, Gao L, Sun C, Li X, Li Y, Wang W, Zheng Y. Maternal-offspring brain and tissue cross-talk in preeclampsia: insights from a rat model. Metab Brain Dis 2025; 40:173. [PMID: 40192930 PMCID: PMC11976809 DOI: 10.1007/s11011-025-01593-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 03/21/2025] [Indexed: 04/10/2025]
Abstract
This study aimed to investigate the differential metabolic profiles across maternal and offspring brains, serum, and placental tissues in preeclampsia (PE), with a particular focus on elucidating the maternal-offspring brain and tissue cross-talk that may contribute to the complex pathophysiology of PE. PE was induced in rats using the nitric oxide synthase inhibitor N-nitro-L-arginine methyl ester (L-NAME) to simulate both early-onset PE (EOPE) and late-onset PE (LOPE). We utilized non-targeted proton nuclear magnetic resonance (NMR) metabolomics to characterize the metabolic profiles of serum, placental tissue extracts, and brain tissues from both mothers and offspring. Multivariate analysis, Spearman correlation, Density-Based Spatial Clustering of Applications with Noise algorithm, Data-Driven Statistical Predictive Correlation network analysis and Tissue heterogeneity analysis were employed to explore tissue-specific metabolic signatures and their interactions. Following L-NAME induction, both EOPE and LOPE presented significant metabolic differences and shared traits across tissues, with distinct tissue-specific responses characterizing the metabolic profile of PE. Serum from both PE groups showed a decrease in tryptophan, isobutyrate, and lactate, with an increase in betaine. Lactate was upregulated in placental tissues, highlighting its metabolic role. Extensive intra-tissue metabolic correlations and inter-tissue metabolite exchanges were detected among the maternal brain, serum, placenta, and offspring brain across all three experimental groups. EOPE and LOPE exhibited distinctly different metabolic characteristics and trajectories of differential metabolites, along with diverse interaction patterns between the maternal/offspring brain and the placenta. This study uncovers the multi-tissue metabolic remodeling in response to preeclampsia, implying that addressing pathophysiological stress is crucial and may have potential implications for neurological outcomes. The comprehensive analysis highlights the pivotal role of the brain-placenta axis in preeclampsia, advocating for a classified diagnostic and management approach.
Collapse
Affiliation(s)
- Xiaomin Xu
- Scientific Research Center, Wenzhou Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People'S Hospital, Wenzhou, China
| | - Haiyin Chen
- Scientific Research Center, Wenzhou Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People'S Hospital, Wenzhou, China
| | - Lidan Gao
- Scientific Research Center, Wenzhou Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People'S Hospital, Wenzhou, China
| | - Congcong Sun
- Scientific Research Center, Wenzhou Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People'S Hospital, Wenzhou, China
| | - Xiaoqing Li
- Scientific Research Center, Wenzhou Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People'S Hospital, Wenzhou, China
| | - Yanjun Li
- Scientific Research Center, Wenzhou Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People'S Hospital, Wenzhou, China
| | - Wenhuan Wang
- Scientific Research Center, Wenzhou Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People'S Hospital, Wenzhou, China
| | - Yanyan Zheng
- Scientific Research Center, Wenzhou Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People'S Hospital, Wenzhou, China.
- Neurology Department, Wenzhou Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People'S Hospital, Wenzhou, China.
| |
Collapse
|
2
|
Wang FX, Mu G, Yu ZH, Shi ZA, Li XX, Fan X, Chen Y, Zhou J. Lactylation: a promising therapeutic target in ischemia-reperfusion injury management. Cell Death Discov 2025; 11:100. [PMID: 40082399 PMCID: PMC11906755 DOI: 10.1038/s41420-025-02381-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 12/25/2024] [Accepted: 02/28/2025] [Indexed: 03/16/2025] Open
Abstract
Ischemia-reperfusion injury (IRI) is a critical condition that poses a significant threat to patient safety. The production of lactate increases during the process of IRI, and lactate serves as a crucial indicator for assessing the severity of such injury. Lactylation, a newly discovered post-translational modification in 2019, is induced by lactic acid and predominantly occurs on lysine residues of histone or nonhistone proteins. Extensive studies have demonstrated the pivotal role of lactylation in the pathogenesis and progression of various diseases, including melanoma, myocardial infarction, hepatocellular carcinoma, Alzheimer's disease, and nonalcoholic fatty liver disease. Additionally, a marked correlation between lactylation and inflammation has been observed. This article provides a comprehensive review of the mechanism underlying lactylation in IRI to establish a theoretical foundation for better understanding the interplay between lactylation and IRI.
Collapse
Affiliation(s)
- Fei-Xiang Wang
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou, Sichuan, China
| | - Guo Mu
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
- Department of Anesthesiology, Zigong Fourth People's Hospital, Zigong, Sichuan, China
| | - Zi-Hang Yu
- Department of Anesthesiology, Fushun County People's Hospital, Zigong, Sichuan, China
| | - Zu-An Shi
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou, Sichuan, China
| | - Xue-Xin Li
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou, Sichuan, China
| | - Xin Fan
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou, Sichuan, China
| | - Ye Chen
- Department of Traditional Chinese Medicine, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Jun Zhou
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China.
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou, Sichuan, China.
| |
Collapse
|
3
|
Chen Y, Xiao D, Li X. Lactylation and Central Nervous System Diseases. Brain Sci 2025; 15:294. [PMID: 40149815 PMCID: PMC11940311 DOI: 10.3390/brainsci15030294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/01/2025] [Accepted: 03/10/2025] [Indexed: 03/29/2025] Open
Abstract
As the final product of glycolysis, lactate serves as an energy substrate, metabolite, and signaling molecule in various diseases and mediates lactylation, an epigenetic modification that occurs under both physiological and pathological conditions. Lactylation is a crucial mechanism by which lactate exerts its functions, participating in vital biological activities such as glycolysis-related cellular functions, macrophage polarization, and nervous system regulation. Lactylation links metabolic regulation to central nervous system (CNS) diseases, such as traumatic brain injury, Alzheimer's disease, acute ischemic stroke, and schizophrenia, revealing the diverse functions of lactylation in the CNS. In the future, further exploration of lactylation-associated enzymes and proteins is needed to develop specific lactylation inhibitors or activators, which could provide new tools and strategies for the treatment of CNS diseases.
Collapse
Affiliation(s)
- Ye Chen
- Department of Emergency Medicine, West China Second University Hospital, Sichuan University, Chengdu 610041, China; (Y.C.); (D.X.)
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu 610041, China
| | - Dongqiong Xiao
- Department of Emergency Medicine, West China Second University Hospital, Sichuan University, Chengdu 610041, China; (Y.C.); (D.X.)
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu 610041, China
| | - Xihong Li
- Department of Emergency Medicine, West China Second University Hospital, Sichuan University, Chengdu 610041, China; (Y.C.); (D.X.)
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu 610041, China
| |
Collapse
|
4
|
Liang L, Yang X, Yao S, Li X, Wang F. Identification of lactylation-associated fibroblast subclusters predicting prognosis and cancer immunotherapy response in colon cancer. Gene 2025; 940:149220. [PMID: 39765285 DOI: 10.1016/j.gene.2025.149220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 01/02/2025] [Accepted: 01/03/2025] [Indexed: 01/18/2025]
Abstract
BACKGROUND Lactylation plays an important role in tumor progression. This study aimed to clarify the impact of lactylation on cancer-associated fibroblasts(CAFs). METHODS Single-cell and bulk RNA sequence data, along with survival information, were obtained from TCGA and GEO datasets. Significant lactylation-associated genes were acquired by differential analysis and used to construct a prognostic model via Cox and LASSO regression analyses. Next, single-cell analysis, enrichment and pathway analysis, pseudotemporal trajectory and survival analysis were used to identify significant lactylation-associated fibroblast subclusters in colon cancer. IMvigor210 and PRJEB23709 cohorts were applied to assess the response to immunotherapy. In vitro experiments were conducted to explore how lactylation affect fibroblasts. RESULTS We established a lactylation-associated prognostic model with 17 risk genes in TCGA and further validated it in GEO datasets. Single-cell analysis revealed the lactylation level of fibroblasts in colon cancer was greater than that in normal tissues. Moreover, five lactylation-associated fibroblast subclusters were identified via the NMF algorithm. Patients with lower scores of FB_2_CALD1, FB_3_TPM4 and FB_4_AHNAK subclusters had better clinical prognosis in colon cancer and were more likely to benefit from immunotherapy. Further experiments demonstrated that lactylation could enhance the proliferation, migration and invasion ability of fibroblasts and up-regulate the expression of COL1A1, which was similar to the effect of colon cancer cells. CONCLUSION This study identified key fibroblast subclusters with prognostic value and implied that lactylation might help transform fibroblasts into CAFs in colon cancer for the first time, which provides new paths for understanding the evolution of CAFs and cancer therapeutic strategies.
Collapse
Affiliation(s)
- Lunxi Liang
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Non-resolving Inflammation and Cancer, Changsha, China
| | - Xueer Yang
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Non-resolving Inflammation and Cancer, Changsha, China
| | - Shuoyi Yao
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Non-resolving Inflammation and Cancer, Changsha, China
| | - Xinmeng Li
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Non-resolving Inflammation and Cancer, Changsha, China
| | - Fen Wang
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Non-resolving Inflammation and Cancer, Changsha, China.
| |
Collapse
|
5
|
Li X, Wang Q, Fei J, Jin Z, Wu Y, Tao Y, Jiang C, Wang X, Yang N, Ding B, Dou C. Lactate promotes premature aging of preeclampsia placentas through histone lactylation-regulated GADD45A. Placenta 2025; 161:39-51. [PMID: 39908745 DOI: 10.1016/j.placenta.2025.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 01/10/2025] [Accepted: 01/24/2025] [Indexed: 02/07/2025]
Abstract
BACKGROUND Premature placental aging has been linked to preeclampsia (PE), with lactate identified as a promoter of cellular senescence in various cell types. In this study, we explored the role and underlying mechanisms of lactate in driving premature placental aging associated with PE. METHODS To evaluate senescence markers in placental samples or trophoblast cells, we conducted SA-β-Gal staining, western blotting, reverse transcription-quantitative polymerase chain reaction (RT-qPCR), and immunofluorescence assays. SiRNA transfection was used to reduce GADD45A expression in HTR-8/SVneo cells exposed to lactate. Additionally, chromatin immunoprecipitation-qPCR (ChIP-qPCR) was used to analyze histone lactylation at the GADD45A promoter region. RESULTS SA-β-Gal staining indicated a significant increase in senescent cell proportions in placentas from PE patients compared to controls. Treatment with lactate enhanced senescence in trophoblast cells, leading to an increase in P16 expression. RNA sequencing analysis showed that genes differentially expressed in lactate-treated cells were involved in pathways linked to cellular senescence. Additionally, lactate augmented GADD45A expression and increased histone lactylation at its promoter region, while knocking down GADD45A in trophoblast cells mitigated the senescence induced by lactate. CONCLUSIONS Lactate promotes trophoblast senescence through epigenetic upregulation of GADD45A expression, offering fresh perspectives on the molecular mechanisms and potential treatment targets for PE.
Collapse
Affiliation(s)
- Xiang Li
- Anhui Province Key Laboratory of Clinical and Preclinical Research in Respiratory Disease, Molecular Diagnosis Center, The First Affiliated Hospital of Bengbu Medical University, Bengbu, 233004, Anhui, China
| | - Qianghua Wang
- Anhui Province Key Laboratory of Clinical and Preclinical Research in Respiratory Disease, Molecular Diagnosis Center, The First Affiliated Hospital of Bengbu Medical University, Bengbu, 233004, Anhui, China; Anhui Province Key Laboratory of Immunology in Chronic Diseases, The First Affiliated Hospital of Bengbu Medical University, Bengbu, 233004, Anhui, China
| | - Jiaojiao Fei
- Anhui Province Key Laboratory of Clinical and Preclinical Research in Respiratory Disease, Molecular Diagnosis Center, The First Affiliated Hospital of Bengbu Medical University, Bengbu, 233004, Anhui, China
| | - Zhixin Jin
- Anhui Province Key Laboratory of Clinical and Preclinical Research in Respiratory Disease, Molecular Diagnosis Center, The First Affiliated Hospital of Bengbu Medical University, Bengbu, 233004, Anhui, China
| | - Yue Wu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, 233004, Anhui, China
| | - Yafen Tao
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, 233004, Anhui, China
| | - Chuanyue Jiang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, 233004, Anhui, China
| | - Xuegu Wang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, 233004, Anhui, China
| | - Nana Yang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, 233004, Anhui, China
| | - Biao Ding
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, 233004, Anhui, China.
| | - Chengli Dou
- Anhui Province Key Laboratory of Clinical and Preclinical Research in Respiratory Disease, Molecular Diagnosis Center, The First Affiliated Hospital of Bengbu Medical University, Bengbu, 233004, Anhui, China.
| |
Collapse
|
6
|
Liao Z, Chen B, Yang T, Zhang W, Mei Z. Lactylation modification in cardio-cerebral diseases: A state-of-the-art review. Ageing Res Rev 2025; 104:102631. [PMID: 39647583 DOI: 10.1016/j.arr.2024.102631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 11/28/2024] [Accepted: 12/05/2024] [Indexed: 12/10/2024]
Abstract
Cardio-cerebral diseases (CCDs), encompassing conditions such as coronary heart disease, myocardial infarction, stroke, Alzheimer's disease, et al., represent a significant threat to human health and well-being. These diseases are often characterized by metabolic abnormalities and remodeling in the process of pathology. Glycolysis and hypoxia-induced lactate accumulation play critical roles in cellular energy dynamics and metabolic imbalances in CCDs. Lactylation, a post-translational modification driven by excessive lactate accumulation, occurs in both histone and non-histone proteins. It has been implicated in regulating protein function across various pathological processes in CCDs, including inflammation, angiogenesis, lipid metabolism dysregulation, and fibrosis. Targeting key proteins involved in lactylation, as well as the enzymes regulating this modification, holds promise as a therapeutic strategy to modulate disease progression by addressing these pathological mechanisms. This review provides a holistic picture of the types of lactylation and the associated modifying enzymes, highlights the roles of lactylation in different pathological processes, and synthesizes the latest clinical evidence and preclinical studies in a comprehensive view. We aim to emphasize the potential of lactylation as an innovative therapeutic target for preventing and treating CCD-related conditions.
Collapse
Affiliation(s)
- Zi Liao
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Bei Chen
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Tong Yang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Wenli Zhang
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China.
| | - Zhigang Mei
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China.
| |
Collapse
|
7
|
Feng Q, Yang P, Lyu J, Liu X, Zhong S, Liang Y, Liu P, Huang L, Fan S, Zhang X. The overview of lactylation in the placenta of preeclampsia. Placenta 2025; 160:135-143. [PMID: 39799845 DOI: 10.1016/j.placenta.2025.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 12/14/2024] [Accepted: 01/02/2025] [Indexed: 01/15/2025]
Abstract
BACKGROUND Preeclampsia is a major challenge for obstetricians due to its severe impacts on maternal and fetal health. Lysine lactylation (Kla) derived from lactate is a novel type of post-translational modification which has been confirmed to affect the malignant progression of diseases as an epigenetic modifier. However, the systemic lactylome profiling of preeclampsia is still unclear. MATERIAL AND METHODS Immunohistochemistry and protein immunoassay were performed on placenta tissues from preeclamptic patients and control pregnancies to compare lactylation levels between the groups. Then liquid chromatography-tandem mass spectrometry (LC-MS/MS) was utilized for quantitative lactylomic analysis and proteomic assessment for proteins with differentially lactated modification. Bioinformatics analyses were applied to reveal the conserved motif sequences and enrichment pathways. RESULTS Significant differences in protein lactylation levels were evident in the placenta between preeclamptic and control groups, with modifications observed in both histone and non-histone proteins. Lactylome analysis showed significant downregulation of 59 Kla proteins and 69 Kla sites in preeclamptic placentas, whereas 44 proteins and 60 sites were upregulated. These differentially lactylated proteins were primarily mitochondrial and associated with the citrate cycle (TCA cycle). Enriched metabolic pathways linked to lactylation included those important for vascular muscle contraction, platelet activation, and several signaling pathways like PI3K-Akt, PPAR, and cholesterol metabolism. CONCLUSIONS Preeclamptic placentas exhibit distinct lactylation profiles compared to normal pregnancies, primarily affecting mitochondrial and TCA cycle-related energy metabolism. These changes contribute to the pathophysiology of preeclampsia by involving metabolic pathways critical for angiogenesis and endothelial function.
Collapse
Affiliation(s)
- Qiaoli Feng
- Department of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Ping Yang
- Department of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, China; Shenzhen Key Laboratory on Technology for Early Diagnosis of Major Gynecological Diseases, Shenzhen, China; Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Guangdong province, China
| | - Jinli Lyu
- Department of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, China; Shenzhen Key Laboratory on Technology for Early Diagnosis of Major Gynecological Diseases, Shenzhen, China
| | - Xinyang Liu
- Department of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, China; Shenzhen Key Laboratory on Technology for Early Diagnosis of Major Gynecological Diseases, Shenzhen, China
| | - Shilin Zhong
- Department of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Yiheng Liang
- Department of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Ping Liu
- Department of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Liting Huang
- Department of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, China; Shenzhen Key Laboratory on Technology for Early Diagnosis of Major Gynecological Diseases, Shenzhen, China
| | - Shangrong Fan
- Department of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, China; Shenzhen Key Laboratory on Technology for Early Diagnosis of Major Gynecological Diseases, Shenzhen, China.
| | - Xiaowei Zhang
- Department of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, China; Shenzhen Key Laboratory on Technology for Early Diagnosis of Major Gynecological Diseases, Shenzhen, China.
| |
Collapse
|
8
|
Jing F, Zhang J, Zhang H, Li T. Unlocking the multifaceted molecular functions and diverse disease implications of lactylation. Biol Rev Camb Philos Soc 2025; 100:172-189. [PMID: 39279350 DOI: 10.1111/brv.13135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 08/16/2024] [Accepted: 08/19/2024] [Indexed: 09/18/2024]
Abstract
In recent years, a significant breakthrough has emerged in biology, the identification of lactylation, a novel post-translational process. This intriguing modification is not limited to a specific class of proteins but occurs across a diverse range, including histones, signalling molecules, enzymes, and substrates. It can exert a broad regulatory role in various diseases, ranging from developmental anomalies and neurodegenerative disorders to inflammation and cancer. Thus, it presents exciting opportunities for exploring innovative treatment approaches. As a result, there has been a recent surge of research interest, leading to a deeper understanding of the molecular mechanisms and regulatory functions underlying lactylation within physiological and pathological processes. Here, we review the detection and molecular mechanisms of lactylation, from biological functions to disease effects, providing a systematic overview of the mechanisms and functions of this post-translational modification.
Collapse
Affiliation(s)
- Fengyang Jing
- Department of Oral Pathology, Peking University School and Hospital of Stomatology, National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials, No.22, Zhongguancun South Avenue, Haidian District, Beijing, 100081, People's Republic of China
- Research Unit of Precision Pathologic Diagnosis in Tumors of the Oral and Maxillofacial Regions, Chinese Academy of Medical Sciences (2019RU034), No.22, Zhongguancun South Avenue, Haidian District, Beijing, 100081, People's Republic of China
| | - Jianyun Zhang
- Department of Oral Pathology, Peking University School and Hospital of Stomatology, National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials, No.22, Zhongguancun South Avenue, Haidian District, Beijing, 100081, People's Republic of China
- Research Unit of Precision Pathologic Diagnosis in Tumors of the Oral and Maxillofacial Regions, Chinese Academy of Medical Sciences (2019RU034), No.22, Zhongguancun South Avenue, Haidian District, Beijing, 100081, People's Republic of China
| | - Heyu Zhang
- Research Unit of Precision Pathologic Diagnosis in Tumors of the Oral and Maxillofacial Regions, Chinese Academy of Medical Sciences (2019RU034), No.22, Zhongguancun South Avenue, Haidian District, Beijing, 100081, People's Republic of China
- Central Laboratory, Peking University School and Hospital of Stomatology, No.22, Zhongguancun South Avenue, Haidian District, Beijing, 100081, People's Republic of China
| | - Tiejun Li
- Department of Oral Pathology, Peking University School and Hospital of Stomatology, National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials, No.22, Zhongguancun South Avenue, Haidian District, Beijing, 100081, People's Republic of China
- Research Unit of Precision Pathologic Diagnosis in Tumors of the Oral and Maxillofacial Regions, Chinese Academy of Medical Sciences (2019RU034), No.22, Zhongguancun South Avenue, Haidian District, Beijing, 100081, People's Republic of China
| |
Collapse
|
9
|
Yang Y, Shi J, Yu J, Zhao X, Zhu K, Wang S, Zhang X, Zhang X, Wei G, Cao W. New Posttranslational Modification Lactylation Brings New Inspiration for the Treatment of Rheumatoid Arthritis. J Inflamm Res 2024; 17:11845-11860. [PMID: 39758940 PMCID: PMC11697653 DOI: 10.2147/jir.s497240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 12/21/2024] [Indexed: 01/07/2025] Open
Abstract
Lactic acid (LA) is an essential glycolytic metabolite and energy source in the body, which is present in high levels in the synovial fluid of patients with rheumatoid arthritis (RA) and is a reliable indicator for identifying inflammatory arthritis. LA not only acts as an inflammatory amplifier in RA, recent studies have found that novel posttranslational modification (PTM) lactylation mediated by LA may also play a key role in RA. Single-cell sequencing showed that the RA lactylation score of patients with RA was significantly increased, and core lactylation-promoting genes, including NDUFB3, NGLY1, and other genes, were found to be potential biomarkers of RA. More studies have shown that lactylation can regulate genes in various cells, such as fibroblast-like synoviocytes (FLSs) and macrophages, thus playing a special role in the development and occurrence of autoimmune diseases, neurological diseases, and cancer diseases. In this paper, we review the research on lactylation in RA-related cells and mechanisms and bring new insights into the pathogenesis, diagnosis, and treatment of RA.
Collapse
Affiliation(s)
- Yue Yang
- Rheumatology Department, Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Jinjie Shi
- Graduate School, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Jiming Yu
- The Second Clinical Medical College, Henan University of Chinese Medicine, Zhengzhou, People’s Republic of China
| | - Xin Zhao
- Rheumatology Department, Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Ke Zhu
- Rheumatology Department, Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Shen Wang
- Orthopedics Department, Nanjing Integrated Traditional Chinese and Western Medicine Hospital, Nanjing, People’s Republic of China
| | - Xinwen Zhang
- Rheumatology Department, Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Xieyu Zhang
- Rheumatology Department, Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Guangcheng Wei
- Rheumatology Department, Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Wei Cao
- Rheumatology Department, Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| |
Collapse
|
10
|
Hu XT, Wu XF, Xu JY, Xu X. Lactate-mediated lactylation in human health and diseases: Progress and remaining challenges. J Adv Res 2024:S2090-1232(24)00529-0. [PMID: 39522689 DOI: 10.1016/j.jare.2024.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/05/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Lactate was once considered as metabolic waste for a long time. In 2019, Professor Zhao Yingming's team from the University of Chicago found that lactate could also be used as a substrate to induce histone lactylation and regulate gene expression. Since then, researchers have discovered that lactate-mediated lactylation play important regulatory roles in various physiological and pathological processes. AIM OF REVIEW In this review, we aim to discuss the roles and mechanisms of lactylation in human health and diseases, as well as the effects of lactylation on proteins and metabolic modulators targeting lactylation. KEY SCIENTIFIC CONCEPTS OF REVIEW In this work, we emphasize the crucial regulatory roles of lactylation in the development of numerous physiological and pathological processes. Of relevance, we discuss the current issues and challenges pertaining to lactylation. This review provides directions and a theoretical basis for future research and clinical translation of lactylation.
Collapse
Affiliation(s)
- Xue-Ting Hu
- Department of Stem Cell & Regenerative Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Xiao-Feng Wu
- Department of Stem Cell & Regenerative Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Jin-Yi Xu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China.
| | - Xiang Xu
- Department of Stem Cell & Regenerative Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing, 400042, China.
| |
Collapse
|
11
|
Shen XY, Huang J, Chen LL, Sha MT, Gao J, Xin H. Blocking lactate regulation of the Grhl2/SLC31A1 axis inhibits trophoblast cuproptosis and preeclampsia development. J Assist Reprod Genet 2024; 41:3201-3212. [PMID: 39287710 PMCID: PMC11621273 DOI: 10.1007/s10815-024-03256-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 09/09/2024] [Indexed: 09/19/2024] Open
Abstract
PURPOSE Abnormal cell death due to superficial trophoblast dysfunction caused by placental hypoxia plays a vital role in the development of preeclampsia (PE). Lactic acid stimulates gene transcription in chromatin through lactate modification of histone lysine. Nevertheless, the content and function of lactate in PE development remains largely unclear. METHODS The contents of lactic acid and copper in 30 PE and 30 normal placentas were determined by kit colorimetry. Real-time quantitative fluorescent PCR (qRT-PCR) and Western blot were used to detect the expression of SLC31A1 in cells and tissues. Cell proliferation, apoptosis, and invasion were detected by cell counting kit 8 (CCK-8), MTS assay, colony formation assay, and Transwell assay. The transcriptional regulation between Grhl2 and SLC31A was verified by the luciferase reporter gene method and ChIP. The H3K18la modification level was detected by ChIP-PCR. RESULTS Herein, we detected increased lactic acid levels in the PE placental tissue, which inhibit the proliferation and invasion of trophoblasts. Interestingly, lactic acid increases intracellular copper content by enhancing the expression of SLC31A1, a key protein of copper ion transporters. Lentivirus knockdown of SLC31A1 blocked the lactate-induced proliferation and invasion of trophoblasts by inhibiting cell cuproptosis. Mechanically, we identified that Grhl2 mediated SLC31A1 expression through transcription and participated in SLC31A1-inhibited proliferation, invasion, and cuproptosis of trophoblasts. Furthermore, the high lactate content increased Grhl2 expression by enhancing lactate modification of histone H3K18 in the Grhl2 promoter region. CONCLUSIONS Blocking the lactate-regulated Grhl2/SLC31A1 axis and trophoblastic cuproptosis may be a potential approach to prevent and treat PE.
Collapse
Affiliation(s)
- Xue-Yan Shen
- Department of Obstetrics, The Fourth Hospital of Shijiazhuang, Hebei Medical University, 16 Tangu North Street, Shijiazhuang City, Hebei Province, P.R. China.
- Department of Obstetrics, The Second Hospital of Hebei Medical University, No.215, Heping West Road, Shijiazhuang, 050000, Hebei Province, P.R. China.
| | - Jing Huang
- Department of Obstetrics, The Second Hospital of Hebei Medical University, No.215, Heping West Road, Shijiazhuang, 050000, Hebei Province, P.R. China
| | - Li-Li Chen
- Department of Obstetrics, The Second Hospital of Hebei Medical University, No.215, Heping West Road, Shijiazhuang, 050000, Hebei Province, P.R. China
| | - Man-Ting Sha
- Department of Obstetrics, The Fourth Hospital of Shijiazhuang, Hebei Medical University, 16 Tangu North Street, Shijiazhuang City, Hebei Province, P.R. China
| | - Jing Gao
- Department of Obstetrics, The Fourth Hospital of Shijiazhuang, Hebei Medical University, 16 Tangu North Street, Shijiazhuang City, Hebei Province, P.R. China
| | - Hong Xin
- Department of Obstetrics, The Second Hospital of Hebei Medical University, No.215, Heping West Road, Shijiazhuang, 050000, Hebei Province, P.R. China.
| |
Collapse
|
12
|
Liu C, Zhang Q, Zhou H, Jin L, Liu C, Yang M, Zhao X, Ding W, Xie W, Kong H. GLP-1R activation attenuates the progression of pulmonary fibrosis via disrupting NLRP3 inflammasome/PFKFB3-driven glycolysis interaction and histone lactylation. J Transl Med 2024; 22:954. [PMID: 39434134 PMCID: PMC11492558 DOI: 10.1186/s12967-024-05753-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 10/08/2024] [Indexed: 10/23/2024] Open
Abstract
BACKGROUND Pulmonary fibrosis is a serious interstitial lung disease with no viable treatment except for lung transplantation. Glucagon-like peptide-1 receptor (GLP-1R), commonly regarded as an antidiabetic target, exerts antifibrotic effects on various types of organ fibrosis. However, whether GLP-1R modulates the development and progression of pulmonary fibrosis remains unclear. In this study, we investigated the antifibrotic effect of GLP-1R using in vitro and in vivo models of pulmonary fibrosis. METHODS A silica-induced pulmonary fibrosis mouse model was established to evaluate the protective effects of activating GLP-1R with liraglutide in vivo. Primary cultured lung fibroblasts treated with TGF-β1 combined with IL-1β (TGF-β1 + IL-1β) were used to explore the specific effects of liraglutide, MCC950, and 3PO on fibroblast activation in vitro. Cell metabolism assay was performed to determine the glycolytic rate and mitochondrial respiration. RNA sequencing was utilized to analyse the underlying molecular mechanisms by which liraglutide affects fibroblast activation. ChIP‒qPCR was used to evaluate histone lactylation at the promoters of profibrotic genes in TGF-β1 + IL-1β- or exogenous lactate-stimulated lung fibroblasts. RESULTS Activating GLP-1R with liraglutide attenuated pulmonary inflammation and fibrosis in mice exposed to silica. Pharmacological inhibition of the NLRP3 inflammasome suppressed PFKFB3-driven glycolysis and vice versa, resulting in decreased lactate production in TGF-β1 + IL-1β-stimulated lung fibroblasts. Activating GLP-1R inhibited TGF-β1 + IL-1β-induced fibroblast activation by disrupting the interaction between the NLRP3 inflammasome and PFKFB3-driven glycolysis and subsequently prevented lactate-mediated histone lactylation to reduce pro-fibrotic gene expression. In addition, activating GLP-1R protected mitochondria against the TGF-β1 + IL-1β-induced increase in oxidative phosphorylation in fibroblasts. In exogenous lactate-treated lung fibroblasts, activating GLP-1R not only repressed NLRP3 inflammasome activation but also alleviated p300-mediated histone lactylation. Finally, GLP-1R activation blocked silica-treated macrophage-conditioned media-induced lung fibroblast activation. CONCLUSIONS The antifibrotic effects of GLP-1R activation on pulmonary fibrosis could be attributed to the inhibition of the interaction between NLRP3 inflammasome and PFKFB3-driven glycolysis, and histone lactylation in lung fibroblasts. Thus, GLP-1R is a specific therapeutic target for the treatment of pulmonary fibrosis.
Collapse
Affiliation(s)
- Chenyang Liu
- Department of Pulmonary & Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, P. R. China
| | - Qun Zhang
- Department of Pulmonary & Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, P. R. China
| | - Hong Zhou
- Wuxi People's Hospital, Wuxi Medical Center, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Nanjing Medical University, Wuxi, Jiangsu, 214023, P. R. China
| | - Linling Jin
- Department of Pulmonary & Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, P. R. China
| | - Chang Liu
- Department of Pulmonary & Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, P. R. China
| | - Mingxia Yang
- Department of Pulmonary & Critical Care Medicine, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu, 213003, P. R. China
| | - Xinyun Zhao
- Department of Pulmonary & Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, P. R. China
| | - Wenqiu Ding
- Department of Pulmonary & Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, P. R. China
| | - Weiping Xie
- Department of Pulmonary & Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, P. R. China.
| | - Hui Kong
- Department of Pulmonary & Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, P. R. China.
| |
Collapse
|
13
|
Jing F, Zhu L, Zhang J, Zhou X, Bai J, Li X, Zhang H, Li T. Multi-omics reveals lactylation-driven regulatory mechanisms promoting tumor progression in oral squamous cell carcinoma. Genome Biol 2024; 25:272. [PMID: 39407253 PMCID: PMC11476802 DOI: 10.1186/s13059-024-03383-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 08/30/2024] [Indexed: 10/20/2024] Open
Abstract
BACKGROUND Lactylation, a post-translational modification, is increasingly recognized for its role in cancer progression. This study investigates its prevalence and impact in oral squamous cell carcinoma (OSCC). RESULTS Immunohistochemical staining of 81 OSCC cases shows lactylation levels correlate with malignancy grading. Proteomic analyses of six OSCC tissue pairs reveal 2765 lactylation sites on 1033 proteins, highlighting its extensive presence. These modifications influence metabolic processes, molecular synthesis, and transport. CAL27 cells are subjected to cleavage under targets and tagmentation assay for accessible-chromatin with high-throughput sequencing, and transcriptomic sequencing pre- and post-lactate treatment, with 217 genes upregulated due to lactylation. Chromatin immunoprecipitation-quantitative PCR and real-time fluorescence quantitative PCR confirm the regulatory role of lactylation at the K146 site of dexh-box helicase 9 (DHX9), a key factor in OSCC progression. CCK8, colony formation, scratch healing, and Transwell assays demonstrate that lactylation mitigates the inhibitory effect of DHX9 on OSCC, thereby promoting its occurrence and development. CONCLUSIONS Lactylation actively modulates gene expression in OSCC, with significant effects on chromatin structure and cellular processes. This study provides a foundation for developing targeted therapies against OSCC, leveraging the role of lactylation in disease pathogenesis.
Collapse
Affiliation(s)
- Fengyang Jing
- Department of Oral Pathology, Peking University School and Hospital of Stomatology, National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials, Beijing, 100081, China
- Research Unit of Precision Pathologic Diagnosis in Tumors of the Oral and Maxillofacial Regions, Chinese Academy of Medical Sciences (2019RU034), Beijing, 100081, China
| | - Lijing Zhu
- Department of Oral Pathology, Peking University School and Hospital of Stomatology, National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials, Beijing, 100081, China
- Research Unit of Precision Pathologic Diagnosis in Tumors of the Oral and Maxillofacial Regions, Chinese Academy of Medical Sciences (2019RU034), Beijing, 100081, China
| | - Jianyun Zhang
- Department of Oral Pathology, Peking University School and Hospital of Stomatology, National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials, Beijing, 100081, China
- Research Unit of Precision Pathologic Diagnosis in Tumors of the Oral and Maxillofacial Regions, Chinese Academy of Medical Sciences (2019RU034), Beijing, 100081, China
| | - Xuan Zhou
- Department of Oral Pathology, Peking University School and Hospital of Stomatology, National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials, Beijing, 100081, China
- Research Unit of Precision Pathologic Diagnosis in Tumors of the Oral and Maxillofacial Regions, Chinese Academy of Medical Sciences (2019RU034), Beijing, 100081, China
| | - Jiaying Bai
- Department of Oral Pathology, Peking University School and Hospital of Stomatology, National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials, Beijing, 100081, China
| | - Xuefen Li
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Heyu Zhang
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, 100081, China.
- Research Unit of Precision Pathologic Diagnosis in Tumors of the Oral and Maxillofacial Regions, Chinese Academy of Medical Sciences (2019RU034), Beijing, 100081, China.
| | - Tiejun Li
- Department of Oral Pathology, Peking University School and Hospital of Stomatology, National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials, Beijing, 100081, China.
- Research Unit of Precision Pathologic Diagnosis in Tumors of the Oral and Maxillofacial Regions, Chinese Academy of Medical Sciences (2019RU034), Beijing, 100081, China.
| |
Collapse
|
14
|
Tan Y, Wang J, Liu C, Wu S, Zhou M, Zhang Y, Yin T, Yang J. KLF4 regulates trophoblast function and associates with unexplained recurrent spontaneous abortion. J Transl Med 2024; 22:922. [PMID: 39390495 PMCID: PMC11465507 DOI: 10.1186/s12967-024-05707-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 09/25/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND Recurrent spontaneous abortion (RSA) is defined as two or more consecutive spontaneous abortions before 20 weeks with the same spouse [1]. However, approximately 50% of RSA cases of unknown cause are classified as unexplained recurrent spontaneous abortion (URSA). Potential factors include decreased trophoblast cell migration and invasion, leading to impaired placental implantation and maintenance of the normal maternal-fetal interface. However, the mechanism of this pathogenesis remains unknown. In this study, we investigated the potential role and mechanism of KLF4 in regulating URSA by influencing the invasion and migration ability of trophoblast cells. METHODS We firstly identified 817 differentially expressed genes by performing a difference analysis of the dataset GSE121950 [2] related to recurrent abortion, and intersected the top 10 genes obtained respectively by the three algorithms: DMNC, MNC, and EPC using Venn Diagram.To detect the expression levels of core genes, villi samples were obtained from normal pregnant women and patients with URSA. RT-qPCR analysis revealed a significant difference in KLF4 mRNA expression and KLF4 was then analyzed. Trophoblast cell lines HTR8 and JEG3 were used to investigate the effect of KLF4 on trophoblastic function. Wound healing and transwell assays was performed to detect the invasion and migration of trophoblast cells. The expression of epithelial-mesenchymal transition(EMT) molecules were detected by RT-qPCR and western blot. Promoter detection and epigenetic modification were detected by chromatin immunoprecipitation (ChIP) assay. Molecular nuclear localization was detected by immunofluorescence and subcellular fractionation. Miscarried mice model was used to study the effects of KLF4 on URSA induced by reduced trophoblast invasion and migration. RESULTS KLF4 is highly expressed in the villi of patients with URSA. KLF4 inhibits the expression level of H3R2ME2a in trophoblast cells by regulating the transcriptional level and nuclear translocation of PRMT6, thereby inhibiting the possible regulatory mechanism of trophoblastic invasion and providing a potential treatment strategy for URSA in vivo. CONCLUSIONS The KLF4/PRMT6/H3R2ME2a axis regulates mechanisms associated with unexplained recurrent spontaneous abortion by regulating trophoblast function.
Collapse
Affiliation(s)
- Yiling Tan
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jiayu Wang
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Chunming Liu
- Department of Pediatrics, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Shujuan Wu
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, 430060, Wuhan, China
| | - Mengqi Zhou
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yan Zhang
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, China.
| | - Tailang Yin
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, China.
| | - Jing Yang
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
15
|
Shi Y, Ma J, Li S, Liu C, Liu Y, Chen J, Liu N, Liu S, Huang H. Sex difference in human diseases: mechanistic insights and clinical implications. Signal Transduct Target Ther 2024; 9:238. [PMID: 39256355 PMCID: PMC11387494 DOI: 10.1038/s41392-024-01929-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 06/26/2024] [Accepted: 07/23/2024] [Indexed: 09/12/2024] Open
Abstract
Sex characteristics exhibit significant disparities in various human diseases, including prevalent cardiovascular diseases, cancers, metabolic disorders, autoimmune diseases, and neurodegenerative diseases. Risk profiles and pathological manifestations of these diseases exhibit notable variations between sexes. The underlying reasons for these sex disparities encompass multifactorial elements, such as physiology, genetics, and environment. Recent studies have shown that human body systems demonstrate sex-specific gene expression during critical developmental stages and gene editing processes. These genes, differentially expressed based on different sex, may be regulated by androgen or estrogen-responsive elements, thereby influencing the incidence and presentation of cardiovascular, oncological, metabolic, immune, and neurological diseases across sexes. However, despite the existence of sex differences in patients with human diseases, treatment guidelines predominantly rely on male data due to the underrepresentation of women in clinical trials. At present, there exists a substantial knowledge gap concerning sex-specific mechanisms and clinical treatments for diverse diseases. Therefore, this review aims to elucidate the advances of sex differences on human diseases by examining epidemiological factors, pathogenesis, and innovative progress of clinical treatments in accordance with the distinctive risk characteristics of each disease and provide a new theoretical and practical basis for further optimizing individualized treatment and improving patient prognosis.
Collapse
Affiliation(s)
- Yuncong Shi
- Department of Cardiology, the Eighth Affiliated Hospital, Joint Laboratory of Guangdong-Hong Kong-Macao Universities for Nutritional Metabolism and Precise Prevention and Control of Major Chronic Diseases, Sun Yat-sen University, Shenzhen, China
| | - Jianshuai Ma
- Department of Cardiology, the Eighth Affiliated Hospital, Joint Laboratory of Guangdong-Hong Kong-Macao Universities for Nutritional Metabolism and Precise Prevention and Control of Major Chronic Diseases, Sun Yat-sen University, Shenzhen, China
| | - Sijin Li
- Department of Cardiology, the Eighth Affiliated Hospital, Joint Laboratory of Guangdong-Hong Kong-Macao Universities for Nutritional Metabolism and Precise Prevention and Control of Major Chronic Diseases, Sun Yat-sen University, Shenzhen, China
| | - Chao Liu
- Department of Cardiology, the Eighth Affiliated Hospital, Joint Laboratory of Guangdong-Hong Kong-Macao Universities for Nutritional Metabolism and Precise Prevention and Control of Major Chronic Diseases, Sun Yat-sen University, Shenzhen, China
| | - Yuning Liu
- Department of Cardiology, the Eighth Affiliated Hospital, Joint Laboratory of Guangdong-Hong Kong-Macao Universities for Nutritional Metabolism and Precise Prevention and Control of Major Chronic Diseases, Sun Yat-sen University, Shenzhen, China
| | - Jie Chen
- Department of Radiotherapy, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ningning Liu
- Department of Cardiology, Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Shiming Liu
- Department of Cardiology, Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.
| | - Hui Huang
- Department of Cardiology, the Eighth Affiliated Hospital, Joint Laboratory of Guangdong-Hong Kong-Macao Universities for Nutritional Metabolism and Precise Prevention and Control of Major Chronic Diseases, Sun Yat-sen University, Shenzhen, China.
- Department of Cardiology, Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
16
|
Stacpoole PW, Dirain CO. The pyruvate dehydrogenase complex at the epigenetic crossroads of acetylation and lactylation. Mol Genet Metab 2024; 143:108540. [PMID: 39067348 DOI: 10.1016/j.ymgme.2024.108540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/25/2024] [Accepted: 07/15/2024] [Indexed: 07/30/2024]
Abstract
The pyruvate dehydrogenase complex (PDC) is remarkable for its size and structure as well as for its physiological and pathological importance. Its canonical location is in the mitochondrial matrix, where it primes the tricarboxylic acid (TCA) cycle by decarboxylating glycolytically-derived pyruvate to acetyl-CoA. Less well appreciated is its role in helping to shape the epigenetic landscape, from early development throughout mammalian life by its ability to "moonlight" in the nucleus, with major repercussions for human healthspan and lifespan. The PDC's influence on two crucial modifiers of the epigenome, acetylation and lactylation, is the focus of this brief review.
Collapse
Affiliation(s)
- Peter W Stacpoole
- University of Florida, College of Medicine Department of Medicine, Department of Biochemistry & Molecular Biology, Gainesville, FL, United States.
| | - Carolyn O Dirain
- University of Florida, College of Medicine Department of Medicine, Gainesville, FL, United States
| |
Collapse
|
17
|
Manoharan MM, Montes GC, Acquarone M, Swan KF, Pridjian GC, Nogueira Alencar AK, Bayer CL. Metabolic theory of preeclampsia: implications for maternal cardiovascular health. Am J Physiol Heart Circ Physiol 2024; 327:H582-H597. [PMID: 38968164 PMCID: PMC11442029 DOI: 10.1152/ajpheart.00170.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/02/2024] [Accepted: 07/02/2024] [Indexed: 07/07/2024]
Abstract
Preeclampsia (PE) is a multisystemic disorder of pregnancy that not only causes perinatal mortality and morbidity but also has a long-term toll on the maternal and fetal cardiovascular system. Women diagnosed with PE are at greater risk for the subsequent development of hypertension, ischemic heart disease, cardiomyopathy, cerebral edema, seizures, and end-stage renal disease. Although PE is considered heterogeneous, inefficient extravillous trophoblast (EVT) migration leading to deficient spiral artery remodeling and increased uteroplacental vascular resistance is the likely initiation of the disease. The principal pathophysiology is placental hypoxia, causing subsequent oxidative stress, leading to mitochondrial dysfunction, mitophagy, and immunological imbalance. The damage imposed on the placenta in turn results in the "stress response" categorized by the dysfunctional release of vasoactive components including oxidative stressors, proinflammatory factors, and cytokines into the maternal circulation. These bioactive factors have deleterious effects on systemic endothelial cells and coagulation leading to generalized vascular dysfunction and hypercoagulability. A better understanding of these metabolic factors may lead to novel therapeutic approaches to prevent and treat this multisystemic disorder. In this review, we connect the hypoxic-oxidative stress and inflammation involved in the pathophysiology of PE to the resulting persistent cardiovascular complications in patients with preeclampsia.
Collapse
Affiliation(s)
- Mistina M Manoharan
- Department of Biomedical Engineering, Tulane University, New Orleans, Louisiana, United States
| | - Guilherme C Montes
- Department of Pharmacology and Psychobiology, Roberto Alcântara Gomes Institute Biology (IBRAG), Rio de Janeiro State University (UERJ), Rio de Janeiro, Brazil
| | - Mariana Acquarone
- Department of Neurology, Tulane University, New Orleans, Louisiana, United States
| | - Kenneth F Swan
- Department of Obstetrics and Gynecology, Tulane University, New Orleans, Louisiana, United States
| | - Gabriella C Pridjian
- Department of Obstetrics and Gynecology, Tulane University, New Orleans, Louisiana, United States
| | | | - Carolyn L Bayer
- Department of Biomedical Engineering, Tulane University, New Orleans, Louisiana, United States
- Department of Obstetrics and Gynecology, Tulane University, New Orleans, Louisiana, United States
| |
Collapse
|
18
|
Song F, Hou C, Huang Y, Liang J, Cai H, Tian G, Jiang Y, Wang Z, Hou J. Lactylome analyses suggest systematic lysine-lactylated substrates in oral squamous cell carcinoma under normoxia and hypoxia. Cell Signal 2024; 120:111228. [PMID: 38750680 DOI: 10.1016/j.cellsig.2024.111228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/05/2024] [Accepted: 05/12/2024] [Indexed: 05/20/2024]
Abstract
Cancer cells tend to live in hypoxic environment characterized by enhanced glycolysis and accumulation of lactate. Intracellular lactate is shown to drive a novel type of post-translational modification (PTM), lysine lactylation (Kla). Kla has been confirmed to affect the malignant progression of tumors such as hepatocellular carcinoma (HCC) and colon cancer, whereas the global lactylomic profiling of oral squamous cell carcinoma (OSCC) is unclear. Here, the integrative lactylome and proteome analyses by using liquid chromatography-tandem mass spectrometry (LC-MS/MS) identified 1011 Kla sites within 532 proteins and 1197 Kla sites within 608 proteins in SCC25 cells under normoxic and hypoxic environments, respectively. Among these lactylated proteins, histones accounted for only a small fraction, suggesting the presence of Kla modification of OSCC in a large number of non-histone proteins. Notably, Kla preferred to enrich in spliceosome, ribosome and glycolysis/gluconeogenesis pathway in both normoxic and hypoxic cultures. Compared with normoxia, 589 differential proteins with 898 differentially lactylated sites were detected under hypoxia, which were mainly associated with the glycolysis/gluconeogenesis pathway by KEGG analysis. Importantly, we verified the presence of lactylation modification in the spliceosomal proteins hnRNPA1, SF3A1, hnRNPU and SLU7, as well as in glycolytic enzyme PFKP. In addition, the differential alternative splicing analysis described the divergence of pre-mRNA splicing patterns in the presence or absence of sodium lactate and at different oxygen concentrations. Finally, a negative correlation between tissue Kla levels and the prognosis of OSCC patients was revealed by immunohistochemistry. Our study is the first report to elucidate the lactylome and its biological function in OSCC, which deepens our understanding of the mechanisms underlying OSCC progression and provides a novel strategy for targeted therapy for OSCC.
Collapse
Affiliation(s)
- Fan Song
- Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, China
| | - Chen Hou
- Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, China
| | - Yingzhao Huang
- Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, China
| | - Jianfeng Liang
- Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, China
| | - Hongshi Cai
- Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, China
| | - Guoli Tian
- Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, China
| | - Yaoqi Jiang
- Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, China
| | - Ziyi Wang
- Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, China
| | - Jinsong Hou
- Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, China.
| |
Collapse
|
19
|
Li Q, Lin G, Zhang K, Liu X, Li Z, Bing X, Nie Z, Jin S, Guo J, Min X. Hypoxia exposure induces lactylation of Axin1 protein to promote glycolysis of esophageal carcinoma cells. Biochem Pharmacol 2024; 226:116415. [PMID: 38972426 DOI: 10.1016/j.bcp.2024.116415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/01/2024] [Accepted: 07/04/2024] [Indexed: 07/09/2024]
Abstract
The hypoxic microenvironment in esophageal carcinoma is an important factor promoting the rapid progression of malignant tumor. This study was to investigate the lactylation of Axin1 on glycolysis in esophageal carcinoma cells under hypoxia exposure. Hypoxia treatment increases pan lysine lactylation (pan-kla) levels of both TE1 and EC109 cells. Meanwhile, ECAR, glucose consumption and lactate production were also upregulated in both TE1 and EC109 cells. The expression of embryonic stem cell transcription factors NANOG and SOX2 were enhanced in the hypoxia-treated cells. Axin1 overexpression partly reverses the induction effects of hypoxia treatment in TE1 and EC109 cells. Moreover, lactylation of Axin1 protein at K147 induced by hypoxia treatment promotes ubiquitination modification of Axin1 protein to promote glycolysis and cell stemness of TE1 and EC109 cells. Mutant Axin1 can inhibit ECAR, glucose uptake, lactate secretion, and cell stemness in TE1 and EC109 cells under normal or hypoxia conditions. Meanwhile, mutant Axin1 further enhanced the effects of 2-DG on inhibiting glycolysis and cell stemness. Overexpression of Axin1 also inhibited tumor growth in vivo, and was related to suppressing glycolysis. In conclusion, hypoxia treatment promoted the glycolysis and cell stemness of esophageal carcinoma cells, and increased the lactylation of Axin1 protein. Overexpression of Axin1 functioned as a glycolysis inhibitor, and suppressed the effects of hypoxia exposure in vitro and inhibited tumor growth in vivo. Mechanically, hypoxia induces the lactylation of Axin1 protein and promotes the ubiquitination of Axin1 to degrade the protein, thereby exercising its anti-glycolytic function.
Collapse
Affiliation(s)
- Qian Li
- Department of Thoracic Surgery, China Aerospace Science and Industry Corporation 731 Hospital, Beijing, China; Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Guihu Lin
- Department of Thoracic Surgery, China Aerospace Science and Industry Corporation 731 Hospital, Beijing, China
| | - Kaihua Zhang
- Department of Thoracic Surgery, China Aerospace Science and Industry Corporation 731 Hospital, Beijing, China
| | - Xinbo Liu
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Zhantao Li
- Department of Thoracic Surgery, China Aerospace Science and Industry Corporation 731 Hospital, Beijing, China
| | - Xiaohan Bing
- Department of Thoracic Surgery, China Aerospace Science and Industry Corporation 731 Hospital, Beijing, China
| | - Zhenkai Nie
- Department of Thoracic Surgery, China Aerospace Science and Industry Corporation 731 Hospital, Beijing, China
| | - Shan Jin
- Department of Thoracic Surgery, China Aerospace Science and Industry Corporation 731 Hospital, Beijing, China
| | - Jin Guo
- School of Medical Technology, Beijing Institute of Technology, Beijing, China.
| | - Xianjun Min
- Department of Thoracic Surgery, China Aerospace Science and Industry Corporation 731 Hospital, Beijing, China.
| |
Collapse
|
20
|
Liu H, Wang Z, Li Y, Chen Q, Jiang S, Gao Y, Wang J, Chi Y, Liu J, Wu X, Chen Q, Xiao C, Zhong M, Chen C, Yang X. Hierarchical lncRNA regulatory network in early-onset severe preeclampsia. BMC Biol 2024; 22:159. [PMID: 39075446 PMCID: PMC11287949 DOI: 10.1186/s12915-024-01959-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 07/15/2024] [Indexed: 07/31/2024] Open
Abstract
BACKGROUND Recent studies have shown that several long non-coding RNAs (lncRNAs) in the placenta are associated with preeclampsia (PE). However, the extent to which lncRNAs may contribute to the pathological progression of PE is unclear. RESULTS Here, we report a hierarchical regulatory network involved in early-onset severe PE (EOSPE). We have carried out transcriptome sequencing on the placentae from patients and normal subjects to identify the differentially expressed genes (DEGs), including some lncRNAs (DElncRNAs). We then constructed a high-quality hierarchical regulatory network of lncRNAs, transcription factors (TFs), and target DEGs, containing 1851 lncRNA-TF interactions and 6901 TF-promoter interactions. The lncRNA-to-target regulatory interactions were further validated by the triplex structures between the DElncRNAs and the promoters of the target DEGs. The DElncRNAs in the regulatory network were clustered into 3 clusters, one containing DElncRNAs correlated with the blood pressure, including FLNB-AS1 with targeting 27.89% (869/3116) DEGs in EOSPE. We further demonstrated that FLNB-AS1 could bind the transcription factor JUNB to regulate a series members of the HIF-1 signaling pathway in trophoblast cells. CONCLUSIONS Our results suggest that the differential expression of lncRNAs may perturb the lncRNA-TF-DEG hierarchical regulatory network, leading to the dysregulation of many genes involved in EOSPE. Our study provides a new strategy and a valuable resource for studying the mechanism underlying gene dysregulation in EOSPE patients.
Collapse
Affiliation(s)
- Haihua Liu
- Center for Genetics and Developmental Systems Biology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- Department of Obstetrics & Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- State Key Laboratory of Organ Failure Research, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
- Guangdong Key Laboratory of Psychiatric Disorders, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Zhijian Wang
- Center for Genetics and Developmental Systems Biology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- Department of Obstetrics & Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- State Key Laboratory of Organ Failure Research, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Yanjun Li
- Center for Genetics and Developmental Systems Biology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- Department of Obstetrics & Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- State Key Laboratory of Organ Failure Research, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
- Guangdong Key Laboratory of Psychiatric Disorders, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Qian Chen
- Department of Obstetrics & Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Sijia Jiang
- Department of Obstetrics & Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yue Gao
- Center for Genetics and Developmental Systems Biology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- Department of Obstetrics & Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- State Key Laboratory of Organ Failure Research, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
- Guangdong Key Laboratory of Psychiatric Disorders, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Jing Wang
- Center for Genetics and Developmental Systems Biology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- Department of Obstetrics & Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- State Key Laboratory of Organ Failure Research, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
- Guangdong Key Laboratory of Psychiatric Disorders, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Yali Chi
- Center for Genetics and Developmental Systems Biology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- Department of Obstetrics & Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- State Key Laboratory of Organ Failure Research, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
- Guangdong Key Laboratory of Psychiatric Disorders, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Jie Liu
- Department of Obstetrics & Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Xiaoli Wu
- Department of Obstetrics & Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Qiong Chen
- Department of Obstetrics & Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Chaoqun Xiao
- Department of Obstetrics & Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Mei Zhong
- Department of Obstetrics & Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Chunlin Chen
- Department of Obstetrics & Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Xinping Yang
- Center for Genetics and Developmental Systems Biology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
- Department of Obstetrics & Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
- State Key Laboratory of Organ Failure Research, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.
- Guangdong Key Laboratory of Psychiatric Disorders, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.
- Department of Psychology, School of Public Health, Southern Medical University, Guangzhou, 510515, Guangdong, China.
| |
Collapse
|
21
|
Wang Y, Zhang G, Gao Y, Zhang X, Qi H. METTL3 promotes trophoblast ferroptosis in preeclampsia by stabilizing the ACSL4 m 6A modification. Exp Cell Res 2024; 437:113990. [PMID: 38462207 DOI: 10.1016/j.yexcr.2024.113990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/01/2024] [Accepted: 03/02/2024] [Indexed: 03/12/2024]
Abstract
This study aims to explore the role of methyltransferase-like 3 (METTL3) modulation of ferroptosis in the pathogenesis of trophoblast-mediated preeclampsia. The expression of METTL3 and acyl-CoA synthetase long chain family member 4 (ACSL4) was measured in clinical placental tissues and trophoblasts using qPCR and Western blot techniques. The effects of METTL3 on the symptoms of preeclampsia were also validated in rat models. METTL3 and ACSL4 were upregulated in placental tissues from patients with preeclampsia and in hypoxia-induced trophoblasts. METTL3 silencing increased the migration and invasion of trophoblasts cultured under hypoxic conditions. Knockdown of METTL3 increased cell viability and suppressed ferroptosis in hypoxia-stimulated trophoblasts. Hypoxia increased the level of m6A in cells, whereas silencing METTL3 partially reversed this change. Silencing METTL3 resulted in a decrease in m6A modification of ACSL4 mRNA, which led to a reduction in ACSL4 mRNA stability. ACSL4 upregulation partially reversed the effects of METTL3 silencing on cell viability, migration, invasion, and ferroptosis in hypoxia-stimulated trophoblasts. Inhibition of METTL3 in preeclampsia rats decreased blood pressure, urine protein levels, fetal survival rate, and ACSL4-mediated ferroptosis. METTL3 elevates ferroptosis to inhibit the migration and invasion of trophoblasts and in vivo preeclampsia symptoms by catalyzing the m6A modification of ACSL4 mRNA.
Collapse
Affiliation(s)
- Yang Wang
- The Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Chongqing Key Labtory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing 400016, China; Department of Obstetrics, Sichuan Provincial Hospital for Women and Children,Affiliated Women and Children's Hospital of Chengdu Medical College,Chengdu 610041, Sichuan Province, China
| | - Gang Zhang
- Department of Obstetrics, Sichuan Provincial Hospital for Women and Children,Affiliated Women and Children's Hospital of Chengdu Medical College,Chengdu 610041, Sichuan Province, China
| | - Yan Gao
- Department of Obstetrics, Sichuan Provincial Hospital for Women and Children,Affiliated Women and Children's Hospital of Chengdu Medical College,Chengdu 610041, Sichuan Province, China
| | - Xuemei Zhang
- The Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Chongqing Key Labtory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing 400016, China.
| | - Hongbo Qi
- The Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Chongqing Key Labtory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing 400016, China; Department of Obstetrics and Gynecology, Women and Children's Hospital of Chongqing Medical University, Chongqing 401147, China.
| |
Collapse
|
22
|
Ding B, Li X. Reply to 'Hypoxia regulates fibrosis-related genes in the placentas of patients with preeclampsia: it credits to histone lactylation?'. J Hypertens 2024; 42:379-380. [PMID: 38165054 DOI: 10.1097/hjh.0000000000003546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Affiliation(s)
- Biao Ding
- The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | | |
Collapse
|
23
|
Gong H, Hu Y, Xu H, Zhang D. Hypoxia regulates fibrosis-related genes in the placentas of patients with preeclampsia: it credits to histone lactylation? J Hypertens 2024; 42:380-381. [PMID: 38165055 DOI: 10.1097/hjh.0000000000003514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Affiliation(s)
- Hang Gong
- Department of Gastroenterology, Lanzhou University Second Hospital, Lanzhou, Gansu Province
| | - Ying Hu
- Department of Gastroenterology, Luzhou People's Hospital, Luzhou, Sichuan Province, China
| | - Huimei Xu
- Department of Gastroenterology, Lanzhou University Second Hospital, Lanzhou, Gansu Province
| | - DeKui Zhang
- Department of Gastroenterology, Lanzhou University Second Hospital, Lanzhou, Gansu Province
| |
Collapse
|
24
|
Gong H, Zhong H, Cheng L, Li LP, Zhang DK. Post-translational protein lactylation modification in health and diseases: a double-edged sword. J Transl Med 2024; 22:41. [PMID: 38200523 PMCID: PMC10777551 DOI: 10.1186/s12967-023-04842-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
As more is learned about lactate, it acts as both a product and a substrate and functions as a shuttle system between different cell populations to provide the energy for sustaining tumor growth and proliferation. Recent discoveries of protein lactylation modification mediated by lactate play an increasingly significant role in human health (e.g., neural and osteogenic differentiation and maturation) and diseases (e.g., tumors, fibrosis and inflammation, etc.). These views are critically significant and first described in detail in this review. Hence, here, we focused on a new target, protein lactylation, which may be a "double-edged sword" of human health and diseases. The main purpose of this review was to describe how protein lactylation acts in multiple physiological and pathological processes and their potential mechanisms through an in-depth summary of preclinical in vitro and in vivo studies. Our work aims to provide new ideas for treating different diseases and accelerate translation from bench to bedside.
Collapse
Affiliation(s)
- Hang Gong
- Department of Gastroenterology, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Huang Zhong
- Department of Gastroenterology, Zigong First People's Hospital, Zigong, Sichuan, China
| | - Long Cheng
- Department of Gastroenterology, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Liang-Ping Li
- Department of Gastroenterology, Sichuan Academy of Medical Sciences and Sichuan People's Hospital, Chengdu, Sichuan, China.
| | - De-Kui Zhang
- Department of Gastroenterology, Lanzhou University Second Hospital, Lanzhou, Gansu, China.
| |
Collapse
|
25
|
Wang P, Xie D, Xiao T, Cheng C, Wang D, Sun J, Wu M, Yang Y, Zhang A, Liu Q. H3K18 lactylation promotes the progression of arsenite-related idiopathic pulmonary fibrosis via YTHDF1/m6A/NREP. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132582. [PMID: 37742376 DOI: 10.1016/j.jhazmat.2023.132582] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/26/2023] [Accepted: 09/17/2023] [Indexed: 09/26/2023]
Abstract
As epigenetic modifications, lactylation and N6-methyladenosine (m6A) have attracted wide attention. Arsenite is an environmental pollutant that has been proven to induce idiopathic pulmonary fibrosis (IPF). However, the molecular mechanisms of lactylation and m6A methylation are unclear in arsenite-related IPF (As-IPF). In view of the limited understanding of molecular mechanism of m6A and lactylation in As-IPF, MeRIP-seq, RNA-seq and ChIP-seq were analyzed to verify the target gene regulated by m6A and H3K18 lactylation (H3K18la). We found that, for As-IPF, the global levels of m6A, levels of YTHDF1 and m6A-modified neuronal protein 3.1 (NREP) were elevated in alveolar epithelial cells (AECs). The secretion levels of TGF-β1 were increased via YTHDF1/m6A/NREP, which promoted the fibroblast-to-myofibroblast transition (FMT). Further, extracellular lactate from myofibroblasts elevated levels of the global lactylation (Kla) and H3K18la via the lactate monocarboxylate transporter 1 (MCT1), and, in AECs, H3K18la facilitated the transcription of Ythdf1. This report highlights the role of crosstalk between AECs and myofibroblasts via lactylation and m6A and the significance of H3K18la regulation of YTHDF1 in the progression of As-IPF, which may be useful for finding effective therapeutic targets.
Collapse
Affiliation(s)
- Peiwen Wang
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute of Public Health, Gusu School, Nanjing Medical University, Nanjing 211166, Jiangsu, PR China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, PR China
| | - Daxiao Xie
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute of Public Health, Gusu School, Nanjing Medical University, Nanjing 211166, Jiangsu, PR China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, PR China
| | - Tian Xiao
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute of Public Health, Gusu School, Nanjing Medical University, Nanjing 211166, Jiangsu, PR China; Jiangsu Provincial Center for Disease Control and Prevention, Nanjing 210009, Jiangsu, PR China
| | - Cheng Cheng
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute of Public Health, Gusu School, Nanjing Medical University, Nanjing 211166, Jiangsu, PR China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, PR China
| | - Dapeng Wang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, Guizhou, PR China
| | - Jing Sun
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute of Public Health, Gusu School, Nanjing Medical University, Nanjing 211166, Jiangsu, PR China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, PR China
| | - Meng Wu
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute of Public Health, Gusu School, Nanjing Medical University, Nanjing 211166, Jiangsu, PR China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, PR China
| | - Yi Yang
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute of Public Health, Gusu School, Nanjing Medical University, Nanjing 211166, Jiangsu, PR China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, PR China
| | - Aihua Zhang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, Guizhou, PR China
| | - Qizhan Liu
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute of Public Health, Gusu School, Nanjing Medical University, Nanjing 211166, Jiangsu, PR China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, PR China.
| |
Collapse
|
26
|
Hu S, Yang Z, Li L, Yan Q, Hu Y, Zhou F, Tan Y, Pei G. Salvianolic Acid B Alleviates Liver Injury by Regulating Lactate-Mediated Histone Lactylation in Macrophages. Molecules 2024; 29:236. [PMID: 38202819 PMCID: PMC10780734 DOI: 10.3390/molecules29010236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 12/25/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
Salvianolic acid B (Sal B) is the primary water-soluble bioactive constituent derived from the roots of Salvia miltiorrhiza Bunge. This research was designed to reveal the potential mechanism of Sal B anti-liver injury from the perspective of macrophages. In our lipopolysaccharide-induced M1 macrophage model, Sal B showed a clear dose-dependent gradient of inhibition of the macrophage trend of the M1 type. Moreover, Sal B downregulated the expression of lactate dehydrogenase A (LDHA), while the overexpression of LDHA impaired Sal B's effect of inhibiting the trend of macrophage M1 polarization. Additionally, this study revealed that Sal B exhibited inhibitory effects on the lactylation process of histone H3 lysine 18 (H3K18la). In a ChIP-qPCR analysis, Sal B was observed to drive a reduction in H3K18la levels in the promoter region of the LDHA, NLRP3, and IL-1β genes. Furthermore, our in vivo experiments showed that Sal B has a good effect on alleviating CCl4-induced liver injury. An examination of liver tissues and the Kupffer cells isolated from those tissues proved that Sal B affects the M1 polarization of macrophages and the level of histone lactylation. Together, our data reveal that Sal B has a potential mechanism of inhibiting the histone lactylation of macrophages by downregulating the level of LDHA in the treatment of liver injury.
Collapse
Affiliation(s)
- Shian Hu
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410000, China; (S.H.); (L.L.); (Q.Y.); (Y.H.); (F.Z.)
- Key Laboratory of Modern Research of TCM, Education Department of Hunan Province, Changsha 410000, China
| | - Zehua Yang
- Hunan Drug Inspection Center, Changsha 410000, China;
| | - Ling Li
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410000, China; (S.H.); (L.L.); (Q.Y.); (Y.H.); (F.Z.)
- Key Laboratory of Modern Research of TCM, Education Department of Hunan Province, Changsha 410000, China
| | - Qinwen Yan
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410000, China; (S.H.); (L.L.); (Q.Y.); (Y.H.); (F.Z.)
- Key Laboratory of Modern Research of TCM, Education Department of Hunan Province, Changsha 410000, China
| | - Yutong Hu
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410000, China; (S.H.); (L.L.); (Q.Y.); (Y.H.); (F.Z.)
- Key Laboratory of Modern Research of TCM, Education Department of Hunan Province, Changsha 410000, China
| | - Feng Zhou
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410000, China; (S.H.); (L.L.); (Q.Y.); (Y.H.); (F.Z.)
- Key Laboratory of Modern Research of TCM, Education Department of Hunan Province, Changsha 410000, China
| | - Yang Tan
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410000, China; (S.H.); (L.L.); (Q.Y.); (Y.H.); (F.Z.)
- Key Laboratory of Modern Research of TCM, Education Department of Hunan Province, Changsha 410000, China
| | - Gang Pei
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410000, China; (S.H.); (L.L.); (Q.Y.); (Y.H.); (F.Z.)
- Key Laboratory of Modern Research of TCM, Education Department of Hunan Province, Changsha 410000, China
| |
Collapse
|
27
|
Li A, Wang T, Zhou S, Han J, Wu W. USP17 regulates preeclampsia by modulating the NF-κB signaling pathway via deubiquitinating HDAC2. Placenta 2024; 145:9-18. [PMID: 38008034 DOI: 10.1016/j.placenta.2023.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/14/2023] [Accepted: 11/17/2023] [Indexed: 11/28/2023]
Abstract
INTRODUCTION Ubiquitination is a significant post-translational modification engaged in diverse biological processes, such as cell differentiation, metastasis, and protein stability modulation. The dysregulation of ubiquitination and deubiquitination is inextricably linked to disease progression, including preeclampsia (PE). Ubiquitin-specific protease 17 (USP17), a prominent deubiquitinating enzyme that regulates ubiquitination modifications, performs multiple functions at the cellular level, whereas its role in PE remains elusive. In this study, we intended to probe the role of USP17 in PE and its underlying mechanisms. METHODS The USP17 level in the plasma of PE patients was detected through Elisa. Western blot and qRT-PCR were performed to measure the mRNA and protein level of USP17 in placental tissues. CCK-8, EdU, and transwell assays were conducted to evaluate the proliferation, migration, and invasion of trophoblast cells. The interaction between HDAC2 and USP17 or STAT1 were determined by co-immunoprecipitation and Western blot assays. The expression of NF-κB pathway related proteins was examined using Western blot. RESULTS USP17 was dramatically downregulated in PE patients. Overexpression of USP17 facilitated trophoblast proliferation, migration, and invasion. Moreover, histone deacetylase 2 (HDAC2) was validated as a substrate of USP17 deubiquitination, and USP17 upregulation enhanced HDAC2 protein level. Furthermore, HDAC2 could interact with and deacetylate Signal transducer and activator of transcription 1 (STAT1), resulting in the enhancement of STAT1 activity and inhibition of NF-κB signaling. DISCUSSION Our findings disclosed that USP17 augmented the proliferation and invasion of trophoblast by deubiquitinating HDAC2, which will contribute to novel prospective targets for diagnosing and treating PE.
Collapse
Affiliation(s)
- Aiping Li
- Department of Clinical Laboratory, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, 450014, Henan, China
| | - Ting Wang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, 450014, Henan, China.
| | - Shasha Zhou
- Department of Gynecology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, 450014, Henan, China
| | - Jingjing Han
- Department of Clinical Laboratory, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, 450014, Henan, China
| | - Wujia Wu
- Department of Clinical Laboratory, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, 450014, Henan, China
| |
Collapse
|
28
|
Bi S, Tu Z, Chen D, Zhang S. Histone modifications in embryo implantation and placentation: insights from mouse models. Front Endocrinol (Lausanne) 2023; 14:1229862. [PMID: 37600694 PMCID: PMC10436591 DOI: 10.3389/fendo.2023.1229862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 07/13/2023] [Indexed: 08/22/2023] Open
Abstract
Embryo implantation and placentation play pivotal roles in pregnancy by facilitating crucial maternal-fetal interactions. These dynamic processes involve significant alterations in gene expression profiles within the endometrium and trophoblast lineages. Epigenetics regulatory mechanisms, such as DNA methylation, histone modification, chromatin remodeling, and microRNA expression, act as regulatory switches to modulate gene activity, and have been implicated in establishing a successful pregnancy. Exploring the alterations in these epigenetic modifications can provide valuable insights for the development of therapeutic strategies targeting complications related to pregnancy. However, our current understanding of these mechanisms during key gestational stages remains incomplete. This review focuses on recent advancements in the study of histone modifications during embryo implantation and placentation, while also highlighting future research directions in this field.
Collapse
Affiliation(s)
- Shilei Bi
- Key Laboratory for Major Obstetric Diseases of Guangdong, Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, Guangzhou, China
- Guangdong Engineering and Technology Research Center of Maternal-Fetal Medicine, Guangzhou, China
| | - Zhaowei Tu
- Key Laboratory for Major Obstetric Diseases of Guangdong, Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, Guangzhou, China
- Guangdong Engineering and Technology Research Center of Maternal-Fetal Medicine, Guangzhou, China
| | - Dunjin Chen
- Key Laboratory for Major Obstetric Diseases of Guangdong, Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, Guangzhou, China
- Guangdong Engineering and Technology Research Center of Maternal-Fetal Medicine, Guangzhou, China
| | - Shuang Zhang
- Key Laboratory for Major Obstetric Diseases of Guangdong, Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, Guangzhou, China
- Guangdong Engineering and Technology Research Center of Maternal-Fetal Medicine, Guangzhou, China
| |
Collapse
|
29
|
Li R, Yang Y, Wang H, Zhang T, Duan F, Wu K, Yang S, Xu K, Jiang X, Sun X. Lactate and Lactylation in the Brain: Current Progress and Perspectives. Cell Mol Neurobiol 2023; 43:2541-2555. [PMID: 36928470 PMCID: PMC11410153 DOI: 10.1007/s10571-023-01335-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 03/04/2023] [Indexed: 03/18/2023]
Abstract
As the final product of glycolysis, lactate features not only as an energy substrate, a metabolite, and a signaling molecule in a variety of diseases-such as cancer, inflammation, and sepsis-but also as a regulator of protein lactylation; this is a newly proposed epigenetic modification that is considered to be crucial for energy metabolism and signaling in brain tissues under both physiological and pathological conditions. In this review, evidence on lactylation from studies on lactate metabolism and disease has been summarized, revealing the function of lactate and its receptors in the regulation of brain function and summarizing the levels of lactylation expression in various brain diseases. Finally, the function of lactate and lactylation in the brain and the potential mechanisms of intervention in brain diseases are presented and discussed, providing optimal perspectives for future research on the role of lactylation in the brain.
Collapse
Affiliation(s)
- Ruobing Li
- Heilongjiang University of Chinese Medicine, 24 Heping Road, Xiangfang District, Harbin, 8615-0040, China
| | - Yi Yang
- Heilongjiang University of Chinese Medicine, 24 Heping Road, Xiangfang District, Harbin, 8615-0040, China
| | - Haoyu Wang
- Heilongjiang University of Chinese Medicine, 24 Heping Road, Xiangfang District, Harbin, 8615-0040, China
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, 26 Heping Road, Xiangfang District, Harbin, 8615-0040, China
| | - Tingting Zhang
- Heilongjiang University of Chinese Medicine, 24 Heping Road, Xiangfang District, Harbin, 8615-0040, China
| | - Fangfang Duan
- Heilongjiang University of Chinese Medicine, 24 Heping Road, Xiangfang District, Harbin, 8615-0040, China
| | - Kaidi Wu
- Heilongjiang University of Chinese Medicine, 24 Heping Road, Xiangfang District, Harbin, 8615-0040, China
| | - Siyu Yang
- Heilongjiang University of Chinese Medicine, 24 Heping Road, Xiangfang District, Harbin, 8615-0040, China
| | - Ke Xu
- Heilongjiang University of Chinese Medicine, 24 Heping Road, Xiangfang District, Harbin, 8615-0040, China
| | - Xicheng Jiang
- Heilongjiang University of Chinese Medicine, 24 Heping Road, Xiangfang District, Harbin, 8615-0040, China.
| | - Xiaowei Sun
- Heilongjiang University of Chinese Medicine, 24 Heping Road, Xiangfang District, Harbin, 8615-0040, China.
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, 26 Heping Road, Xiangfang District, Harbin, 8615-0040, China.
| |
Collapse
|
30
|
Liu Z, Yu Y, Zhang X, Wang C, Pei J, Gu W. Transcriptomic profiling in hypoxia-induced trophoblast cells for preeclampsia. Placenta 2023; 136:8-17. [PMID: 37001424 DOI: 10.1016/j.placenta.2023.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/24/2023] [Accepted: 03/18/2023] [Indexed: 03/30/2023]
Abstract
This study aimed to identify the expression profile of mRNAs and analyze the associated pathways in hypoxia-induced trophoblast cells to understand the effect of hypoxia on the pathophysiology of preeclampsia (PE). We downloaded two gene expression datasets (GSE47187 and GSE60432) from the Gene Expression Omnibus (GEO) datasets to identify altered transcriptomes. GEO2R, gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and protein-protein interaction (PPI) networks were used to reveal the functional roles and regulatory networks of the differentially expressed genes (DEGs). In total, 224 DEGs (91 upregulated and 133 downregulated) were identified, and the "HIF-1 signaling pathway" was activated in placentas from patients with PE. We validated the expression levels of five proteins in the plasma of NP and PE patients during early or late pregnancy using western blotting. In primary trophoblast cells cultured under hypoxic conditions, 754 DEGs were identified, including 362 upregulated and 392 downregulated genes. These DEGs were associated with the "HIF-1signaling pathway," "response to hypoxia," and several glucose metabolism pathways. In addition, a PPI network was constructed, and an important module, including 18 hub genes, was identified. Finally, we validated 18 hub genes using qRT-PCR. Furthermore, we performed microarray profiling of hypoxia-treated HTR8/SVneo cells (immortalized human first-trimester extravillous trophoblast cells) to validate the DEGs and pathways identified in hypoxia-induced primary trophoblast cells. Our results stress the differential expression profiles of mRNAs in hypoxia-induced trophoblast cells, which provide potential pathophysiological mechanisms for preeclampsia.
Collapse
|