1
|
Wevers A, San Roman-Mata S, Navarro-Ledesma S, Pruimboom L. The Role of Insulin Within the Socio-Psycho-Biological Framework in Type 2 Diabetes-A Perspective from Psychoneuroimmunology. Biomedicines 2024; 12:2539. [PMID: 39595105 PMCID: PMC11591609 DOI: 10.3390/biomedicines12112539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 10/22/2024] [Accepted: 10/30/2024] [Indexed: 11/28/2024] Open
Abstract
The interplay between socio-psychological factors and biological systems is pivotal in defining human health and disease, particularly in chronic non-communicable diseases. Recent advancements in psychoneuroimmunology and mitochondrial psychobiology have emphasized the significance of psychological factors as critical determinants of disease onset, progression, recurrence, and severity. These insights align with evolutionary biology, psychology, and psychiatry, highlighting the inherent social nature of humans. This study proposes a theory that expands insulin's role beyond traditional metabolic functions, incorporating it into the Mitochondrial Information Processing System (MIPS) and exploring it from an evolutionary medicine perspective to explore its function in processing psychological and social factors into biological responses. This narrative review comprises data from preclinical animal studies, longitudinal cohort studies, cross-sectional studies, machine learning analyses, and randomized controlled trials, and investigates the role of insulin in health and disease. The result is a proposal for a theoretical framework of insulin as a social substance within the socio-psycho-biological framework, emphasizing its extensive roles in health and disease. Type 2 Diabetes Mellitus (T2DM) with musculoskeletal disorders and neurodegeneration exemplifies this narrative. We suggest further research towards a comprehensive treatment protocol meeting evolutionary expectations, where incorporating psychosocial interventions plays an essential role. By supporting the concept of 'insulin resilience' and suggesting the use of heart rate variability to assess insulin resilience, we aim to provide an integrative approach to managing insulin levels and monitoring the effectiveness of interventions. This integrative strategy addresses broader socio-psychological factors, ultimately improving health outcomes for individuals with T2DM and musculoskeletal complications and neurodegeneration while providing new insights into the interplay between socio-psychological factors and biological systems in chronic diseases.
Collapse
Affiliation(s)
- Anne Wevers
- Clinical Medicine and Public Health PhD Program, Faculty of Health Sciences, University of Granada, 18071 Granada, Spain;
| | - Silvia San Roman-Mata
- Department of Nursing, Faculty of Health Sciences, Campus of Melilla, University of Granada, 52004 Melilla, Spain;
| | - Santiago Navarro-Ledesma
- Department of Physical Therapy, Faculty of Health Sciences, Campus of Melilla, University of Granada, 52004 Melilla, Spain
- University Chair in Clinical Psychoneuroimmunology, Campus of Melilla, University of Granada and PNI Europe, 52004 Melilla, Spain;
| | - Leo Pruimboom
- University Chair in Clinical Psychoneuroimmunology, Campus of Melilla, University of Granada and PNI Europe, 52004 Melilla, Spain;
| |
Collapse
|
2
|
Ciubuc-Batcu MT, Stapelberg NJC, Headrick JP, Renshaw GMC. A mitochondrial nexus in major depressive disorder: Integration with the psycho-immune-neuroendocrine network. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166920. [PMID: 37913835 DOI: 10.1016/j.bbadis.2023.166920] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/06/2023] [Accepted: 10/09/2023] [Indexed: 11/03/2023]
Abstract
Nervous system processes, including cognition and affective state, fundamentally rely on mitochondria. Impaired mitochondrial function is evident in major depressive disorder (MDD), reflecting cumulative detrimental influences of both extrinsic and intrinsic stressors, genetic predisposition, and mutation. Glucocorticoid 'stress' pathways converge on mitochondria; oxidative and nitrosative stresses in MDD are largely mitochondrial in origin; both initiate cascades promoting mitochondrial DNA (mtDNA) damage with disruptions to mitochondrial biogenesis and tryptophan catabolism. Mitochondrial dysfunction facilitates proinflammatory dysbiosis while directly triggering immuno-inflammatory activation via released mtDNA, mitochondrial lipids and mitochondria associated membranes (MAMs), further disrupting mitochondrial function and mitochondrial quality control, promoting the accumulation of abnormal mitochondria (confirmed in autopsy studies). Established and putative mechanisms highlight a mitochondrial nexus within the psycho-immune neuroendocrine (PINE) network implicated in MDD. Whether lowering neuronal resilience and thresholds for disease, or linking mechanistic nodes within the MDD pathogenic network, impaired mitochondrial function emerges as an important risk, a functional biomarker, providing a therapeutic target in MDD. Several treatment modalities have been demonstrated to reset mitochondrial function, which could benefit those with MDD.
Collapse
Affiliation(s)
- M T Ciubuc-Batcu
- Griffith University School of Medicine and Dentistry, Australia; Gold Coast Health, Queensland, Australia
| | - N J C Stapelberg
- Bond University Faculty of Health Sciences and Medicine, Australia; Gold Coast Health, Queensland, Australia
| | - J P Headrick
- Griffith University School of Pharmacy and Medical Science, Australia
| | - G M C Renshaw
- Hypoxia and Ischemia Research Unit, Griffith University, School of Health Sciences and Social Work, Australia.
| |
Collapse
|
3
|
Kishi T. Clarification of hypertension mechanisms provided by the research of central circulatory regulation. Hypertens Res 2023; 46:1908-1916. [PMID: 37277436 DOI: 10.1038/s41440-023-01335-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/28/2023] [Accepted: 05/02/2023] [Indexed: 06/07/2023]
Abstract
Sympathoexcitation, under the regulatory control of the brain, plays a pivotal role in the etiology of hypertension. Within the brainstem, significant structures involved in the modulation of sympathetic nerve activity include the rostral ventrolateral medulla (RVLM), caudal ventrolateral medulla (CVLM), nucleus tractus solitarius (NTS), and paraventricular nucleus (paraventricular). The RVLM, in particular, is recognized as the vasomotor center. Over the past five decades, fundamental investigations on central circulatory regulation have underscored the involvement of nitric oxide (NO), oxidative stress, the renin-angiotensin system, and brain inflammation in regulating the sympathetic nervous system. Notably, numerous significant findings have come to light through chronic experiments conducted in conscious subjects employing radio-telemetry systems, gene transfer techniques, and knockout methodologies. Our research has centered on elucidating the role of NO and angiotensin II type 1 (AT1) receptor-induced oxidative stress within the RVLM and NTS in regulating the sympathetic nervous system. Additionally, we have observed that various orally administered AT1 receptor blockers effectively induce sympathoinhibition by reducing oxidative stress via blockade of the AT1 receptor in the RVLM of hypertensive rats. Recent advances have witnessed the development of several clinical interventions targeting brain mechanisms. Nonetheless, Future and further basic and clinical research are needed.
Collapse
Affiliation(s)
- Takuya Kishi
- Department of Graduate School of Medicine (Cardiology), International University of Health and Welfare, Okawa, Japan.
| |
Collapse
|
4
|
Hirooka Y. Sympathetic Activation in Hypertension: Importance of the Central Nervous System. Am J Hypertens 2020; 33:914-926. [PMID: 32374869 DOI: 10.1093/ajh/hpaa074] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 04/18/2020] [Accepted: 05/01/2020] [Indexed: 12/20/2022] Open
Abstract
The sympathetic nervous system plays a critical role in the pathogenesis of hypertension. The central nervous system (CNS) organizes the sympathetic outflow and various inputs from the periphery. The brain renin-angiotensin system has been studied in various regions involved in controlling sympathetic outflow. Recent progress in cardiovascular research, particularly in vascular biology and neuroscience, as well as in traditional physiological approaches, has advanced the field of the neural control of hypertension in which the CNS plays a vital role. Cardiovascular research relating to hypertension has focused on the roles of nitric oxide, oxidative stress, inflammation, and immunity, and the network among various organs, including the heart, kidney, spleen, gut, and vasculature. The CNS mechanisms are similarly networked with these factors and are widely studied in neuroscience. In this review, I describe the development of the conceptual flow of this network in the field of hypertension on the basis of several important original research articles and discuss potential future breakthroughs leading to clinical precision medicine.
Collapse
Affiliation(s)
- Yoshitaka Hirooka
- Department of Medical Technology and Sciences, School of Health Sciences at Fukuoka, International University of Health and Welfare, Okawa City, Fukuoka, Japan
- Department of Cardiovascular Medicine, Hypertension and Heart Failure Center, Takagi Hospital, Okawa City, Fukuoka, Japan
| |
Collapse
|
5
|
Targeting mitochondrial fitness as a strategy for healthy vascular aging. Clin Sci (Lond) 2020; 134:1491-1519. [PMID: 32584404 DOI: 10.1042/cs20190559] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/01/2020] [Accepted: 06/03/2020] [Indexed: 02/06/2023]
Abstract
Cardiovascular diseases (CVD) are the leading cause of death worldwide and aging is the primary risk factor for CVD. The development of vascular dysfunction, including endothelial dysfunction and stiffening of the large elastic arteries (i.e., the aorta and carotid arteries), contribute importantly to the age-related increase in CVD risk. Vascular aging is driven in large part by oxidative stress, which reduces bioavailability of nitric oxide and promotes alterations in the extracellular matrix. A key upstream driver of vascular oxidative stress is age-associated mitochondrial dysfunction. This review will focus on vascular mitochondria, mitochondrial dysregulation and mitochondrial reactive oxygen species (ROS) production and discuss current evidence for prevention and treatment of vascular aging via lifestyle and pharmacological strategies that improve mitochondrial health. We will also identify promising areas and important considerations ('research gaps') for future investigation.
Collapse
|
6
|
Comparison of Candesartan and Angiotensin-(1-7) Combination to Mito-TEMPO Treatment for Normalizing Blood Pressure and Sympathovagal Balance in (mREN2)27 Rats. J Cardiovasc Pharmacol 2020; 73:143-148. [PMID: 30540685 DOI: 10.1097/fjc.0000000000000645] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Hypertensive transgenic (mRen2)27 rats exhibit impaired baroreflex sensitivity (BRS) for control of heart rate (HR). Intracerebroventricular infusion of Ang-(1-7) improves indices of vagal BRS independent of lowering mean arterial pressure (MAP), whereas AT1 receptor blockade normalizes MAP and indices of sympathetic tone without correcting the vagal BRS. Scavenging cellular reactive oxygen species (ROS) with tempol in brain fails to correct either hypertension or sympathovagal balance in these animals, despite reports that mitochondrial ROS contributes to Ang II-infusion hypertension. To examine effects of a putative preferential mitochondrial ROS scavenger in the brain of (mRen2)27 rats, ICV infusions of Mito-TEMPO (3.2 μg/2.5 μL/h) were compared with artificial cerebrospinal fluid (aCSF; 2.5 μL/h) and combination AT1 receptor antagonist candesartan (CAN: 4 μg/2.5 μL/h) plus Ang-(1-7) (0.1 μg/2.5 μL/h) treatment. MAP was lower after CAN + Ang-(1-7) treatment, and both vagal and sympathetic components of BRS and sympathovagal balance were improved. By contrast, Mito-TEMPO improved sympathetic components of BRS and tended to improve overall sympathovagal balance but failed to alter MAP in this model of hypertension. Although further studies are required to determine whether Mito-TEMPO or CAN + Ang-(1-7) treatment at the doses used altered mitochondrial ROS, optimal therapeutic benefits are achieved by shifting the balance from Ang II toward Ang-(1-7) in this model of chronic RAS-dependent hypertension.
Collapse
|
7
|
Chan JYH, Chan SHH. Differential impacts of brain stem oxidative stress and nitrosative stress on sympathetic vasomotor tone. Pharmacol Ther 2019; 201:120-136. [PMID: 31153955 DOI: 10.1016/j.pharmthera.2019.05.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 05/24/2019] [Indexed: 02/07/2023]
Abstract
Based on work-done in the rostral ventrolateral medulla (RVLM), this review presents four lessons learnt from studying the differential impacts of oxidative stress and nitrosative stress on sympathetic vasomotor tone and their clinical and therapeutic implications. The first lesson is that an increase in sympathetic vasomotor tone because of augmented oxidative stress in the RVLM is responsible for the generation of neurogenic hypertension. On the other hand, a shift from oxidative stress to nitrosative stress in the RVLM underpins the succession of increase to decrease in sympathetic vasomotor tone during the progression towards brain stem death. The second lesson is that, by having different cellular sources, regulatory mechanisms on synthesis and degradation, kinetics of chemical reactions, and downstream signaling pathways, reactive oxygen species and reactive nitrogen species should not be regarded as a singular moiety. The third lesson is that well-defined differential roles of oxidative stress and nitrosative stress with distinct regulatory mechanisms in the RVLM during neurogenic hypertension and brain stem death clearly denote that they are not interchangeable phenomena with unified cellular actions. Special attention must be paid to their beneficial or detrimental roles under a specific disease or a particular time-window of that disease. The fourth lesson is that, to be successful, future antioxidant therapies against neurogenic hypertension must take into consideration the much more complicated picture than that presented in this review on the generation, maintenance, regulation or modulation of the sympathetic vasomotor tone. The identification that the progression towards brain stem death entails a shift from oxidative stress to nitrosative stress in the RVLM may open a new vista for therapeutic intervention to slow down this transition.
Collapse
Affiliation(s)
- Julie Y H Chan
- Institute for Translational Research in Biomedicine, Chang Gung Memorial Hospital, Kaohsiung, Taiwan, Republic of China
| | - Samuel H H Chan
- Institute for Translational Research in Biomedicine, Chang Gung Memorial Hospital, Kaohsiung, Taiwan, Republic of China.
| |
Collapse
|
8
|
Mowry FE, Biancardi VC. Neuroinflammation in hypertension: the renin-angiotensin system versus pro-resolution pathways. Pharmacol Res 2019; 144:279-291. [PMID: 31039397 DOI: 10.1016/j.phrs.2019.04.029] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 04/22/2019] [Accepted: 04/23/2019] [Indexed: 12/31/2022]
Abstract
Overstimulation of the pro-inflammatory pathways within brain areas responsible for sympathetic outflow is well evidenced as a primary contributing factor to the establishment and maintenance of neurogenic hypertension. However, the precise mechanisms and stimuli responsible for promoting a pro-inflammatory state are not fully elucidated. Recent work has unveiled novel compounds derived from omega-3 polyunsaturated fatty acids (ω-3 PUFAs), termed specialized pro-resolving mediators (SPMs), which actively regulate the resolution of inflammation. Failure or dysregulation of the resolution process has been linked to a variety of chronic inflammatory and neurodegenerative diseases. Given the pathologic role of neuroinflammation in the hypertensive state, SPMs and their associated pathways may provide a link between hypertension and the long-standing association of dietary ω-3 PUFAs with cardioprotection. Herein, we review recent progress in understanding the RAS-driven pathophysiology of neurogenic hypertension, particularly in regards to the chronic low-grade neuroinflammatory response. In addition, we examine the potential for an impaired resolution of inflammation process in the context of hypertension.
Collapse
Affiliation(s)
- Francesca Elisabeth Mowry
- Department of Anatomy, Physiology, and Pharmacology, College of Veterinary Medicine, Auburn University, Alabama, USA
| | - Vinicia Campana Biancardi
- Department of Anatomy, Physiology, and Pharmacology, College of Veterinary Medicine, Auburn University, Alabama, USA; Center for Neurosciences Research Initiative, Auburn University, Alabama, USA.
| |
Collapse
|
9
|
Abdulle AE, Diercks GFH, Feelisch M, Mulder DJ, van Goor H. The Role of Oxidative Stress in the Development of Systemic Sclerosis Related Vasculopathy. Front Physiol 2018; 9:1177. [PMID: 30197602 PMCID: PMC6117399 DOI: 10.3389/fphys.2018.01177] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 08/06/2018] [Indexed: 12/11/2022] Open
Abstract
Systemic sclerosis (SSc) is a rare connective tissue disease characterized by autoimmunity, vasculopathy, and progressive fibrosis typically affecting multiple organs including the skin. SSc often is a lethal disorder, because effective disease-modifying treatment still remains unavailable. Vasculopathy with endothelial dysfunction, perivascular infiltration of mononuclear cells, vascular wall remodeling and rarefaction of capillaries is the hallmark of the disease. Most patients present with vasospastic attacks of the digital arteries referred to as 'Raynaud's phenomenon,' which is often an indication of an underlying widespread vasculopathy. Although autoimmune responses and inflammation are both found to play an important role in the pathogenesis of this vasculopathy, no definite initiating factors have been identified. Recently, several studies have underlined the potential role of oxidative stress in the pathogenesis of SSc vasculopathy thereby proposing a new aspect in the pathogenesis of this disease. For instance, circulating levels of reactive oxygen species (ROS) related markers have been found to correlate with SSc vasculopathy, the formation of fibrosis and the production of autoantibodies. Excess ROS formation is well-known to lead to endothelial cell (EC) injury and vascular complications. Collectively, these findings suggest a potential role of ROS in the initiation and progression of SSc vasculopathy. In this review, we present the background of oxidative stress related processes (e.g., EC injury, autoimmunity, inflammation, and vascular wall remodeling) that may contribute to SSc vasculopathy. Finally, we describe the use of oxidative stress related read-outs as clinical biomarkers of disease activity and evaluate potential anti-oxidative strategies in SSc.
Collapse
Affiliation(s)
- Amaal E. Abdulle
- Department of Internal Medicine, Division of Vascular Medicine, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands
| | - Gilles F. H. Diercks
- Section Pathology, Department of Pathology and Medical Biology, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands
| | - Martin Feelisch
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Douwe J. Mulder
- Department of Internal Medicine, Division of Vascular Medicine, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands
| | - Harry van Goor
- Section Pathology, Department of Pathology and Medical Biology, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands
| |
Collapse
|
10
|
Haspula D, Clark MA. Molecular Basis of the Brain Renin Angiotensin System in Cardiovascular and Neurologic Disorders: Uncovering a Key Role for the Astroglial Angiotensin Type 1 Receptor AT1R. J Pharmacol Exp Ther 2018; 366:251-264. [PMID: 29752427 DOI: 10.1124/jpet.118.248831] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 05/08/2018] [Indexed: 12/13/2022] Open
Abstract
The central renin angiotensin system (RAS) is one of the most widely investigated cardiovascular systems in the brain. It is implicated in a myriad of cardiovascular diseases. However, studies from the last decade have identified its involvement in several neurologic abnormalities. Understanding the molecular functionality of the various RAS components can thus provide considerable insight into the phenotypic differences and mechanistic drivers of not just cardiovascular but also neurologic disorders. Since activation of one of its primary receptors, the angiotensin type 1 receptor (AT1R), results in an augmentation of oxidative stress and inflammatory cytokines, it becomes essential to investigate not just neuronal RAS but glial RAS as well. Glial cells are key homeostatic regulators in the brain and are critical players in the resolution of overt oxidative stress and neuroinflammation. Designing better and effective therapeutic strategies that target the brain RAS could well hinge on understanding the molecular basis of both neuronal and glial RAS. This review provides a comprehensive overview of the major studies that have investigated the mechanisms and regulation of the brain RAS, and it also provides insight into the potential role of glial AT1Rs in the pathophysiology of cardiovascular and neurologic disorders.
Collapse
Affiliation(s)
- Dhanush Haspula
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, Wisconsin (D.H.); and College of Pharmacy, Department of Pharmaceutical Sciences, Nova Southeastern University, Ft. Lauderdale, Florida (M.A.C.)
| | - Michelle A Clark
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, Wisconsin (D.H.); and College of Pharmacy, Department of Pharmaceutical Sciences, Nova Southeastern University, Ft. Lauderdale, Florida (M.A.C.)
| |
Collapse
|
11
|
Chan SHH, Chan JYH. Mitochondria and Reactive Oxygen Species Contribute to Neurogenic Hypertension. Physiology (Bethesda) 2018; 32:308-321. [PMID: 28615314 DOI: 10.1152/physiol.00006.2017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 04/05/2017] [Accepted: 04/13/2017] [Indexed: 02/07/2023] Open
Abstract
Beyond its primary role as fuel generators, mitochondria are engaged in a variety of cellular processes, including redox homeostasis. Mitochondrial dysfunction, therefore, may have a profound impact on high-energy-demanding organs such as the brain. Here, we review the roles of mitochondrial biogenesis and bioenergetics, and their associated signaling in cellular redox homeostasis, and illustrate their contributions to the oxidative stress-related neural mechanism of hypertension, focusing on specific brain areas that are involved in the generation or modulation of sympathetic outflows to the cardiovascular system. We also highlight future challenges of research on mitochondrial physiology and pathophysiology.
Collapse
Affiliation(s)
- Samuel H H Chan
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Julie Y H Chan
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| |
Collapse
|
12
|
Gebre AK, Altaye BM, Atey TM, Tuem KB, Berhe DF. Targeting Renin-Angiotensin System Against Alzheimer's Disease. Front Pharmacol 2018; 9:440. [PMID: 29760662 PMCID: PMC5937164 DOI: 10.3389/fphar.2018.00440] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 04/13/2018] [Indexed: 01/01/2023] Open
Abstract
Renin Angiotensin System (RAS) is a hormonal system that regulates blood pressure and fluid balance through a coordinated action of renal, cardiovascular, and central nervous systems. In addition to its hemodynamic regulatory role, RAS involves in many brain activities, including memory acquisition and consolidation. This review has summarized the involvement of RAS in the pathology of Alzheimer’s disease (AD), and the outcomes of treatment with RAS inhibitors. We have discussed the effect of brain RAS in the amyloid plaque (Aβ) deposition, oxidative stress, neuroinflammation, and vascular pathology which are directly and indirectly associated with AD. Angiotensin II (AngII) via AT1 receptor is reported to increase brain Aβ level via different mechanisms including increasing amyloid precursor protein (APP) mRNA, β-secretase activity, and presenilin expression. Similarly, it was associated with tau phosphorylation, and reactive oxygen species generation. However, these effects are counterbalanced by Ang II mediated AT2 signaling. The protective effect observed with angiotensin receptor blockers (ARBs) and angiotensin converting enzyme inhibitors (ACEIs) could be as the result of inhibition of Ang II signaling. ARBs also offer additional benefit by shifting the effect of Ang II toward AT2 receptor. To conclude, targeting RAS in the brain may benefit patients with AD though it still requires further in depth understanding.
Collapse
Affiliation(s)
- Abadi Kahsu Gebre
- Department of Pharmacology and Toxicology, School of Pharmacy, College of Health Sciences, Mekelle University, Mekelle, Ethiopia
| | - Birhanetensay Masresha Altaye
- Department of Pharmacology and Toxicology, School of Pharmacy, College of Health Sciences, Mekelle University, Mekelle, Ethiopia
| | - Tesfay Mehari Atey
- Clinical Pharmacy Unit, School of Pharmacy, College of Health Sciences, Mekelle University, Mekelle, Ethiopia
| | - Kald Beshir Tuem
- Department of Pharmacology and Toxicology, School of Pharmacy, College of Health Sciences, Mekelle University, Mekelle, Ethiopia
| | - Derbew Fikadu Berhe
- Department of Pharmacology and Toxicology, School of Pharmacy, College of Health Sciences, Mekelle University, Mekelle, Ethiopia
| |
Collapse
|
13
|
Haspula D, Clark MA. Neuroinflammation and sympathetic overactivity: Mechanisms and implications in hypertension. Auton Neurosci 2018; 210:10-17. [DOI: 10.1016/j.autneu.2018.01.002] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 01/02/2018] [Accepted: 01/08/2018] [Indexed: 02/07/2023]
|
14
|
The Cardiovascular Effect of Systemic Homocysteine Is Associated with Oxidative Stress in the Rostral Ventrolateral Medulla. Neural Plast 2017; 2017:3256325. [PMID: 29098089 PMCID: PMC5643037 DOI: 10.1155/2017/3256325] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 08/15/2017] [Indexed: 12/31/2022] Open
Abstract
It has been demonstrated that homocysteine (HCY) is a significant risk factor of hypertension, which is characterized by overactivity of sympathetic tone. Excessive oxidative stress in the rostral ventrolateral medulla (RVLM), a key region for control of sympathetic outflow, contributes to sympathetic hyperactivity in hypertension. Therefore, the goal of the present study is to determine the effect of systemic HCY on production of reactive oxygen species (ROS) in the RVLM. In the rat model of the diet-induced hyperhomocysteinemia (L-methionine, 1 g/kg/day, 8 weeks), we found that the HCY resulted in a significant increase (≈3.7-fold, P < 0.05) in ROS production in the RVLM, which was paralleled with enhanced sympathetic tone and blood pressure (BP). Compared to the vehicle group, levels of BP and basal renal sympathetic nerve activity in the HCY group were significantly (P < 0.05, n = 5) increased by an average of 27 mmHg and 31%, respectively. Furthermore, the rats treated with L-methionine (1 g/kg/day, 8 weeks) showed an upregulation of NADPHase (NOX4) protein expression and a downregulation of superoxide dismutase protein expression in the RVLM. The current data suggest that central oxidative stress induced by systemic HCY plays an important role in hypertension-associated sympathetic overactivity.
Collapse
|
15
|
Paolocci N, Cannavo A, Chelko SP, Montano N. Burning Redoxstats in the Brainstem: Lack of Nrf2 and the Rise of Hypertension. Hypertension 2017; 69:1019-1021. [PMID: 28461602 DOI: 10.1161/hypertensionaha.117.09238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Nazareno Paolocci
- From the Division of Cardiology, Johns Hopkins Medical Institutions, Baltimore, MD (N.P., S.P.C.); Department of Experimental Medicine, Universita' di Perugia, Italy (N.P.); Lewis Katz School of Medicine, Temple University, Philadelphia, PA (A.C.); and Fondazione IRCSS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy; Department of Clinical Sciences and Community Health, University of Milan, Italy (N.M.).
| | - Alessandro Cannavo
- From the Division of Cardiology, Johns Hopkins Medical Institutions, Baltimore, MD (N.P., S.P.C.); Department of Experimental Medicine, Universita' di Perugia, Italy (N.P.); Lewis Katz School of Medicine, Temple University, Philadelphia, PA (A.C.); and Fondazione IRCSS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy; Department of Clinical Sciences and Community Health, University of Milan, Italy (N.M.)
| | - Stephen P Chelko
- From the Division of Cardiology, Johns Hopkins Medical Institutions, Baltimore, MD (N.P., S.P.C.); Department of Experimental Medicine, Universita' di Perugia, Italy (N.P.); Lewis Katz School of Medicine, Temple University, Philadelphia, PA (A.C.); and Fondazione IRCSS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy; Department of Clinical Sciences and Community Health, University of Milan, Italy (N.M.)
| | - Nicola Montano
- From the Division of Cardiology, Johns Hopkins Medical Institutions, Baltimore, MD (N.P., S.P.C.); Department of Experimental Medicine, Universita' di Perugia, Italy (N.P.); Lewis Katz School of Medicine, Temple University, Philadelphia, PA (A.C.); and Fondazione IRCSS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy; Department of Clinical Sciences and Community Health, University of Milan, Italy (N.M.)
| |
Collapse
|
16
|
Huang YP, Jin HY, Yu HP. Inhibitory effects of alpha-lipoic acid on oxidative stress in the rostral ventrolateral medulla in rats with salt-induced hypertension. Int J Mol Med 2016; 39:430-436. [PMID: 28035366 DOI: 10.3892/ijmm.2016.2846] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 12/21/2016] [Indexed: 11/06/2022] Open
Abstract
Oxidative stress in the rostral ventrolateral medulla (RVLM) plays an important role in the pathophysiology of hypertension. Alpha‑lipoic acid (ALA) is widely recognized for its potent superoxide inhibitory properties, and it can safely penetrate deep into the brain. The aim of this study was to explore whether ALA supplementation attenuates hypertensive responses and cardiac hypertrophy by decreasing the NAD(P)H oxidase (NOX)-derived overproduction of reactive oxygen species (ROS) in the mitochondria in the RVLM, and thus attenuating the development of salt‑induced hypertension. For this purpose, male Wistar rats were randomly divided into 2 groups and either fed a high-salt diet or not. After 8 weeks, the rats were either administered ALA or an equal volume of the vehicle for 8 weeks. The rats fed a high‑salt diet exhibited higher mean arterial pressure (MAP) and higher plasma noradrenaline (NE) levels, as well as cardiac hypertrophy, as evidence by the increased whole heart weight/body weight (WHW/BW) ratio, WHW/tibia length (TL) ratio and left‑ventricular weight (LVW)/TL ratio. Compared with the rats in the NS group, the rats in the HS group only exhibited increased levels of superoxide, NOX2, NOX4 and mitochondrial malondialdehyde (MDA), but also decreased levels of copper/zinc (Cu/Zn)-superoxide dismutase (SOD), mitochondrial SOD and glutathione (GSH) in the RVLM. The supplementation of ALA decreased MAP, plasma NE levels and the levels of cardiac hypertrophy indicators. It also decreased the levels of superoxide, NOX2, NOX4 and mitochondrial MDA, and increased the levels of Cu/Zn‑SOD, mitochondrial SOD and GSH in the RVLM compared with the rats fed a high-salt diet and not treated with ALA. On the whole, our findings indicate that long‑term ALA supplementation attenuates hypertensive responses and cardiac hypertrophy by decreasing the expression of NAD(P)H subunits (NOX2 and NOX4), increasing the levels of mitochondrial bioenergetic enzymes, and enhancing the intracellular antioxidant capacity in the RVLM during the development of hypertension.
Collapse
Affiliation(s)
- Yu-Peng Huang
- Department of Cardiovascular Medicine, Hanyang Hospital of Wuhan, Wuhan, Hubei 430050, P.R. China
| | - Hong-Yan Jin
- Department of Cardiovascular Medicine, Hanyang Hospital of Wuhan, Wuhan, Hubei 430050, P.R. China
| | - Hui-Ping Yu
- Department of Cardiovascular Medicine, Hanyang Hospital of Wuhan, Wuhan, Hubei 430050, P.R. China
| |
Collapse
|
17
|
Increased mitochondrial superoxide in the brain, but not periphery, sensitizes mice to angiotensin II-mediated hypertension. Redox Biol 2016; 11:82-90. [PMID: 27889641 PMCID: PMC5124355 DOI: 10.1016/j.redox.2016.11.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 11/10/2016] [Accepted: 11/12/2016] [Indexed: 02/07/2023] Open
Abstract
Angiotensin II (AngII) elicits the production of superoxide (O2•−) from mitochondria in numerous cell types within peripheral organs and in the brain suggesting a role for mitochondrial-produced O2•− in the pathogenesis of hypertension. However, it remains unclear if mitochondrial O2•− is causal in the development of AngII-induced hypertension, or if mitochondrial O2•− in the absence of elevated AngII is sufficient to increase blood pressure. Further, the tissue specific (i.e. central versus peripheral) redox regulation of AngII hypertension remains elusive. Herein, we hypothesized that increased mitochondrial O2•− in the absence of pro-hypertensive stimuli, such as AngII, elevates baseline systemic mean arterial pressure (MAP), and that AngII-mediated hypertension is exacerbated in animals with increased mitochondrial O2•− levels. To address this hypothesis, we generated novel inducible knock-down mouse models of manganese superoxide dismutase (MnSOD), the O2•− scavenging antioxidant enzyme specifically localized to mitochondria, targeted to either the brain subfornical organ (SFO) or peripheral tissues. Contrary to our hypothesis, knock-down of MnSOD either in the SFO or in peripheral tissues was not sufficient to alter baseline systemic MAP. Interestingly, when mice were challenged with chronic, peripheral infusion of AngII, only the MnSOD knock-down confined to the SFO, and not the periphery, demonstrated an increased sensitization and potentiated hypertension. In complementary experiments, over-expressing MnSOD in the SFO significantly decreased blood pressure in response to chronic AngII. Overall, these studies indicate that mitochondrial O2•− in the brain SFO works in concert with other AngII-dependent factors to drive an increase in MAP, as elevated mitochondrial O2•− alone, either in the SFO or peripheral tissues, failed to raise baseline blood pressure. Mitochondrial O2•− has been implicated as a primary contributor to hypertension. Novel models with altered MnSOD expression utilized to influence mitochondrial O2•−. Knock-down of MnSOD alone is not sufficient to alter systemic hemodynamics. Knock-down of MnSOD in the brain SFO, but not periphery, exacerbates hypertension.
Collapse
|
18
|
Shinohara K, Kishi T, Hirooka Y, Sunagawa K. Circulating angiotensin II deteriorates left ventricular function with sympathoexcitation via brain angiotensin II receptor. Physiol Rep 2015; 3:3/8/e12514. [PMID: 26290529 PMCID: PMC4562594 DOI: 10.14814/phy2.12514] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Sympathoexcitation contributes to the progression of heart failure. Activation of brain angiotensin II type 1 receptors (AT1R) causes central sympathoexcitation. Thus, we assessed the hypothesis that the increase in circulating angiotensin II comparable to that reported in heart failure model affects cardiac function through the central sympathoexcitation via activating AT1R in the brain. In Sprague-Dawley rats, the subcutaneous infusion of angiotensin II for 14 days increased the circulating angiotensin II level comparable to that reported in heart failure model rats after myocardial infarction. In comparison with the control, angiotensin II infusion increased 24 hours urinary norepinephrine excretion, and systolic blood pressure. Angiotensin II infusion hypertrophied left ventricular (LV) without changing chamber dimensions while increased end-diastolic pressure. The LV pressure–volume relationship indicated that angiotensin II did not impact on the end-systolic elastance, whereas significantly increased end-diastolic elastance. Chronic intracerebroventricular infusion of AT1R blocker, losartan, attenuated these angiotensin II-induced changes. In conclusion, circulating angiotensin II in heart failure is capable of inducing sympathoexcitation via in part AT1R in the brain, subsequently leading to LV diastolic dysfunction.
Collapse
Affiliation(s)
- Keisuke Shinohara
- Departments of Cardiovascular Medicine, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Takuya Kishi
- Department of Advanced Therapeutics for Cardiovascular Diseases, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Yoshitaka Hirooka
- Department of Cardiovascular Regulation and Therapeutics, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Kenji Sunagawa
- Departments of Cardiovascular Medicine, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| |
Collapse
|
19
|
Sousa LE, Magalhães WG, Bezerra FS, Santos RAS, Campagnole-Santos MJ, Isoldi MC, Alzamora AC. Exercise training restores oxidative stress and nitric oxide synthases in the rostral ventrolateral medulla of renovascular hypertensive rats. Free Radic Res 2015; 49:1335-43. [DOI: 10.3109/10715762.2015.1069291] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
20
|
Vajapey R, Rini D, Walston J, Abadir P. The impact of age-related dysregulation of the angiotensin system on mitochondrial redox balance. Front Physiol 2014; 5:439. [PMID: 25505418 PMCID: PMC4241834 DOI: 10.3389/fphys.2014.00439] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 10/27/2014] [Indexed: 12/13/2022] Open
Abstract
Aging is associated with the accumulation of various deleterious changes in cells. According to the free radical and mitochondrial theory of aging, mitochondria initiate most of the deleterious changes in aging and govern life span. The failure of mitochondrial reduction-oxidation (redox) homeostasis and the formation of excessive free radicals are tightly linked to dysregulation in the Renin Angiotensin System (RAS). A main rate-controlling step in RAS is renin, an enzyme that hydrolyzes angiotensinogen to generate angiotensin I. Angiotensin I is further converted to Angiotensin II (Ang II) by angiotensin-converting enzyme (ACE). Ang II binds with equal affinity to two main angiotensin receptors—type 1 (AT1R) and type 2 (AT2R). The binding of Ang II to AT1R activates NADPH oxidase, which leads to increased generation of cytoplasmic reactive oxygen species (ROS). This Ang II-AT1R–NADPH-ROS signal triggers the opening of mitochondrial KATP channels and mitochondrial ROS production in a positive feedback loop. Furthermore, RAS has been implicated in the decrease of many of ROS scavenging enzymes, thereby leading to detrimental levels of free radicals in the cell. AT2R is less understood, but evidence supports an anti-oxidative and mitochondria-protective function for AT2R. The overlap between age related changes in RAS and mitochondria, and the consequences of this overlap on age-related diseases are quite complex. RAS dysregulation has been implicated in many pathological conditions due to its contribution to mitochondrial dysfunction. Decreased age-related, renal and cardiac mitochondrial dysfunction was seen in patients treated with angiotensin receptor blockers. The aim of this review is to: (a) report the most recent information elucidating the role of RAS in mitochondrial redox hemostasis and (b) discuss the effect of age-related activation of RAS on generation of free radicals.
Collapse
Affiliation(s)
- Ramya Vajapey
- School of Medicine, Northeast Ohio Medical University Rootstown, OH, USA
| | - David Rini
- Division of Cellular and Molecular Medicine, Art as Applied to Medicine, Johns Hopkins University Baltimore, MD, USA
| | - Jeremy Walston
- Division of Geriatrics Medicine and Gerontology, Department of Medicine, Johns Hopkins University Baltimore, MD, USA
| | - Peter Abadir
- Division of Geriatrics Medicine and Gerontology, Department of Medicine, Johns Hopkins University Baltimore, MD, USA
| |
Collapse
|
21
|
Combined therapeutic benefit of mitochondria-targeted antioxidant, MitoQ10, and angiotensin receptor blocker, losartan, on cardiovascular function. J Hypertens 2014; 32:555-64. [PMID: 24309493 PMCID: PMC3914904 DOI: 10.1097/hjh.0000000000000054] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Mitochondria-derived reactive oxygen species (ROS) play important roles in the development of cardiovascular disease highlighting the need for novel targeted therapies. This study assessed the potential therapeutic benefit of combining the mitochondria-specific antioxidant, MitoQ10, with the low-dose angiotensin receptor blocker (ARB), losartan, on attenuation of hypertension and left ventricular hypertrophy. In parallel, we investigated the impact of MitoQ10 on cardiac hypertrophy in a neonatal cardiomyocyte cell line. METHODS AND RESULTS Eight-week-old male stroke-prone spontaneously hypertensive rats (SHRSPs, n=8-11) were treated with low-dose losartan (2.5 mg/kg per day); MitoQ10 (500 μmol/l); a combination of MitoQ10 and losartan (M+L); or vehicle for 8 weeks. Systolic pressure and pulse pressure were significantly lower in M+L rats (167.1 ± 2.9 mmHg; 50.2 ± 2.05 mmHg) than in untreated SHRSP (206.6 ± 9 mmHg, P<0.001; 63.7 ± 2.7 mmHg, P=0.001) and demonstrated greater improvement than MitoQ10 or low-dose losartan alone, as measured by radiotelemetry. Left ventricular mass index was significantly reduced from 22.8 ± 0.74 to 20.1 ± 0.61 mg/mm in the combination group (P<0.05). Picrosirius red staining showed significantly reduced cardiac fibrosis in M+L rats (0.82 ± 0.22 A.U.) compared with control (5.94 ± 1.35 A.U., P<0.01). In H9c2 neonatal rat cardiomyocytes, MitoQ10 significantly inhibited angiotensin II mediated hypertrophy in a dose-dependent manner (500 nmol/l MitoQ10 153.7 ± 3.1 microns vs. angiotensin II 200.1 ± 3.6 microns, P<0.001). CONCLUSION Combining MitoQ10 and low-dose losartan provides additive therapeutic benefit, significantly attenuating development of hypertension and reducing left ventricular hypertrophy. In addition, MitoQ10 mediates a direct antihypertrophic effect on rat cardiomyocytes in vitro. MitoQ10 has potential as a novel therapeutic intervention in conjunction with current antihypertensive drugs.
Collapse
|
22
|
Savalia K, Manickam DS, Rosenbaugh EG, Tian J, Ahmad IM, Kabanov AV, Zimmerman MC. Neuronal uptake of nanoformulated superoxide dismutase and attenuation of angiotensin II-dependent hypertension after central administration. Free Radic Biol Med 2014; 73:299-307. [PMID: 24924945 PMCID: PMC4116739 DOI: 10.1016/j.freeradbiomed.2014.06.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 05/14/2014] [Accepted: 06/02/2014] [Indexed: 02/07/2023]
Abstract
Excessive production of superoxide (O2(-)) in the central nervous system has been widely implicated in the pathogenesis of cardiovascular diseases, including chronic heart failure and hypertension. In an attempt to overcome the failed therapeutic impact of currently available antioxidants in cardiovascular disease, we developed a nanomedicine-based delivery system for the O2(-)-scavenging enzyme copper/zinc superoxide dismutase (CuZnSOD), in which CuZnSOD protein is electrostatically bound to a poly-l-lysine (PLL50)-polyethylene glycol (PEG) block copolymer to form a CuZnSOD nanozyme. Various formulations of CuZnSOD nanozyme are covalently stabilized by either reducible or nonreducible crosslinked bonds between the PLL50-PEG polymers. Herein, we tested the hypothesis that PLL50-PEG CuZnSOD nanozyme delivers active CuZnSOD protein to neurons and decreases blood pressure in a mouse model of angiotensin II (AngII)-dependent hypertension. As determined by electron paramagnetic resonance spectroscopy, nanozymes retain full SOD enzymatic activity compared to native CuZnSOD protein. Nonreducible CuZnSOD nanozyme delivers active CuZnSOD protein to central neurons in culture (CATH.a neurons) without inducing significant neuronal toxicity. Furthermore, in vivo studies conducted in adult male C57BL/6 mice demonstrate that hypertension established by chronic subcutaneous infusion of AngII is significantly attenuated for up to 7 days after a single intracerebroventricular injection of nonreducible nanozyme. These data indicate the efficacy of nonreducible PLL50-PEG CuZnSOD nanozyme in counteracting excessive O2(-) and decreasing blood pressure in AngII-dependent hypertensive mice after central administration. Additionally, this study supports the further development of PLL50-PEG CuZnSOD nanozyme as an antioxidant-based therapeutic option for hypertension.
Collapse
Affiliation(s)
- Krupa Savalia
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Devika S Manickam
- Division of Molecular Pharmaceutics and Center for Nanomedicine in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Erin G Rosenbaugh
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Jun Tian
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Iman M Ahmad
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198, USA; School of Allied Health Professionals, and University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Alexander V Kabanov
- Division of Molecular Pharmaceutics and Center for Nanomedicine in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Matthew C Zimmerman
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198, USA; Center for Drug Delivery and Nanomedicine, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
23
|
Hadley SH, Bahia PK, Taylor-Clark TE. Sensory nerve terminal mitochondrial dysfunction induces hyperexcitability in airway nociceptors via protein kinase C. Mol Pharmacol 2014; 85:839-48. [PMID: 24642367 PMCID: PMC4014670 DOI: 10.1124/mol.113.091272] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 03/18/2014] [Indexed: 02/03/2023] Open
Abstract
Airway sensory nerve excitability is a key determinant of respiratory disease-associated reflexes and sensations such as cough and dyspnea. Inflammatory signaling modulates mitochondrial function and produces reactive oxygen species (ROS). Peripheral terminals of sensory nerves are densely packed with mitochondria; thus, we hypothesized that mitochondrial modulation would alter neuronal excitability. We recorded action potential firing from the terminals of individual bronchopulmonary C-fibers using a mouse ex vivo lung-vagal ganglia preparation. C-fibers were characterized as nociceptors or non-nociceptors based upon conduction velocity and response to transient receptor potential (TRP) channel agonists. Antimycin A (mitochondrial complex III Qi site inhibitor) had no effect on the excitability of non-nociceptors. However, antimycin A increased excitability in nociceptive C-fibers, decreasing the mechanical threshold by 50% and increasing the action potential firing elicited by a P2X2/3 agonist to 270% of control. Antimycin A-induced nociceptor hyperexcitability was independent of TRP ankyrin 1 or TRP vanilloid 1 channels. Blocking mitochondrial ATP production with oligomycin or myxothiazol had no effect on excitability. Antimycin A-induced hyperexcitability was dependent on mitochondrial ROS and was blocked by intracellular antioxidants. ROS are known to activate protein kinase C (PKC). Antimycin A-induced hyperexcitability was inhibited by the PKC inhibitor bisindolylmaleimide (BIM) I, but not by its inactive analog BIM V. In dissociated vagal neurons, antimycin A caused ROS-dependent PKC translocation to the membrane. Finally, H2O2 also induced PKC-dependent nociceptive C-fiber hyperexcitability and PKC translocation. In conclusion, ROS evoked by mitochondrial dysfunction caused nociceptor hyperexcitability via the translocation and activation of PKC.
Collapse
Affiliation(s)
- Stephen H Hadley
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | | | | |
Collapse
|
24
|
Nishihara M, Hirooka Y, Sunagawa K. Combining irbesartan and trichlormethiazide enhances blood pressure reduction via inhibition of sympathetic activity without adverse effects on metabolism in hypertensive rats with metabolic syndrome. Clin Exp Hypertens 2014; 37:33-8. [PMID: 24678944 DOI: 10.3109/10641963.2014.897719] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Sympathoexcitation and oxidative stress in the brain have pivotal roles in hypertension with metabolic syndrome (MetS). Here, we examined whether oral administration of irbesartan (IRB) and trichlormethiazide (TCM) decreases blood pressure (BP) via inhibiting sympathetic activity through anti-oxidant effects in the brain of spontaneously hypertensive rats (SHR-cp). IRB/TCM treatment decreased BP more profoundly than IRB monotherapy. Urinary norepinephrine excretion and oxidative stress in the brain were decreased in both IRB and IRB/TCM groups without any adverse effect on the metabolic profile. These findings suggest that IRB/TCM profoundly decreases BP in SHR-cp by inhibiting sympathetic activity via anti-oxidant effects in the brain.
Collapse
|
25
|
Abstract
SIGNIFICANCE There is now compelling evidence to substantiate the notion that by depressing baroreflex regulation of blood pressure and augmenting central sympathetic outflow through their actions on the nucleus tractus solitarii (NTS) and rostral ventrolateral medulla (RVLM), brain stem nitric oxide synthase (NOS) and reactive oxygen species (ROS) are important contributing factors to neural mechanisms of hypertension. This review summarizes our contemporary views on the impact of NOS and ROS in the NTS and RVLM on neurogenic hypertension, and presents potential antihypertensive strategies that target brain stem NOS/ROS signaling. RECENT ADVANCES NO signaling in the brain stem may be pro- or antihypertensive depending on the NOS isoform that generates this gaseous moiety and the site of action. Elevation of the ROS level when its production overbalances its degradation in the NTS and RVLM underlies neurogenic hypertension. Interventional strategies with emphases on alleviating the adverse actions of these molecules on blood pressure regulation have been investigated. CRITICAL ISSUES The pathological roles of NOS in the RVLM and NTS in neural mechanisms of hypertension are highly complex. Likewise, multiple signaling pathways underlie the deleterious roles of brain-stem ROS in neurogenic hypertension. There are recent indications that interactions between brain stem ROS and NOS may play a contributory role. FUTURE DIRECTIONS Given the complicity of action mechanisms of brain-stem NOS and ROS in neural mechanisms of hypertension, additional studies are needed to identify the most crucial therapeutic target that is applicable not only in animal models but also in patients suffering from neurogenic hypertension.
Collapse
Affiliation(s)
- Samuel H H Chan
- Center for Translational Research in Biomedical Sciences, Kaohsiung Chang Gung Memorial Hospital , Kaohsiung, Taiwan, Republic of China
| | | |
Collapse
|
26
|
Li S, Case AJ, Yang RF, Schultz HD, Zimmerman MC. Over-expressed copper/zinc superoxide dismutase localizes to mitochondria in neurons inhibiting the angiotensin II-mediated increase in mitochondrial superoxide. Redox Biol 2013; 2:8-14. [PMID: 24363997 PMCID: PMC3863132 DOI: 10.1016/j.redox.2013.11.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 11/07/2013] [Indexed: 01/13/2023] Open
Abstract
Angiotensin II (AngII) is the main effector peptide of the renin–angiotensin system (RAS), and contributes to the pathogenesis of cardiovascular disease by exerting its effects on an array of different cell types, including central neurons. AngII intra-neuronal signaling is mediated, at least in part, by reactive oxygen species, particularly superoxide (O2•−). Recently, it has been discovered that mitochondria are a major subcellular source of AngII-induced O2•−. We have previously reported that over-expression of manganese superoxide dismutase (MnSOD), a mitochondrial matrix-localized O2•− scavenging enzyme, inhibits AngII intra-neuronal signaling. Interestingly, over-expression of copper/zinc superoxide dismutase (CuZnSOD), which is believed to be primarily localized to the cytoplasm, similarly inhibits AngII intra-neuronal signaling and provides protection against AngII-mediated neurogenic hypertension. Herein, we tested the hypothesis that CuZnSOD over-expression in central neurons localizes to mitochondria and inhibits AngII intra-neuronal signaling by scavenging mitochondrial O2•−. Using a neuronal cell culture model (CATH.a neurons), we demonstrate that both endogenous and adenovirus-mediated over-expressed CuZnSOD (AdCuZnSOD) are present in mitochondria. Furthermore, we show that over-expression of CuZnSOD attenuates the AngII-mediated increase in mitochondrial O2•− levels and the AngII-induced inhibition of neuronal potassium current. Taken together, these data clearly show that over-expressed CuZnSOD in neurons localizes in mitochondria, scavenges AngII-induced mitochondrial O2•−, and inhibits AngII intra-neuronal signaling. Endogenous CuZnSOD is localized to mitochondria of AngII-sensitive neurons. Adenovirus-mediated over-expressed CuZnSOD is localized to neuron mitochondria. AngII-induced mitochondrial O2•− flux is attenuated by CuZnSOD over-expression. Over-expressed CuZnSOD reduces AngII-mediated inhibition of neuronal K+ current.
Collapse
Affiliation(s)
- Shumin Li
- Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Adam J Case
- Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Rui-Fang Yang
- Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Harold D Schultz
- Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, USA ; Redox Biology Center, University of Nebraska - Lincoln, Lincoln, NE, USA
| | - Matthew C Zimmerman
- Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, USA ; Redox Biology Center, University of Nebraska - Lincoln, Lincoln, NE, USA
| |
Collapse
|
27
|
Abstract
Statins (3-hydroxy-3-methylglutaryl-CoA reductase inhibitors) reduce plasma cholesterol and improve endothelium-dependent vasodilation, inflammation and oxidative stress. A ‘pleiotropic’ property of statins receiving less attention is their effect on the autonomic nervous system. Increased central sympathetic outflow and diminished cardiac vagal tone are disturbances characteristic of a range of cardiovascular conditions for which statins are now prescribed routinely to reduce cardiovascular events: following myocardial infarction, and in hypertension, chronic kidney disease, heart failure and diabetes. The purpose of the present review is to synthesize contemporary evidence that statins can improve autonomic circulatory regulation. In experimental preparations, high-dose lipophilic statins have been shown to reduce adrenergic outflow by attenuating oxidative stress in central brain regions involved in sympathetic and parasympathetic discharge induction and modulation. In patients with hypertension, chronic kidney disease and heart failure, lipophilic statins, such as simvastatin or atorvastatin, have been shown to reduce MNSA (muscle sympathetic nerve activity) by 12–30%. Reports concerning the effect of statin therapy on HRV (heart rate variability) are less consistent. Because of their implications for BP (blood pressure) control, insulin sensitivity, arrhythmogenesis and sudden cardiac death, these autonomic nervous system actions should be considered additional mechanisms by which statins lower cardiovascular risk.
Collapse
|
28
|
Chan SHH, Chan JYH. Angiotensin-generated reactive oxygen species in brain and pathogenesis of cardiovascular diseases. Antioxid Redox Signal 2013; 19:1074-84. [PMID: 22429119 DOI: 10.1089/ars.2012.4585] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
SIGNIFICANCE Overproduction of angiotensin II (Ang II) in brain contributes to the pathogenesis of cardiovascular diseases. One of the most promising theses that emerged during the last decade is that production of reactive oxygen species (ROS) and activation of redox-dependent signaling cascades underlie those Ang II actions. This review summarizes our status of understanding on the roles of ROS and redox-sensitive signaling in brain Ang II-dependent cardiovascular diseases, using hypertension and heart failure as illustrative examples. RECENT ADVANCES ROS generated by NADPH oxidase, mitochondrial electron transport chain, and proinflammatory cytokines activates mitogen-activated protein kinases and transcription factors, which in turn modulate ion channel functions and ultimately increase neuronal activity and sympathetic outflow in brain Ang II-dependent cardiovascular diseases. Antioxidants targeting ROS have been demonstrated to be beneficial to Ang II-induced hypertension and heart failure via protection from oxidative stress in brain regions that subserve cardiovascular regulation. CRITICAL ISSUES Intra-neuronal signaling and the downstream redox-sensitive proteins involved in controlling the neuronal discharge rate, the sympathetic outflow, and the pathogenesis of cardiovascular diseases need to be identified. The cross talk between Ang II-induced oxidative stress and neuroinflammation in neural mechanisms of cardiovascular diseases also warrants further elucidation. FUTURE DIRECTIONS Future studies are needed to identify new redox-based therapeutics that work not only in animal models, but also in patients suffering from the prevalent diseases. Upregulation of endogenous antioxidants in the regulation of ROS homeostasis is a potential therapeutic target, as are small molecule- or nanoformulated conjugate-based antioxidant therapy.
Collapse
Affiliation(s)
- Samuel H H Chan
- Center for Translational Research in Biomedical Sciences, Kaohsiung Chang Gung Memorial Hospital , Kaohsiung, Taiwan, Republic of China
| | | |
Collapse
|
29
|
Kishi T. Regulation of the sympathetic nervous system by nitric oxide and oxidative stress in the rostral ventrolateral medulla: 2012 Academic Conference Award from the Japanese Society of Hypertension. Hypertens Res 2013; 36:845-51. [DOI: 10.1038/hr.2013.73] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 03/01/2013] [Accepted: 03/26/2013] [Indexed: 02/07/2023]
|
30
|
Case AJ, Li S, Basu U, Tian J, Zimmerman MC. Mitochondrial-localized NADPH oxidase 4 is a source of superoxide in angiotensin II-stimulated neurons. Am J Physiol Heart Circ Physiol 2013; 305:H19-28. [PMID: 23624625 DOI: 10.1152/ajpheart.00974.2012] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Angiotensin II (ANG II) plays an important role in the central regulation of systemic cardiovascular function. ANG II-mediated intraneuronal signaling has been shown to be predicated by an increase in mitochondrial superoxide (O₂∙-), yet the source of this reactive oxygen species (ROS) production remains unclear. NADPH oxidase 4 (Nox4), a member of the NADPH oxidase family, has been reported to be localized in mitochondria of various cell types and has been implicated in brain angiotensinergic signaling. However, the subcellular localization and function of Nox4 in neurons has not been fully elucidated. In this study, we hypothesized that Nox4 is expressed in neuron mitochondria and is involved in ANG II-dependent O₂∙--mediated intraneuronal signaling. To query this, Nox4 immunofluorescent staining and mitochondrial enrichment were performed in a mouse catecholaminergic neuronal cell model (CATH.a). Nox4 was shown to be present in neuron mitochondria as evidenced by colocalization with both the mitochondrial-localized protein manganese superoxide dismutase (MnSOD) and dye MitoTracker Red. Moreover, Nox4 expression was significantly increased in enriched mitochondrial fractions compared with whole cell lysates. Additionally, adenoviral-encoded small interfering RNA for Nox4 (AdsiNox4) caused a robust knockdown in Nox4 mRNA and protein levels, which led to the attenuation of ANG II-induced mitochondrial O₂∙- production. Finally, in the subfornical organ (SFO) of the brain, Nox4 not only demonstrated mitochondrial localization but was induced by chronic, peripheral infusion of ANG II. Collectively, these data suggest that Nox4 is a source of O₂∙- in neuron mitochondria that contributes to ANG II intraneuronal signaling.
Collapse
Affiliation(s)
- Adam J Case
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | | | | | | | | |
Collapse
|
31
|
Sympathoexcitation associated with Renin-Angiotensin system in metabolic syndrome. Int J Hypertens 2013; 2013:406897. [PMID: 23476747 PMCID: PMC3586511 DOI: 10.1155/2013/406897] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Revised: 12/26/2012] [Accepted: 01/09/2013] [Indexed: 02/07/2023] Open
Abstract
Renin-angiotensin system (RAS) is activated in metabolic syndrome (MetS), and RAS inhibitors are preferred for the treatments of hypertension with MetS. Although RAS activation is important for the therapeutic target, underlying sympathetic nervous system (SNS) activation is critically involved and should not be neglected in the pathogenesis of hypertension with MetS. In fact, previous studies have suggested that SNS activation has the interaction with RAS activation and/or insulin resistance. As a novel aspect connecting the importance of SNS and RAS activation, we and other investigators have recently demonstrated that angiotensin II type 1 receptor (AT1R) blockers (ARBs) improve SNS activation in patients with MetS. In the animal studies, SNS activation is regulated by the AT1R-induced oxidative stress in the brain. We have also demonstrated that orally administered ARBs cause sympathoinhibition independent of the depressor effects in dietary-induced hypertensive rats. Interestingly, these benefits on SNS activation of ARBs in clinical and animal studies are not class effects of ARBs. In conclusion, SNS activation associated with RAS activation in the brain should be the target of the treatment, and ARBs could have the potential benefit on SNS activation in patients with MetS.
Collapse
|
32
|
Sympathoinhibitory effects of telmisartan through the reduction of oxidative stress in the rostral ventrolateral medulla of obesity-induced hypertensive rats. J Hypertens 2013; 30:1992-9. [PMID: 22902874 DOI: 10.1097/hjh.0b013e328357fa98] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECTIVES Sympathetic nervous system (SNS) activity is critically involved in the development and progression of obesity-induced hypertension. Angiotensin II type 1 receptor (AT1R)-induced oxidative stress in the rostral ventrolateral medulla (RVLM), a vasomotor center in the brainstem, activates the SNS in hypertensive rats. The aim of the present study was to determine whether oral administration of an AT1R blocker (ARB) inhibits SNS activity via antioxidative effects in the RVLM of rats with dietary-induced obesity. METHODS AND RESULTS Obesity-prone rats fed a high-fat diet were divided into groups treated with either telmisartan obesity-prone (TLM-OP), or losartan obesity-prone (LOS-OP), or vehicle obesity-prone (VEH-OP). SBP, SNS activity, and oxidative stress in the RVLM were significantly higher in obesity-prone rats than in obesity-resistant rats. Body weight, visceral fat, blood glucose, serum insulin, and plasma adiponectin concentrations were significantly lower in TLM-OP and LOS-OP than in VEH-OP, and plasma adiponectin concentrations were significantly higher in TLM-OP than in LOS-OP. Although SBP was reduced to similar levels both in TLM-OP and LOS-OP, both oxidative stress in the RVLM and SNS activity were significantly lower in TLM-OP than in LOS-OP or VEH-OP. CONCLUSION Orally administered telmisartan inhibited SNS activity through antioxidative effects via AT1R blockade in the RVLM of obesity-prone rats. AT1R and oxidative stress in the RVLM might be novel treatment targets for obesity-induced hypertension through sympathoinhibition, and telmisartan might be preferable for obesity-induced hypertension.
Collapse
|
33
|
The brain Renin-Angiotensin system and mitochondrial function: influence on blood pressure and baroreflex in transgenic rat strains. Int J Hypertens 2013; 2013:136028. [PMID: 23401750 PMCID: PMC3564433 DOI: 10.1155/2013/136028] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 12/23/2012] [Indexed: 02/07/2023] Open
Abstract
Mitochondrial dysfunction is implicated in many cardiovascular diseases, including hypertension, and may be associated with an overactive renin-angiotensin system (RAS). Angiotensin (Ang) II, a potent vasoconstrictor hormone of the RAS, also impairs baroreflex and mitochondrial function. Most deleterious cardiovascular actions of Ang II are thought to be mediated by NADPH-oxidase- (NOX-) derived reactive oxygen species (ROS) that may also stimulate mitochondrial oxidant release and alter redox-sensitive signaling pathways in the brain. Within the RAS, the actions of Ang II are counterbalanced by Ang-(1–7), a vasodilatory peptide known to mitigate against increased oxidant stress. A balance between Ang II and Ang-(1–7) within the brain dorsal medulla contributes to maintenance of normal blood pressure and proper functioning of the arterial baroreceptor reflex for control of heart rate. We propose that Ang-(1–7) may negatively regulate the redox signaling pathways activated by Ang II to maintain normal blood pressure, baroreflex, and mitochondrial function through attenuating ROS (NOX-generated and/or mitochondrial).
Collapse
|
34
|
Different role of oxidative stress in paraventricular nucleus and rostral ventrolateral medulla in cardiovascular regulation in awake spontaneously hypertensive rats. J Hypertens 2012; 30:1758-65. [DOI: 10.1097/hjh.0b013e32835613d7] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
35
|
Nautiyal M, Katakam PVG, Busija DW, Gallagher PE, Tallant EA, Chappell MC, Diz DI. Differences in oxidative stress status and expression of MKP-1 in dorsal medulla of transgenic rats with altered brain renin-angiotensin system. Am J Physiol Regul Integr Comp Physiol 2012; 303:R799-806. [PMID: 22914751 DOI: 10.1152/ajpregu.00566.2011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
ANG II-stimulated production of reactive oxygen species (ROS) through NADPH oxidase is suggested to activate MAPK pathways, which are implicated in neurally mediated pressor effects of ANG II. Emerging evidence suggests that ANG-(1-7) up regulates MAPK phosphatases to reduce MAPK signaling and attenuate actions of ANG II. Whether angiotensin peptides participate in long-term regulation of these systems in the brain is not known. Therefore, we determined tissue and mitochondrial ROS, as well as expression and activity of MAPK phosphatase-1 (MKP-1) in brain dorsal medullary tissue of hypertensive transgenic (mRen2)27 rats exhibiting higher ANG II/ANG-(1-7) tone or hypotensive transgenic rats with targeted decreased glial expression of angiotensinogen, ASrAOGEN (AS) exhibiting lower ANG II/ANG-(1-7) tone compared with normotensive Sprague-Dawley (SD) rats that serve as the control strain. Transgenic (mRen2)27 rats showed higher medullary tissue NADPH oxidase activity and dihydroethidium fluorescence in isolated mitochondria vs. SD or AS rats. Mitochondrial uncoupling protein 2 was lower in AS and unchanged in (mRen2)27 compared with SD rats. MKP-1 mRNA and protein expression were higher in AS and unchanged in (mRen2)27 compared with SD rats. AS rats also had lower phosphorylated ERK1/2 and JNK consistent with higher MKP-1 activity. Thus, an altered brain renin-angiotensin system influences oxidative stress status and regulates MKP-1 expression. However, there is a dissociation between these effects and the hemodynamic profiles. Higher ROS was associated with hypertension in (mRen2)27 and normal MKP-1, whereas the higher MKP-1 was associated with hypotension in AS, where ROS was normal relative to SD rats.
Collapse
Affiliation(s)
- Manisha Nautiyal
- The Hypertension and Vascular Research Center, Wake Forest Univ. School of Medicine, Medical Center Blvd., Winston-Salem, NC 27157-1032, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Kishi T, Hirooka Y. Oxidative stress in the brain causes hypertension via sympathoexcitation. Front Physiol 2012; 3:335. [PMID: 22934082 PMCID: PMC3429101 DOI: 10.3389/fphys.2012.00335] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Accepted: 07/30/2012] [Indexed: 12/31/2022] Open
Abstract
Activation of the sympathetic nervous system (SNS) has an important role in the pathogenesis of hypertension, and is determined by the brain. Previous many studies have demonstrated that oxidative stress, mainly produced by angiotensin II type 1 (AT(1)) receptor and nicotinamide adenine dinucleotide phosphate (NAD (P) H) oxidase, in the autonomic brain regions was involved in the activation of the SNS of hypertension. In this concept, we have investigated the role of oxidative stress in the rostral ventrolateral medulla (RVLM), which is known as the cardiovascular center in the brainstem, in the activation of the SNS, and demonstrated that AT(1) receptor and NAD (P) H oxidase-induced oxidative stress in the RVLM causes sympathoexcitation in hypertensive rats. The mechanisms in which brain oxidative stress causes sympathoexcitation have been investigated, such as the interactions with nitric oxide (NO), effects on the signal transduction, or inflammations. Interestingly, the environmental factors of high salt intake and high calorie diet may also increase the oxidative stress in the brain, particularly in the RVLM, thereby activating the central sympathetic outflow and increasing the risk of hypertension. Furthermore, several orally administered AT(1) receptor blockers have been found to cause sympathoinhibition via reduction of oxidative stress through the inhibition of central AT(1) receptor. In conclusion, we must consider that AT(1) receptor and the related oxidative stress production in the brain cause the activation of SNS in hypertension, and that AT(1) receptor in the brain could be novel therapeutic target of the treatments for hypertension.
Collapse
Affiliation(s)
- Takuya Kishi
- Department of Advanced Therapeutics for Cardiovascular Diseases, Kyushu University Graduate School of Medical Sciences Fukuoka, Japan
| | | |
Collapse
|
37
|
Angiotensin II receptor blockers improve endothelial dysfunction associated with sympathetic hyperactivity in metabolic syndrome. J Hypertens 2012; 30:1646-55. [DOI: 10.1097/hjh.0b013e328355860e] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
38
|
Chan SHH, Chan JYH. Brain stem oxidative stress and its associated signaling in the regulation of sympathetic vasomotor tone. J Appl Physiol (1985) 2012; 113:1921-8. [PMID: 22837172 DOI: 10.1152/japplphysiol.00610.2012] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
There is now compelling evidence from studies in humans and animals that overexcitation of the sympathetic nervous system plays an important role in the pathogenesis of cardiovascular diseases. An excellent example is neurogenic hypertension, in which central sympathetic overactivation is involved in the development, staging, and progression of the disease, and one of the underlying mechanisms involves oxidative stress in key brain stem sites that are engaged in the regulation of sympathetic vasomotor tone. Using the rostral ventrolateral medulla (RVLM) and nucleus tractus solitarii (NTS) as two illustrative brain stem neural substrates, this article provides an overview of the impact of reactive oxygen species and antioxidants on RVLM and NTS in the pathogenesis of neurogenic hypertension. This is followed by a discussion of the redox-sensitive signaling pathways, including several kinases, ion channels, and transcription factors that underpin the augmentation in sympathetic vasomotor tone. In addition, the emerging view that brain stem oxidative stress is also causally related to a reduction in sympathetic vasomotor tone and hypotension during brain stem death, methamphetamine intoxication, and temporal lobe status epilepticus will be presented, along with the causal contribution of the oxidant peroxynitrite formed by a reaction between nitric oxide synthase II (NOS II)-derived nitric oxide and superoxide. Also discussed as a reasonable future research direction is dissection of the cellular mechanisms and signaling cascades that may underlie the contributory role of nitric oxide generated by different NOS isoforms in the differential effects of oxidative stress in the RVLM or NTS on sympathetic vasomotor tone.
Collapse
Affiliation(s)
- Samuel H H Chan
- Center for Translational Research in Biomedical Sciences, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan, Republic of China
| | | |
Collapse
|
39
|
Kishi T, Hirooka Y, Katsuki M, Ogawa K, Shinohara K, Isegawa K, Sunagawa K. Exercise training causes sympathoinhibition through antioxidant effect in the rostral ventrolateral medulla of hypertensive rats. Clin Exp Hypertens 2012; 34:278-83. [PMID: 22578069 DOI: 10.3109/10641963.2012.681084] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Exercise training normalizes sympathetic outflow in hypertension and chronic heart failure. The aim of this study was to determine whether the exercise training inhibits sympathetic nerve activity (SNA) via reduction of oxidative stress through blocked angiotensin II type 1 receptor (AT(1)R) in rostral ventrolateral medulla (RVLM). We divided stroke-prone spontaneously hypertensive rats (SHRSP) into SHRSP with exercised training (SHRSP-EX) and control (SHRSP-C). SNA and oxidative stress in the RVLM were significantly lower in SHRSP-EX than in SHRSP-C. These results suggest that exercise training inhibits SNA via reduction of oxidative stress through blocked AT(1)R in the RVLM of hypertension.
Collapse
Affiliation(s)
- Takuya Kishi
- Department of Advanced Therapeutics for Cardiovascular Diseases, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan.
| | | | | | | | | | | | | |
Collapse
|
40
|
Kishi T, Hirooka Y, Sunagawa K. Sympathoinhibition caused by orally administered telmisartan through inhibition of the AT1 receptor in the rostral ventrolateral medulla of hypertensive rats. Hypertens Res 2012; 35:940-6. [DOI: 10.1038/hr.2012.63] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
41
|
Oxidative stress in the rostral ventrolateral medulla modulates excitatory and inhibitory inputs in spontaneously hypertensive rats. J Hypertens 2012; 30:97-106. [PMID: 22157590 DOI: 10.1097/hjh.0b013e32834e1df4] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECTIVES The rostral ventrolateral medulla (RVLM) of the brainstem and the paraventricular nucleus (PVN) of the hypothalamus play crucial roles in central cardiovascular regulation. In hypertensive rats, an imbalance of excitatory and inhibitory inputs to the RVLM enhances central sympathetic outflow. Increased reactive oxygen species (ROS) in the RVLM also contribute to sympathoexcitation, leading to hypertension. The aim of the present study was to elucidate whether ROS in the RVLM modulate synaptic transmission via excitatory and inhibitory amino acids and influence the excitatory inputs to the RVLM from the PVN in spontaneously hypertensive rats (SHRs). METHODS AND RESULTS We transfected adenovirus vectors encoding the manganese superoxide dismutase (AdMnSOD) gene to scavenge ROS in the RVLM both in Wistar-Kyoto rats and SHRs. The decreases in blood pressure and renal sympathetic nerve activity (RSNA) evoked by injecting kynurenic acid, a glutamate receptor blocker, into the RVLM were attenuated, and the increases in blood pressure and RSNA evoked by injecting bicuculline, a γ-amino butyric acid (GABA) receptor blocker, into the RVLM were enhanced in AdMnSOD-transfected SHRs compared with adenovirus vectors encoding the β-galactosidase (AdLacZ) gene-transfected SHRs. Furthermore, the increases in blood pressure and RSNA evoked by injecting bicuculline into the PVN were attenuated in AdMnSOD-transfected SHRs compared with AdLacZ-transfected SHRs. CONCLUSION These findings suggest that ROS in the RVLM enhance glutamatergic excitatory inputs and attenuate GABAergic inhibitory inputs to the RVLM, thereby increasing sympathoexcitatory input to the RVLM from the PVN in SHRs.
Collapse
|
42
|
Kumagai H, Oshima N, Matsuura T, Iigaya K, Imai M, Onimaru H, Sakata K, Osaka M, Onami T, Takimoto C, Kamayachi T, Itoh H, Saruta T. Importance of rostral ventrolateral medulla neurons in determining efferent sympathetic nerve activity and blood pressure. Hypertens Res 2011; 35:132-41. [PMID: 22170390 PMCID: PMC3273996 DOI: 10.1038/hr.2011.208] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Accentuated sympathetic nerve activity (SNA) is a risk factor for cardiovascular events. In this review, we investigate our working hypothesis that potentiated activity of neurons in the rostral ventrolateral medulla (RVLM) is the primary cause of experimental and essential hypertension. Over the past decade, we have examined how RVLM neurons regulate peripheral SNA, how the sympathetic and renin-angiotensin systems are correlated and how the sympathetic system can be suppressed to prevent cardiovascular events in patients. Based on results of whole-cell patch-clamp studies, we report that angiotensin II (Ang II) potentiated the activity of RVLM neurons, a sympathetic nervous center, whereas Ang II receptor blocker (ARB) reduced RVLM activities. Our optical imaging demonstrated that a longitudinal rostrocaudal column, including the RVLM and the caudal end of ventrolateral medulla, acts as a sympathetic center. By organizing and analyzing these data, we hope to develop therapies for reducing SNA in our patients. Recently, 2-year depressor effects were obtained by a single procedure of renal nerve ablation in patients with essential hypertension. The ablation injured not only the efferent renal sympathetic nerves but also the afferent renal nerves and led to reduced activities of the hypothalamus, RVLM neurons and efferent systemic sympathetic nerves. These clinical results stress the importance of the RVLM neurons in blood pressure regulation. We expect renal nerve ablation to be an effective treatment for congestive heart failure and chronic kidney disease, such as diabetic nephropathy.
Collapse
Affiliation(s)
- Hiroo Kumagai
- Department of Nephrology, National Defense Medical College, Tokorozawa, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Chan YC, Leung PS. The Renin-angiotensin system and reactive oxygen species: implications in pancreatitis. Antioxid Redox Signal 2011; 15:2743-55. [PMID: 21644836 DOI: 10.1089/ars.2011.4071] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
SIGNIFICANCE The renin-angiotensin system (RAS) is a circulating hormonal system involved in the regulation of blood pressure and circulating fluid electrolytes. Recent findings have revealed that locally generated angiotensin (Ang) II plays a pivotal role in normal physiology as well as pathophysiology in various tissues and organs, including the pancreas. This review article summarizes current progress that has been made in elucidating the putative roles of Ang II in both acute and chronic pancreatitis. RECENT ADVANCES A convergence of evidence suggests that the underlying mechanism may involve reactive oxygen species (ROS)-generating systems, such as nicotinamide adenine dinucleotide phosphate oxidase, and subsequent elevation of proinflammatory and profibrogenic gene expression as well as protein activity. More importantly, Ang II-induced ROS interacts with other ROS-generating systems to positively feed-forward the ROS-induced signaling. CRITICAL ISSUES AND FUTURE DIRECTIONS Advances in basic research indicate that RAS blockers may provide potential therapeutic role for the management of pancreatic inflammation and, more importantly, pancreatitis-associated complications. Genetic alterations resulting from a malfunction in the epigenetic control of pancreatic RAS could be a causative factor in the development of pancreatitis.
Collapse
Affiliation(s)
- Yuk Cheung Chan
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin New Teritories, Hong Kong, China
| | | |
Collapse
|
44
|
Kishi T, Hirooka Y, Ogawa K, Konno S, Sunagawa K. Calorie Restriction inhibits Sympathetic Nerve Activity via Anti-Oxidant Effect in the Rostral Ventrolateral Medulla of Obesity-Induced Hypertensive Rats. Clin Exp Hypertens 2011; 33:240-5. [DOI: 10.3109/10641963.2011.583969] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
45
|
Stewart JM, Ocon AJ, Medow MS. Ascorbate improves circulation in postural tachycardia syndrome. Am J Physiol Heart Circ Physiol 2011; 301:H1033-42. [PMID: 21622825 DOI: 10.1152/ajpheart.00018.2011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Low flow postural tachycardia syndrome (LFP) is associated with vasoconstriction, reduced cardiac output, increased plasma angiotensin II, reduced bioavailable nitric oxide (NO), and oxidative stress. We tested whether ascorbate would improve cutaneous NO and reduce vasoconstriction when delivered systemically. We used local cutaneous heating to 42°C and laser Doppler flowmetry to assess NO-dependent conductance (%CVC(max)) to sodium ascorbate and the systemic hemodynamic response to ascorbic acid in 11 LFP patients and in 8 control subjects (aged 23 ± 2 yr). We perfused intradermal microdialysis catheters with sodium ascorbate (10 mM) or Ringer solution. Predrug heat response was reduced in LFP, particularly the NO-dependent plateau phase (56 ± 6 vs. 88 ± 7%CVC(max)). Ascorbate increased baseline skin flow in LFP and control subjects and increased the LFP plateau response (82 ± 6 vs. 92 ± 6 control). Systemic infusion experiments used Finometer and ModelFlow to estimate relative cardiac index (CI) and forearm and calf venous occlusion plethysmography to estimate blood flows, peripheral arterial and venous resistances, and capacitance before and after infusing ascorbic acid. CI increased 40% after ascorbate as did peripheral flows. Peripheral resistances were increased (nearly double control) and decreased by nearly 50% after ascorbate. Calf capacitance and venous resistance were decreased compared with control but normalized with ascorbate. These data provide experimental support for the concept that oxidative stress and reduced NO possibly contribute to vasoconstriction and venoconstriction of LFP.
Collapse
Affiliation(s)
- Julian M Stewart
- Department of Physiology, New York Medical College, Valhalla, New York 10532, USA.
| | | | | |
Collapse
|
46
|
Zimmerman MC. Angiotensin II and angiotensin-1-7 redox signaling in the central nervous system. Curr Opin Pharmacol 2011; 11:138-43. [PMID: 21257347 PMCID: PMC3075313 DOI: 10.1016/j.coph.2011.01.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Accepted: 01/05/2011] [Indexed: 02/07/2023]
Abstract
Reactive oxygen species (ROS) are important intra-neuronal signaling intermediates in angiotensin II (AngII)-related neuro-cardiovascular diseases associated with excessive sympathoexcitation, including hypertension and heart failure. ROS-sensitive effector mechanisms, such as modulation of ion channel activity, indicate that elevated levels of ROS increase neuronal activity. Nitric oxide, which may work to counter the effects of ROS, particularly superoxide, has been identified as a signaling molecule in angiotensin-1-7 (Ang-(1-7)) stimulated neurons. This review focuses on recent studies that have revealed details on the AngII-activated sources of ROS, the downstream redox-sensitive effectors, Ang-(1-7)-stimulated increase in nitric oxide, and the neuro-cardiovascular (patho)physiological responses modulated by these reactive species. Understanding these intra-neuronal signaling mechanisms should provide insight for the development of new redox-based therapeutics for the improved treatment of angiotensin-dependent neuro-cardiovascular diseases.
Collapse
Affiliation(s)
- Matthew C Zimmerman
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
47
|
Oxidative stress in the cardiovascular center has a pivotal role in the sympathetic activation in hypertension. Hypertens Res 2011; 34:407-12. [PMID: 21346766 DOI: 10.1038/hr.2011.14] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Activation of the sympathetic nervous system has an important role in the pathogenesis of hypertension. However, the precise mechanisms involved are not fully understood. Oxidative stress may be important in hypertension as well as in other cardiovascular disorders. We investigated the role of oxidative stress, particularly in the rostral ventrolateral medulla (RVLM), which is known as the cardiovascular center in the brainstem, in the activation of the sympathetic nervous system in hypertension. We observed that the reactive oxygen species (ROS) production increases in the RVLM in hypertensive rats, thereby enhancing the central sympathetic outflow, which leads to hypertension. Furthermore, the environmental factors of high salt intake and a high-calorie diet may also increase the ROS production in the RVLM, thereby activating the central sympathetic outflow and increasing the risk of hypertension. The activation of the nicotinamide adenine dinucleotide phosphate oxidase via the angiotensin type 1 (AT1) receptors is suggested to be the major source of ROS production, and an altered downstream signaling pathway is involved in the activation of the RVLM neurons, leading to enhanced central sympathetic outflow and hypertension. Thus, the brain AT1 receptors may be novel therapeutic targets, and, in fact, oral treatment with angiotensin receptor blockers has been found to inhibit the central AT1 receptors, despite the blood-brain barrier.
Collapse
|
48
|
Hirooka Y, Kishi T, Sakai K, Takeshita A, Sunagawa K. Imbalance of central nitric oxide and reactive oxygen species in the regulation of sympathetic activity and neural mechanisms of hypertension. Am J Physiol Regul Integr Comp Physiol 2011; 300:R818-26. [PMID: 21289238 DOI: 10.1152/ajpregu.00426.2010] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nitric oxide (NO) and reactive oxygen species (ROS) play important roles in blood pressure regulation via the modulation of the autonomic nervous system, particularly in the central nervous system (CNS). In general, accumulating evidence suggests that NO inhibits, but ROS activates, the sympathetic nervous system. NO and ROS, however, interact with each other. Our consecutive studies and those of others strongly indicate that an imbalance between NO bioavailability and ROS generation in the CNS, including the brain stem, activates the sympathetic nervous system, and this mechanism is involved in the pathogenesis of neurogenic aspects of hypertension. In this review, we focus on the role of NO and ROS in the regulation of the sympathetic nervous system within the brain stem and subsequent cardiovascular control. Multiple mechanisms are proposed, including modulation of neurotransmitter release, inhibition of receptors, and alterations of intracellular signaling pathways. Together, the evidence indicates that an imbalance of NO and ROS in the CNS plays a pivotal role in the pathogenesis of hypertension.
Collapse
Affiliation(s)
- Yoshitaka Hirooka
- Department of Cardiovascular Medicine, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan.
| | | | | | | | | |
Collapse
|
49
|
Allen AM. Role of angiotensin in the rostral ventrolateral medulla in the development and maintenance of hypertension. Curr Opin Pharmacol 2011; 11:117-23. [PMID: 21269877 DOI: 10.1016/j.coph.2010.12.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Revised: 12/13/2010] [Accepted: 12/23/2010] [Indexed: 02/07/2023]
Abstract
Whilst crucial for behavioural and homeostatic responses to environmental challenges, chronic elevation of sympathetic nervous system activity to specific vascular beds is associated with hypertension. Indeed such elevated activity may drive the increase in blood pressure seen in some people and in some experimental models of hypertension. This review discusses the neural circuitry involved in generating and modulating sympathetic efferent nerve activity, focusing on the premotor neurons of the rostral ventrolateral medulla. Neurons in the rostral ventrolateral medulla show altered responses to angiotensin II in experimental models of hypertension, suggesting that this might be an important node for interaction between these two systems that are crucial for regulation of blood pressure.
Collapse
Affiliation(s)
- Andrew M Allen
- Department of Physiology and Florey Neurosciences Institutes, University of Melbourne, Vic., 3010, Australia.
| |
Collapse
|
50
|
Kishi T, Sunagawa K. Experimental 'jet lag' causes sympathoexcitation via oxidative stress through AT1 receptor in the brainstem. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2011; 2011:1969-1972. [PMID: 22254719 DOI: 10.1109/iembs.2011.6090555] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Circadian disruptions through frequent transmeridian travel, rotating shift work, and poor sleep hygiene are associated with an array of physical and mental health maladies, including the abnormal autonomic nervous system. We have demonstrated that the oxidative stress through AT(1) receptor in the brain activates sympathetic nervous system. The aim of the present study was to determine whether experimental 'jet lag' causes sympathoexcitation via oxidative stress through AT(1) receptor in the cardiovascular center of the brainstem (rostral ventrolateral medulla; RVLM) or not. Experimental 'jet lag' was made to normotensive (Wister-Kyoto rat; WKY rat) and hypertensive rats (stroke-prone spontaneously hypertensive rats; SHRSP) by the exposure to a 12 hour phase advance for 5 days. In WKY, 'jet lag' increases blood pressure and the activity of sympathetic nervous system via oxidative stress through angiotensin II type 1 receptor in the RVLM for 2 days only, and the changes are improved at 3 day after the initiation of 'jet lag'. In SHRSP, 'jet lag' also increases blood pressure and the activity of sympathetic nervous system via oxidative stress through angiotensin II type 1 receptor in the RVLM, and the changes are greater compared to those in WKY, and are maintained for the period of 'jet lag'. These results suggest that experimental 'jet lag' causes sympathoexcitation via oxidative stress through AT(1) receptor in the brain, especially in hypertension.
Collapse
Affiliation(s)
- T Kishi
- Department of Advanced Therapeutics forCardiovascular Diseases, Kyushu University Graduate School of Medical Sciences, Fukuoka 812-8582, Japan.
| | | |
Collapse
|