1
|
Kozakova M, Morizzo C, Jamagidze G, Chiappino S, Chiappino D, Emdin M, Palombo C. Central pulse pressure, carotid artery remodeling and coronary artery calcifications. J Hypertens 2025; 43:774-780. [PMID: 39937055 DOI: 10.1097/hjh.0000000000003968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 12/27/2024] [Indexed: 02/13/2025]
Abstract
OBJECTIVES The aim of the study was to evaluate the role of central pulse pressure (PP) in carotid wall thickening and coronary artery calcification (CAC). METHODS In an asymptomatic general population ( N = 396, 163 men, 47-89 years), central PP was measured by applanation tonometry, CAC by computed tomography, and common carotid artery intima-media thickness (cIMT), pulse wave velocity (cPWV) and the power of the signal reflected from carotid media (cMP) by radiofrequency-based carotid ultrasound. High cIMT was defined as cIMT equal to or greater than the 75th percentile for given sex and age, and CAC presence as a CAC score greater than 0. RESULTS In the entire population, luminal diameter and cMP increased with increasing central PP ( r = 0.32 and 0.25; P < 0.0001). One hundred and ninety-seven individuals had high cIMT; individuals with high cIMT had higher central PP, luminal diameter, cMP and cPWV ( P = or <0.0001), but comparable wall tensile stress ( P = 0.23). In a logistic regression model, high cIMT was independently associated with luminal diameter and central PP. One hundred and fifty-two individuals had CAC score greater than 0; in a logistic regression model, CAC score greater than 0 was independently associated with sex, age, central PP, LDL-cholesterol, triglycerides and T2DM. CONCLUSION Our findings indicate that high central PP contributes both to an increase in cIMT and the development of CAC. However, while central PP was the only risk factor linked to high cIMT, multiple atherosclerotic risk factors were associated with CAC. Therefore, both high cIMT and CAC reflect the adverse impact of high pulsatile load on the vascular system, yet only CAC can be considered a marker of atherosclerosis.
Collapse
Affiliation(s)
- Michaela Kozakova
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa
- Esaote SpA, Genova
| | - Carmela Morizzo
- School of Medicine, Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa
| | | | | | | | - Michele Emdin
- Fondazione Toscana G. Monasterio, Massa-Pisa
- Health Science Interdisciplinary Center, Sant'Anna School of Advanced Studies, Pisa, Italy
| | - Carlo Palombo
- School of Medicine, Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa
| |
Collapse
|
2
|
Weiss D, Yeung N, Ramachandra AB, Humphrey JD. Transcriptional regulation of postnatal aortic development. Cells Dev 2024; 180:203971. [PMID: 39426523 PMCID: PMC11634634 DOI: 10.1016/j.cdev.2024.203971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/14/2024] [Accepted: 10/14/2024] [Indexed: 10/21/2024]
Abstract
The aorta exhibits tremendous changes in geometry, composition, and mechanical properties during postnatal development. These changes are necessarily driven by transcriptional changes, both genetically programmed and mechano-responsive, but there has not been a careful comparison of time-course changes in the transcriptional profile and biomechanical phenotype. Here, we show that the greatest period of differential gene expression in the normal postnatal mouse aorta occurs prior to weaning at three weeks of age though with important evolution of many transcripts thereafter. We identify six general temporal patterns, including transcripts that monotonically decrease to lower or increase to higher steady state values as well as those that either peak or dip prior to or near weaning. We show that diverse transcripts within individual groupings correlate well over time, and that sub-sets of these groups correlate well with the developmental progression of different biomechanical metrics that are expected to be involved in mechano-sensing. In particular, expression of genes for elastin and elastin-associated glycoproteins tend to correlate well with the ratio of systolic-to-diastolic stress whereas genes for collagen fibers correlate well with the daily rate of change of systolic stress and genes for mechano-sensing proteins tend to correlate well with the systolic stress itself. We conclude that different groupings of genes having different temporal expression patterns correlate well with different measures of the wall mechanics, hence emphasizing a need for age-dependent, gene-specific computational modeling of postnatal development.
Collapse
Affiliation(s)
- D Weiss
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA; Department of Mechanical & Materials Engineering, University of Denver, Denver, CO, USA
| | - N Yeung
- School of the Biological Sciences, University of Cambridge, Cambridge, UK
| | - A B Ramachandra
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA; Department of Mechanical Engineering, Iowa State University, Ames, IA, USA
| | - J D Humphrey
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA; Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
3
|
Pfaller MR, Latorre M, Schwarz EL, Gerosa FM, Szafron JM, Humphrey JD, Marsden AL. FSGe: A fast and strongly-coupled 3D fluid-solid-growth interaction method. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING 2024; 431:117259. [PMID: 39430055 PMCID: PMC11484312 DOI: 10.1016/j.cma.2024.117259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Equilibrated fluid-solid-growth (FSGe) is a fast, open source, three-dimensional (3D) computational platform for simulating interactions between instantaneous hemodynamics and long-term vessel wall adaptation through mechanobiologically equilibrated growth and remodeling (G&R). Such models can capture evolving geometry, composition, and material properties in health and disease and following clinical interventions. In traditional G&R models, this feedback is modeled through highly simplified fluid solutions, neglecting local variations in blood pressure and wall shear stress (WSS). FSGe overcomes these inherent limitations by strongly coupling the 3D Navier-Stokes equations for blood flow with a 3D equilibrated constrained mixture model (CMMe) for vascular tissue G&R. CMMe allows one to predict long-term evolved mechanobiological equilibria from an original homeostatic state at a computational cost equivalent to that of a standard hyperelastic material model. In illustrative computational examples, we focus on the development of a stable aortic aneurysm in a mouse model to highlight key differences in growth patterns between FSGe and solid-only G&R models. We show that FSGe is especially important in blood vessels with asymmetric stimuli. Simulation results reveal greater local variation in fluid-derived WSS than in intramural stress (IMS). Thus, differences between FSGe and G&R models became more pronounced with the growing influence of WSS relative to pressure. Future applications in highly localized disease processes, such as for lesion formation in atherosclerosis, can now include spatial and temporal variations of WSS.
Collapse
Affiliation(s)
- Martin R Pfaller
- Department of Pediatrics - Cardiology, Stanford Univeristy, Stanford, CA 94305, USA
| | - Marcos Latorre
- Center for Research and Innovation in Bioengineering, Universitat Politècnica de València, València, Spain
| | - Erica L Schwarz
- Department of Bioengineering, Stanford Univeristy, Stanford, CA 94305, USA
- Department of Biomedical Engineering, Yale Univeristy, New Haven, CT 06511, USA
| | - Fannie M Gerosa
- Department of Pediatrics - Cardiology, Stanford Univeristy, Stanford, CA 94305, USA
| | - Jason M Szafron
- Department of Pediatrics - Cardiology, Stanford Univeristy, Stanford, CA 94305, USA
| | - Jay D Humphrey
- Department of Biomedical Engineering, Yale Univeristy, New Haven, CT 06511, USA
| | - Alison L Marsden
- Department of Pediatrics - Cardiology, Stanford Univeristy, Stanford, CA 94305, USA
| |
Collapse
|
4
|
Kozakova M, Morizzo C, Penno G, Chiappino D, Palombo C. Diabetes-Related Changes in Carotid Wall Properties: Role of Triglycerides. J Clin Med 2024; 13:5654. [PMID: 39337141 PMCID: PMC11433327 DOI: 10.3390/jcm13185654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/07/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024] Open
Abstract
Background/Objectives: This study compares the power of the radiofrequency (RF) signal reflected from the media layer (media power) of the common carotid artery (CCA) and the CCA stiffness between individuals with and without type 2 diabetes mellitus (T2DM). It also evaluates the associations of CCA media power with plasma glucose and lipid levels, as well as carotid stiffness. Methods: A total of 540 individuals, 115 with and 425 without T2DM (273 males, mean age = 64 ± 8 years) were studied using RF-based tracking of the right CCA. The following parameters were measured: CCA media thickness, luminal diameter, wall tensile stress (WTS), local pulse wave velocity (PWV), and media power. Results: Compared to the non-diabetic individuals, the T2DM patients had significantly higher CCA media thickness (652 ± 122 vs. 721 ± 138 microns, p < 0.005), luminal diameter (6.12 ± 0.78 vs. 6.86 ± 0.96 mm, p < 0.0005), media power (36.1 ± 4.8 vs. 39.3 ± 4.6, p < 0.0001), and PWV (7.65 ± 1.32 vs. 8.40 ± 1.89 m/s; p < 0.01), but comparable WTS (32.7 ± 10.4 vs. 33.1 ± 10.7 kPa; p = 0.25). In the entire population, CCA media power was independently associated with male sex, pulse pressure, current smoking, and T2DM; when T2DM was not included in the model, triglycerides emerged as an independent determinant of media power. The CCA PWV was independently associated with age, pulse pressure, media power, and T2DM. Conclusions: Our findings suggest the presence of structural changes in the arterial media of T2DM patients, leading to carotid stiffening and remodeling, aiming to preserve WTS. T2DM-related changes in arterial wall composition may be driven by high plasma triglyceride levels, which have previously been associated with both arterial stiffening and the incidence of CV events.
Collapse
Affiliation(s)
- Michaela Kozakova
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (M.K.); (G.P.)
- Esaote SpA, 16153 Genova, Italy
| | - Carmela Morizzo
- School of Medicine, Department of Surgical, Medical, Molecular Pathology and Critical Care Medicine, University of Pisa, 56126 Pisa, Italy;
| | - Giuseppe Penno
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (M.K.); (G.P.)
| | - Dante Chiappino
- Fondazione Toscana G. Monasterio, Massa-Pisa, 56124 Pisa, Italy;
| | - Carlo Palombo
- School of Medicine, Department of Surgical, Medical, Molecular Pathology and Critical Care Medicine, University of Pisa, 56126 Pisa, Italy;
- Department of Surgical, Medical, Molecular Pathology and Critical Care Medicine, University of Pisa, Via Savi 10, 56126 Pisa, Italy
| |
Collapse
|
5
|
Solano MM, Dumas R, Lesk MR, Costantino S. Ocular Biomechanical Responses to Long-Duration Spaceflight. IEEE OPEN JOURNAL OF ENGINEERING IN MEDICINE AND BIOLOGY 2024; 6:127-132. [PMID: 39698125 PMCID: PMC11655104 DOI: 10.1109/ojemb.2024.3453049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/12/2024] [Accepted: 08/27/2024] [Indexed: 12/20/2024] Open
Abstract
Objective: To assess the impact of microgravity exposure on ocular rigidity (OR), intraocular pressure (IOP), and ocular pulse amplitude (OPA) following long-term space missions. OR was evaluated using optical coherence tomography (OCT) and deep learning-based choroid segmentation. IOP and OPA were measured with the PASCAL Dynamic Contour Tonometer (DCT). Results: The study included 26 eyes from 13 crew members who spent 157 to 186 days on the International Space Station. Post-mission results showed a 25% decrease in OPA (p < 0.005), an 11% decrease in IOP from 16.0 mmHg to 14.2 mmHg (p = 0.04), and a 33% reduction in OR (p = 0.04). No significant differences were observed between novice and experienced astronauts. Conclusions: These findings reveal previously unknown effects of microgravity on the eye's mechanical properties, contributing to a deeper understanding of Spaceflight-Associated Neuro-ocular Syndrome (SANS). Long-term space missions significantly alter ocular biomechanics and have the potential to become biomarkers of disease progression.
Collapse
Affiliation(s)
- Marissé Masís Solano
- Maisonneuve-Rosemont Hospital Research CenterMontrealQCH1T 2M4Canada
- University of MontrealMontrealQCH3T 1J4Canada
| | - Remy Dumas
- Maisonneuve-Rosemont Hospital Research CenterMontrealQCH1T 2M4Canada
| | - Mark R Lesk
- Maisonneuve-Rosemont Hospital Research CenterMontrealQCH1T 2M4Canada
- University of MontrealMontrealQCH3T 1J4Canada
| | - Santiago Costantino
- Maisonneuve-Rosemont Hospital Research CenterMontrealQCH1T 2M4Canada
- University of MontrealMontrealQCH3T 1J4Canada
| |
Collapse
|
6
|
Masood MT, Wang JWW, Zoumi EA, Jain K, Suh A, Ong J, Waisberg E, Masalkhi M, Lee AG. Impedance threshold device as a countermeasure for spaceflight associated neuro-ocular syndrome (SANS): Mitigating mechanisms in proposed pathophysiology. LIFE SCIENCES IN SPACE RESEARCH 2024; 42:99-107. [PMID: 39067998 DOI: 10.1016/j.lssr.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/31/2024] [Accepted: 06/05/2024] [Indexed: 07/30/2024]
Abstract
Long-duration spaceflight (LDSF) is associated with unique hazards and linked with numerous human health risks including Spaceflight Associated Neuro-ocular Syndrome (SANS). The proposed mechanisms for SANS include microgravity induced cephalad fluid shift and increased Intracranial Pressure (ICP). SANS is a disorder seen only after LDSF and has no direct terrestrial pathologic counterpart as the zero G environment cannot be completely replicated on Earth. Head-down tilt, bed rest studies however have been used as a terrestrial analog and produce the cephalad fluid shift. Some proposed countermeasures for SANS include vasoconstrictive thigh cuffs and lower body negative pressure. Another potential researched countermeasure is the impedance threshold device (ITD) which can reduce ICP. We review the mechanisms of the ITD and its potential use as a countermeasure for SANS.
Collapse
Affiliation(s)
| | | | | | | | - Alex Suh
- Tulane University School of Medicine, New Orleans, LA, United States
| | - Joshua Ong
- Department of Ophthalmology and Visual Sciences, University of Michigan Kellogg Eye Center, Ann Arbor, Michigan, United States
| | - Ethan Waisberg
- Department of Ophthalmology, University of Cambridge, Cambridge, United Kingdom
| | - Mouayad Masalkhi
- University College Dublin School of Medicine, Belfield, Dublin, Ireland
| | - Andrew G Lee
- Center for Space Medicine, Baylor College of Medicine, Houston, Texas, United States; Department of Ophthalmology, Blanton Eye Institute, Houston Methodist Hospital, Houston, Texas, United States; The Houston Methodist Research Institute, Houston Methodist Hospital, Houston, Texas, United States; Departments of Ophthalmology, Neurology, and Neurosurgery, Weill Cornell Medicine, New York, New York, United States; Department of Ophthalmology, University of Texas Medical Branch, Galveston, Texas, United States; University of Texas MD Anderson Cancer Center, Houston, Texas, United States; Texas A&M College of Medicine, Bryan, Texas, United States; Department of Ophthalmology, The University of Iowa Hospitals and Clinics, Iowa City, Iowa, United States.
| |
Collapse
|
7
|
Gkousioudi A, Razzoli M, Moreira JD, Wainford RD, Zhang Y. Renal denervation restores biomechanics of carotid arteries in a rat model of hypertension. Sci Rep 2024; 14:495. [PMID: 38177257 PMCID: PMC10767006 DOI: 10.1038/s41598-023-50816-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 12/26/2023] [Indexed: 01/06/2024] Open
Abstract
The prevalence of hypertension increases with aging and is associated with increased arterial stiffness. Resistant hypertension is presented when drug treatments fail to regulate a sustained increased blood pressure. Given that the mechanisms between the sympathetic nervous system and the kidney play an important role in blood regulation, renal denervation (RDN) has emerged as a therapeutic potential in resistant hypertension. In this study, we investigated the effects of RDN on the biomechanical response and microstructure of elastic arteries. Common carotid arteries (CCA) excised from 3-month, 8-month, and 8-month denervated rats were subjected to biaxial extension-inflation test. Our results showed that hypertension developed in the 8-month-old rats. The sustained elevated blood pressure resulted in arterial remodeling which was manifested as a significant stress increase in both axial and circumferential directions after 8 months. RDN had a favorable impact on CCAs with a restoration of stresses in values similar to control arteries at 3 months. After biomechanical testing, arteries were imaged under a multi-photon microscope to identify microstructural changes in extracellular matrix (ECM). Quantification of multi-photon images showed no significant alterations of the main ECM components, elastic and collagen fibers, indicating that arteries remained intact after RDN. Regardless of the experimental group, our microstructural analysis of the multi-photon images revealed that reorientation of the collagen fibers might be the main microstructural mechanism taking place during pressurization with their straightening happening during axial stretching.
Collapse
Affiliation(s)
- Anastasia Gkousioudi
- Department of Mechanical Engineering, Boston University, 110 Cummington Mall, Boston, MA, 02215, USA
| | - Margherita Razzoli
- Department of Biomedical Engineering, Boston University, 110 Cummington Mall, Boston, MA, 02215, USA
| | - Jesse D Moreira
- Department of Pharmacology & Experimental Therapeutics, School of Medicine, Boston University Avedisian and Chobanian, Boston, MA, USA
| | - Richard D Wainford
- Department of Pharmacology & Experimental Therapeutics, School of Medicine, Boston University Avedisian and Chobanian, Boston, MA, USA.
- Division of Cardiology, School of Medicine, HSRB II, Emory University, 1750 Haygood Drive, Atlanta, GA, 30322, USA.
| | - Yanhang Zhang
- Department of Mechanical Engineering, Boston University, 110 Cummington Mall, Boston, MA, 02215, USA.
- Department of Biomedical Engineering, Boston University, 110 Cummington Mall, Boston, MA, 02215, USA.
- Division of Materials Science & Engineering, Boston University, 110 Cummington Mall, Boston, MA, 02215, USA.
| |
Collapse
|
8
|
Schwarz EL, Pfaller MR, Szafron JM, Latorre M, Lindsey SE, Breuer CK, Humphrey JD, Marsden AL. A Fluid-Solid-Growth Solver for Cardiovascular Modeling. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING 2023; 417:116312. [PMID: 38044957 PMCID: PMC10691594 DOI: 10.1016/j.cma.2023.116312] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
We implement full, three-dimensional constrained mixture theory for vascular growth and remodeling into a finite element fluid-structure interaction (FSI) solver. The resulting "fluid-solid-growth" (FSG) solver allows long term, patient-specific predictions of changing hemodynamics, vessel wall morphology, tissue composition, and material properties. This extension from short term (FSI) to long term (FSG) simulations increases clinical relevance by enabling mechanobioloigcally-dependent studies of disease progression in complex domains.
Collapse
Affiliation(s)
- Erica L Schwarz
- Department of Bioengineering, Stanford Univeristy, Stanford, CA 94306, USA
| | - Martin R Pfaller
- Department of Pediatrics - Cardiology, Stanford Univeristy, Stanford, CA 94306, USA
| | - Jason M Szafron
- Department of Pediatrics - Cardiology, Stanford Univeristy, Stanford, CA 94306, USA
| | - Marcos Latorre
- Center for Research and Innovation in Bioengineering, Universitat Politècnica de València, València 46022, Spain
| | - Stephanie E Lindsey
- Department of Pediatrics - Cardiology, Stanford Univeristy, Stanford, CA 94306, USA
| | - Christopher K Breuer
- Department of Surgery, Nationwide Children's Hospital, Columbus, OH 43210, USA
- Center for Regenerative Medicine, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH 43215, USA
| | - Jay D Humphrey
- Department of Biomedical Engineering, Yale Univeristy, New Haven, CT 06520, USA
| | - Alison L Marsden
- Department of Bioengineering, Stanford Univeristy, Stanford, CA 94306, USA
- Department of Pediatrics - Cardiology, Stanford Univeristy, Stanford, CA 94306, USA
| |
Collapse
|
9
|
Vervenne T, Maes L, Van Hoof L, Rega F, Famaey N. Drivers of vascular growth and remodeling: A computational framework to promote benign adaptation in the Ross procedure. J Mech Behav Biomed Mater 2023; 148:106170. [PMID: 37852088 DOI: 10.1016/j.jmbbm.2023.106170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/04/2023] [Accepted: 10/09/2023] [Indexed: 10/20/2023]
Abstract
In the sixties, Dr Donald Ross designed a surgical solution for young patients with aortic valve disease by using the patients' own pulmonary valve. The Ross procedure is the only aortic valve replacement technique that can restore long-term survival and preserve quality of life. The main failure mode of the Ross procedure is wall dilatation, potentially leading to valve regurgitation and leakage. Dilatation occurs due to the inability of the pulmonary autograft to adapt to the sudden increase in loading when exposing to aortic pressures. Previous experimental data has shown that a permanent external support wrapped around the artery can prevent the acute dilatation of the arterial wall. However, the textile support leads to stress-shielding phenomena due to the loss of mechanical wall compliance. We present a pragmatic and modular computational framework of arterial growth and remodeling predicting the long-term outcomes of cardiovascular tissue adaptation, with and without textile wrapping. The model integrates mean, systolic and diastolic pressures and assumes the resulting wall stresses to drive the biological remodeling rules. Rather than a single mean pressure or stress deviation from the homeostatic state, we demonstrate that only pulsatile stresses can predict available experimental results. Therefore, we suggest that a biodegradable external support could induce benign remodeling in the Ross procedure. Indeed, a biodegradable textile wrapped around the autograft fulfills the trade-off between prevention of acute dilatation on the one hand and recovery of arterial wall compliance on the other hand. After further validation, the computational framework can set the basis for the development of an actual biodegradable external support for the Ross procedure with optimized polymer mechanical properties and degradation behavior.
Collapse
Affiliation(s)
- Thibault Vervenne
- Biomechanics Section, Mechanical Engineering Department, KU Leuven, Celestijnenlaan 300, Leuven, 3001, Belgium.
| | - Lauranne Maes
- Biomechanics Section, Mechanical Engineering Department, KU Leuven, Celestijnenlaan 300, Leuven, 3001, Belgium
| | - Lucas Van Hoof
- Cardiac Surgery, Department of Cardiovascular Sciences, KU Leuven, UZ Herestraat 49, Leuven, 3000, Belgium
| | - Filip Rega
- Cardiac Surgery, Department of Cardiovascular Sciences, KU Leuven, UZ Herestraat 49, Leuven, 3000, Belgium
| | - Nele Famaey
- Biomechanics Section, Mechanical Engineering Department, KU Leuven, Celestijnenlaan 300, Leuven, 3001, Belgium
| |
Collapse
|
10
|
Belhoul-Fakir H, Brown ML, Thompson PL, Hamzah J, Jansen S. Connecting the Dots: How Injury in the Arterial Wall Contributes to Atherosclerotic Disease. Clin Ther 2023; 45:1092-1098. [PMID: 37891144 DOI: 10.1016/j.clinthera.2023.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 09/22/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023]
Abstract
PURPOSE The occurrence and development of atherosclerotic cardiovascular disease, which can result in severe outcomes, such as myocardial infarction, stroke, loss of limb, renal failure, and infarction of the gut, are strongly associated with injury to the intimal component of the arterial wall whether via the inside-out or outside-in pathways. The role of injury to the tunica media as a pathway of atherosclerosis initiation is an underresearched area. This review focuses on potential pathways to vessel wall injury as well as current experimental and clinical research in the middle-aged and elderly populations, including the role of exercise, as it relates to injury to the tunica media. METHODS A database search using PubMed and Google Scholar was conducted for research articles published between 1909 and 2023 that focused on pathways of atherogenesis and the impact of mechanical forces on wall injury. The following key words were searched: wall injury, tunica media, atherogenesis, vascular aging, and wall strain. Studies were analyzed, and the relevant information was extracted from each study. FINDINGS A link between high mechanical stress in the arterial wall and reduced vascular compliance was found. The stiffening and calcification of the arterial wall with aging induce high blood pressure and pulse pressure, thereby causing incident hypertension and cardiovascular disease. In turn, prolonged high mechanical stress, particularly wall strain, applied to the arterial wall during vigorous exercise, results in stiffening and calcification of tunica media, accelerated arterial aging, and cardiovascular disease events. In both scenarios, the tunica media is the primary target of mechanical stress and the first to respond to hemodynamic changes. The cyclical nature of these impacts confounds the results of each because they are not mutually exclusive. IMPLICATIONS The role of stress in the tunica media appears to be overlooked despite its relevance, and further research into new primary preventive therapies is needed aside from cautioning the role of vigorous exercise in the elderly population.
Collapse
Affiliation(s)
- Hanane Belhoul-Fakir
- Curtin Medical School, Curtin University, Bentley, Perth, Western Australia, Australia; Targeted Drug Delivery, Imaging & Therapy, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia, Australia; Heart & Vascular Research Institute, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia, Australia.
| | - Michael Lawrence Brown
- School of Population Health, Curtin University, Bently, Perth, Western Australia, Australia
| | - Peter L Thompson
- Heart & Vascular Research Institute, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia, Australia
| | - Juliana Hamzah
- Curtin Medical School, Curtin University, Bentley, Perth, Western Australia, Australia; Targeted Drug Delivery, Imaging & Therapy, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia, Australia; Heart & Vascular Research Institute, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia, Australia
| | - Shirley Jansen
- Curtin Medical School, Curtin University, Bentley, Perth, Western Australia, Australia; Targeted Drug Delivery, Imaging & Therapy, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia, Australia; Heart & Vascular Research Institute, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia, Australia; Department of Vascular and Endovascular Surgery, Sir Charles Gairdner Hospital, Nedlands, Perth, Western Australia, Australia.
| |
Collapse
|
11
|
Gkousioudi A, Razzoli M, Moreira JD, Wainford RD, Zhang Y. Renal denervation restores biomechanics of carotid arteries in a rat model of hypertension. RESEARCH SQUARE 2023:rs.3.rs-3273236. [PMID: 37720022 PMCID: PMC10503847 DOI: 10.21203/rs.3.rs-3273236/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
The prevalence of hypertension increases with aging and is associated with increased arterial stiffness. Resistant hypertension is presented when drug treatments fail to regulate a sustained increased blood pressure. Given that the mechanisms between the sympathetic nervous system and the kidney play an important role in blood regulation, renal denervation (RDN) has emerged as a therapeutic potential in resistant hypertension. In this study, we investigated the effects of RDN on the biomechanical response and microstructure of elastic arteries. Common carotid arteries (CCA) were excised from 3-, 8- and 8-month-old denervated rats, and subjected to biaxial extension-inflation test. Our results showed that hypertension developed in the 8-month-old rats. The sustained elevated blood pressure resulted in arterial remodeling which was manifested as a significant stress increase in both axial and circumferential directions after 8 months. RDN had a favorable impact on CCAs with a restoration of stresses in values similar to control arteries at 3 months. After biomechanical testing, arteries were imaged under a multi-photon microscope to identify microstructural changes in extracellular matrix (ECM). Quantification of multi-photon images showed no significant alterations of the main ECM components, elastic and collagen fibers, indicating that arteries remained intact after RDN. Regardless of the experimental group, our microstructural analysis of the multi-photon images revealed that reorientation of the collagen fibers might be the main microstructural mechanism taking place during pressurization with their straightening happening during axial stretching.
Collapse
Affiliation(s)
| | | | - Jesse D Moreira
- Boston University Avedisian and Chobanian School of Medicine
| | | | | |
Collapse
|
12
|
Kostelnik CJ, Gale MK, Crouse KJ, Shazly T, Eberth JF. Acute Mechanical Consequences of Vessel-Specific Coronary Bypass Combinations. Cardiovasc Eng Technol 2023; 14:404-418. [PMID: 36828977 DOI: 10.1007/s13239-023-00661-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 02/06/2023] [Indexed: 02/26/2023]
Abstract
PURPOSE Premature coronary artery bypass graft (CABG) failure has been linked to geometric, mechanical, and compositional discrepancies between host and graft tissues. Acute hemodynamic disturbances and the introduction of wall stress gradients trigger a myriad of mechanobiological processes at the anastomosis that can be associated with restenosis and graft failure. Although the origins of coronary artery disease dictate the anastomotic target, an opportunity exists for graft-vessel optimization through rationale graft selection. METHODS Here we explored the four distinct regions of the left (L) and right (R) ITA (1 = proximal, 2 = submuscular, 3 = middle, 4 = distal), and four common target vessels in the coronary circulation including the proximal and distal left anterior descending (PLAD & DLAD), right coronary (RCA), and left circumflex (LCX) arteries. Benchtop biaxial mechanical data was used to acquire constitutive model parameters of these tissues and enable vessel-specific computational models to elucidate the mechanical consequences of 32 unique graft-target combinations. RESULTS Simulations revealed the maximum principal wall stresses for the PLAD, RCA, and LCX occurred when anastomosed with LITA1, and the maximum flow-induced shear stress occurred with LITA4. The DLAD, on the other hand, reached stress maximums when anastomosed to LITA4. Using a normalized objective function of simulation output variables, we found LITA2 to be the best graft choice for both LADs, RITA3 for the RCA, and LITA3 for the LCX. CONCLUSION Although mechanical compatibility is just one of many factors determining bypass graft outcomes, our data suggests improvements can be made to the grafting process through vessel-specific regional optimization.
Collapse
Affiliation(s)
- Colton J Kostelnik
- Biomedical Engineering Program, University of South Carolina, Columbia, SC, USA
| | - Mary K Gale
- Biomedical Engineering Department, Georgia Institute of Technology, Atlanta, GA, USA
| | - Kiersten J Crouse
- Mechanical Engineering Department, University of South Carolina, Columbia, SC, USA
| | - Tarek Shazly
- Biomedical Engineering Program, University of South Carolina, Columbia, SC, USA
- Mechanical Engineering Department, University of South Carolina, Columbia, SC, USA
| | - John F Eberth
- Biomedical Engineering Program, University of South Carolina, Columbia, SC, USA.
- Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA.
| |
Collapse
|
13
|
Jelinic M, Jackson KL, O'Sullivan K, Singh J, Giddy T, Deo M, Parry LJ, Ritchie RH, Woodman OL, Head GA, Leo CH, Qin CX. Endothelium-dependent relaxation is impaired in Schlager hypertensive (BPH/2J) mice by region-specific mechanisms in conductance and resistance arteries. Life Sci 2023; 320:121542. [PMID: 36871935 DOI: 10.1016/j.lfs.2023.121542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/21/2023] [Accepted: 02/27/2023] [Indexed: 03/07/2023]
Abstract
AIMS Endothelial dysfunction and arterial stiffness are hallmarks of hypertension, and major risk factors for cardiovascular disease. BPH/2J (Schlager) mice are a genetic model of spontaneous hypertension, but little is known about the vascular pathophysiology of these mice and the region-specific differences between vascular beds. Therefore, this study compared the vascular function and structure of large conductance (aorta and femoral) and resistance (mesenteric) arteries of BPH/2J mice with their normotensive BPN/2J counterparts. MAIN METHODS Blood pressure was measured in BPH/2J and BPN/3J mice via pre-implanted radiotelemetry probes. At endpoint, vascular function and passive mechanical wall properties were assessed using wire and pressure myography, qPCR and histology. KEY FINDINGS Mean arterial blood pressure was elevated in BPH/2J mice compared to BPN/3J controls. Endothelium-dependent relaxation to acetylcholine was attenuated in both the aorta and mesenteric arteries of BPH/2J mice, but through different mechanisms. In the aorta, hypertension reduced the contribution of prostanoids. Conversely, in the mesenteric arteries, hypertension reduced the contribution of both nitric oxide and endothelium-dependent hyperpolarization. Hypertension reduced volume compliance in both femoral and mesenteric arteries, but hypertrophic inward remodelling was only observed in the mesenteric arteries of BPH/2J mice. SIGNIFICANCE This is the first comprehensive investigation of vascular function and structural remodelling in BPH/2J mice. Overall, hypertensive BPH/2J mice exhibited endothelial dysfunction and adverse vascular remodelling in the macro- and microvasculature, underpinned by distinct region-specific mechanisms. This highlights BPH/2J mice as a highly suitable model for evaluating novel therapeutics to treat hypertension-associated vascular dysfunction.
Collapse
Affiliation(s)
- Maria Jelinic
- Centre for Cardiovascular Biology and Disease Research, Department of Microbiology, Anatomy, Physiology & Pharmacology, La Trobe University, Bundoora, VIC, Australia; School of BioSciences, The University of Melbourne, Parkville, VIC, Australia
| | - Kristy L Jackson
- Baker Heart and Diabetes Research Institute, Melbourne, VIC, Australia; Faculty of Pharmacy and Pharmaceutical Sciences, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Kelly O'Sullivan
- School of BioSciences, The University of Melbourne, Parkville, VIC, Australia
| | - Jaideep Singh
- Baker Heart and Diabetes Research Institute, Melbourne, VIC, Australia; Faculty of Pharmacy and Pharmaceutical Sciences, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Thomas Giddy
- Baker Heart and Diabetes Research Institute, Melbourne, VIC, Australia
| | - Minh Deo
- Baker Heart and Diabetes Research Institute, Melbourne, VIC, Australia; Faculty of Pharmacy and Pharmaceutical Sciences, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Laura J Parry
- School of BioSciences, The University of Melbourne, Parkville, VIC, Australia; School of Biological Sciences, The University of Adelaide, Adelaide, SA, Australia
| | - Rebecca H Ritchie
- Baker Heart and Diabetes Research Institute, Melbourne, VIC, Australia; Faculty of Pharmacy and Pharmaceutical Sciences, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Owen L Woodman
- Faculty of Pharmacy and Pharmaceutical Sciences, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Geoffrey A Head
- Baker Heart and Diabetes Research Institute, Melbourne, VIC, Australia
| | - Chen Huei Leo
- School of BioSciences, The University of Melbourne, Parkville, VIC, Australia; Faculty of Pharmacy and Pharmaceutical Sciences, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia; Science, Math and Technology, Singapore University of Technology & Design, Singapore.
| | - Cheng Xue Qin
- Baker Heart and Diabetes Research Institute, Melbourne, VIC, Australia; Faculty of Pharmacy and Pharmaceutical Sciences, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia.
| |
Collapse
|
14
|
Li Z, Belozertseva E, Parlakian A, Bascetin R, Louis H, Kawamura Y, Blanc J, Gao-Li J, Pinet F, Lacy-Hulbert A, Challande P, Humphrey JD, Regnault V, Lacolley P. Smooth muscle α v integrins regulate vascular fibrosis via CD109 downregulation of TGF-β signalling. EUROPEAN HEART JOURNAL OPEN 2023; 3:oead010. [PMID: 36909248 PMCID: PMC9998030 DOI: 10.1093/ehjopen/oead010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 01/16/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023]
Abstract
Aims αv integrins are implicated in fibrosis in a number of organs through their ability to activate TGF-β. However their role in vascular fibrosis and collagen accumulation is only partially understood. Here we have used αv conditional knockout mice and cell lines to determine how αv contributes to vascular smooth muscle cell (VSMC) function in vascular fibrosis and the role of TGF-β in that process. Methods and results Angiotensin II (Ang II) treatment causes upregulation of αv and β3 expression in the vessel wall, associated with increased collagen deposition. We found that deletion of αv integrin subunit from VSMCs (αv SMKO) protected mice against angiotensin II-induced collagen production and assembly. Transcriptomic analysis of the vessel wall in αv SMKO mice and controls identified a significant reduction in expression of fibrosis and related genes in αv SMKO mice. In contrast, αv SMKO mice showed prolonged expression of CD109, which is known to affect TGF-β signalling. Using cultured mouse and human VSMCs, we showed that overexpression of CD109 phenocopied knockdown of αv integrin, attenuating collagen expression, TGF-β activation, and Smad2/3 signalling in response to angiotensin II or TGF-β stimulation. CD109 and TGF-β receptor were internalized in early endosomes. Conclusion We identify a role for VSMC αv integrin in vascular fibrosis and show that αv acts in concert with CD109 to regulate TGF-β signalling.
Collapse
Affiliation(s)
- Zhenlin Li
- Biological Adaptation and Ageing, Sorbonne Université, CNRS, INSERM, IBPS, 7 quai Saint Bernard, 75005 Paris, France
| | | | - Ara Parlakian
- Biological Adaptation and Ageing, Sorbonne Université, CNRS, INSERM, IBPS, 7 quai Saint Bernard, 75005 Paris, France
| | | | - Huguette Louis
- Université de Lorraine, INSERM, DCAC, F-54000, Nancy, France
| | - Yuki Kawamura
- Department of Biomedical Engineering and Vascular Biology and Therapeutics Program, Yale University, New Haven, CT, USA
| | - Jocelyne Blanc
- Biological Adaptation and Ageing, Sorbonne Université, CNRS, INSERM, IBPS, 7 quai Saint Bernard, 75005 Paris, France
| | - Jacqueline Gao-Li
- Biological Adaptation and Ageing, Sorbonne Université, CNRS, INSERM, IBPS, 7 quai Saint Bernard, 75005 Paris, France
| | - Florence Pinet
- U1167-RID-AGE-Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, Univ. Lille, CHU Lille, INSERM, Institut Pasteur de Lille, F-59000, Lille, France
| | - Adam Lacy-Hulbert
- Department of Immunology, University of Washington, Seattle, WA, 98109
| | - Pascal Challande
- Sorbonne Université, CNRS, Institut Jean Le Rond d'Alembert, 4 place Jussieu, 75005, Paris, France
| | - Jay D Humphrey
- Department of Biomedical Engineering and Vascular Biology and Therapeutics Program, Yale University, New Haven, CT, USA
| | | | | |
Collapse
|
15
|
van Asten JGM, Ristori T, Nolan DR, Lally C, Baaijens FPT, Sahlgren CM, Loerakker S. Computational analysis of the role of mechanosensitive Notch signaling in arterial adaptation to hypertension. J Mech Behav Biomed Mater 2022; 133:105325. [PMID: 35839633 PMCID: PMC7613661 DOI: 10.1016/j.jmbbm.2022.105325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/03/2022] [Accepted: 06/18/2022] [Indexed: 11/29/2022]
Abstract
Arteries grow and remodel in response to mechanical stimuli. Hypertension, for example, results in arterial wall thickening. Cell-cell Notch signaling between vascular smooth muscle cells (VSMCs) is known to be involved in this process, but the underlying mechanisms are still unclear. Here, we investigated whether Notch mechanosensitivity to strain may regulate arterial thickening in hypertension. We developed a multiscale computational framework by coupling a finite element model of arterial mechanics, including residual stress, to an agent-based model of mechanosensitive Notch signaling, to predict VSMC phenotypes as an indicator of growth and remodeling. Our simulations revealed that the sensitivity of Notch to strain at mean blood pressure may be a key mediator of arterial thickening in hypertensive arteries. Further simulations showed that loss of residual stress can have synergistic effects with hypertension, and that changes in the expression of Notch receptors, but not Jagged ligands, may be used to control arterial growth and remodeling and to intensify or counteract hypertensive thickening. Overall, we identify Notch mechanosensitivity as a potential mediator of vascular adaptation, and we present a computational framework that can facilitate the testing of new therapeutic and regenerative strategies.
Collapse
Affiliation(s)
- Jordy G M van Asten
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands; Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Tommaso Ristori
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands; Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - David R Nolan
- School of Engineering and Trinity Centre for Biomedical Engineering, Trinity College Dublin, Dublin, Ireland
| | - Caitríona Lally
- School of Engineering and Trinity Centre for Biomedical Engineering, Trinity College Dublin, Dublin, Ireland
| | - Frank P T Baaijens
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands; Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Cecilia M Sahlgren
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands; Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands; Faculty of Science and Engineering, Biosciences, Åbo Akademi, Turku, Finland
| | - Sandra Loerakker
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands; Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands.
| |
Collapse
|
16
|
Vascular Alterations Preceding Arterial Wall Thickening in Overweight and Obese Children. J Clin Med 2022; 11:jcm11123520. [PMID: 35743590 PMCID: PMC9224712 DOI: 10.3390/jcm11123520] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/13/2022] [Accepted: 06/17/2022] [Indexed: 12/24/2022] Open
Abstract
Background: Childhood obesity is linked to adverse cardiovascular outcomes in adulthood. This study aimed to assess the impact of childhood obesity on the vasculature and to investigate whether vascular alteration precedes arterial wall thickening in childhood. Methods: A total of 295 overweight (body mass index [BMI] 85th to 95th percentile, n = 30) and obese (BMI ≥ 95th percentile, n = 234) children aged 7–17 years and 31 normal-weight controls with similar age and gender were prospectively recruited. We assessed anthropometric data and laboratory findings, and measured the carotid intima–media thickness (IMT), carotid artery (CA) diameter, M-mode-derived arterial stiffness indices, and velocity vector imaging parameters, including the CA area, fractional area change, circumferential strain, and circumferential strain rate (SR). Results: The mean ± standard deviation age of the participants was 10.8 ± 2.1 years; 172 (58%) children were male. Regarding structural properties, there was no difference in the IMT between the three groups. The CA diameter was significantly increased in obese children, whereas the CA area showed a significant increase beginning in the overweight stage. Regarding functional properties, contrary to β stiffness and Young’s elastic modulus, which were not different between the three groups, the circumferential SR showed a significant decrease beginning in the overweight stage and was independently associated with BMI z-scores after adjusting for covariates. Conclusion: We have demonstrated that arterial stiffening and arterial enlargement precede arterial wall thickening, and that these vascular alterations begin at the overweight stage in middle childhood or early adolescence.
Collapse
|
17
|
Eberth J, Humphrey J. Reduced Smooth Muscle Contractile Capacity Facilitates Maladaptive Arterial Remodeling. J Biomech Eng 2021; 144:1122986. [PMID: 34729580 DOI: 10.1115/1.4052888] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Indexed: 11/08/2022]
Abstract
Albeit seldom considered explicitly, the vasoactive state of a central artery can contribute significantly to the in vivo values of flow-induced wall shear stress and pressure-induced wall stress, which in turn are strong determinants of wall growth and remodeling. In this technical brief, we test the hypothesis that diminished vasoactive capacity compromises effective mechano-adaptations of central arteries. Toward this end, we use consistent methods to re-interpret previously published data on carotid artery remodeling in a common mouse model of induced hypertension and a separate model of connective tissue disease that results in Marfan syndrome. Animals have identical backgrounds and in both cases, the data are consistent with the hypothesis considered. In particular, individual carotid arteries with strong (normal) vasoactive capacity tend to maintain wall thickness and in vivo axial stress closer to homeostatic, thus resulting in passive circumferential wall stress and energy storage closer to normal values. We conclude, therefore, that effective vasoactivity helps to control the biomechanical state in which cells and matrix turnover, thus helping to delineate mechano-adaptive from maladaptive remodeling. Future analyses of experimental data and computational models of growth and remodeling should account for this strong coupling between smooth muscle contractile capacity and central arterial remodeling.
Collapse
Affiliation(s)
- JohnF Eberth
- Department of Cell Biology and Anatomy, Biomedical Engineering Program, University of South Carolina, Columbia, SC, USA
| | - Jay Humphrey
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| |
Collapse
|
18
|
Anthoulakis C, Mamopoulos A, Rousso D, Karagiannis A, Athanasiadis A, Grimbizis G, Athyros V. Arterial Stiffness as a Cardiovascular Risk Factor for the Development of Preeclampsia and Pharmacopreventive Options. Curr Vasc Pharmacol 2021; 20:52-61. [PMID: 34615450 DOI: 10.2174/1570161119666211006114258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 08/08/2021] [Accepted: 08/18/2021] [Indexed: 11/22/2022]
Abstract
Arterial stiffness (AS) describes the rigidity of the arterial walls. Epidemiological studies have shown that increased AS is an independent predictive marker of cardiovascular (CV) morbidity and mortality in both pregnant and non-pregnant women. Preeclampsia (PE), a form of pregnancy-induced hypertension, affects approximately 5% of pregnancies worldwide. Preeclamptic women have a higher risk of CV disease (CVD), mainly because PE damages the heart's ability to relax between contractions. Different pharmacological approaches for the prevention of PE have been tested in clinical trials (e.g. aspirin, enoxaparin, metformin, pravastatin, and sildenafil citrate). In current clinical practice, only low-dose aspirin is used for PE pharmacoprevention. However, low-dose aspirin does not prevent term PE, which is the most common form of PE. Compromised vascular integrity precedes the onset of PE and therefore, AS assessment may constitute a promising predictive marker of PE. Several non-invasive techniques have been developed to assess AS. Compared with normotensive pregnancies, both carotid-femoral pulse wave velocity (cfPWV) and augmentation index (AIx) are increased in PE. In view of simplicity, reliability, and reproducibility, there is an interest in oscillometric AS measurements in pregnancies complicated by PE.
Collapse
Affiliation(s)
- Christos Anthoulakis
- First Department of Obstetrics & Gynecology, "Papageorgiou" General Hospital, Aristotle University of Thessaloniki, Thessaloniki. Greece
| | - Apostolos Mamopoulos
- Third Department of Obstetrics & Gynecology, Hippokration General Hospital, Aristotle University of Thessaloniki, Thessaloniki. Greece
| | - David Rousso
- Third Department of Obstetrics & Gynecology, Hippokration General Hospital, Aristotle University of Thessaloniki, Thessaloniki. Greece
| | - Asterios Karagiannis
- Second Propaedeutic Department of Internal Medicine, Hippokration General Hospital, Aristotle University of Thessaloniki, Thessaloniki. Greece
| | - Apostolos Athanasiadis
- Third Department of Obstetrics & Gynecology, Hippokration General Hospital, Aristotle University of Thessaloniki, Thessaloniki. Greece
| | - Grigoris Grimbizis
- First Department of Obstetrics & Gynecology, "Papageorgiou" General Hospital, Aristotle University of Thessaloniki, Thessaloniki. Greece
| | - Vasilios Athyros
- Second Propaedeutic Department of Internal Medicine, Hippokration General Hospital, Aristotle University of Thessaloniki, Thessaloniki. Greece
| |
Collapse
|
19
|
Budatha M, Zhang J, Schwartz MA. Fibronectin-Mediated Inflammatory Signaling Through Integrin α5 in Vascular Remodeling. J Am Heart Assoc 2021; 10:e021160. [PMID: 34472370 PMCID: PMC8649308 DOI: 10.1161/jaha.121.021160] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 07/07/2021] [Indexed: 12/29/2022]
Abstract
Background Adhesion of vascular endothelial cells to the underlying basement membrane potently modulates endothelial cells to cells' inflammatory activation. The normal basement membrane proteins laminin and collagen IV attenuate inflammatory signaling in part through integrin α2β1. In contrast, fibronectin, the provisional matrix protein found in injured, remodeling or inflamed vessels, sensitizes endothelial cells to inflammatory stimuli through integrins α5β1and and αvβ3. A chimeric integrin in which the cytoplasmic domain of α5 is replaced with that of α2 pairs with β1 and binds fibronectin but signals like α2β1. Methods and Results Here, we examined mice in which integrin α5 is replaced with the α5/2 chimera, using the transverse aortic constriction and partial carotid ligation models of vessel remodeling. Following transverse aortic constriction and partial carotid ligation surgery, wild-type mice showed increased fibronectin deposition and expression of inflammatory markers, which were strongly attenuated in a5/2 mice. α5/2 mice also showed reduced artery wall hypertrophy in the transverse aortic constriction model and diminished inward remodeling in the partial carotid ligation model. Acute atherosclerosis after partial carotid ligation in hyperlipidemic ApoE-/- mice on a high fat diet was dramatically decreased in α5/2 mice. Conclusions Fibronectin and integrin α5 signaling is a key element of pathological vascular remodeling in acute models of both hypertension and disturbed flow. These results underscore the key role for integrin α5 signaling in pathological vascular remodeling associated with hypertension and atherosclerosis and support its potential as a therapeutic target.
Collapse
Affiliation(s)
- Madhusudhan Budatha
- Department of MedicineDivision of NephrologyUniversity of Texas Long School of MedicineSan AntonioTX
- Yale Cardiovascular Research CenterNew HavenCT
- Department of Internal Medicine (Cardiology)Yale School of MedicineNew HavenCT
| | | | - Martin A. Schwartz
- Yale Cardiovascular Research CenterNew HavenCT
- Department of Internal Medicine (Cardiology)Yale School of MedicineNew HavenCT
- Departments of Cell Biology and Biomedical EngineeringYale UniversityNew HavenCT
| |
Collapse
|
20
|
Ogola BO, Clark GL, Abshire CM, Harris NR, Gentry KL, Gunda SS, Kilanowski-Doroh I, Wong TJ, Visniauskas B, Lawrence DJ, Zimmerman MA, Bayer CL, Groban L, Miller KS, Lindsey SH. Sex and the G Protein-Coupled Estrogen Receptor Impact Vascular Stiffness. Hypertension 2021; 78:e1-e14. [PMID: 34024124 PMCID: PMC8192475 DOI: 10.1161/hypertensionaha.120.16915] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Benard O. Ogola
- Tulane University, Department of Pharmacology, New Orleans, LA, USA
| | - Gabrielle L. Clark
- Tulane University, Department of Biomedical Engineering, New Orleans, LA, USA
| | - Caleb M. Abshire
- Tulane University, Department of Pharmacology, New Orleans, LA, USA
| | | | - Kaylee L. Gentry
- Tulane University, Department of Pharmacology, New Orleans, LA, USA
| | - Shreya S. Gunda
- Tulane University, Department of Pharmacology, New Orleans, LA, USA
| | | | - Tristen J. Wong
- Tulane University, Department of Pharmacology, New Orleans, LA, USA
| | | | - Dylan J. Lawrence
- Tulane University, Department of Biomedical Engineering, New Orleans, LA, USA
| | | | - Carolyn L. Bayer
- Tulane University, Department of Biomedical Engineering, New Orleans, LA, USA
| | - Leanne Groban
- Department of Anesthesiology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Kristin S. Miller
- Tulane University, Department of Biomedical Engineering, New Orleans, LA, USA
| | - Sarah H. Lindsey
- Tulane University, Department of Pharmacology, New Orleans, LA, USA
| |
Collapse
|
21
|
Liu J, Chen L, Huang J, Guo S, Zhu D, Gao P. Transient Receptor Potential Melastatin 7 Promotes Vascular Adventitial Fibroblasts Phenotypic Transformation and Inflammatory Reaction Induced by Mechanical Stretching Stress via p38 MAPK/JNK Pathway. J Vasc Res 2021; 58:108-120. [PMID: 33494094 DOI: 10.1159/000512595] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 10/23/2020] [Indexed: 11/19/2022] Open
Abstract
Remodeling of the arteries is one of the pathological bases of hypertension. We have previously shown that transient receptor potential melastatin 7 (TRPM7) aggravates the vascular adventitial remodeling caused by pressure overload in the transverse aortic constriction (TAC) model. In this study, we sought to explore the functional expression and downstream signaling of TRPM7 in vascular adventitial fibroblasts (AFs) stimulated by mechanical stretching stress (MSS). The expression of TRPM7 was upregulated with a concomitant translocation to the cytoplasm in the AFs stimulated with 20% MSS. Meanwhile, the expression of α-smooth muscle actin (α-SMA), a marker of transformation from AFs to myofibroblasts (MFs) was also increased. Moreover, AF-conditioned medium caused a significant migration of macrophages after treatment with MSS and contained high levels of monocyte chemotactic protein-1 (MCP-1), interleukin-6 (IL-6), interleukin-8 (IL-8), and tumor necrosis factor-α (TNF-α). Pharmacological and RNA interference approaches using the TRPM7 inhibitor 2-aminoethoxydiphenyl borate (2-APB) and specific anti-TRPM7 small interfering RNA (si-RNA-TRPM7) abrogated these changes significantly. Further exploration uncloaked that inhibition of TRPM7 reduced the phosphorylation of p38 MAP kinase (p38MAPK) and c-Jun N-terminal kinase (JNK) in the AFs stimulated with MSS. Furthermore, inhibition of the phosphorylation of p38MAPK or JNK could also alleviate the MSS-induced expression of α-SMA and secretion of inflammatory factors. These observations indicate that activated TRPM7 participates in the phenotypic transformation and inflammatory action of AFs in response to MSS through the p38MAPK/JNK pathway and suggest that TRPM7 may be a potential therapeutic target for vascular remodeling caused by hemodynamic changes in hypertension.
Collapse
Affiliation(s)
- Jiachen Liu
- Department of Cardiovascular Medicine, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Laijiang Chen
- Department of Cardiology, Ningbo Medical Center Lihuili Hospital, Zhejiang, Ningbo, China
| | - Jun Huang
- Department of Cardiovascular Medicine, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shujie Guo
- Department of Cardiovascular Medicine, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,
| | - Dingliang Zhu
- Department of Cardiovascular Medicine, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Pingjin Gao
- Department of Cardiovascular Medicine, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
22
|
Rowland E, Bailey E, Weinberg P. Estimating Arterial Cyclic Strain from the Spacing of Endothelial Nuclei. EXPERIMENTAL MECHANICS 2021; 61:171-190. [PMID: 33510542 PMCID: PMC7116634 DOI: 10.1007/s11340-020-00655-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
BACKGROUND The non-uniform distribution of atherosclerosis within the arterial system is widely attributed to variation in haemodynamic wall shear stress. It may also depend on variation in pressure-induced stresses and strains within the arterial wall; these have been less widely investigated, at least in part because of a lack of suitable techniques. OBJECTIVES Here we show that local arterial strain can be determined from impressions left by endothelial cells on the surface of vascular corrosion casts made at different pressures, even though only one pressure can be examined in each vessel. The pattern of pits in the cast caused by protruding endothelial nuclei was subject to "retro-deformation" to identify the pattern that would have occurred in the absence of applied stresses. METHODS Retaining the nearest-neighbour pairs found under this condition, changes in nearest-neighbour vectors were calculated for the pattern seen in the cast, and the ratio of mean changes at different pressures determined. This approach removes errors in simple nearest-neighbour analyses caused by the nearest neighbour changing as deformation occurs. RESULTS The accuracy, precision and robustness of the approach were validated using simulations. The method was implemented using confocal microscopy of casts of the rabbit aorta made at systolic and diastolic pressures; results agreed well with the ratio of the macroscopic dimensions of the casts. CONCLUSIONS Applying the new technique to areas around arterial branches could support or refute the hypothesis that the development of atherosclerosis is influenced by mural strain, and the method may be applicable to other tissues.
Collapse
Affiliation(s)
- E.M. Rowland
- Department of Biomedical Engineering, Imperial College London, London SW7 2AZ, UK
| | - E.L. Bailey
- Department of Biomedical Engineering, Imperial College London, London SW7 2AZ, UK
| | - P.D. Weinberg
- Department of Biomedical Engineering, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
23
|
Humphrey JD. Mechanisms of Vascular Remodeling in Hypertension. Am J Hypertens 2020; 34:432-441. [PMID: 33245319 PMCID: PMC8140657 DOI: 10.1093/ajh/hpaa195] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/09/2020] [Accepted: 11/19/2020] [Indexed: 12/19/2022] Open
Abstract
Hypertension is both a cause and a consequence of central artery stiffening, which in turn is an initiator and indicator of myriad disease conditions and thus all-cause mortality. Such stiffening results from a remodeling of the arterial wall that is driven by mechanical stimuli and mediated by inflammatory signals, which together lead to differential gene expression and concomitant changes in extracellular matrix composition and organization. This review focuses on biomechanical mechanisms by which central arteries remodel in hypertension within the context of homeostasis-what promotes it, what prevents it. It is suggested that the vasoactive capacity of the wall and inflammatory burden strongly influence the ability of homeostatic mechanisms to adapt the arterial wall to high blood pressure or not. Maladaptation, often reflected by inflammation-driven adventitial fibrosis, not just excessive intimal-medial thickening, significantly diminishes central artery function and disturbs hemodynamics, ultimately compromising end organ perfusion and thus driving the associated morbidity and mortality. It is thus suggested that there is a need for increased attention to controlling both smooth muscle phenotype and inflammation in hypertensive remodeling of central arteries, with future studies of the often adaptive response of medium-sized muscular arteries promising to provide additional guidance.
Collapse
Affiliation(s)
- Jay D Humphrey
- Department of Biomedical Engineering, Vascular Biology and Therapeutics Program, Yale University, New Haven, Connecticut, USA,Correspondence: Jay D. Humphrey ()
| |
Collapse
|
24
|
Neubauer‐Geryk J, Wielicka M, Kozera G, Myśliwiec M, Zorena K, Bieniaszewski L. Common carotid pulsatility is deteriorated by autoimmune thyroiditis in children with type 1 diabetes mellitus - A pilot study. Physiol Rep 2020; 8:e14518. [PMID: 32748565 PMCID: PMC7399375 DOI: 10.14814/phy2.14518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/03/2020] [Accepted: 07/03/2020] [Indexed: 01/19/2023] Open
Abstract
Autoimmune thyroiditis (AIT) frequently coexists with type 1 diabetes (DM1) and additionally increases the extent of microcirculatory complications due to DM1. We hypothesized that in pediatric patients with DM1, impairment of macrocirculation could be further augmented by a coexisting autoimmune process. Therefore, we investigated the influence of AIT on large arteries in DM1 pediatric patients. Our group consisted of 19 DM1, 19 DM1 + AIT patients and 29 control subjects. The groups were comparable regarding age and gender. The DM1 and DM1 + AIT patients were matched for age at onset of DM1 and diabetes duration. Macrocirculation was described using pulsatility indices (PIs) determined for common carotid (CCA) and peripheral arteries of upper and lower limbs. CCA resistance index (RI) and ABI were also assessed. Children with DM1 + AIT had only significantly lower CCA_PI and CCA_RI in comparison with controls whereas in the absence of AIT such difference was not found. The diabetes duration and age of onset did not correlate with carotid indices. Total cholesterol level was higher both in DM1 + AIT and DM1 groups than in the control group. For low density lipoproteins cholesterol, a significant difference was found between DM1 + AIT and control groups. Age-independent impact of AIT on CCA_PI was confirmed by multivariate analysis. Common carotid pulsatility is deteriorated by autoimmune thyroiditis independently of age in children with type 1 diabetes mellitus.
Collapse
Affiliation(s)
- Jolanta Neubauer‐Geryk
- Clinical Physiology UnitMedical Simulation CentreMedical University of GdańskGdanskPoland
| | - Melanie Wielicka
- Clinical Physiology UnitMedical Simulation CentreMedical University of GdańskGdanskPoland
| | - Grzegorz Kozera
- Clinical Physiology UnitMedical Simulation CentreMedical University of GdańskGdanskPoland
| | - Małgorzata Myśliwiec
- Department of Pediatrics, Diabetology and EndocrinologyMedical University of GdańskGdanskPoland
| | - Katarzyna Zorena
- Department of Immunobiology and Environmental MicrobiologyMedical University of GdańskGdanskPoland
| | - Leszek Bieniaszewski
- Clinical Physiology UnitMedical Simulation CentreMedical University of GdańskGdanskPoland
| |
Collapse
|
25
|
Trelford CB, Denstedt JT, Armstrong JJ, Hutnik CML. The Pro-Fibrotic Behavior of Human Tenon's Capsule Fibroblasts in Medically Treated Glaucoma Patients. Clin Ophthalmol 2020; 14:1391-1402. [PMID: 32546947 PMCID: PMC7250314 DOI: 10.2147/opth.s245915] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 04/17/2020] [Indexed: 01/13/2023] Open
Abstract
Purpose The aim of this study was to compare human Tenon’s capsule fibroblasts (HTCFs) obtained from patients who received medical therapy for glaucoma (glaucomatous patients) and patients not treated for glaucoma (non-glaucomatous patients) in terms of wound healing and fibrosis. Patients and Methods Bioartificial tissues (BATs) were generated using primary HTCF-populated collagen lattices. Pro-fibrotic gene expression within HTCFs was compared between glaucomatous patients and non-glaucomatous patients after BAT culture. The BATs were also assessed regarding fibroblast–myofibroblast transition, collagen remodeling and collagen contraction using alpha-smooth muscle actin immunohistochemistry, picrosirius red staining and collagen contraction assays, respectively. Results Pro-fibrotic gene expression in BAT-cultured HTCFs derived from glaucomatous patients was significantly increased compared to non-glaucomatous patients. BATs imbued with HTCFs collected from glaucomatous patients exhibited a greater proportion of myofibroblasts as well as increased collagen contraction/remodeling compared to HTCFs isolated from non-glaucomatous patients. Conclusion HTCFs from glaucomatous and non-glaucomatous patients differ in the expression of genes involved in fibrosis, proportion of fibroblasts undergoing transdifferentiation into myofibroblasts, contractile properties and collagen remodeling. These results suggest that for any number of reasons, at a cellular level, patients who received medical therapy for glaucoma have eyes primed for fibrosis.
Collapse
Affiliation(s)
- Charles B Trelford
- Schulich School of Medicine and Dentistry, Department of Physiology and Pharmacology, Western University, London, Ontario, Canada
| | - James T Denstedt
- Schulich School of Medicine and Dentistry, Department of Ophthalmology, Western University, London, Ontario, Canada
| | - James J Armstrong
- Schulich School of Medicine and Dentistry, Department of Ophthalmology, Western University, London, Ontario, Canada.,Schulich School of Medicine and Dentistry, Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada
| | - Cindy M L Hutnik
- Schulich School of Medicine and Dentistry, Department of Ophthalmology, Western University, London, Ontario, Canada.,Schulich School of Medicine and Dentistry, Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada.,Ivey Eye Institute, St. Joseph's Healthcare, London, Ontario, Canada
| |
Collapse
|
26
|
Röhl S, Suur BE, Lengquist M, Seime T, Caidahl K, Hedin U, Arner A, Matic L, Razuvaev A. Lack of PCSK6 Increases Flow-Mediated Outward Arterial Remodeling in Mice. Cells 2020; 9:cells9041009. [PMID: 32325687 PMCID: PMC7225991 DOI: 10.3390/cells9041009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/14/2020] [Accepted: 04/16/2020] [Indexed: 12/17/2022] Open
Abstract
Proprotein convertases (PCSKs) process matrix metalloproteases and cytokines, but their function in the vasculature is largely unknown. Previously, we demonstrated upregulation of PCSK6 in atherosclerotic plaques from symptomatic patients, localization to smooth muscle cells (SMCs) in the fibrous cap and positive correlations with inflammation, extracellular matrix remodeling and cytokines. Here, we hypothesize that PCSK6 could be involved in flow-mediated vascular remodeling and aim to evaluate its role in the physiology of this process using knockout mice. Pcsk6−/− and wild type mice were randomized into control and increased blood flow groups and induced in the right common carotid artery (CCA) by ligation of the left CCA. The animals underwent repeated ultrasound biomicroscopy (UBM) examinations followed by euthanization with subsequent evaluation using wire myography, transmission electron microscopy or histology. The Pcsk6−/− mice displayed a flow-mediated increase in lumen circumference over time, assessed with UBM. Wire myography revealed differences in the flow-mediated remodeling response detected as an increase in lumen circumference at optimal stretch with concomitant reduction in active tension. Furthermore, a flow-mediated reduction in expression of SMC contractile markers SMA, MYH11 and LMOD1 was seen in the Pcsk6−/− media. Absence of PCSK6 increases outward remodeling and reduces medial contractility in response to increased blood flow.
Collapse
Affiliation(s)
- Samuel Röhl
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 171 76 Stockholm, Sweden; (S.R.); (B.E.S.); (M.L.); (T.S.); (K.C.); (U.H.)
| | - Bianca E. Suur
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 171 76 Stockholm, Sweden; (S.R.); (B.E.S.); (M.L.); (T.S.); (K.C.); (U.H.)
| | - Mariette Lengquist
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 171 76 Stockholm, Sweden; (S.R.); (B.E.S.); (M.L.); (T.S.); (K.C.); (U.H.)
| | - Till Seime
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 171 76 Stockholm, Sweden; (S.R.); (B.E.S.); (M.L.); (T.S.); (K.C.); (U.H.)
| | - Kenneth Caidahl
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 171 76 Stockholm, Sweden; (S.R.); (B.E.S.); (M.L.); (T.S.); (K.C.); (U.H.)
- Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, 413 45 Gothenburg, Sweden
| | - Ulf Hedin
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 171 76 Stockholm, Sweden; (S.R.); (B.E.S.); (M.L.); (T.S.); (K.C.); (U.H.)
| | - Anders Arner
- Department of Clinical Sciences Lund, Thoracic Surgery, Lund University, 221 84 Lund, Sweden;
| | - Ljubica Matic
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 171 76 Stockholm, Sweden; (S.R.); (B.E.S.); (M.L.); (T.S.); (K.C.); (U.H.)
- Correspondence: (L.M.); (A.R.); Tel.: +46-(0)-73-962-42-79 (L.M.); +46-(0)-76-238-44-75 (A.R.)
| | - Anton Razuvaev
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 171 76 Stockholm, Sweden; (S.R.); (B.E.S.); (M.L.); (T.S.); (K.C.); (U.H.)
- Correspondence: (L.M.); (A.R.); Tel.: +46-(0)-73-962-42-79 (L.M.); +46-(0)-76-238-44-75 (A.R.)
| |
Collapse
|
27
|
Latorre M, Bersi MR, Humphrey JD. Computational Modeling Predicts Immuno-Mechanical Mechanisms of Maladaptive Aortic Remodeling in Hypertension. INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE 2019; 141:35-46. [PMID: 32831391 PMCID: PMC7437922 DOI: 10.1016/j.ijengsci.2019.05.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Uncontrolled hypertension is a major risk factor for myriad cardiovascular diseases. Among its many effects, hypertension increases central artery stiffness which in turn is both an initiator and indicator of disease. Despite extensive clinical, animal, and basic science studies, the biochemomechanical mechanisms by which hypertension drives aortic stiffening remain unclear. In this paper, we show that a new computational model of aortic growth and remodeling can capture differential effects of induced hypertension on the thoracic and abdominal aorta in a common mouse model of disease. Because the simulations treat the aortic wall as a constrained mixture of different constituents having different material properties and rates of turnover, one can gain increased insight into underlying constituent-level mechanisms of aortic remodeling. Model results suggest that the aorta can mechano-adapt locally to blood pressure elevation in the absence of marked inflammation, but large increases in inflammation drive a persistent maladaptive phenotype characterized primarily by adventitial fibrosis. Moreover, this fibrosis appears to occur via a marked increase in the rate of deposition of collagen having different material properties in the absence of a compensatory increase in the rate of matrix degradation. Controlling inflammation thus appears to be key to reducing fibrosis, but therapeutic strategies should not compromise the proteolytic activity of the wall that is essential to mechanical homeostasis.
Collapse
Affiliation(s)
- Marcos Latorre
- Department of Biomedical Engineering Yale University, New Haven, CT, USA
| | - Matthew R. Bersi
- Department of Biomedical Engineering Vanderbilt University, Nashville, TN, USA
| | - Jay D. Humphrey
- Department of Biomedical Engineering Yale University, New Haven, CT, USA
- Vascular Biology and Therapeutics Program Yale School of Medicine, New Haven, CT, USA
- Corresponding author: (Jay D. Humphrey)
| |
Collapse
|
28
|
Gabriela Espinosa M, Catalin Staiculescu M, Kim J, Marin E, Wagenseil JE. Elastic Fibers and Large Artery Mechanics in Animal Models of Development and Disease. J Biomech Eng 2019; 140:2666245. [PMID: 29222533 DOI: 10.1115/1.4038704] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Indexed: 12/21/2022]
Abstract
Development of a closed circulatory system requires that large arteries adapt to the mechanical demands of high, pulsatile pressure. Elastin and collagen uniquely address these design criteria in the low and high stress regimes, resulting in a nonlinear mechanical response. Elastin is the core component of elastic fibers, which provide the artery wall with energy storage and recoil. The integrity of the elastic fiber network is affected by component insufficiency or disorganization, leading to an array of vascular pathologies and compromised mechanical behavior. In this review, we discuss how elastic fibers are formed and how they adapt in development and disease. We discuss elastic fiber contributions to arterial mechanical behavior and remodeling. We primarily present data from mouse models with elastic fiber deficiencies, but suggest that alternate small animal models may have unique experimental advantages and the potential to provide new insights. Advanced ultrastructural and biomechanical data are constantly being used to update computational models of arterial mechanics. We discuss the progression from early phenomenological models to microstructurally motivated strain energy functions for both collagen and elastic fiber networks. Although many current models individually account for arterial adaptation, complex geometries, and fluid-solid interactions (FSIs), future models will need to include an even greater number of factors and interactions in the complex system. Among these factors, we identify the need to revisit the role of time dependence and axial growth and remodeling in large artery mechanics, especially in cardiovascular diseases that affect the mechanical integrity of the elastic fibers.
Collapse
Affiliation(s)
| | | | - Jungsil Kim
- Department of Mechanical Engineering and Materials Science, Washington University, St. Louis, MO 63130
| | - Eric Marin
- Department of Biomedical Engineering, Saint Louis University, St. Louis, MO 63103
| | - Jessica E Wagenseil
- Department of Mechanical Engineering and Materials Science, Washington University, , St. Louis, MO 63130 e-mail:
| |
Collapse
|
29
|
Armstrong JJ, Denstedt JT, Trelford CB, Li EA, Hutnik CML. Differential effects of dexamethasone and indomethacin on Tenon's capsule fibroblasts: Implications for glaucoma surgery. Exp Eye Res 2019; 182:65-73. [PMID: 30910611 DOI: 10.1016/j.exer.2019.03.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 01/28/2019] [Accepted: 03/19/2019] [Indexed: 12/16/2022]
Abstract
Dysregulated wound healing and subsequent fibrosis represents the most common cause of failure in glaucoma filtration surgery. Primary means to prevent this outcome are the anti-metabolite surgical adjuvants, however, topical corticosteroids are commonly used postoperatively to permit further control of wound healing and development of the filtration bleb. Unfortunately, they carry important side effects such as raised intraocular pressure, cataract and increased infection risk. Non-steroidal anti-inflammatory drugs (NSAIDs) show promising results in clinical trials as an alternative wound modulatory drug. NSAIDs exhibit non-inferiority to steroids in terms of post-operative intraocular pressure control and secondary IOP lowering interventions, however there is little known about the differing effects these drugs exert on human Tenon's capsule fibroblast (HTCF) mediated wound healing. The purpose of this study was to assess the individual effects of dexamethasone and indomethacin on the extracellular matrix modifying actions of HTCFs in vitro. To this end, HTCFs were cultured in 3D collagen matrices as well as in 2D monolayers and exposed to clinically relevant concentrations of dexamethasone or indomethacin for up to seven days. HTCF-mediated wound healing functions were assayed through collagen matrix contraction, extracellular matrix morphology, estimation of HCTF proliferation and differentiation into myofibroblasts within the collagen matrices, as well as western blot. Both drugs significantly reduced HTCF-mediated collagen contraction relative to control however there was a significant trend towards greater inhibition with indomethacin exposure compared to dexamethasone. Indomethacin exposure significantly reduced HTCF-mediated collagen remodelling activity compared vehicle control, whereas dexamethasone was unable to reduce remodelling activity at any of the studied exposures. Both drugs reduced myofibroblast differentiation, however indomethacin alone demonstrated an inhibitory effect on final cell number relative to control whereas dexamethasone had no significant effect at any studied exposure. These findings demonstrate that both steroidal and NSAID treatment can mitigate HTCF-mediated collagen contraction and αSMA expression. However, NSAIDs may function to better impede HTCF proliferation and remodelling activity. Taken in the context of previous glaucoma surgical trials, NSAIDs appear to be a viable alternative to steroids for post-operative wound modulation.
Collapse
Affiliation(s)
- James J Armstrong
- Schulich School of Medicine and Dentistry Department of Ophthalmology, London, Ontario, Canada; Schulich School of Medicine and Dentistry Department of Pathology and Laboratory Medicine, London, Ontario, Canada; Ivey Eye Institute, St. Joseph's Healthcare, London, Ontario, Canada.
| | - James T Denstedt
- Ivey Eye Institute, St. Joseph's Healthcare, London, Ontario, Canada
| | - Charles B Trelford
- Schulich School of Medicine and Dentistry Department of Pathology and Laboratory Medicine, London, Ontario, Canada
| | - Erica A Li
- Schulich School of Medicine and Dentistry Department of Pathology and Laboratory Medicine, London, Ontario, Canada
| | - Cindy M L Hutnik
- Schulich School of Medicine and Dentistry Department of Ophthalmology, London, Ontario, Canada; Schulich School of Medicine and Dentistry Department of Pathology and Laboratory Medicine, London, Ontario, Canada; Ivey Eye Institute, St. Joseph's Healthcare, London, Ontario, Canada
| |
Collapse
|
30
|
Prim DA, Menon V, Hasanian S, Carter L, Shazly T, Potts JD, Eberth JF. Perfusion Tissue Culture Initiates Differential Remodeling of Internal Thoracic Arteries, Radial Arteries, and Saphenous Veins. J Vasc Res 2018; 55:255-267. [PMID: 30179877 DOI: 10.1159/000492484] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 07/23/2018] [Indexed: 01/26/2023] Open
Abstract
Adaptive remodeling processes are essential to the maintenance and viability of coronary artery bypass grafts where clinical outcomes depend strongly on the tissue source. In this investigation, we utilized an ex vivo perfusion bioreactor to culture porcine analogs of common human bypass grafts: the internal thoracic artery (ITA), the radial artery (RA), and the great saphenous vein (GSV), and then evaluated samples acutely (6 h) and chronically (7 days) under in situ or coronary-like perfusion conditions. Although morphologically similar, primary cells harvested from the ITA illustrated lower intimal and medial, but not adventitial, cell proliferation rates than those from the RA or GSV. Basal gene expression levels were similar in all vessels, with only COL3A1, SERPINE1, FN1, and TGFB1 being differentially expressed prior to culture; however, over half of all genes were affected nominally by the culturing process. When exposed to coronary-like conditions, RAs and GSVs experienced pathological remodeling not present in ITAs or when vessels were studied in situ. Many of the remodeling genes perturbed at 6 h were restored after 7 days (COL3A1, FN1, MMP2, and TIMP1) while others (SERPINE1, TGFB1, and VCAM1) were not. The findings elucidate the potential mechanisms of graft failure and highlight strategies to encourage healthy ex vivo pregraft conditioning.
Collapse
Affiliation(s)
- David A Prim
- Biomedical Engineering Program, College of Engineering and Computing, University of South Carolina, Columbia, South Carolina, USA
| | - Vinal Menon
- Department of Cell Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, South Carolina, USA
| | - Shahd Hasanian
- Biomedical Engineering Program, College of Engineering and Computing, University of South Carolina, Columbia, South Carolina, USA
| | - Laurel Carter
- Department of Cell Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, South Carolina, USA
| | - Tarek Shazly
- Biomedical Engineering Program, College of Engineering and Computing, University of South Carolina, Columbia, South Carolina, USA.,Mechanical Engineering, College of Engineering and Computing, University of South Carolina, Columbia, South Carolina, USA
| | - Jay D Potts
- Biomedical Engineering Program, College of Engineering and Computing, University of South Carolina, Columbia, South Carolina, USA.,Department of Cell Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, South Carolina, USA
| | - John F Eberth
- Biomedical Engineering Program, College of Engineering and Computing, University of South Carolina, Columbia, South Carolina, .,Department of Cell Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, South Carolina,
| |
Collapse
|
31
|
Prim DA, Mohamed MA, Lane BA, Poblete K, Wierzbicki MA, Lessner SM, Shazly T, Eberth JF. Comparative mechanics of diverse mammalian carotid arteries. PLoS One 2018; 13:e0202123. [PMID: 30096185 PMCID: PMC6086448 DOI: 10.1371/journal.pone.0202123] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 07/27/2018] [Indexed: 01/07/2023] Open
Abstract
The prevalence of diverse animal models as surrogates for human vascular pathologies necessitate a comprehensive understanding of the differences that exist between species. Comparative passive mechanics are presented here for the common carotid arteries taken from bovine, porcine, ovine, leporine, murine-rat, and murine-mouse specimens. Data is generated using a scalable biaxial mechanical testing device following consistent circumferential (pressure-diameter) and axial (force-length) testing protocols. The structural mechanical response of carotids under equivalent loading, quantified by the deformed inner radius, deformed wall thickness, lumen area compliance and axial force, varies significantly among species but generally follows allometric scaling. Conversely, descriptors of the local mechanical response within the deformed arterial wall, including mean circumferential stress, mid-wall circumferential stretch, and mean axial stress, are relatively consistent across species. Unlike the larger animals studied, the diameter distensibility curves of murine specimens are non-monotonic and have a significantly higher value at 100 mmHg. Taken together, our results provide baseline structural and mechanical information for carotid arteries across a broad range of common animal models.
Collapse
Affiliation(s)
- David A. Prim
- College of Engineering and Computing, Biomedical Engineering Program, University of South Carolina, Columbia, SC, United States of America
| | - Mohamed A. Mohamed
- Cullen College of Engineering, Biomedical Engineering Department, University of Houston, Houston, TX, United States of America
| | - Brooks A. Lane
- College of Engineering and Computing, Biomedical Engineering Program, University of South Carolina, Columbia, SC, United States of America
| | - Kelley Poblete
- College of Health Sciences, Physical Therapy Program, Texas Women’s University, Houston, TX, United States of America
| | - Mark A. Wierzbicki
- Dwight Look College of Engineering, Biomedical Engineering Department, Texas A&M University, College Station, TX, United States of America
| | - Susan M. Lessner
- College of Engineering and Computing, Biomedical Engineering Program, University of South Carolina, Columbia, SC, United States of America
- School of Medicine, Department of Cell Biology and Anatomy, University of South Carolina, Columbia, SC, United States of America
| | - Tarek Shazly
- College of Engineering and Computing, Biomedical Engineering Program, University of South Carolina, Columbia, SC, United States of America
- College of Engineering and Computing, Mechanical Engineering Department, University of South Carolina, Columbia, SC, United States of America
| | - John F. Eberth
- College of Engineering and Computing, Biomedical Engineering Program, University of South Carolina, Columbia, SC, United States of America
- School of Medicine, Department of Cell Biology and Anatomy, University of South Carolina, Columbia, SC, United States of America
- * E-mail:
| |
Collapse
|
32
|
Ogola BO, Zimmerman MA, Clark GL, Abshire CM, Gentry KM, Miller KS, Lindsey SH. New insights into arterial stiffening: does sex matter? Am J Physiol Heart Circ Physiol 2018; 315:H1073-H1087. [PMID: 30028199 DOI: 10.1152/ajpheart.00132.2018] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
This review discusses sexual dimorphism in arterial stiffening, disease pathology interactions, and the influence of sex on mechanisms and pathways. Arterial stiffness predicts cardiovascular mortality independent of blood pressure. Patients with increased arterial stiffness have a 48% higher risk for developing cardiovascular disease. Like other cardiovascular pathologies, arterial stiffness is sexually dimorphic. Young women have lower stiffness than aged-matched men, but this sex difference reverses during normal aging. Estrogen therapy does not attenuate progressive stiffening in postmenopausal women, indicating that currently prescribed drugs do not confer protection. Although remodeling of large arteries is a protective adaptation to higher wall stress, arterial stiffening increases afterload to the left ventricle and transmits higher pulsatile pressure to smaller arteries and target organs. Moreover, an increase in aortic stiffness may precede or exacerbate hypertension, particularly during aging. Additional studies are needed to elucidate the mechanisms by which females are protected from arterial stiffness to provide insight into its mechanisms and, ultimately, therapeutic targets for treating this pathology.
Collapse
Affiliation(s)
- Benard O Ogola
- Department of Pharmacology, Tulane University , New Orleans, Louisiana
| | | | - Gabrielle L Clark
- Department of Biomedical Engineering, Tulane University , New Orleans, Louisiana
| | - Caleb M Abshire
- Department of Pharmacology, Tulane University , New Orleans, Louisiana
| | - Kaylee M Gentry
- Department of Pharmacology, Tulane University , New Orleans, Louisiana
| | - Kristin S Miller
- Department of Biomedical Engineering, Tulane University , New Orleans, Louisiana
| | - Sarah H Lindsey
- Department of Pharmacology, Tulane University , New Orleans, Louisiana
| |
Collapse
|
33
|
Golob MJ, Massoudi D, Tabima DM, Johnston JL, Wolf GD, Hacker TA, Greenspan DS, Chesler NC. Cardiovascular function and structure are preserved despite induced ablation of BMP1-related proteinases. Cell Mol Bioeng 2018; 11:255-266. [PMID: 30123369 DOI: 10.1007/s12195-018-0534-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Introduction Bone morphogenetic protein 1 (BMP1) is part of an extracellular metalloproteinase family that biosynthetically processes procollagen molecules. BMP1- and tolloid-like (TLL1) proteinases mediate the cleavage of carboxyl peptides from procollagen molecules, which is a crucial step in fibrillar collagen synthesis. Ablating the genes that encode BMP1-related proteinases (Bmp1 and Tll1) post-natally results in brittle bones, periodontal defects, and thin skin in conditional knockout (BTKO) mice. Despite the importance of collagen to cardiovascular tissues and the adverse effects of Bmp1 and Tll1 ablation in other tissues, the impact of Bmp1 and Tll1 ablation on cardiovascular performance is unknown. Here, we investigated the role of Bmp1- and Tll1-ablation in cardiovascular tissues by examining ventricular and vascular structure and function in BTKO mice. Methods Ventricular and vascular structure and function were comprehensively quantified in BTKO mice (n=9) and in age- and sex-matched controls (n=9). Echocardiography, cardiac catheterization, and biaxial ex vivo arterial mechanical testing were performed to assess tissue function, and histological staining was used to measure collagen protein content. Results Bmp1- and Tll1-ablation resulted in maintained hemodynamics and cardiovascular function, preserved biaxial arterial compliance, and comparable ventricular and vascular collagen protein content. Conclusions Maintained ventricular and vascular structure and function despite post-natal ablation of Bmp1 and Tll1 suggests that there is an as-yet unidentified compensatory mechanism in cardiovascular tissues. In addition, these findings suggest that proteinases derived from Bmp1 and Tll1 post-natally have less of an impact on cardiovascular tissues compared to skeletal, periodontal, and dermal tissues.
Collapse
Affiliation(s)
- Mark J Golob
- Department of Biomedical Engineering, University of Wisconsin-Madison College of Engineering, Madison, WI 53706 USA
| | - Dawiyat Massoudi
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI 53706 USA
| | - Diana M Tabima
- Department of Biomedical Engineering, University of Wisconsin-Madison College of Engineering, Madison, WI 53706 USA
| | - James L Johnston
- Department of Biomedical Engineering, University of Wisconsin-Madison College of Engineering, Madison, WI 53706 USA
| | - Gregory D Wolf
- Department of Biomedical Engineering, University of Wisconsin-Madison College of Engineering, Madison, WI 53706 USA
| | - Timothy A Hacker
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706 USA
| | - Daniel S Greenspan
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI 53706 USA
| | - Naomi C Chesler
- Department of Biomedical Engineering, University of Wisconsin-Madison College of Engineering, Madison, WI 53706 USA.,Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706 USA
| |
Collapse
|
34
|
Compromised mechanical homeostasis in arterial aging and associated cardiovascular consequences. Biomech Model Mechanobiol 2018; 17:1281-1295. [PMID: 29754316 DOI: 10.1007/s10237-018-1026-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 05/02/2018] [Indexed: 12/19/2022]
Abstract
Aging leads to central artery stiffening and associated hemodynamic sequelae. Because healthy arteries exhibit differential geometry, composition, and mechanical behaviors along the central vasculature, we sought to determine whether wall structure and mechanical function differ across five vascular regions-the ascending and descending thoracic aorta, suprarenal and infrarenal abdominal aorta, and common carotid artery-in 20 versus 100-week-old male wild-type mice. Notwithstanding generally consistent changes across these regions, including a marked thickening of the arterial wall, diminished in vivo axial stretch, and loss of elastic energy storage capacity, the degree of changes tended to be slightly greater in abdominal than in thoracic or carotid vessels. Likely due to the long half-life of vascular elastin, most mechanical changes in the arterial wall resulted largely from a distributed increase in collagen, including thicker fibers in the media, and localized increases in glycosaminoglycans. Changes within the central arteries associated with significant increases in central pulse pressure and adverse changes in the left ventricle, including increased cardiac mass and decreased diastolic function. Given the similar half-life of vascular elastin in mice and humans but very different life-spans, there are important differences in the aging of central vessels across these species. Nevertheless, the common finding of aberrant matrix remodeling contributing to a compromised mechanical homeostasis suggests that studies of central artery aging in the mouse can provide insight into mechanisms and treatment strategies for the many adverse effects of vascular aging in humans.
Collapse
|
35
|
Image-based computational assessment of vascular wall mechanics and hemodynamics in pulmonary arterial hypertension patients. J Biomech 2017; 68:84-92. [PMID: 29310945 DOI: 10.1016/j.jbiomech.2017.12.022] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 11/30/2017] [Accepted: 12/17/2017] [Indexed: 11/20/2022]
Abstract
Pulmonary arterial hypertension (PAH) is a disease characterized by an elevated pulmonary arterial (PA) pressure. While several computational hemodynamic models of the pulmonary vasculature have been developed to understand PAH, they are lacking in some aspects, such as the vessel wall deformation and its lack of calibration against measurements in humans. Here, we describe a computational modeling framework that addresses these limitations. Specifically, computational models describing the coupling of hemodynamics and vessel wall mechanics in the pulmonary vasculature of a PAH patient and a normal subject were developed. Model parameters, consisting of linearized stiffness E of the large vessels and Windkessel parameters for each outflow branch, were calibrated against in vivo measurements of pressure, flow and vessel wall deformation obtained, respectively, from right-heart catheterization, phase-contrast and cine magnetic resonance images. Calibrated stiffness E of the proximal PA was 2.0 and 0.5 MPa for the PAH and normal models, respectively. Calibrated total compliance CT and resistance RT of the distal vessels were, respectively, 0.32 ml/mmHg and 11.3 mmHg∗min/l for the PAH model, and 2.93 ml/mmHg and 2.6 mmHg∗min/l for the normal model. These results were consistent with previous findings that the pulmonary vasculature is stiffer with more constricted distal vessels in PAH patients. Individual effects on PA pressure due to remodeling of the distal and proximal compartments of the pulmonary vasculature were also investigated in a sensitivity analysis. The analysis suggests that the remodeling of distal vasculature contributes more to the increase in PA pressure than the remodeling of proximal vasculature.
Collapse
|
36
|
Jones RS, Chang PH, Perahia T, Harmon KA, Junor L, Yost MJ, Fan D, Eberth JF, Goodwin RL. Design and Fabrication of a Three-Dimensional In Vitro System for Modeling Vascular Stenosis. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2017; 23:859-871. [PMID: 28712382 DOI: 10.1017/s1431927617012302] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Vascular stenosis, the abnormal narrowing of blood vessels, arises from defective developmental processes or atherosclerosis-related adult pathologies. Stenosis triggers a series of adaptive cellular responses that induces adverse remodeling, which can progress to partial or complete vessel occlusion with numerous fatal outcomes. Despite its severity, the cellular interactions and biophysical cues that regulate this pathological progression are poorly understood. Here, we report the design and fabrication of a three-dimensional (3D) in vitro system to model vascular stenosis so that specific cellular interactions and responses to hemodynamic stimuli can be investigated. Tubular cellularized constructs (cytotubes) were produced, using a collagen casting system, to generate a stenotic arterial model. Fabrication methods were developed to create cytotubes containing co-cultured vascular cells, where cell viability, distribution, morphology, and contraction were examined. Fibroblasts, bone marrow primary cells, smooth muscle cells (SMCs), and endothelial cells (ECs) remained viable during culture and developed location- and time-dependent morphologies. We found cytotube contraction to depend on cellular composition, where SMC-EC co-cultures adopted intermediate contractile phenotypes between SMC- and EC-only cytotubes. Our fabrication approach and the resulting artery model can serve as an in vitro 3D culture system to investigate vascular pathogenesis and promote the tissue engineering field.
Collapse
Affiliation(s)
- Rebecca S Jones
- 1Biomedical Engineering Program,College of Engineering and Computing,University of South Carolina,Columbia,SC 29208,USA
| | - Pin H Chang
- 1Biomedical Engineering Program,College of Engineering and Computing,University of South Carolina,Columbia,SC 29208,USA
| | - Tzlil Perahia
- 2Department of Cell Biology and Anatomy,School of Medicine,University of South Carolina,Columbia,SC 29209,USA
| | - Katrina A Harmon
- 2Department of Cell Biology and Anatomy,School of Medicine,University of South Carolina,Columbia,SC 29209,USA
| | - Lorain Junor
- 2Department of Cell Biology and Anatomy,School of Medicine,University of South Carolina,Columbia,SC 29209,USA
| | - Michael J Yost
- 3Department of Surgery,Medical University of South Carolina,Charleston,SC 29425,USA
| | - Daping Fan
- 1Biomedical Engineering Program,College of Engineering and Computing,University of South Carolina,Columbia,SC 29208,USA
| | - John F Eberth
- 1Biomedical Engineering Program,College of Engineering and Computing,University of South Carolina,Columbia,SC 29208,USA
| | - Richard L Goodwin
- 4Department of Biomedical Sciences,School of Medicine,University of South Carolina,Greenville,SC 29605,USA
| |
Collapse
|
37
|
Physical Activity Guided by Pulse Pressure in Patients With Continuous Flow Left Ventricular Assist Devices. Circulation 2017; 135:1567-1569. [DOI: 10.1161/circulationaha.116.026000] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
38
|
Strangman GE, Zhang Q, Marshall-Goebel K, Mulder E, Stevens B, Clark JB, Bershad EM. Increased cerebral blood volume pulsatility during head-down tilt with elevated carbon dioxide: the SPACECOT Study. J Appl Physiol (1985) 2017; 123:62-70. [PMID: 28360122 DOI: 10.1152/japplphysiol.00947.2016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 03/27/2017] [Accepted: 03/27/2017] [Indexed: 01/17/2023] Open
Abstract
Astronauts aboard the International Space Station (ISS) have exhibited hyperopic shifts, posterior eye globe flattening, dilated optic nerve sheaths, and even optic disk swelling from spaceflight. Elevated intracranial pressure (ICP) consequent to cephalad fluid shifts is commonly hypothesized as contributing to these ocular changes. Head-down tilt (HDT) is frequently utilized as an Earth-based analog to study similar fluid shifts. Sealed environments like the ISS also exhibit elevated CO2, a potent arteriolar vasodilator that could further affect cerebral blood volume (CBV) and cerebral blood flow, intracranial compliance, and ICP. A collaborative pilot study between the National Space Biomedical Research Institute and the German Aerospace Center tested the hypotheses that 1) HDT and elevated CO2 physiologically interact and 2) cerebrovascular pulsatility is related to HDT and/or elevated CO2 In a double-blind crossover study (n = 6), we measured CBV pulsatility via near-infrared spectroscopy, alongside noninvasive ICP and intraocular pressure (IOP) during 28-h -12° HDT at both nominal (0.04%) and elevated (0.5%) ambient CO2 In our cohort, CBV pulsatility increased significantly over time at cardiac frequencies (0.031 ± 0.009 μM/h increase in total hemoglobin concentration pulsatility amplitude) and Mayer wave frequencies (0.019 ± 0.005 μM/h increase). The HDT-CO2 interaction on pulsatility was not robust but rather driven by one individual. Significant differences between atmospheres were not detected in ICP or IOP. Further work is needed to determine whether individual differences in pulsatility responses to CO2 relate to visual changes in space.NEW & NOTEWORTHY Cerebral blood volume (CBV) pulsatility-as measured by near-infrared spectroscopy-increases over time during -12° head-down tilt at both cardiac and Mayer wave frequencies. CBV pulsatility appeared to increase more under elevated (0.5%) CO2 at Mayer wave frequencies in some individuals. If similar dynamic pulsatility increases occur in astronauts, there is the potential to initiate vascular and possibly other remodeling processes that lead to symptoms associated with sustained increases in intracranial pressure.
Collapse
Affiliation(s)
- Gary E Strangman
- Neural Systems Group, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts; .,Center for Space Medicine, Baylor College of Medicine, Houston, Texas.,National Space Biomedical Research Institute, Houston, Texas; and
| | - Quan Zhang
- Neural Systems Group, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts.,Center for Space Medicine, Baylor College of Medicine, Houston, Texas
| | - Karina Marshall-Goebel
- Neural Systems Group, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts.,Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
| | - Edwin Mulder
- Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
| | - Brian Stevens
- Department of Neurology, Baylor College of Medicine, Houston, Texas
| | - Jonathan B Clark
- Department of Neurology, Baylor College of Medicine, Houston, Texas.,Center for Space Medicine, Baylor College of Medicine, Houston, Texas.,National Space Biomedical Research Institute, Houston, Texas; and
| | - Eric M Bershad
- Department of Neurology, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
39
|
Vriz O, Favretto S, Jaroch J, Wojciech R, Bossone E, Driussi C, Antonini-Canterin F, Palatini P, Loboz-Grudzien K. Left Ventricular Function Assessed by One-Point Carotid Wave Intensity in Newly Diagnosed Untreated Hypertensive Patients. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2017; 36:25-35. [PMID: 27925647 DOI: 10.7863/ultra.16.02031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 04/14/2016] [Indexed: 06/06/2023]
Abstract
OBJECTIVES To investigate whether newly diagnosed untreated hypertensive patients show higher left ventricular (LV) contractility, as assessed by traditional echocardiographic indices and carotid wave intensity (WI) parameters, including amplitude of the peak during early (W1 ) and late systole (W2 ). METHODS A total of 145 untreated hypertensive patients were compared with 145 age- and sex-matched normotensive subjects. They underwent comprehensive echocardiography and WI analysis. WI analysis was performed at the level of the common carotid artery. The diameter changes were the difference between the displacement of the anterior and posterior walls, with the cursors set to track the media-adventitia boundaries 2 cm proximal to the carotid bulb and calibrated by systolic and diastolic BP. Peak acceleration was derived from blood flow velocity measured by Doppler sonography with the range-gate positioned at the center of the vessel diameter. WI was based on the calculation of (dP/dt)×(dU/dt), where dP/dt and dU/dt were the derivatives of BP (P) and velocity (U) with respect to time. One-point pulse wave velocity (PWVβ) and the interval between the R wave on ECG and the first peak of WI (R-W1 ), using a high definition echo-tracking system implemented in the ultrasound machine (Aloka), were also derived. RESULTS After adjustment for body weight, heart rate, and physical activity, the two groups had similar general characteristics and diastolic function. However, hypertensives showed significantly higher LV mass, LV ejection fraction (LVEF), circumferential and LV end-systolic stress, and one-point PWV as well as W1 (13.646 ± 7.368 vs 9.308 ± 4.675 mmHg m/s3 , P =.001) and W2 (4.289 ± 2.017 vs 2.995 ± 1.868 mmHg m/s3 , P =.001). Hypertensives were divided into tertiles according to LVEF: W1 (11.934 ± 5.836 vs 11.576 ± 5.857 vs 17.227 ± 8.889 mmHg m/s3 , P <.0001) was higher in the highest LVEF tertile along with relative wall thickness, midwall fractional shortening, endocardial fractional shortening, and R-W1 . CONCLUSIONS Newly diagnosed hypertensives show increased LVM and LV contractility, including carotid WI parameters and R-W1 values, as compared with normotensive subjects, but no differences in LV diastolic function.
Collapse
Affiliation(s)
- Olga Vriz
- Department of Cardiology and Emergency Medicine, Sant'Antonio Hospital, San Daniele del Friuli, Udine, Italy
| | - Serena Favretto
- Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| | - Joanna Jaroch
- Department of Cardiology, T. Marciniak Hospital, Wroclaw Medical University, Wroclaw, Poland
| | - Rychard Wojciech
- Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| | - Eduardo Bossone
- Department of Cardiology, Cava de' Tirreni and Amalfi Coast Hospital, Heart Department, University of Salerno, Salerno, Italy
| | - Caterina Driussi
- Department of Cardiology and Emergency Medicine, Sant'Antonio Hospital, San Daniele del Friuli, Udine, Italy
| | | | - Paolo Palatini
- Department of Internal Medicine, University of Padova, Padua, Italy
| | | |
Collapse
|
40
|
Guo SJ, Zhang P, Wu LY, Zhang GN, Chen WD, Gao PJ. Adenovirus-Mediated Overexpression of Septin 2 Attenuates α-Smooth Muscle Actin Expression and Adventitial Myofibroblast Migration Induced by Angiotensin II. J Vasc Res 2016; 53:309-316. [PMID: 27974709 DOI: 10.1159/000452413] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 10/09/2016] [Indexed: 11/19/2022] Open
Abstract
Phenotypic transformation from adventitial fibroblasts (AFs) to myofibroblasts (MFs) is critical for vascular remodeling. Septin 2 was found to be downregulated during the differentiation of AFs to MFs induced by angiotensin II (Ang II); however, the role of septin 2 in this process is still unknown. In this study, we investigate whether septin 2 contributes to the adventitial MF phenotypic modulation caused by Ang II. The decreased level of septin 2 and the increased expression of α-smooth muscle actin (α-SMA), a marker of MFs, were readily observed in Ang II-stimulated MF differentiation. After gene transfer of septin 2, the expression of α-SMA was markedly decreased and the MF migration response to Ang II was inhibited. Furthermore, the inhibition of RhoA, another molecule involved in MF phenotypic modulation, decreased the motility of MFs and the expression of septin 2 triggered in Ang II. Finally, transfection of septin 2 rescued the level of acetyl-α-tubulin in MFs. These findings demonstrate that, as a downstream molecule of RhoA, septin 2 blunted the responses of AFs to Ang II by protecting α-tubulin acetylation, which suggests that septin 2 may serve as a potential therapeutic target for vascular injury.
Collapse
Affiliation(s)
- Shu-Jie Guo
- Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | | | | | | | | | | |
Collapse
|
41
|
Computational Study of Anatomical Risk Factors in Idealized Models of Type B Aortic Dissection. Eur J Vasc Endovasc Surg 2016; 52:736-745. [PMID: 27561609 DOI: 10.1016/j.ejvs.2016.07.025] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 07/19/2016] [Indexed: 11/21/2022]
Abstract
OBJECTIVE/BACKGROUND Several risk factors have been identified in type B aortic dissection (TBAD), namely tear size, location, patency and number, and false lumen (FL) location. However, the individual impact of each of these factors is poorly understood. The impact of these factors was investigated using computational fluid dynamics (CFD). METHODS Fourteen idealized models of chronic TBAD were created of different shapes (straight vs. curved vessels), different number of proximal and distal tears, tear size (4, 10, and 20 mm diameter) and shape (circular or elliptical), FL location (inner or outer arch), treated (stented), and untreated. All models had identical length, relative size of true lumen (TL) and FL, and inlet (flow) and outlet (pressure) boundary conditions. Using validated CFD tools, inlet mean pressure (MP), pulse pressure (PP), TL and FL pressures, velocities, and flows were computed for each model. RESULTS AD increased PP and MP relative to undissected aorta. Curvature did not change pressure and flow ratio between TL and FL. Inner curvature FL showed slightly larger pressures and tear velocities. Larger tears decreased hemodynamic differences between TL and FL. The combination of proximal and distal tear size determines the overall hemodynamics: larger proximal tears increased FL PP by up to 76%. Conversely, larger distal tears decreased FL PP and MP. Large proximal and distal tears decreased tear velocity (by up to 65%) and increased FL flow (up to 12 times). Proximal tear stenting resulted in a 54% reduction of PP. Conversely, distal occlusion tear increased FL PP and MP by 144% and 7%, respectively. CONCLUSION Unfavorable hemodynamic conditions such as larger FL pressure occur when distal tear is small or absent, proximal tears are large, and FL is at the inner curvature, in agreement with previous clinical studies. CFD analysis is a powerful tool to understand the interplay between anatomy and hemodynamics in TBAD.
Collapse
|
42
|
Pulmonary Arterial Stiffness: Toward a New Paradigm in Pulmonary Arterial Hypertension Pathophysiology and Assessment. Curr Hypertens Rep 2016; 18:4. [PMID: 26733189 DOI: 10.1007/s11906-015-0609-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Stiffening of the pulmonary arterial bed with the subsequent increased load on the right ventricle is a paramount feature of pulmonary hypertension (PH). The pathophysiology of vascular stiffening is a complex and self-reinforcing function of extracellular matrix remodeling, driven by recruitment of circulating inflammatory cells and their interactions with resident vascular cells, and mechanotransduction of altered hemodynamic forces throughout the ventricular-vascular axis. New approaches to understanding the cell and molecular determinants of the pathophysiology combine novel biopolymer substrates, controlled flow conditions, and defined cell types to recapitulate the biomechanical environment in vitro. Simultaneously, advances are occurring to assess novel parameters of stiffness in vivo. In this comprehensive state-of-art review, we describe clinical hemodynamic markers, together with the newest translational echocardiographic and cardiac magnetic resonance imaging methods, to assess vascular stiffness and ventricular-vascular coupling. Finally, fluid-tissue interactions appear to offer a novel route of investigating the mechanotransduction processes and disease progression.
Collapse
|
43
|
Affiliation(s)
- Stephanie Lehoux
- From the Lady Davis Institute for Medical Research, Department of Medicine, McGill University, Montreal, QC, Canada
| |
Collapse
|
44
|
Bersi MR, Bellini C, Wu J, Montaniel KRC, Harrison DG, Humphrey JD. Excessive Adventitial Remodeling Leads to Early Aortic Maladaptation in Angiotensin-Induced Hypertension. Hypertension 2016; 67:890-896. [PMID: 27001298 DOI: 10.1161/hypertensionaha.115.06262] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 01/22/2016] [Indexed: 01/27/2023]
Abstract
The primary function of central arteries is to store elastic energy during systole and to use it to sustain blood flow during diastole. Arterial stiffening compromises this normal mechanical function and adversely affects end organs, such as the brain, heart, and kidneys. Using an angiotensin II infusion model of hypertension in wild-type mice, we show that the thoracic aorta exhibits a dramatic loss of energy storage within 2 weeks that persists for at least 4 weeks. This diminished mechanical functionality results from increased structural stiffening as a result of an excessive accumulation of adventitial collagen, not a change in the intrinsic stiffness of the wall. A detailed analysis of the transmural biaxial wall stress suggests that the exuberant production of collagen results more from an inflammatory response than from a mechano-adaptation, hence reinforcing the need to control inflammation, not just blood pressure. Although most clinical assessments of arterial stiffening focus on intimal-medial thickening, these results suggest a need to measure and control the highly active and important adventitia.
Collapse
Affiliation(s)
- Mathew R Bersi
- Department of Biomedical Engineering, Yale University, New Haven, CT
| | - Chiara Bellini
- Department of Biomedical Engineering, Yale University, New Haven, CT
| | - Jing Wu
- Departments of Medicine and Pharmacology, Vanderbilt University, Nashville, TN
| | - Kim R C Montaniel
- Departments of Medicine and Pharmacology, Vanderbilt University, Nashville, TN
| | - David G Harrison
- Departments of Medicine and Pharmacology, Vanderbilt University, Nashville, TN
| | - Jay D Humphrey
- Department of Biomedical Engineering, Yale University, New Haven, CT.,Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT
| |
Collapse
|
45
|
Kim SA, Park SH, Jo SH, Park KH, Kim HS, Han SJ, Park WJ, Ha JW. Alterations of carotid arterial mechanics preceding the wall thickening in patients with hypertension. Atherosclerosis 2016; 248:84-90. [PMID: 26990725 DOI: 10.1016/j.atherosclerosis.2016.02.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 02/10/2016] [Accepted: 02/13/2016] [Indexed: 12/22/2022]
Abstract
BACKGROUND AND AIMS Carotid intima-media thickness (cIMT) is an established surrogate marker of atherosclerosis. However, cIMT may not reflect the whole arterial changes occurring in various pathologic conditions, such as hypertension. The aim of this study was to evaluate whether vascular properties of carotid artery (CA) in patients with hypertension differ from those of patients with diabetes and controls before the progression of cIMT. METHODS Vascular properties of CA were assessed in 402 consecutive asymptomatic subjects who have normal cIMT (131 with hypertension, 151 with diabetes mellitus, and 120 controls). Conventional carotid stiffness indices calculated from vessel diameter and blood pressure, and parameters from velocity-vector imaging (VVI), including vessel area, fractional area change (FAC), radial velocity, circumferential strain, and strain rate were measured to assess the differences between the groups. RESULTS In univariate analysis, both patients with hypertension and diabetes showed higher elastic modulus, lower distensibility coefficients and FAC of VVI than those of controls. However, when adjusting for baseline covariates, only FAC (odds ratio [OR] = 0.82, 95% confidence interval [CI] = 0.70-0.97, p = 0.025) and vessel area (OR = 2.84, 95% CI = 1.64-4.91, p < 0.001) discriminated CA of patients with hypertension from those of controls. Also, patients with hypertension showed larger vessel area than diabetes (OR = 2.58, 95% CI = 1.75-3.80, p < 0.001) independent of baseline covariates. No significant vascular parameter was found to discriminate patients with diabetes from controls after adjustments. CONCLUSION Despite normal cIMT, the CA of hypertensive patients was stiffer than those of controls and positive remodeling preceded the wall thickening independent of baseline covariates.
Collapse
Affiliation(s)
- Sung-Ai Kim
- Division of Cardiology, Hallym Sacred Heart Hospital, Hallym University College of Medicine, Anyang, South Korea
| | - Sun-Hee Park
- Division of Cardiology, Hallym Sacred Heart Hospital, Hallym University College of Medicine, Anyang, South Korea
| | - Sang-Ho Jo
- Division of Cardiology, Hallym Sacred Heart Hospital, Hallym University College of Medicine, Anyang, South Korea
| | - Kyoung-Ha Park
- Division of Cardiology, Hallym Sacred Heart Hospital, Hallym University College of Medicine, Anyang, South Korea
| | - Hyun-Sook Kim
- Division of Cardiology, Hallym Sacred Heart Hospital, Hallym University College of Medicine, Anyang, South Korea
| | - Sang-Jin Han
- Division of Cardiology, Hallym Sacred Heart Hospital, Hallym University College of Medicine, Anyang, South Korea
| | - Woo-Jung Park
- Division of Cardiology, Hallym Sacred Heart Hospital, Hallym University College of Medicine, Anyang, South Korea
| | - Jong-Won Ha
- Division of Cardiology, Severance Cardiovascular Hospital, Yonsei University College of Medicine, Seoul, South Korea.
| |
Collapse
|
46
|
Prim DA, Zhou B, Hartstone-Rose A, Uline MJ, Shazly T, Eberth JF. A mechanical argument for the differential performance of coronary artery grafts. J Mech Behav Biomed Mater 2015; 54:93-105. [PMID: 26437296 DOI: 10.1016/j.jmbbm.2015.09.017] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 09/03/2015] [Accepted: 09/14/2015] [Indexed: 12/17/2022]
Abstract
Coronary artery bypass grafting (CABG) acutely disturbs the homeostatic state of the transplanted vessel making retention of graft patency dependent on chronic remodeling processes. The time course and extent to which remodeling restores vessel homeostasis will depend, in part, on the nature and magnitude of the mechanical disturbances induced upon transplantation. In this investigation, biaxial mechanical testing and histology were performed on the porcine left anterior descending artery (LAD) and analogs of common autografts, including the internal thoracic artery (ITA), radial artery (RA), great saphenous vein (GSV) and lateral saphenous vein (LSV). Experimental data were used to quantify the parameters of a structure-based constitutive model enabling prediction of the acute vessel mechanical response pre-transplantation and under coronary loading conditions. A novel metric Ξ was developed to quantify mechanical differences between each graft vessel in situ and the LAD in situ, while a second metric Ω compares the graft vessels in situ to their state under coronary loading. The relative values of these metrics among candidate autograft sources are consistent with vessel-specific variations in CABG clinical success rates with the ITA as the superior and GSV the inferior graft choices based on mechanical performance. This approach can be used to evaluate other candidate tissues for grafting or to aid in the development of synthetic and tissue engineered alternatives.
Collapse
Affiliation(s)
- David A Prim
- University of South Carolina, Biomedical Engineering Program, Columbia, SC, USA
| | - Boran Zhou
- University of South Carolina, Biomedical Engineering Program, Columbia, SC, USA
| | - Adam Hartstone-Rose
- University of South Carolina School of Medicine, Department of Cell Biology and Anatomy, Columbia, SC, USA; University of South Carolina, Department of Anthropology, Columbia, SC, USA
| | - Mark J Uline
- University of South Carolina, Biomedical Engineering Program, Columbia, SC, USA; University of South Carolina, Department of Chemical Engineering, Columbia, SC, USA
| | - Tarek Shazly
- University of South Carolina, Biomedical Engineering Program, Columbia, SC, USA; University of South Carolina, Department of Mechanical Engineering, Columbia, SC, USA
| | - John F Eberth
- University of South Carolina, Biomedical Engineering Program, Columbia, SC, USA; University of South Carolina School of Medicine, Department of Cell Biology and Anatomy, Columbia, SC, USA.
| |
Collapse
|
47
|
Simons M, Alitalo K, Annex BH, Augustin HG, Beam C, Berk BC, Byzova T, Carmeliet P, Chilian W, Cooke JP, Davis GE, Eichmann A, Iruela-Arispe ML, Keshet E, Sinusas AJ, Ruhrberg C, Woo YJ, Dimmeler S. State-of-the-Art Methods for Evaluation of Angiogenesis and Tissue Vascularization: A Scientific Statement From the American Heart Association. Circ Res 2015; 116:e99-132. [PMID: 25931450 DOI: 10.1161/res.0000000000000054] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
48
|
Ferruzzi J, Bersi MR, Uman S, Yanagisawa H, Humphrey JD. Decreased elastic energy storage, not increased material stiffness, characterizes central artery dysfunction in fibulin-5 deficiency independent of sex. J Biomech Eng 2015; 137:2087213. [PMID: 25532020 PMCID: PMC4321117 DOI: 10.1115/1.4029431] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2014] [Revised: 12/18/2014] [Indexed: 01/12/2023]
Abstract
Central artery stiffness has emerged over the past 15 years as a clinically significant indicator of cardiovascular function and initiator of disease. Loss of elastic fiber integrity is one of the primary contributors to increased arterial stiffening in aging, hypertension, and related conditions. Elastic fibers consist of an elastin core and multiple glycoproteins; hence defects in any of these constituents can adversely affect arterial wall mechanics. In this paper, we focus on mechanical consequences of the loss of fibulin-5, an elastin-associated glycoprotein involved in elastogenesis. Specifically, we compared the biaxial mechanical properties of five central arteries-the ascending thoracic aorta, descending thoracic aorta, suprarenal abdominal aorta, infrarenal abdominal aorta, and common carotid artery-from male and female wild-type and fibulin-5 deficient mice. Results revealed that, independent of sex, all five regions in the fibulin-5 deficient mice manifested a marked increase in structural stiffness but also a marked decrease in elastic energy storage and typically an increase in energy dissipation, with all differences being most dramatic in the ascending and abdominal aortas. Given that the primary function of large arteries is to store elastic energy during systole and to use this energy during diastole to work on the blood, fibulin-5 deficiency results in a widespread diminishment of central artery function that can have significant effects on hemodynamics and cardiac function.
Collapse
Affiliation(s)
- J. Ferruzzi
- Department of Biomedical Engineering,Malone Engineering Center,Yale University,New Haven, CT 06520
| | - M. R. Bersi
- Department of Biomedical Engineering,Malone Engineering Center,Yale University,New Haven, CT 06520
| | - S. Uman
- Department of Biomedical Engineering,Malone Engineering Center,Yale University,New Haven, CT 06520
| | - H. Yanagisawa
- Department of Molecular Biology,University of Texas SouthwesternMedical Center,Dallas, TX 75390
| | - J. D. Humphrey
- Fellow ASMEDepartment of Biomedical Engineering,Malone Engineering Center,Yale University,New Haven, CT 06520
- Vascular Biology and Therapeutics Program,Yale School of Medicine,New Haven, CT 06510e-mail:
| |
Collapse
|
49
|
Le VP, Yamashiro Y, Yanagisawa H, Wagenseil JE. Measuring, reversing, and modeling the mechanical changes due to the absence of Fibulin-4 in mouse arteries. Biomech Model Mechanobiol 2014; 13:1081-95. [PMID: 24526456 DOI: 10.1007/s10237-014-0556-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Accepted: 01/27/2014] [Indexed: 11/28/2022]
Abstract
Mice with a smooth muscle cell (SMC)-specific deletion of Fibulin-4 (SMKO) show decreased expression of SMC contractile genes, decreased circumferential compliance, and develop aneurysms in the ascending aorta. Neonatal administration of drugs that inhibit the angiotensin II pathway encourages the expression of contractile genes and prevents aneurysm development, but does not increase compliance in SMKO aorta. We hypothesized that multidimensional mechanical changes in the aorta and/or other elastic arteries may contribute to aneurysm pathophysiology. We found that the SMKO ascending aorta and carotid artery showed mechanical changes in the axial direction. These changes were not reversed by angiotensin II inhibitors, hence reversing the axial changes is not required for aneurysm prevention. Mechanical changes in the circumferential direction were specific to the ascending aorta; therefore, mechanical changes in the carotid do not contribute to aortic aneurysm development. We also hypothesized that a published model of postnatal aortic growth and remodeling could be used to investigate mechanisms behind the changes in SMKO aorta and aneurysm development over time. Dimensions and mechanical behavior of adult SMKO aorta were reproduced by the model after modifying the initial component material constants and the aortic dilation with each postnatal time step. The model links biological observations to specific mechanical responses in aneurysm development and treatment.
Collapse
Affiliation(s)
- Victoria P Le
- Department of Biomedical Engineering, Saint Louis University, St. Louis, MO, USA
| | | | | | | |
Collapse
|
50
|
Roccabianca S, Figueroa C, Tellides G, Humphrey J. Quantification of regional differences in aortic stiffness in the aging human. J Mech Behav Biomed Mater 2014; 29:618-34. [PMID: 23499251 PMCID: PMC3842391 DOI: 10.1016/j.jmbbm.2013.01.026] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 01/28/2013] [Accepted: 01/30/2013] [Indexed: 01/29/2023]
Abstract
There has been a growing awareness over the past decade that stiffening of the aorta, and its attendant effects on hemodynamics, is both an indicator and initiator of diverse cardiovascular, neurovascular, and renovascular diseases. Although different clinical metrics of arterial stiffness have been proposed and found useful in particular situations, there remains a need to understand better the complex interactions between evolving aortic stiffness and the hemodynamics. Computational fluid-solid-interaction (FSI) models are amongst the most promising means to understand such interactions for one can parametrically examine effects of regional variations in material properties and arterial geometry on local and systemic blood pressure and flow. Such models will not only increase our understanding, they will also serve as important steps towards the development of fluid-solid-growth (FSG) models that can further examine interactions between the evolving wall mechanics and hemodynamics that lead to arterial adaptations or disease progression over long periods. In this paper, we present a consistent quantification and comparison of regional nonlinear biaxial mechanical properties of the human aorta based on 19 data sets available in the literature and we calculate associated values of linearized stiffness over the cardiac cycle that are useful for initial large-scale FSI and FSG simulations. It is shown, however, that there is considerable variability amongst the available data and consequently that there is a pressing need for more standardized biaxial testing of the human aorta to collect data as a function of both location and age, particularly for young healthy individuals who serve as essential controls.
Collapse
Affiliation(s)
- S. Roccabianca
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520-8260, USA
| | - C.A. Figueroa
- Department of Bioengineering, King’s College London, England, SE1 8WA, UK
| | - G. Tellides
- Department of Surgery, Yale School of Medicine, New Haven, CT 06510, USA
- Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT 06510, USA
| | - J.D. Humphrey
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520-8260, USA
- Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT 06510, USA
| |
Collapse
|