1
|
Moomivand S, Nikbakht M, Majd A, Bikhof Torbati M, Mousavi SA. Synergistic Enhancement of Apo2L/TRAIL and DR4-Induced Apoptosis by Arsenic Trioxide in Triple-Negative Breast Cancer Cells: A Comparison to Conventional Chemotherapy. Cell Biochem Biophys 2025:10.1007/s12013-025-01764-9. [PMID: 40293700 DOI: 10.1007/s12013-025-01764-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/17/2025] [Indexed: 04/30/2025]
Abstract
Triple-negative breast cancer (TNBC) is an aggressive subtype lacking hormonal and HER2 receptors, making it highly resistant to treatment. Apo2L/TRAIL, a tumor necrosis factor-related ligand, induces apoptosis in cancer cells via the death receptor DR4. However, TNBC often develops resistance to TRAIL-mediated apoptosis, limiting its therapeutic potential. This study investigates whether arsenic trioxide (ATO) can overcome TRAIL resistance by modulating the Apo2L/TRAIL pathway and enhancing the effects of carboplatin (CP) and cyclophosphamide (CY). TNBC cell lines BT-20 and MDA-MB-231 were treated with ATO, CP, CY, and their combinations. Cell viability was measured using the MTT assay, while real-time PCR and Western blot analysis assessed Apo2L/TRAIL and DR4 expression. Statistical analysis was performed using ANOVA with Dunnett's post hoc test. ATO induced dose-dependent cytotoxicity in TNBC cells, which was significantly enhanced in combination treatments. The highest reductions in cell viability were observed with 3 µM ATO plus 5000 µM CP or 500 µM CY (p < 0.0001). ATO markedly upregulated Apo2L/TRAIL and DR4 at both mRNA and protein levels, with the most pronounced effects seen in ATO-CY combinations. These findings indicate that ATO sensitizes TNBC cells to TRAIL-mediated apoptosis by upregulating DR4 and Apo2L/TRAIL, while also exhibiting strong synergistic cytotoxicity with CP and CY. This highlights ATO's potential as an adjuvant therapy to improve TNBC treatment efficacy and overcome chemoresistance, warranting further clinical exploration.
Collapse
Affiliation(s)
- Soraya Moomivand
- Department of Biology, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Mohsen Nikbakht
- Research Institute for Oncology, Hematology and Cell Therapy Tehran University of Medical Sciences, Tehran, Iran.
- Cell Therapy and Hematopoietic Stem Cell Transplantation Research Center, Tehran, Iran.
| | - Ahmad Majd
- Department of Biology, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Maryam Bikhof Torbati
- Department of Biology, Yadegar-e-Imam Khomeini (RAH) Shahre rey branch, Islamic Azad University, Tehran, Iran
| | - Seyed Asadoullah Mousavi
- Research Institute for Oncology, Hematology and Cell Therapy Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Alharbi KS, Alenezi SK, Alsahli T, Afzal M, Mantargi MJS, Kazmi I, Sayyed N. Effect of sakuranetin against cyclophosphamide-induced immunodeficiency mice: role of IFN-γ/TNF-α/IgG/IgM/interleukins. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-03988-1. [PMID: 40056204 DOI: 10.1007/s00210-025-03988-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 02/25/2025] [Indexed: 03/10/2025]
Abstract
Cyclophosphamide is a widely used chemotherapeutic agent known for its effectiveness in treating various cancers; however, it is associated with significant immunosuppressive side effects. This study investigates the potential of sakuranetin, a natural flavonoid, in mice under cyclophosphamide-induced immunosuppressive conditions. Mice were grouped into four groups: one control group, two treated with cyclophosphamide and two sakuranetin-treated groups receiving different doses (10 and 20 mg/kg). Immune organ indices, lymphocyte proliferation, hematological parameters, nitric oxide levels, cytokines (tumor necrosis factor alpha-TNF-α, interferon γ-IFN-γ), interleukins (interleukin-1β-IL-1β, IL-4, IL-6), immunoglobulin G (IgG), IgM levels, plague-forming cells quantification, qualitative hemolysis, and delayed-type hypersensitivity were assessed. Cyclophosphamide significantly (P < 0.05) reduced immune organ indices, lymphocyte proliferation, changes in hematological parameters, and nitric oxide levels. Treatment with both sakuranetin doses restored these parameters and normalized cytokine, IgG, and IgM levels (P < 0.05). Sakuranetin significantly (P < 0.05) improved the immunomodulatory action with elevated immune response with downregulation in immune response mediated by cells. Sakuranetin effectively counteracts cyclophosphamide-induced immunosuppression by modulating the IFN-γ, TNF-α, IgG, and interleukin pathway, suggesting its potential as a protective agent.
Collapse
Affiliation(s)
- Khalid Saad Alharbi
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah, 51452, Al Qassim, Saudi Arabia
| | - Sattam Khulaif Alenezi
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah, 51452, Al Qassim, Saudi Arabia
| | - Tariq Alsahli
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Aljouf, 72341, Saudi Arabia
| | - Muhammad Afzal
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah, 21442, Saudi Arabia.
| | - Mohammad Jaffar Sadiq Mantargi
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah, 21442, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Nadeem Sayyed
- Dr. R. G. Bhoyar Institute of Pharmacy, Wardha, Maharashtra, 442001, India
| |
Collapse
|
3
|
Jang SY, Song HA, Park MJ, Chung KS, Lee JK, Jang EY, Sun EM, Pyo MC, Lee KT. Immunomodulatory Effects of a Standardized Botanical Mixture Comprising Angelica gigas Roots and Pueraria lobata Flowers Through the TLR2/6 Pathway in RAW 264.7 Macrophages and Cyclophosphamide-Induced Immunosuppression Mice. Pharmaceuticals (Basel) 2025; 18:336. [PMID: 40143115 PMCID: PMC11944983 DOI: 10.3390/ph18030336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 02/22/2025] [Accepted: 02/25/2025] [Indexed: 03/28/2025] Open
Abstract
Background: As the population ages, enhancing immune function is crucial to mitigating age-related physiological decline. Since immunostimulant drugs are known to have potential side effects, medicinal plants emerge as promising candidates offering a safer alternative. To leverage the advantages of medicinal plants with fewer side effects and develop a potent immune-enhancing agent, we investigated the efficacy of a novel immunomodulatory candidate derived from the combination of Angelica gigas and Pueraria lobata (CHL). Methods: In vitro, CHL was treated in RAW 264.7 macrophages at various time points, and the experiments conducted in the study were performed using ELISA, Western blot, and RT-qPCR analysis. In vivo, C57BL/6 mice were administrated CHL for 16 days (p.o.) and CTX on the three days (i.p.), and experiments were conducted with ELISA, western blot, RT-qPCR analysis, H&E staining, flow cytometry, gut microbiome, and correlation analysis. Results: In vitro, CHL has upregulated NO and cytokines expression, substantially enhancing the NF-κB and MAPK activation. Furthermore, CHL promoted the TAK1, TRAF6, and MyD88 via TLR2/6 signaling. In vivo, the CHL improved the reduced body weight and immune organs' indices and recovered various cytokines expression, NK cell cytotoxicity activity, and immune cell population. CHL also improved the histological structure and tight junction markers, mucin-2, and TLR2/6 in the intestines of CTX-induced mice. Conclusions: Overall, CHL demonstrated immunostimulatory potential by enhancing immune responses and restoring immune function, suggesting its promise as a safe and effective immune-enhancing agent.
Collapse
Affiliation(s)
- Seo-Yun Jang
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea; (S.-Y.J.); (H.-A.S.); (M.-J.P.); (K.-S.C.)
- Department of Fundamental Pharmaceutical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea;
| | - Hyeon-A Song
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea; (S.-Y.J.); (H.-A.S.); (M.-J.P.); (K.-S.C.)
- Department of Fundamental Pharmaceutical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea;
| | - Min-Ji Park
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea; (S.-Y.J.); (H.-A.S.); (M.-J.P.); (K.-S.C.)
- Department of Fundamental Pharmaceutical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea;
| | - Kyung-Sook Chung
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea; (S.-Y.J.); (H.-A.S.); (M.-J.P.); (K.-S.C.)
| | - Jong Kil Lee
- Department of Fundamental Pharmaceutical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea;
| | - Eun Yeong Jang
- Chong Kun Dang Healthcare Co., Seoul 04300, Republic of Korea;
| | - Eun Mi Sun
- CH Labs Corp., Seoul 07249, Republic of Korea; (E.M.S.); (M.C.P.)
| | - Min Cheol Pyo
- CH Labs Corp., Seoul 07249, Republic of Korea; (E.M.S.); (M.C.P.)
| | - Kyung-Tae Lee
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea; (S.-Y.J.); (H.-A.S.); (M.-J.P.); (K.-S.C.)
- Department of Fundamental Pharmaceutical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea;
| |
Collapse
|
4
|
Alizadehasl A, Shahrami B, Rahbarghazi R, Yalameh Aliabadi A, Hosseini Jebelli SF, Afsari Zonooz Y, Hakimian H, Fathi F, Forati S, Rezabakhsh A. Post-transplant cyclophosphamide-induced cardiotoxicity: A comprehensive review. J Cardiovasc Thorac Res 2024; 16:211-221. [PMID: 40027370 PMCID: PMC11866776 DOI: 10.34172/jcvtr.33230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 09/17/2024] [Indexed: 03/05/2025] Open
Abstract
Cyclophosphamide-induced cardiotoxicity, associated with its toxic metabolite acrolein, is a significant concern and unresolved issue, especially when cyclophosphamide is administrated in high doses. However, cardiotoxicity following low-dose cyclophosphamide has been also documented, especially in post-hematopoietic stem cell transplantation (post-HSCT) settings. Despite the involvement of multiple signaling pathways in cyclophosphamide-induced cardiomyopathy, the exact underlying mechanisms remain to be fully elucidated. This review outlines the current challenges of cyclophosphamide therapy in HSCT recipients. In addition, the promising therapeutic approaches by targeting acrolein's anti-angiogenic effect were thoroughly discussed to better manage post-HSCT cyclophosphamide-induced cardiotoxicity.
Collapse
Affiliation(s)
- Azin Alizadehasl
- Cardio-Oncology Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Science, Tehran, Iran
| | - Bita Shahrami
- Department of Clinical Pharmacy, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Hematology, Oncology and Stem Cell Transplantation Research Center, Research Institute for Oncology, Hematology, and Cell Therapy, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Rahbarghazi
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Azam Yalameh Aliabadi
- Cardio-Oncology Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Science, Tehran, Iran
| | - Seyedeh Fatemeh Hosseini Jebelli
- Cardio-Oncology Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Science, Tehran, Iran
| | - Yasamin Afsari Zonooz
- Cardio-Oncology Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Science, Tehran, Iran
| | - Hoda Hakimian
- Cardio-Oncology Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Science, Tehran, Iran
| | - Farzaneh Fathi
- Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Sara Forati
- Cardio-Oncology Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Science, Tehran, Iran
| | - Aysa Rezabakhsh
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
5
|
Moukalled N, Abou Dalle I, El Cheikh J, Ye Y, Malarad F, Mohty M, Bazarbachi A. The emerging role of melflufen and peptide-conjugates in multiple myeloma. Curr Opin Oncol 2024; 36:583-592. [PMID: 39246181 DOI: 10.1097/cco.0000000000001090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
PURPOSE OF REVIEW The past two decades have witnessed an impressive expansion in the treatment landscape of multiple myeloma, leading to significant improvements in progression-free; as well as overall survival. However, almost all patients still experience multiple relapses during their disease course, with biological and cytogenetic heterogeneity affecting response to subsequent treatments. The purpose of this review is to provide a historical background regarding the role of alkylating agents and an updated data regarding the use of peptide-drug conjugates such as melflufen for patients with multiple myeloma. RECENT FINDINGS The combination of daratumumab-melflufen-dexamethasone evaluated in the LIGHTHOUSE study showed a statistically significant improvement in progression-free survival compared to single-agent daratumumab (not reached vs. 4.9 months respectively; P = 0.0032), with improvement in overall response rate to 59% vs. 30% respectively; P = 0.03. SUMMARY There have been an interest in developing and utilizing peptide-drug conjugates such as melflufen for treatment of patients with multiple myeloma, especially in the relapsed setting given historical results with alkylating agents, the use of which has been limited by dose-related toxicities in a disease that remains largely incurable. Single agent melflufen initially showed promising results especially in specific subgroups of heavily pretreated patients before the decision to suspend all clinical trials evaluating this agent after results from the OCEAN phase 3 trial. Subsequent reported analyses especially for melflufen-based combinations appear promising and suggest a potential use of peptide-drug conjugates provided optimal patient selection, as well as identification of the best companion agent.
Collapse
Affiliation(s)
- Nour Moukalled
- Bone Marrow Transplantation Program, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Iman Abou Dalle
- Bone Marrow Transplantation Program, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Jean El Cheikh
- Bone Marrow Transplantation Program, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Yishan Ye
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Florent Malarad
- Sorbonne Université, Centre de Recherche Saint-Antoine INSERM UMRs938, Service d'Hématologie Clinique et de Thérapie Cellulaire, Hôpital Saint Antoine, AP-HP, Paris, France
| | - Mohamad Mohty
- Sorbonne Université, Centre de Recherche Saint-Antoine INSERM UMRs938, Service d'Hématologie Clinique et de Thérapie Cellulaire, Hôpital Saint Antoine, AP-HP, Paris, France
| | - Ali Bazarbachi
- Bone Marrow Transplantation Program, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| |
Collapse
|
6
|
Shafiei FS, Abroun S. Recent advancements in nanomedicine as a revolutionary approach to treating multiple myeloma. Life Sci 2024; 356:122989. [PMID: 39197575 DOI: 10.1016/j.lfs.2024.122989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/06/2024] [Accepted: 08/13/2024] [Indexed: 09/01/2024]
Abstract
Multiple myeloma, the second most common hematological malignancy, remains incurable with a 5-year survival rate of approximately 50 % and recurrence rates near 100 %, despite significant attempts to develop effective medicines. Therefore, there is a pressing demand in the medical field for innovative and more efficient treatments for MM. Currently, the standard approach for treating MM involves administering high-dose chemotherapy, which frequently correlates with improved results; however, one major limiting factor is the significant side effects of these medications. Furthermore, the strategies used to deliver medications to tumors limit their efficacy, whether by rapid clearance from circulation or an insufficient concentration in cancer cells. Cancer treatment has shifted from cytotoxic, nonspecific chemotherapy regimens to molecularly targeted, rationally developed drugs with improved efficacy and fewer side effects. Nanomedicines may provide an effective alternative way to avoid these limits by delivering drugs into the complicated bone marrow microenvironment and efficiently reaching myeloma cells. Putting drugs into nanoparticles can make their pharmacokinetic and pharmacodynamic profiles much better. This can increase the drug's effectiveness in tumors, extend its time in circulation in the blood, and lower its off-target toxicity. In this review, we introduce several criteria for the rational design of nanomedicine to achieve the best anti-tumoral therapeutic results. Next, we discuss recent advances in nanomedicine for MM therapy.
Collapse
Affiliation(s)
- Fatemeh Sadat Shafiei
- Department Medical Laboratory Sciences, School of Paramedical Sciences, Zanjan University of Medical Sciences, Zanjan, Iran; Department of Biotechnology, Iranian Research Organization for Science & Technology (IROST), Tehran, Iran
| | - Saeid Abroun
- Department of Hematology, Faculty of Medical Science, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
7
|
Czaplewska P, Müller M, Musiał N, Okrój M, Felberg-Miętka A, Sadowska J, Dudzińska W, Lubkowska A, Tokarz-Deptuła B, Fiołka M. Preliminary proteomic analysis of mouse lung tissue treated with cyclophosphamide and Venetin-1. Sci Rep 2024; 14:25056. [PMID: 39443613 PMCID: PMC11499674 DOI: 10.1038/s41598-024-76143-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 10/10/2024] [Indexed: 10/25/2024] Open
Abstract
Cyclophosphamide (CPAm) is a widely used chemotherapeutic agent that exhibits potent anti-cancer properties but is often associated with debilitating side effects. Despite its efficacy, the management of CPAm-induced toxicities remains a significant clinical challenge. There has been growing interest in exploring complementary and alternative therapies to mitigate these adverse effects in recent years, and this may be a chance for the earthworm-derived preparation, Venetin-1. Its rich composition of bioactive compounds has demonstrated promising pharmacological properties, including anti-inflammatory, antioxidant, and immunomodulatory effects. These properties suggest its potential to counteract various systemic toxicities induced by CPAm. We conducted a comprehensive study to investigate the effect of Venetin-1 on cyclophosphamide-induced toxicity. Mice were administered CPAm for four days, followed by application of the earthworm preparation in two doses (50 mg/kg and 100 mg/kg b.w). Importantly, the preparation did not cause any side effects in all mice, ensuring the safety of the intervention. We then determined global changes in the proteome using proteomics and quantitative SWATH-MS analysis, which is a robust and reliable method. This allowed us to identify up- and downregulated proteins in each studied group, providing valuable insights into the mechanism of action of Venetin-1. As shown by the results, Venetin-1 had a significant effect on the proteome of mouse lung tissue. It was possible to determine quantitative changes in 400 proteins, and the analysis after administration of Venetin-1 showed a change in the global proteomic profile from upregulated to down-regulated. The stimulating properties of the preparation concerning the complement system were also confirmed in a separate validation experiment. Venetin-1 shows promise in reducing the harmful effects of cyclophosphamide on lung tissue. It encourages tissue regeneration, reduces inflammation, supports autophagy, and boosts the immune system. However, more research is needed to thoroughly elucidate and describe the benefits of Venetin-1.
Collapse
Affiliation(s)
- Paulina Czaplewska
- Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdańsk, Gdańsk, Poland.
| | - Marc Müller
- Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdańsk, Gdańsk, Poland
| | - Natalia Musiał
- Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdańsk, Gdańsk, Poland
| | - Marcin Okrój
- Department of Cell Biology and Immunology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
| | - Anna Felberg-Miętka
- Department of Cell Biology and Immunology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
| | - Joanna Sadowska
- Department of Applied Microbiology and Human Nutrition Physiology, Faculty of Food Sciences and Fisheries, West Pomeranian University of Technology, Szczecin, Poland
| | - Wioleta Dudzińska
- Department of Physiology and Biochemistry, Institute of Biology, University of Szczecin, Szczecin, Poland
- Department of Functional Diagnostics and Physical Medicine, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Anna Lubkowska
- Department of Functional Diagnostics and Physical Medicine, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | | | - Marta Fiołka
- Department of Immunobiology, Institute of Biological Sciences, Curie-Skłodowska University, Lublin, Poland
| |
Collapse
|
8
|
Kiso M, Uraki R, Yamayoshi S, Imai M, Kawaoka Y. Drug susceptibility and the potential for drug-resistant SARS-CoV-2 emergence in immunocompromised animals. iScience 2024; 27:110729. [PMID: 39280602 PMCID: PMC11402253 DOI: 10.1016/j.isci.2024.110729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/24/2024] [Accepted: 08/09/2024] [Indexed: 09/18/2024] Open
Abstract
The reduced susceptibility of mRNA vaccines and diminished neutralizing activity of therapeutic monoclonal antibodies against Omicron variants, including BQ.1.1, XBB, and their descendants, highlight the importance of antiviral therapies. Here, we assessed the efficacy of two antivirals, molnupiravir, targeting a viral RNA-dependent RNA polymerase, and nirmatrelvir, targeting a main protease, against BQ.1.1 in hamsters. We found that prophylactic or therapeutic treatment with either drug significantly reduced the viral load in the lungs of infected hamsters. We also evaluated the risk of emergence of drug-resistant viruses in immunocompromised hamsters. Although 13 days of drug treatment reduced viral titers, the immunocompromised hosts could not completely clear the virus. Viruses isolated from drug-treated immunocompromised hamsters did not show reduced susceptibility to the drugs. Molnupiravir and nirmatrelvir remain effective in vivo against variants with reduced susceptibility to monoclonal antibodies and mRNA vaccine-induced antibodies, with limited emergence of drug-resistant variants under the conditions tested.
Collapse
Affiliation(s)
- Maki Kiso
- Pandemic Preparedness, Infection and Advanced Research Center (UTOPIA), The University of Tokyo, Tokyo 108-8639, Japan
| | - Ryuta Uraki
- Pandemic Preparedness, Infection and Advanced Research Center (UTOPIA), The University of Tokyo, Tokyo 108-8639, Japan
- Division of Virology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
- The Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, Tokyo 162-8655, Japan
| | - Seiya Yamayoshi
- Pandemic Preparedness, Infection and Advanced Research Center (UTOPIA), The University of Tokyo, Tokyo 108-8639, Japan
- Division of Virology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
- The Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, Tokyo 162-8655, Japan
- International Research Center for Infectious Diseases, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | - Masaki Imai
- Division of Virology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
- The Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, Tokyo 162-8655, Japan
- International Research Center for Infectious Diseases, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | - Yoshihiro Kawaoka
- Pandemic Preparedness, Infection and Advanced Research Center (UTOPIA), The University of Tokyo, Tokyo 108-8639, Japan
- Division of Virology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
- The Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, Tokyo 162-8655, Japan
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53711, USA
| |
Collapse
|
9
|
Malamos P, Papanikolaou C, Gavriatopoulou M, Dimopoulos MA, Terpos E, Souliotis VL. The Interplay between the DNA Damage Response (DDR) Network and the Mitogen-Activated Protein Kinase (MAPK) Signaling Pathway in Multiple Myeloma. Int J Mol Sci 2024; 25:6991. [PMID: 39000097 PMCID: PMC11241508 DOI: 10.3390/ijms25136991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/18/2024] [Accepted: 06/24/2024] [Indexed: 07/16/2024] Open
Abstract
The DNA damage response (DDR) network and the mitogen-activated protein kinase (MAPK) signaling pathway are crucial mechanisms for the survival of all living beings. An accumulating body of evidence suggests that there is crosstalk between these two systems, thus favoring the appropriate functioning of multi-cellular organisms. On the other hand, aberrations within these mechanisms are thought to play a vital role in the onset and progression of several diseases, including cancer, as well as in the emergence of drug resistance. Here, we provide an overview of the current knowledge regarding alterations in the DDR machinery and the MAPK signaling pathway as well as abnormalities in the DDR/MAPK functional crosstalk in multiple myeloma, the second most common hematologic malignancy. We also present the latest advances in the development of anti-myeloma drugs targeting crucial DDR- and MAPK-associated molecular components. These data could potentially be exploited to discover new therapeutic targets and effective biomarkers as well as for the design of novel clinical trials. Interestingly, they might provide a new approach to increase the efficacy of anti-myeloma therapy by combining drugs targeting the DDR network and the MAPK signaling pathway.
Collapse
Affiliation(s)
- Panagiotis Malamos
- Institute of Chemical Biology, National Hellenic Research Foundation, 116 35 Athens, Greece; (P.M.); (C.P.)
| | - Christina Papanikolaou
- Institute of Chemical Biology, National Hellenic Research Foundation, 116 35 Athens, Greece; (P.M.); (C.P.)
| | - Maria Gavriatopoulou
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, 115 28 Athens, Greece; (M.G.); (M.A.D.); (E.T.)
| | - Meletios A. Dimopoulos
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, 115 28 Athens, Greece; (M.G.); (M.A.D.); (E.T.)
| | - Evangelos Terpos
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, 115 28 Athens, Greece; (M.G.); (M.A.D.); (E.T.)
| | - Vassilis L. Souliotis
- Institute of Chemical Biology, National Hellenic Research Foundation, 116 35 Athens, Greece; (P.M.); (C.P.)
| |
Collapse
|
10
|
Zhou L, Yin X, Fang B, He J, Zhan J, Zhang X, Wang R. Effects of Bifidobacterium animalis subsp. lactis IU100 on Immunomodulation and Gut Microbiota in Immunosuppressed Mice. Microorganisms 2024; 12:493. [PMID: 38543544 DOI: 10.3390/microorganisms12030493if:] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/24/2024] [Accepted: 02/28/2024] [Indexed: 07/26/2024] Open
Abstract
Probiotics are live microorganisms with immunomodulatory effects in a strain-specific and dose-dependent manner. Bifidobacterium animalis subsp. lactis IU100 is a new probiotic strain isolated from healthy adults. This study aimed to evaluate the effects of IU100 on cyclophosphamide (CTX)-induced immunosuppression in mice. The results showed that IU100 significantly ameliorated CTX-induced decreases in body weight and immune organ indices. The promoted delayed-type hypersensitivity, serum hemolysins and immunoglobulin (IgA, IgG and IgM) levels after IU100 treatment indicated its enhancing role in cellular and humoral immunity. In addition, oral administration of IU100 increased serum cytokine (IL-1β, IL-2, IL-4, IL-6, IFN-γ, TNF-α) levels dose-dependently, which are associated with CTX-induced shifts in the Th1/Th2 balance. The probiotic IU100 also modulated the composition of gut microbiota by reducing the Firmicutes/Bacteroidetes ratio; increasing beneficial Muribaculaceae and the Lachnospiraceae NK4A136 group; and inhibiting harmful Clostridium sensu stricto 1, Faecalibaculum and Staphylococcus at the genus level. The above genera were found to be correlated with serum cytokines and antibody levels. These findings suggest that IU100 effectively enhances the immune function of immunosuppressed mice, induced by CTX, by regulating gut microbiota.
Collapse
Affiliation(s)
- Limian Zhou
- Key Laboratory of Functional Dairy, Department of Nutrition and Health, China Agricultural University, Beijing 100190, China
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Xindi Yin
- Key Laboratory of Functional Dairy, Department of Nutrition and Health, China Agricultural University, Beijing 100190, China
| | - Bing Fang
- Key Laboratory of Functional Dairy, Department of Nutrition and Health, China Agricultural University, Beijing 100190, China
| | - Jingjing He
- Key Laboratory of Functional Dairy, Department of Nutrition and Health, China Agricultural University, Beijing 100190, China
| | - Jing Zhan
- Key Laboratory of Functional Dairy, Department of Nutrition and Health, China Agricultural University, Beijing 100190, China
| | - Xiaoxu Zhang
- Key Laboratory of Functional Dairy, Department of Nutrition and Health, China Agricultural University, Beijing 100190, China
| | - Ran Wang
- Key Laboratory of Functional Dairy, Department of Nutrition and Health, China Agricultural University, Beijing 100190, China
| |
Collapse
|
11
|
Zhou L, Yin X, Fang B, He J, Zhan J, Zhang X, Wang R. Effects of Bifidobacterium animalis subsp. lactis IU100 on Immunomodulation and Gut Microbiota in Immunosuppressed Mice. Microorganisms 2024; 12:493. [PMID: 38543544 PMCID: PMC10972214 DOI: 10.3390/microorganisms12030493] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/24/2024] [Accepted: 02/28/2024] [Indexed: 08/22/2024] Open
Abstract
Probiotics are live microorganisms with immunomodulatory effects in a strain-specific and dose-dependent manner. Bifidobacterium animalis subsp. lactis IU100 is a new probiotic strain isolated from healthy adults. This study aimed to evaluate the effects of IU100 on cyclophosphamide (CTX)-induced immunosuppression in mice. The results showed that IU100 significantly ameliorated CTX-induced decreases in body weight and immune organ indices. The promoted delayed-type hypersensitivity, serum hemolysins and immunoglobulin (IgA, IgG and IgM) levels after IU100 treatment indicated its enhancing role in cellular and humoral immunity. In addition, oral administration of IU100 increased serum cytokine (IL-1β, IL-2, IL-4, IL-6, IFN-γ, TNF-α) levels dose-dependently, which are associated with CTX-induced shifts in the Th1/Th2 balance. The probiotic IU100 also modulated the composition of gut microbiota by reducing the Firmicutes/Bacteroidetes ratio; increasing beneficial Muribaculaceae and the Lachnospiraceae NK4A136 group; and inhibiting harmful Clostridium sensu stricto 1, Faecalibaculum and Staphylococcus at the genus level. The above genera were found to be correlated with serum cytokines and antibody levels. These findings suggest that IU100 effectively enhances the immune function of immunosuppressed mice, induced by CTX, by regulating gut microbiota.
Collapse
Affiliation(s)
- Limian Zhou
- Key Laboratory of Functional Dairy, Department of Nutrition and Health, China Agricultural University, Beijing 100190, China; (L.Z.)
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Xindi Yin
- Key Laboratory of Functional Dairy, Department of Nutrition and Health, China Agricultural University, Beijing 100190, China; (L.Z.)
| | - Bing Fang
- Key Laboratory of Functional Dairy, Department of Nutrition and Health, China Agricultural University, Beijing 100190, China; (L.Z.)
| | - Jingjing He
- Key Laboratory of Functional Dairy, Department of Nutrition and Health, China Agricultural University, Beijing 100190, China; (L.Z.)
| | - Jing Zhan
- Key Laboratory of Functional Dairy, Department of Nutrition and Health, China Agricultural University, Beijing 100190, China; (L.Z.)
| | - Xiaoxu Zhang
- Key Laboratory of Functional Dairy, Department of Nutrition and Health, China Agricultural University, Beijing 100190, China; (L.Z.)
| | - Ran Wang
- Key Laboratory of Functional Dairy, Department of Nutrition and Health, China Agricultural University, Beijing 100190, China; (L.Z.)
| |
Collapse
|
12
|
Li Y, Lei Z, Guo Y, Liu Y, Guo X, Wang X, Che J, Yuan J, Wang C, Li M. Fermentation of Ganoderma lucidum and Raphani Semen with a probiotic mixture attenuates cyclophosphamide-induced immunosuppression through microbiota-dependent or -independent regulation of intestinal mucosal barrier and immune responses. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 121:155082. [PMID: 37722243 DOI: 10.1016/j.phymed.2023.155082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 09/01/2023] [Accepted: 09/10/2023] [Indexed: 09/20/2023]
Abstract
BACKGROUND Probiotic fermentation is a promising strategy for improving the nutritional and functional properties of traditional Chinese medicines (TCMs). Ganoderma lucidum and Raphani Semen are famous TCMs that have been shown to help alleviate immune system disorders. However, few studies have experimentally investigated the effects of probiotic-fermented G.lucidum and Raphani Semen on the immune system. PURPOSE We established the in vitro fermentation of G. lucidum and Raphani Semen with a probiotic mixture (Bifidobacterium longum, Lactobacillus acidophilus, and l. fermentum) (GRFB), investigated its ameliorating effect against cyclophosphamide (CTX)-induced immunosuppression, and explored its possible mechanisms. METHODS First, the different components in GRFB were identified by high-performance liquid chromatography. Second, its immune-stimulatory activities were evaluated in CTX-treated mice. Lastly, its possible in vitro and in vivo mechanisms were studied. RESULTS Probiotic fermentation of G. lucidum and Raphani Semen altered some of its chemical constituents, potentially helping improve the ability of GRFB to alleviate immunosuppression. As expected, GRFB effectively ameliorated CTX-induced immunosuppression by increasing the number of splenic lymphocytes and regulating the secretion of serum and ileum cytokines. GRFB supplementation also effectively improved intestinal integrity in CTX-treated mice by upregulating tight junction proteins. It also protects against CTX-induced intestinal dysbiosis by increasing the abundance of beneficial bacteria and reducing the abundance of harmful bacteria. GRFB could directly promote intestinal immunity but not systemic immunity in vitro, suggesting a microbiota-dependent regulation of GRFB. Interestingly, cohousing CTX-induced immunosuppressed mice with GRFB-treated mice promoted their symptoms recovery. Enhanced CTX-induced immunosuppression by GRFB in vitro depended on the gut microbiota. Remarkably, a Kyoto Encyclopedia of Genes and Genomes analysis showed that the GRFB-reprogrammed microbiota was significantly enriched in DNA damage repair pathways, which contribute to repairing the intestinal mucosal barrier. CONCLUSION This is the first study to suggest that compare with unfermented G. lucidum and Raphani Semen, GRFB can more effectively promote intestinal immunity and manipulate the gut microbiota to promote immunostimulatory activity and repair immunosuppression-induced intestinal barrier damage by biotransforming G.lucidum and Raphani Semen components.
Collapse
Affiliation(s)
- Yuyuan Li
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China
| | - Zengjie Lei
- College of Basic Medical Science, Dalian Medical University, Dalian, China
| | - Yuling Guo
- College of Basic Medical Science, Dalian Medical University, Dalian, China
| | - Yujia Liu
- College of Basic Medical Science, Dalian Medical University, Dalian, China
| | - Xiujie Guo
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Chinese Academy of Sciences, Dalian Institute of Chemical Physics, China
| | - Xiuli Wang
- College of Basic Medical Science, Dalian Medical University, Dalian, China
| | - Jian Che
- Aim Honesty Biopharmaceutical Co., Ltd, Dalian, China
| | - Jieli Yuan
- College of Basic Medical Science, Dalian Medical University, Dalian, China
| | - Chaoran Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Chinese Academy of Sciences, Dalian Institute of Chemical Physics, China.
| | - Ming Li
- College of Basic Medical Science, Dalian Medical University, Dalian, China.
| |
Collapse
|
13
|
Weli SHW, Yahyazadeh A. Neuroprotective potential of Ginkgo biloba on alteration of rat cerebellum following prenatal exposure to cyclophosphamide. J Chem Neuroanat 2023; 130:102268. [PMID: 36989922 DOI: 10.1016/j.jchemneu.2023.102268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 03/05/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023]
Abstract
The cytotoxicity of chemotherapeutic drugs is known due to its non-selective effect not only on cancer cells but also on healthy cells. This study investigated the cerebellar alteration in rats prenatally exposed to cyclophosphamide (SK, 20 mg/kg). We also evaluated the neuroprotective potential of Ginkgo biloba (GB, 80 mg/kg/day) against possible biological changes caused by SK in the cerebellar tissues. Twenty adult female rats (weighing 230-280 g, 12 weeks old) were divided into five groups: control, sham, SK, GB, and SK + GB. After mating, pregnant rats was treated with SK in the SK and SK + GB groups and GB in the GB and SK + GB groups from day 13 to day 21 of gestation. After parturition, eight female rats were randomly selected from each group. On day 32 after birth, the cerebellar tissues were dissected and then examined under light microscope using stereological and histopathological methods. Stereological findings showed that the total number of Purkinje cells and granular cells were significantly decreased in the SK group than the control group (p < 0.05). In addition, the mean volumes of molecular layer, granular layer, white matter, and cerebellum were significantly decreased in the SK group compared to the control group (p < 0.05). In the SK + GB group, the total number Purkinje cell, and granular cells, as well as the mean volumes of molecular layer, granular layer, white matter, and cerebellum were significantly increased than the SK group (p < 0.05). Histopathological evaluation also confirmed our stereological findings in the cerebellar tissues. Our results showed that prenatal exposure to SK caused significant changes in the cerebellar architectures of rats, and that GB administration significantly attenuated the deleterious effect of SK on the cerebellar tissues.
Collapse
Affiliation(s)
| | - Ahmad Yahyazadeh
- Department of Histology and Embryology, Faculty of Medicine, Karabuk University, Karabuk, Turkey.
| |
Collapse
|
14
|
Pandya A, Shah Y, Kothari N, Postwala H, Shah A, Parekh P, Chorawala MR. The future of cancer immunotherapy: DNA vaccines leading the way. Med Oncol 2023; 40:200. [PMID: 37294501 PMCID: PMC10251337 DOI: 10.1007/s12032-023-02060-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 05/22/2023] [Indexed: 06/10/2023]
Abstract
Immuno-oncology has revolutionized cancer treatment and has opened up new opportunities for developing vaccination methods. DNA-based cancer vaccines have emerged as a promising approach to activating the bodily immune system against cancer. Plasmid DNA immunizations have shown a favorable safety profile and there occurs induction of generalized as well as tailored immune responses in preclinical and early-phase clinical experiments. However, these vaccines have notable limitations in immunogenicity and heterogeneity and these require refinements. DNA vaccine technology has been focusing on improving vaccine efficacy and delivery, with parallel developments in nanoparticle-based delivery systems and gene-editing technologies such as CRISPR/Cas9. This approach has showcased great promise in enhancing and tailoring the immune response to vaccination. Strategies to enhance the efficacy of DNA vaccines include the selection of appropriate antigens, optimizing insertion in a plasmid, and studying combinations of vaccines with conventional strategies and targeted therapies. Combination therapies have attenuated immunosuppressive activities in the tumor microenvironment and enhanced the capability of immune cells. This review provides an overview of the current framework of DNA vaccines in oncology and focuses on novel strategies, including established combination therapies and those still under development.The challenges that oncologists, scientists, and researchers need to overcome to establish DNA vaccines as an avant-garde approach to defeating cancer, are also emphasized. The clinical implications of the immunotherapeutic approaches and the need for predictive biomarkers have also been reviewed upon. We have also tried to extend the role of Neutrophil extracellular traps (NETs) to the DNA vaccines. The clinical implications of the immunotherapeutic approaches have also been reviewed upon. Ultimately, refining and optimizing DNA vaccines will enable harnessing the immune system's natural ability to recognize and eliminate cancer cells, leading the world towards a revolution in cancer cure.
Collapse
Affiliation(s)
- Aanshi Pandya
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Yesha Shah
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Nirjari Kothari
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Humzah Postwala
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Aayushi Shah
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Priyajeet Parekh
- AV Pharma LLC, 1545 University Blvd N Ste A, Jacksonville, FL, 32211, USA
| | - Mehul R Chorawala
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Ahmedabad, Gujarat, 380009, India.
| |
Collapse
|
15
|
Neri P, Nijhof I. Evidence-based mechanisms of synergy with IMiD agent-based combinations in multiple myeloma. Crit Rev Oncol Hematol 2023:104041. [PMID: 37268176 DOI: 10.1016/j.critrevonc.2023.104041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 05/18/2023] [Accepted: 05/30/2023] [Indexed: 06/04/2023] Open
Abstract
Treatment of multiple myeloma (MM) has seen great advances in recent years, and a key contributor to this change has been the effective use of combination therapies, which have improved both the depth and duration of patient responses. IMiD agents (lenalidomide and pomalidomide) have both tumoricidal and immunostimulatory functions, and due to their multiple mechanisms of action have become the backbone of numerous combination treatments in the newly diagnosed and relapsed/refractory settings. Although IMiD agent-based combination regimens provide improved clinical outcomes for patients with MM, the mechanisms underpinning these combinations are not well understood. In this review we describe the potential mechanisms of synergy leading to the enhanced activity observed when IMiD agents and other drug classes are used in combination through interrogation of the current knowledge surrounding their mechanism of actions.
Collapse
Affiliation(s)
- Paola Neri
- Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, AB, Canada.
| | - Inger Nijhof
- Department of Hematology, Amsterdam University Medical Center, De Boelelaan 1117, 1081 HV Amsterdam, the Netherlands; Department of Internal Medicine and Department of Hematology, St. Antonius Hospital Nieuwegein, Koekoekslaan 1, 3435CM, Nieuwegein, the Netherlands
| |
Collapse
|
16
|
Costa BA, Mouhieddine TH, Ortiz RJ, Richter J. Revisiting the Role of Alkylating Agents in Multiple Myeloma: Up-to-Date Evidence and Future Perspectives. Crit Rev Oncol Hematol 2023; 187:104040. [PMID: 37244325 DOI: 10.1016/j.critrevonc.2023.104040] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 05/15/2023] [Accepted: 05/23/2023] [Indexed: 05/29/2023] Open
Abstract
From the 1960s to the early 2000s, alkylating agents (e.g., melphalan, cyclophosphamide, and bendamustine) remained a key component of standard therapy for newly-diagnosed or relapsed/refractory multiple myeloma (MM). Later on, their associated toxicities (including second primary malignancies) and the unprecedented efficacy of novel therapies have led clinicians to increasingly consider alkylator-free approaches. Meanwhile, new alkylating agents (e.g., melflufen) and new applications of old alkylators (e.g., lymphodepletion before chimeric antigen receptor T-cell [CAR-T] therapy) have emerged in recent years. Given the expanding use of antigen-directed modalities (e.g., monoclonal antibodies, bispecific antibodies, and CAR-T therapy), this review explores the current and future role of alkylating agents in different treatment settings (e.g., induction, consolidation, stem cell mobilization, pre-transplant conditioning, salvage, bridging, and lymphodepleting chemotherapy) to ellucidate the role of alkylator-based regimens in modern-day MM management.
Collapse
Affiliation(s)
- Bruno Almeida Costa
- Department of Medicine, Mount Sinai Morningside and West, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Tarek H Mouhieddine
- Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ricardo J Ortiz
- Department of Medicine, Mount Sinai Morningside and West, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Joshua Richter
- Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
17
|
Finisguerra V, Dvorakova T, Formenti M, Van Meerbeeck P, Mignion L, Gallez B, Van den Eynde BJ. Metformin improves cancer immunotherapy by directly rescuing tumor-infiltrating CD8 T lymphocytes from hypoxia-induced immunosuppression. J Immunother Cancer 2023; 11:jitc-2022-005719. [PMID: 37147018 PMCID: PMC10163559 DOI: 10.1136/jitc-2022-005719] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2023] [Indexed: 05/07/2023] Open
Abstract
BACKGROUND Despite their revolutionary success in cancer treatment over the last decades, immunotherapies encounter limitations in certain tumor types and patients. The efficacy of immunotherapies depends on tumor antigen-specific CD8 T-cell viability and functionality within the immunosuppressive tumor microenvironment, where oxygen levels are often low. Hypoxia can reduce CD8 T-cell fitness in several ways and CD8 T cells are mostly excluded from hypoxic tumor regions. Given the challenges to achieve durable reduction of hypoxia in the clinic, ameliorating CD8 T-cell survival and effector function in hypoxic condition could improve tumor response to immunotherapies. METHODS Activated CD8 T cells were exposed to hypoxia and metformin and analyzed by fluorescence-activated cell sorting for cell proliferation, apoptosis and phenotype. In vivo, metformin was administered to mice bearing hypoxic tumors and receiving either adoptive cell therapy with tumor-specific CD8 T cells, or immune checkpoint inhibitors; tumor growth was followed over time and CD8 T-cell infiltration, survival and localization in normoxic or hypoxic tumor regions were assessed by flow cytometry and immunofluorescence. Tumor oxygenation and hypoxia were measured by electron paramagnetic resonance and pimonidazole staining, respectively. RESULTS We found that the antidiabetic drug metformin directly improved CD8 T-cell fitness in hypoxia, both in vitro and in vivo. Metformin rescued murine and human CD8 T cells from hypoxia-induced apoptosis and increased their proliferation and cytokine production, while blunting the upregulation of programmed cell death protein 1 and lymphocyte-activation gene 3. This appeared to result from a reduced production of reactive oxygen species, due to the inhibition of mitochondrial complex I. Differently from what others reported, metformin did not reduce tumor hypoxia, but rather increased CD8 T-cell infiltration and survival in hypoxic tumor areas, and synergized with cyclophosphamide to enhance tumor response to adoptive cell therapy or immune checkpoint blockade in different tumor models. CONCLUSIONS This study describes a novel mechanism of action of metformin and presents a promising strategy to achieve immune rejection in hypoxic and immunosuppressive tumors, which would otherwise be resistant to immunotherapy.
Collapse
Affiliation(s)
- Veronica Finisguerra
- de Duve Institute, UCLouvain, Brussels, Belgium
- Ludwig Institute for Cancer Research, de Duve Institute, Brussels, Belgium
- Walloon Excellence in Life Science and Biotechnology (WELBIO), WEL Research Institute, Brussels, Belgium
| | - Tereza Dvorakova
- de Duve Institute, UCLouvain, Brussels, Belgium
- Ludwig Institute for Cancer Research, de Duve Institute, Brussels, Belgium
- Walloon Excellence in Life Science and Biotechnology (WELBIO), WEL Research Institute, Brussels, Belgium
| | - Matteo Formenti
- de Duve Institute, UCLouvain, Brussels, Belgium
- Ludwig Institute for Cancer Research, de Duve Institute, Brussels, Belgium
- Walloon Excellence in Life Science and Biotechnology (WELBIO), WEL Research Institute, Brussels, Belgium
| | | | - Lionel Mignion
- Biomedical Magnetic Resonance (REMA) Group, Louvain Drug Research Institute, UCLouvain, Brussels, Belgium
- Nuclear and Electron Spin Technologies (NEST) Platform, Louvain Drug Research Institute, UCLouvain, Brussels, Belgium
| | - Bernard Gallez
- Biomedical Magnetic Resonance (REMA) Group, Louvain Drug Research Institute, UCLouvain, Brussels, Belgium
- Nuclear and Electron Spin Technologies (NEST) Platform, Louvain Drug Research Institute, UCLouvain, Brussels, Belgium
| | - Benoit J Van den Eynde
- de Duve Institute, UCLouvain, Brussels, Belgium
- Ludwig Institute for Cancer Research, de Duve Institute, Brussels, Belgium
- Walloon Excellence in Life Science and Biotechnology (WELBIO), WEL Research Institute, Brussels, Belgium
- Nuffield Department of Clinical Medicine, Ludwig Institute for Cancer Research, University of Oxford, Oxford, UK
| |
Collapse
|
18
|
Ismail CA, Eissa MM, Gaafar MR, Younis LK, El Skhawy N. Toxoplasma gondii-derived antigen modifies tumor microenvironment of Ehrlich solid carcinoma murine model and enhances immunotherapeutic activity of cyclophosphamide. Med Oncol 2023; 40:136. [PMID: 37014499 PMCID: PMC10073061 DOI: 10.1007/s12032-023-01994-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 03/08/2023] [Indexed: 04/05/2023]
Abstract
Pathogen-based cancer vaccine is a promising immunotherapeutic weapon to stimulate cancer immunosuppressive state. Toxoplasma gondii is a potent immunostimulant, and low-dose infection was linked to cancer resistance. Our goal was to evaluate the therapeutic antineoplastic activity of autoclaved Toxoplasma vaccine (ATV) against Ehrlich solid carcinoma (ESC) in mice in reference to and in combination with low-dose cyclophosphamide (CP), a cancer immunomodulator. Mice inoculation with ESC was followed by applying different treatment modalities including ATV, CP, and CP/ATV. We evaluated the impact of the different treatments on liver enzymes and pathology, tumor weight, volume, and histopathological changes. Using immunohistochemistry, we evaluated CD8+ T cell, FOXP3+ Treg, CD8+/Treg outside and inside ESC, and angiogenesis. Results showed significant tumor weights and volumes reduction with all treatments with 13.3% inhibition of tumor development upon combined CP/ATV use. Significant necrosis and fibrosis were noted in ESC by all treatments with improved hepatic functions versus non-treated control. Although ATV was almost equivalent to CP in tumor gross and histopathology, it promoted an immunostimulatory activity with significant Treg cells depletion outside ESC and CD8+ T cells infiltration inside ESC with higher CD8+ T/Treg ratio inside ESC superior to CP. Combined with CP, ATV exhibited significant synergistic immunotherapeutic and antiangiogenic action compared to either treatment alone with significant Kupffer cells hyperplasia and hypertrophy. Exclusively, therapeutic antineoplastic and antiangiogenic activity of ATV against ESC was verified that boosted CP immunomodulatory action which highlights a novel biological cancer immunotherapeutic vaccine candidate.
Collapse
Affiliation(s)
- Cherine A Ismail
- Department of Clinical Pharmacology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Maha M Eissa
- Department of Medical Parasitology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Maha R Gaafar
- Department of Medical Parasitology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Layla K Younis
- Department of Pathology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Nahla El Skhawy
- Department of Medical Parasitology, Faculty of Medicine, Alexandria University, Alexandria, Egypt.
| |
Collapse
|
19
|
Swan D, Murphy P, Glavey S, Quinn J. Bispecific Antibodies in Multiple Myeloma: Opportunities to Enhance Efficacy and Improve Safety. Cancers (Basel) 2023; 15:cancers15061819. [PMID: 36980705 PMCID: PMC10046900 DOI: 10.3390/cancers15061819] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/13/2023] [Accepted: 03/15/2023] [Indexed: 03/19/2023] Open
Abstract
Multiple myeloma (MM) is the second most common haematological neoplasm of adults in the Western world. Overall survival has doubled since the advent of proteosome inhibitors (PIs), immunomodulatory agents (IMiDs), and monoclonal antibodies. However, patients with adverse cytogenetics or high-risk disease as determined by the Revised International Staging System (R-ISS) continue to have poorer outcomes, and triple-refractory patients have a median survival of less than 1 year. Bispecific antibodies (BsAbs) commonly bind to a tumour epitope along with CD3 on T-cells, leading to T-cell activation and tumour cell killing. These treatments show great promise in MM patients, with the first agent, teclistamab, receiving regulatory approval in 2022. Their potential utility is hampered by the immunosuppressive tumour microenvironment (TME), a hallmark of MM, which may limit efficacy, and by undesirable adverse events, including cytokine release syndrome (CRS) and infections, some of which may be fatal. In this review, we first consider the means of enhancing the efficacy of BsAbs in MM. These include combining BsAbs with other drugs that ameliorate the effect of the immunosuppressive TME, improving target availability, the use of BsAbs directed against multiple target antigens, and the optimal time in the treatment pathway to employ BsAbs. We then discuss methods to improve safety, focusing on reducing infection rates associated with treatment-induced hypogammaglobulinaemia, and decreasing the frequency and severity of CRS. BsAbs offer a highly-active therapeutic option in MM. Improving the efficacy and safety profiles of these agents may enable more patients to benefit from these novel therapies and improve outcomes for patients with high-risk disease.
Collapse
Affiliation(s)
- Dawn Swan
- Correspondence: ; Tel.: +353-1-809-3000
| | | | | | | |
Collapse
|
20
|
das Neves SC, de Araújo FH, Correa WA, Martins ACF, Coelho HRS, Vilela MLB, do Nascimento VA, Kassuya CAL, de Lima DP, Beatriz A, Oliveira RJ, Gomes RDS. 3-Heptylidene-4,6-Dimethoxy-3 H-Isobenzofuran-1-One Is Genotoxic, Increases the Frequency of Cell Death, and Potentiates the Effects of Cyclophosphamide and Cisplatin. Molecules 2023; 28:1044. [PMID: 36770711 PMCID: PMC9922015 DOI: 10.3390/molecules28031044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/22/2023] Open
Abstract
3-heptylidene-4,6-dimethoxy-3H-isobenzofuran-1-one (Phthalide 1) is the precursor of three resorcinol lipids that have been described as potential chemotherapeutic agents and capable of potentiating the effects of cyclophosphamide. In this study, we evaluated the genotoxic potential, cell-killing potential, and interactions with cyclophosphamide and cisplatin of phthalide 1. Twelve groups were created from 120 mice: Negative Control, cyclophosphamide (100 mg/kg), cisplatin (6 mg/kg), Phthalide 1 (5, 10 and 20 mg/kg), and associations of 1 with cyclophosphamide and 1 with cisplatin. The results demonstrate that 1 increases (p < 0.05) the frequency of chromosomal damage, liver and kidney cell death, and splenic phagocytosis. The association of 1 with cyclophosphamide and cisplatin demonstrated a chemopreventive effect and, therefore, a reduction (p < 0.05) in the frequency of chromosomal damage. However, cell death and splenic phagocytosis did not suffer significant variations. As a result of the above, 1 has potential chemotherapeutic application and may be a candidate for developing a new generation of chemotherapeutics. In addition, it has characteristics to be used as a chemotherapy adjuvant in association with cyclophosphamide and cisplatin since it increases the frequency of cell death induced by chemotherapy. We also reported that the chemopreventive effect of 1, in association with cyclophosphamide and cisplatin, can prevent adverse effects (induction of DNA damage in non-tumor cells) without interfering with the mode of action of chemotherapy drugs and, therefore, without reducing the induction of cell death.
Collapse
Affiliation(s)
- Silvia Cordeiro das Neves
- Stem Cell, Cell Therapy and Toxicological Genetics Research Centre (CeTroGen), Medical School, Federal University of Mato Grosso do Sul, Campo Grande 79080-190, MS, Brazil
- Graduate Programme in Health and Development in the Midwest Region, Medical School, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, MS, Brazil
| | - Flavio Henrique de Araújo
- Stem Cell, Cell Therapy and Toxicological Genetics Research Centre (CeTroGen), Medical School, Federal University of Mato Grosso do Sul, Campo Grande 79080-190, MS, Brazil
| | - Willian Ayala Correa
- Institute of Chemistry, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, MS, Brazil
| | | | - Henrique Rodrigues Scherer Coelho
- Stem Cell, Cell Therapy and Toxicological Genetics Research Centre (CeTroGen), Medical School, Federal University of Mato Grosso do Sul, Campo Grande 79080-190, MS, Brazil
| | | | - Valter Aragão do Nascimento
- Graduate Programme in Health and Development in the Midwest Region, Medical School, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, MS, Brazil
| | | | - Dênis Pires de Lima
- Institute of Chemistry, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, MS, Brazil
| | - Adilson Beatriz
- Institute of Chemistry, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, MS, Brazil
| | - Rodrigo Juliano Oliveira
- Stem Cell, Cell Therapy and Toxicological Genetics Research Centre (CeTroGen), Medical School, Federal University of Mato Grosso do Sul, Campo Grande 79080-190, MS, Brazil
- Graduate Programme in Health and Development in the Midwest Region, Medical School, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, MS, Brazil
| | - Roberto da Silva Gomes
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND 58102, USA
| |
Collapse
|
21
|
Bertuglia G, Cani L, Larocca A, Gay F, D'Agostino M. Normalization of the Immunological Microenvironment and Sustained Minimal Residual Disease Negativity: Do We Need Both for Long-Term Control of Multiple Myeloma? Int J Mol Sci 2022; 23:15879. [PMID: 36555520 PMCID: PMC9781462 DOI: 10.3390/ijms232415879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/02/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
Over the past two decades, the treatment landscape for multiple myeloma (MM) has progressed significantly, with the introduction of several new drug classes that have greatly improved patient outcomes. At present, it is well known how the bone marrow (BM) microenvironment (ME) exerts an immunosuppressive action leading to an exhaustion of the immune system cells and promoting the proliferation and sustenance of tumor plasma cells. Therefore, having drugs that can reconstitute a healthy BM ME can improve results in MM patients. Recent findings clearly demonstrated that achieving minimal residual disease (MRD) negativity and sustaining MRD negativity over time play a pivotal prognostic role. However, despite the achievement of MRD negativity, patients may still relapse. The understanding of immunologic changes in the BM ME during treatment, complemented by a deeper knowledge of plasma cell genomics and biology, will be critical to develop future therapies to sustain MRD negativity over time and possibly achieve an operational cure. In this review, we focus on the components of the BM ME and their role in MM, on the prognostic significance of MRD negativity and, finally, on the relative contribution of tumor plasma cell biology and BM ME to long-term disease control.
Collapse
Affiliation(s)
- Giuseppe Bertuglia
- Division of Hematology, Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy
- Division of Hematology, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, 10126 Torino, Italy
| | - Lorenzo Cani
- Division of Hematology, Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy
- Division of Hematology, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, 10126 Torino, Italy
| | - Alessandra Larocca
- Division of Hematology, Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy
- Division of Hematology, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, 10126 Torino, Italy
| | - Francesca Gay
- Division of Hematology, Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy
- Division of Hematology, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, 10126 Torino, Italy
| | - Mattia D'Agostino
- Division of Hematology, Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy
- Division of Hematology, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, 10126 Torino, Italy
| |
Collapse
|
22
|
Kim HI, Kim DS, Jung Y, Sung NY, Kim M, Han IJ, Nho EY, Hong JH, Lee JK, Boo M, Kim HL, Baik S, Jung KO, Lee S, Kim CS, Park J. Immune-Enhancing Effect of Sargassum horneri on Cyclophosphamide-Induced Immunosuppression in BALB/c Mice and Primary Cultured Splenocytes. Molecules 2022; 27:8253. [PMID: 36500343 PMCID: PMC9738764 DOI: 10.3390/molecules27238253] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/09/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
Sargassum horneri (SH) is a seaweed that has several features that benefit health. In this study, we investigated the immune-enhancing effect of SH, focusing on the role of spleen-mediated immune functions. Chromatographic analysis of SH identified six types of monosaccharide contents, including mannose, rhamnose glucose, galactose xylose and fucose. SH increased cell proliferation of primary cultured naïve splenocytes treated with or without cyclophosphamide (CPA), an immunosuppression agent. SH also reversed the CPA-induced decrease in Th1 cytokines. In vivo investigation revealed that SH administration can increase the tissue weight of major immune organs, such as the spleen and thymus. A similar effect was observed in CPA-injected immunosuppressed BALB/c mice. SH treatment increased the weight of the spleen and thymus, blood immune cell count and Th1 cytokine expression. Additionally, the YAC-1-targeting activities of natural killer cells, which are important in innate immunity, were upregulated upon SH treatment. Overall, our study demonstrates the immune-enhancing effect of SH, suggesting its potential as a medicinal or therapeutic agent for pathologic conditions involving immunosuppression.
Collapse
Affiliation(s)
- Hyo In Kim
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Dong-Sub Kim
- Division of Natural Product Research, Korea Prime Pharmacy Co., Ltd., Suwon 16229, Republic of Korea
| | - Yunu Jung
- Division of Natural Product Research, Korea Prime Pharmacy Co., Ltd., Suwon 16229, Republic of Korea
| | - Nak-Yun Sung
- Division of Natural Product Research, Korea Prime Pharmacy Co., Ltd., Suwon 16229, Republic of Korea
| | - Minjee Kim
- Division of Natural Product Research, Korea Prime Pharmacy Co., Ltd., Suwon 16229, Republic of Korea
| | - In-Jun Han
- Division of Natural Product Research, Korea Prime Pharmacy Co., Ltd., Suwon 16229, Republic of Korea
| | - Eun Yeong Nho
- Division of Natural Product Research, Korea Prime Pharmacy Co., Ltd., Suwon 16229, Republic of Korea
| | - Joon Ho Hong
- Nano Bio Research Center, Jeonnam Bioindustry Foundation, Jangsung 57248, Republic of Korea
| | - Jin-Kyu Lee
- Department of Food Regulatory Science, Korea University, Sejong 30019, Republic of Korea
| | - Mina Boo
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Hye-Lin Kim
- Department of Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Sangyul Baik
- School of Mechanical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Kyung Oh Jung
- Department of Anatomy, College of Medicine, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Sanghyun Lee
- Department of Plant Science and Technology, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Chun Sung Kim
- Department of Oral Biochemistry, College of Dentistry, Chosun University, Gwangju 61452, Republic of Korea
| | - Jinbong Park
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
23
|
Swan D, Henderson R, McEllistrim C, Naicker SD, Quinn J, Cahill MR, Mykytiv V, Lenihan E, Mulvaney E, Nolan M, Parker I, Natoni A, Lynch K, Ryan AE, Szegezdi E, Krawczyk J, Murphy P, O'Dwyer M. CyBorD-DARA in Newly Diagnosed Transplant-Eligible Multiple Myeloma: Results from the 16-BCNI-001/CTRIAL-IE 16-02 Study Show High Rates of MRD Negativity at End of Treatment. CLINICAL LYMPHOMA, MYELOMA & LEUKEMIA 2022; 22:847-852. [PMID: 35985959 DOI: 10.1016/j.clml.2022.07.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/25/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
The phase 1b 16-BCNI-001/CTRIAL-IE 16-02 CyBorD-DARA trial investigated the combination of Daratumumab with cyclophosphamide, bortezomib and dexamethasone in patients with newly diagnosed multiple myeloma (NDMM), followed by autologous stem cell transplantation and Daratumumab maintenance. CR/sCR rates were 50% after transplant and 62.5% at end of treatment. The overall percentage of patients achieving complete response or better was 77.8%. Progression-free survival rate at end of maintenance was 81.3% and estimated 2-year overall survival was 88.9%. 37.5% of patients demonstrated sustained MRD negativity to a level of 10-5 from transplant to analysis at EOT. In this phase 1b study, we have shown CyBorD-DARA to be an effective and well-tolerated immunomodulatory agent-free regiment in transplant-eligible NDMM.
Collapse
Affiliation(s)
- D Swan
- Department of Hematology, University Hospital Galway, Galway, Ireland.
| | - R Henderson
- Department of Hematology, University Hospital Galway, Galway, Ireland
| | - C McEllistrim
- Department of Hematology, University Hospital Galway, Galway, Ireland
| | - S D Naicker
- School of Medicine, College of Medicine, Nursing and Health Sciences, NUI Galway, Galway, Ireland; Discipline of Pharmacology & Therapeutics, School of Medicine, College of Medicine, Nursing, and Health Sciences, National University of Ireland Galway, Galway, Ireland
| | - J Quinn
- Blood Cancer Network Ireland, Ireland; Department of Haematology, Beaumont Hospital, Dublin, Ireland
| | - M R Cahill
- Blood Cancer Network Ireland, Ireland; Cancer Research at UCC, University College Cork, Cork, Ireland; Cancer Trials Ireland, Dublin, Ireland
| | - V Mykytiv
- Department of Hematology, Cork University Hospital, Cork, Ireland; Cancer Trials Ireland, Dublin, Ireland
| | - E Lenihan
- Department of Hematology, Cork University Hospital, Cork, Ireland
| | | | - M Nolan
- Cancer Trials Ireland, Dublin, Ireland
| | - I Parker
- Cancer Trials Ireland, Dublin, Ireland
| | - A Natoni
- School of Medicine, College of Medicine, Nursing and Health Sciences, NUI Galway, Galway, Ireland; Haematology, Department of Translational and Precision Medicine, Sapienza University
| | - K Lynch
- School of Medicine, College of Medicine, Nursing and Health Sciences, NUI Galway, Galway, Ireland; Discipline of Pharmacology & Therapeutics, School of Medicine, College of Medicine, Nursing, and Health Sciences, National University of Ireland Galway, Galway, Ireland
| | - A E Ryan
- Discipline of Pharmacology & Therapeutics, School of Medicine, College of Medicine, Nursing, and Health Sciences, National University of Ireland Galway, Galway, Ireland; Lambe Institute for Translation research, School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland
| | | | - J Krawczyk
- Department of Hematology, University Hospital Galway, Galway, Ireland; Blood Cancer Network Ireland, Ireland; Cancer Trials Ireland, Dublin, Ireland
| | - P Murphy
- Blood Cancer Network Ireland, Ireland; Department of Haematology, Beaumont Hospital, Dublin, Ireland; Cancer Trials Ireland, Dublin, Ireland
| | - M O'Dwyer
- Department of Hematology, University Hospital Galway, Galway, Ireland; Blood Cancer Network Ireland, Ireland
| |
Collapse
|
24
|
Flietner E, Wen Z, Rajagopalan A, Jung O, Watkins L, Wiesner J, You X, Zhou Y, Sun Y, Kingstad-Bakke B, Callander NS, Rapraeger A, Suresh M, Asimakopoulos F, Zhang J. Ponatinib sensitizes myeloma cells to MEK inhibition in the high-risk VQ model. Sci Rep 2022; 12:10616. [PMID: 35739276 PMCID: PMC9226136 DOI: 10.1038/s41598-022-14114-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 06/01/2022] [Indexed: 11/08/2022] Open
Abstract
Multiple myeloma (MM) is a malignant plasma cell cancer. Mutations in RAS pathway genes are prevalent in advanced and proteasome inhibitor (PI) refractory MM. As such, we recently developed a VQ MM mouse model recapitulating human advanced/high-risk MM. Using VQ MM cell lines we conducted a repurposing screen of 147 FDA-approved anti-cancer drugs with or without trametinib (Tra), a MEK inhibitor. Consistent with its high-risk molecular feature, VQ MM displayed reduced responses to PIs and de novo resistance to the BCL2 inhibitor, venetoclax. Ponatinib (Pon) is the only tyrosine kinase inhibitor that showed moderate MM killing activity as a single agent and strong synergism with Tra in vitro. Combined Tra and Pon treatment significantly prolonged the survival of VQ MM mice regardless of treatment schemes. However, this survival benefit was moderate compared to that of Tra alone. Further testing of Tra and Pon on cytotoxic CD8+ T cells showed that Pon, but not Tra, blocked T cell function in vitro, suggesting that the negative impact of Pon on T cells may partially counteract its MM-killing synergism with Tra in vivo. Our study provides strong rational to comprehensively evaluate agents on both MM cells and anti-MM immune cells during therapy development.
Collapse
Affiliation(s)
- Evan Flietner
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Room 7453, WIMR II, 1111 Highland Avenue, Madison, WI, 53705, USA
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Zhi Wen
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Room 7453, WIMR II, 1111 Highland Avenue, Madison, WI, 53705, USA
- Center for Precision Medicine Research and Integrated Research and Development Laboratories, Marshfield Clinic Research Institute, Marshfield, WI, 54449, USA
| | - Adhithi Rajagopalan
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Room 7453, WIMR II, 1111 Highland Avenue, Madison, WI, 53705, USA
| | - Oisun Jung
- Department of Human Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI, 53705, USA
| | - Lyndsay Watkins
- Center for Precision Medicine Research and Integrated Research and Development Laboratories, Marshfield Clinic Research Institute, Marshfield, WI, 54449, USA
| | - Joshua Wiesner
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Xiaona You
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Room 7453, WIMR II, 1111 Highland Avenue, Madison, WI, 53705, USA
| | - Yun Zhou
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Room 7453, WIMR II, 1111 Highland Avenue, Madison, WI, 53705, USA
| | - Yuqian Sun
- Department of Biology, College of Agricultural and Life Sciences, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Brock Kingstad-Bakke
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Natalie S Callander
- Division of Hematology/Oncology, Department of Medicine, UW Comprehensive Cancer Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Alan Rapraeger
- Department of Human Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI, 53705, USA
| | - M Suresh
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Fotis Asimakopoulos
- Division of Hematology/Oncology, Department of Medicine, UW Comprehensive Cancer Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Division of Blood and Marrow Transplantation, Department of Medicine, University of California-San Diego, La Jolla, CA, 92093, USA
| | - Jing Zhang
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Room 7453, WIMR II, 1111 Highland Avenue, Madison, WI, 53705, USA.
| |
Collapse
|
25
|
The Role of DNA Repair in Genomic Instability of Multiple Myeloma. Int J Mol Sci 2022; 23:ijms23105688. [PMID: 35628498 PMCID: PMC9144728 DOI: 10.3390/ijms23105688] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/15/2022] [Accepted: 05/16/2022] [Indexed: 02/01/2023] Open
Abstract
Multiple Myeloma (MM) is a B cell malignancy marked by genomic instability that arises both through pathogenesis and during disease progression. Despite recent advances in therapy, MM remains incurable. Recently, it has been reported that DNA repair can influence genomic changes and drug resistance in MM. The dysregulation of DNA repair function may provide an alternative explanation for genomic instability observed in MM cells and in cells derived from MM patients. This review provides an overview of DNA repair pathways with a special focus on their involvement in MM and discusses the role they play in MM progression and drug resistance. This review highlights how unrepaired DNA damage due to aberrant DNA repair response in MM exacerbates genomic instability and chromosomal abnormalities, enabling MM progression and drug resistance.
Collapse
|
26
|
Aksenova AY, Zhuk AS, Lada AG, Zotova IV, Stepchenkova EI, Kostroma II, Gritsaev SV, Pavlov YI. Genome Instability in Multiple Myeloma: Facts and Factors. Cancers (Basel) 2021; 13:5949. [PMID: 34885058 PMCID: PMC8656811 DOI: 10.3390/cancers13235949] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/20/2021] [Accepted: 11/22/2021] [Indexed: 02/06/2023] Open
Abstract
Multiple myeloma (MM) is a malignant neoplasm of terminally differentiated immunoglobulin-producing B lymphocytes called plasma cells. MM is the second most common hematologic malignancy, and it poses a heavy economic and social burden because it remains incurable and confers a profound disability to patients. Despite current progress in MM treatment, the disease invariably recurs, even after the transplantation of autologous hematopoietic stem cells (ASCT). Biological processes leading to a pathological myeloma clone and the mechanisms of further evolution of the disease are far from complete understanding. Genetically, MM is a complex disease that demonstrates a high level of heterogeneity. Myeloma genomes carry numerous genetic changes, including structural genome variations and chromosomal gains and losses, and these changes occur in combinations with point mutations affecting various cellular pathways, including genome maintenance. MM genome instability in its extreme is manifested in mutation kataegis and complex genomic rearrangements: chromothripsis, templated insertions, and chromoplexy. Chemotherapeutic agents used to treat MM add another level of complexity because many of them exacerbate genome instability. Genome abnormalities are driver events and deciphering their mechanisms will help understand the causes of MM and play a pivotal role in developing new therapies.
Collapse
Affiliation(s)
- Anna Y. Aksenova
- Laboratory of Amyloid Biology, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Anna S. Zhuk
- International Laboratory “Computer Technologies”, ITMO University, 197101 St. Petersburg, Russia;
| | - Artem G. Lada
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA 95616, USA;
| | - Irina V. Zotova
- Department of Genetics and Biotechnology, St. Petersburg State University, 199034 St. Petersburg, Russia; (I.V.Z.); (E.I.S.)
- Vavilov Institute of General Genetics, St. Petersburg Branch, Russian Academy of Sciences, 199034 St. Petersburg, Russia
| | - Elena I. Stepchenkova
- Department of Genetics and Biotechnology, St. Petersburg State University, 199034 St. Petersburg, Russia; (I.V.Z.); (E.I.S.)
- Vavilov Institute of General Genetics, St. Petersburg Branch, Russian Academy of Sciences, 199034 St. Petersburg, Russia
| | - Ivan I. Kostroma
- Russian Research Institute of Hematology and Transfusiology, 191024 St. Petersburg, Russia; (I.I.K.); (S.V.G.)
| | - Sergey V. Gritsaev
- Russian Research Institute of Hematology and Transfusiology, 191024 St. Petersburg, Russia; (I.I.K.); (S.V.G.)
| | - Youri I. Pavlov
- Eppley Institute for Research in Cancer, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Departments of Biochemistry and Molecular Biology, Microbiology and Pathology, Genetics Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
27
|
Li Y, Yu P, Fu W, Cai L, Yu Y, Feng Z, Wang Y, Zhang F, Yu X, Xu H, Sui D. Ginseng-Astragalus-oxymatrine injection ameliorates cyclophosphamide-induced immunosuppression in mice and enhances the immune activity of RAW264.7 cells. JOURNAL OF ETHNOPHARMACOLOGY 2021; 279:114387. [PMID: 34216728 DOI: 10.1016/j.jep.2021.114387] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/23/2021] [Accepted: 06/30/2021] [Indexed: 05/14/2023]
Abstract
ETHNOPHARMACOLOGICAL SIGNIFICANCE Ginseng quinquefolium (L.), Astragalus membranaceus, and Sophora flavescens Aiton are popular folk medicines in many Asian countries and regions. These three traditional Chinese herbs and their extracts have been reported to considerably enhance the immune function. G. quinquefolium (L.) is considered the king of herbs in China. Traditionally, G. quinquefolium (L.) is believed to replenish vitality, which is considered as immune enhancement in modern Chinese pharmacy. One of the main uses of Astragalus is immunity enhancement; S. flavescens and oxymatrine obtained from its extract have been used to treat leukopenia. Considering the pharmacological properties of Ginseng, Astragalus, and oxymatrine, we evaluated the immunopotentiation effects of their combination, Ginseng-Astragalus-oxymatrine (GAO), in the present study. AIM OF THE STUDY This study aimed to expand the clinical application of GAO and to preliminarily explore its mechanism of action by determining whether GAO injection can enhance immunity in vivo and in vitro. METHODS Overall, 17 major chemical components in GAO were analysed using HPLC and LC-MS. The immunity-enhancing effect of GAO was studied in the cyclophosphamide (CTX)-induced immunosuppressive mouse model and RAW 264.7 cells. RESULTS Quantitative analysis showed that the potential active components of GAO include at least ginsenosides, astragaloside IV, and oxymatrine. GAO could significantly improve the nonspecific immunity including the indices of the thymus and spleen, number of peripheral blood leukocytes, levels of TNF-α and IL-6, phagocytic function of macrophages, and cytotoxic activity of natural killer (NK) cells. Additionally, GAO enhanced the humoural immunity, characterised by the antibody production ability of B cells, and cellular immunity, characterised by the activity of T cells, in immunosuppressed mouse. Moreover, GAO could enhance the phagocytic and adhesion functions of RAW 264.7 cells, which may be related to the activation of reactive oxygen species and NF-κB signalling pathway. CONCLUSION GAO could dramatically ameliorate CTX-induced immunosuppression in mouse and stimulate the immune activity in RAW 264.7 cells possibly by activating the NF-κB signalling pathway.
Collapse
Affiliation(s)
- Yuangeng Li
- Department of Pharmacology, School of Pharmaceutical Sciences, Jilin University, Changchun, China.
| | - Ping Yu
- Department of Pharmacology, School of Pharmaceutical Sciences, Jilin University, Changchun, China.
| | - Wenwen Fu
- Department of Pharmacology, School of Pharmaceutical Sciences, Jilin University, Changchun, China.
| | - Lijian Cai
- Changbaishan Pharmaceutical CO. LTD, Jiaohe, China.
| | - Ying Yu
- Changbaishan Pharmaceutical CO. LTD, Jiaohe, China.
| | | | - Yaozhen Wang
- Department of Pharmacology, School of Pharmaceutical Sciences, Jilin University, Changchun, China.
| | - Fuyuan Zhang
- Department of Pharmacology, School of Pharmaceutical Sciences, Jilin University, Changchun, China.
| | - Xiaofeng Yu
- Department of Pharmacology, School of Pharmaceutical Sciences, Jilin University, Changchun, China.
| | - Huali Xu
- Department of Pharmacology, School of Pharmaceutical Sciences, Jilin University, Changchun, China.
| | - Dayun Sui
- Department of Pharmacology, School of Pharmaceutical Sciences, Jilin University, Changchun, China.
| |
Collapse
|
28
|
Dall'Olio FG, Marabelle A, Caramella C, Garcia C, Aldea M, Chaput N, Robert C, Besse B. Tumour burden and efficacy of immune-checkpoint inhibitors. Nat Rev Clin Oncol 2021; 19:75-90. [PMID: 34642484 DOI: 10.1038/s41571-021-00564-3] [Citation(s) in RCA: 171] [Impact Index Per Article: 42.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/10/2021] [Indexed: 01/07/2023]
Abstract
Accumulating evidence suggests that a high tumour burden has a negative effect on anticancer immunity. The concept of tumour burden, simply defined as the total amount of cancer in the body, in contrast to molecular tumour burden, is often poorly understood by the wider medical community; nonetheless, a possible role exists in defining the optimal treatment strategy for many patients. Historically, tumour burden has been assessed using imaging. In particular, CT scans have been used to evaluate both the number and size of metastases as well as the number of organs involved. These methods are now often complemented by metabolic tumour burden, measured using the more recently developed 2-deoxy-2-[18F]-fluoro-D-glucose (FDG)-PET/CT. Serum-based biomarkers, such as lactate dehydrogenase, can also reflect tumour burden and are often also correlated with a poor response to immune-checkpoint inhibitors. Other circulating markers (such as circulating free tumour DNA and/or circulating tumour cells) are also attracting research interest as surrogate markers of tumour burden. In this Review, we summarize evidence supporting the utility of tumour burden as a biomarker to guide the use of immune-checkpoint inhibitors. We also describe data and provide perspective on the various tools used for tumour burden assessment, with a particular emphasis on future therapeutic strategies that might address the issue of inferior outcomes among patients with cancer with a high tumour burden.
Collapse
Affiliation(s)
- Filippo G Dall'Olio
- Department of Cancer Medicine, Gustave Roussy, Villejuif, France.,Division of Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.,Department of Specialized, Experimental and Diagnostic Medicine, University of Bologna, Bologna, Italy
| | - Aurélien Marabelle
- Drug Development Department, Gustave Roussy, Villejuif, France.,Faculty of Medicine, University Paris-Saclay, Kremlin Bicêtre, France.,Institut national de la santé et de la recherche médicale (INSERM), Gustave Roussy, Villejuif, France
| | - Caroline Caramella
- Department of Radiology, Hôpital Marie Lannelongue, Le Plessis-Robinson, France
| | - Camilo Garcia
- Department of Nuclear Medicine and Endocrine Oncology, Institut Gustave Roussy and University Paris-Saclay, Villejuif, France
| | - Mihaela Aldea
- Department of Cancer Medicine, Gustave Roussy, Villejuif, France
| | - Nathalie Chaput
- Laboratory of Immunomonitoring in Oncology, Gustave Roussy, Villejuif, France.,Faculty of Pharmacy, University Paris-Saclay, Chatenay-Malabry, France
| | - Caroline Robert
- Department of Cancer Medicine, Gustave Roussy, Villejuif, France.,Faculty of Medicine, University Paris-Saclay, Kremlin Bicêtre, France.,Institut national de la santé et de la recherche médicale (INSERM), Gustave Roussy, Villejuif, France
| | - Benjamin Besse
- Department of Cancer Medicine, Gustave Roussy, Villejuif, France. .,Faculty of Medicine, University Paris-Saclay, Kremlin Bicêtre, France.
| |
Collapse
|
29
|
Janakiram M, Arora N, Bachanova V, Miller JS. Novel Cell and Immune Engagers in Optimizing Tumor- Specific Immunity Post-Autologous Transplantation in Multiple Myeloma. Transplant Cell Ther 2021; 28:61-69. [PMID: 34634499 DOI: 10.1016/j.jtct.2021.10.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 09/07/2021] [Accepted: 10/03/2021] [Indexed: 11/18/2022]
Abstract
Autologous stem cell transplantation (ASCT) is an important component of treatment of multiple myeloma (MM). The post-ASCT setting offers a unique opportunity to increase myeloma specific immunity through enhancement of T and NK cell responses. The vast array of therapeutics being developed for MM, including cell-based therapies, dendritic vaccines, bispecific antibodies, and IL-15 agonists, provide the opportunity to increase tumor-specific immunity. Maintenance therapies, including immunomodulatory drugs, proteasome inhibitors, and daratumumab, exhibit a significant anti-myeloma response by modulating the immune system. Lenalidomide promotes an antitumoral immune microenvironment, whereas daratumumab can potentially cause NK cell fratricide. Thus, understanding the effects of commonly used maintenance drugs on the immune system is important. In this review, we look at current and emerging therapeutics and their integration post-ASCT in the context of immune reconstitution to improve clinical responses in patients with MM. © 2021 American Society for Transplantation and Cellular Therapy. Published by Elsevier Inc.
Collapse
Affiliation(s)
- Murali Janakiram
- Blood and Marrow Transplant Program, Department of Medicine, University of Minnesota, Minneapolis, Minnesota; Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, Minnesota.
| | - Nivedita Arora
- Blood and Marrow Transplant Program, Department of Medicine, University of Minnesota, Minneapolis, Minnesota; Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Veronika Bachanova
- Blood and Marrow Transplant Program, Department of Medicine, University of Minnesota, Minneapolis, Minnesota; Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Jeffrey S Miller
- Blood and Marrow Transplant Program, Department of Medicine, University of Minnesota, Minneapolis, Minnesota; Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
30
|
Louvet C, Nadeem O, Smith EL. Finding the optimal partner to pair with bispecific antibody therapy for multiple myeloma. Blood Cancer Discov 2021; 2:297-299. [PMID: 34258583 DOI: 10.1158/2643-3230.bcd-21-0073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
BCMA/CD3ε-targeted bispecific antibody (BsAb) therapy represents a promising T-cell redirecting immunotherapy to treat relapsed and refractory multiple myeloma (MM). However, rational combination strategies will most likely be key to achieve a long-lasting immune response. In this issue, Meermeier and colleagues investigate BsAb therapy in a syngeneic MM model and elucidate that partnering with cyclophosphamide is associated with tempered activation, mitigated exhaustion of T-cells, and is superior to pomalidomide or bortezomib in enhancing durable anti-MM efficacy.
Collapse
Affiliation(s)
- Cedric Louvet
- Department of Medical Oncology, Dana-Farber Cancer Center, Boston, MA
| | - Omar Nadeem
- Department of Medical Oncology, Dana-Farber Cancer Center, Boston, MA
| | - Eric L Smith
- Department of Medical Oncology, Dana-Farber Cancer Center, Boston, MA
| |
Collapse
|
31
|
Schjesvold F, Oriol A. Current and Novel Alkylators in Multiple Myeloma. Cancers (Basel) 2021; 13:2465. [PMID: 34070213 PMCID: PMC8158783 DOI: 10.3390/cancers13102465] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/22/2021] [Accepted: 05/11/2021] [Indexed: 12/22/2022] Open
Abstract
A large number of novel treatments for myeloma have been developed and approved; however, alkylating drugs continue to be part of standard regimens. Additionally, novel alkylators are currently being developed. We performed a non-systematized literary search for relevant papers and communications at large conferences, as well as exploiting the authors' knowledge of the field, to review the history, current use and novel concepts around the traditional alkylators cyclophosphamide, bendamustine and melphalan and current data on the newly developed pro-drug melflufen. Even in the era of targeted treatment and personalized medicine, alkylating drugs continue to be part of the standard-of-care in myeloma, and new alkylators are coming to the market.
Collapse
Affiliation(s)
- Fredrik Schjesvold
- Oslo Myeloma Center, Oslo University Hospital, 0450 Oslo, Norway
- K.G. Jebsen Centre for B-Cell Malignancies, University of Oslo, 4950 Oslo, Norway
| | - Albert Oriol
- Institut Josep Carreras and Institut Català d’Oncologia, Hospital Germans Trias I Pujol, 08916 Badalona, Spain;
| |
Collapse
|
32
|
Meermeier EW, Welsh SJ, Sharik ME, Du MT, Garbitt VM, Riggs DL, Shi CX, Stein CK, Bergsagel M, Chau B, Wheeler ML, Bezman N, Wang F, Strop P, Leif Bergsagel P, Chesi M. Tumor burden limits bispecific antibody efficacy through T cell exhaustion averted by concurrent cytotoxic therapy. Blood Cancer Discov 2021; 2:354-369. [PMID: 34258584 DOI: 10.1158/2643-3230.bcd-21-0038] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
BCMA-CD3-targeting bispecific antibodies (BsAb) are a recently developed immunotherapy class which shows potent tumor killing activity in multiple myeloma (MM). Here, we investigated a murine BCMA-CD3-targeting BsAb in the immunocompetent Vk*MYC and its IMiD-sensitive derivative Vk*MYChCRBN models of MM. The BCMA-CD3 BsAb was safe and efficacious in a subset of mice, but failed in those with high-tumor burden, consistent with clinical reports of BsAb in leukemia. The combination of BCMA-CD3 BsAb with pomalidomide expanded lytic T cells and improved activity even in IMiD resistant high-tumor burden cases. Yet, survival was only marginally extended due to acute toxicity and T cell exhaustion, which impaired T cell persistence. In contrast, the combination with cyclophosphamide was safe and allowed for a tempered pro-inflammatory response associated with long-lasting complete remission. Concurrent cytotoxic therapy with BsAb actually improved T cell persistence and function, offering a promising approach to patients with a large tumor burden.
Collapse
Affiliation(s)
- Erin W Meermeier
- Department of Medicine, Division of Hematology/Oncology, Mayo Clinic Arizona, 13400 East Shea Boulevard, Scottsdale, AZ, 85259
| | - Seth J Welsh
- Department of Medicine, Division of Hematology/Oncology, Mayo Clinic Arizona, 13400 East Shea Boulevard, Scottsdale, AZ, 85259
| | - Meaghen E Sharik
- Department of Medicine, Division of Hematology/Oncology, Mayo Clinic Arizona, 13400 East Shea Boulevard, Scottsdale, AZ, 85259
| | - Megan T Du
- Department of Medicine, Division of Hematology/Oncology, Mayo Clinic Arizona, 13400 East Shea Boulevard, Scottsdale, AZ, 85259
| | - Victoria M Garbitt
- Department of Medicine, Division of Hematology/Oncology, Mayo Clinic Arizona, 13400 East Shea Boulevard, Scottsdale, AZ, 85259
| | - Daniel L Riggs
- Department of Medicine, Division of Hematology/Oncology, Mayo Clinic Arizona, 13400 East Shea Boulevard, Scottsdale, AZ, 85259
| | - Chang-Xin Shi
- Department of Medicine, Division of Hematology/Oncology, Mayo Clinic Arizona, 13400 East Shea Boulevard, Scottsdale, AZ, 85259
| | - Caleb K Stein
- Department of Medicine, Division of Hematology/Oncology, Mayo Clinic Arizona, 13400 East Shea Boulevard, Scottsdale, AZ, 85259
| | - Marco Bergsagel
- Department of Medicine, Division of Hematology/Oncology, Mayo Clinic Arizona, 13400 East Shea Boulevard, Scottsdale, AZ, 85259
| | - Bryant Chau
- Discovery Biotherapeutics, Bristol Myers Squibb, 700 Bay Road, Redwood City, CA, 94063
| | - Matthew L Wheeler
- Tumor Microenvironment Thematic Research Center, Bristol Myers Squibb, 700 Bay Road, Redwood City, CA, 94063
| | - Natalie Bezman
- Tumor Microenvironment Thematic Research Center, Bristol Myers Squibb, 700 Bay Road, Redwood City, CA, 94063
| | - Feng Wang
- Discovery Biotherapeutics, Bristol Myers Squibb, 700 Bay Road, Redwood City, CA, 94063
| | - Pavel Strop
- Discovery Biotherapeutics, Bristol Myers Squibb, 700 Bay Road, Redwood City, CA, 94063
| | - P Leif Bergsagel
- Department of Medicine, Division of Hematology/Oncology, Mayo Clinic Arizona, 13400 East Shea Boulevard, Scottsdale, AZ, 85259
| | - Marta Chesi
- Department of Medicine, Division of Hematology/Oncology, Mayo Clinic Arizona, 13400 East Shea Boulevard, Scottsdale, AZ, 85259
| |
Collapse
|
33
|
Díaz-Tejedor A, Lorenzo-Mohamed M, Puig N, García-Sanz R, Mateos MV, Garayoa M, Paíno T. Immune System Alterations in Multiple Myeloma: Molecular Mechanisms and Therapeutic Strategies to Reverse Immunosuppression. Cancers (Basel) 2021; 13:cancers13061353. [PMID: 33802806 PMCID: PMC8002455 DOI: 10.3390/cancers13061353] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/14/2021] [Accepted: 03/15/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary A common characteristic of multiple myeloma (MM) is the dysfunction of patients’ immune system, a condition termed immunosuppression. This state is mainly due to alterations in the number and functionality of the principal immune populations. In this setting, immunotherapy has acquired high relevance in the last years and the investigation of agents that boost the immune system represent a field of interest. In the present review, we will summarize the main cellular and molecular alterations observed in MM patients’ immune system. Furthermore, we will describe the mechanisms of action of the four immunotherapeutic drugs approved so far for the treatment of MM, which are part of the group of monoclonal antibodies (mAbs). Finally, the immune-stimulating effects of several therapeutic agents are described due to their potential role in reversing immunosuppression and, therefore, in favoring the efficacy of immunotherapy drugs, such as mAbs, as part of future pharmacological combinations. Abstract Immunosuppression is a common feature of multiple myeloma (MM) patients and has been associated with disease evolution from its precursor stages. MM cells promote immunosuppressive effects due to both the secretion of soluble factors, which inhibit the function of immune effector cells, and the recruitment of immunosuppressive populations. Alterations in the expression of surface molecules are also responsible for immunosuppression. In this scenario, immunotherapy, as is the case of immunotherapeutic monoclonal antibodies (mAbs), aims to boost the immune system against tumor cells. In fact, mAbs exert part of their cytotoxic effects through different cellular and soluble immune components and, therefore, patients’ immunosuppressive status could reduce their efficacy. Here, we will expose the alterations observed in symptomatic MM, as compared to its precursor stages and healthy subjects, in the main immune populations, especially the inhibition of effector cells and the activation of immunosuppressive populations. Additionally, we will revise the mechanisms responsible for all these alterations, including the interplay between MM cells and immune cells and the interactions among immune cells themselves. We will also summarize the main mechanisms of action of the four mAbs approved so far for the treatment of MM. Finally, we will discuss the potential immune-stimulating effects of non-immunotherapeutic drugs, which could enhance the efficacy of immunotherapeutic treatments.
Collapse
Affiliation(s)
- Andrea Díaz-Tejedor
- Centro de Investigación del Cáncer-IBMCC (CSIC-Universidad de Salamanca), Complejo Asistencial Universitario de Salamanca-IBSAL, Department of Hematology, 37007 Salamanca, Spain; (A.D.-T.); (M.L.-M.); (N.P.); (R.G.-S.); (M.-V.M.); (M.G.)
| | - Mauro Lorenzo-Mohamed
- Centro de Investigación del Cáncer-IBMCC (CSIC-Universidad de Salamanca), Complejo Asistencial Universitario de Salamanca-IBSAL, Department of Hematology, 37007 Salamanca, Spain; (A.D.-T.); (M.L.-M.); (N.P.); (R.G.-S.); (M.-V.M.); (M.G.)
| | - Noemí Puig
- Centro de Investigación del Cáncer-IBMCC (CSIC-Universidad de Salamanca), Complejo Asistencial Universitario de Salamanca-IBSAL, Department of Hematology, 37007 Salamanca, Spain; (A.D.-T.); (M.L.-M.); (N.P.); (R.G.-S.); (M.-V.M.); (M.G.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC, CB16/12/00233), Instituto de Salud Carlos III, 37007 Salamanca, Spain
| | - Ramón García-Sanz
- Centro de Investigación del Cáncer-IBMCC (CSIC-Universidad de Salamanca), Complejo Asistencial Universitario de Salamanca-IBSAL, Department of Hematology, 37007 Salamanca, Spain; (A.D.-T.); (M.L.-M.); (N.P.); (R.G.-S.); (M.-V.M.); (M.G.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC, CB16/12/00233), Instituto de Salud Carlos III, 37007 Salamanca, Spain
| | - María-Victoria Mateos
- Centro de Investigación del Cáncer-IBMCC (CSIC-Universidad de Salamanca), Complejo Asistencial Universitario de Salamanca-IBSAL, Department of Hematology, 37007 Salamanca, Spain; (A.D.-T.); (M.L.-M.); (N.P.); (R.G.-S.); (M.-V.M.); (M.G.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC, CB16/12/00233), Instituto de Salud Carlos III, 37007 Salamanca, Spain
| | - Mercedes Garayoa
- Centro de Investigación del Cáncer-IBMCC (CSIC-Universidad de Salamanca), Complejo Asistencial Universitario de Salamanca-IBSAL, Department of Hematology, 37007 Salamanca, Spain; (A.D.-T.); (M.L.-M.); (N.P.); (R.G.-S.); (M.-V.M.); (M.G.)
| | - Teresa Paíno
- Centro de Investigación del Cáncer-IBMCC (CSIC-Universidad de Salamanca), Complejo Asistencial Universitario de Salamanca-IBSAL, Department of Hematology, 37007 Salamanca, Spain; (A.D.-T.); (M.L.-M.); (N.P.); (R.G.-S.); (M.-V.M.); (M.G.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC, CB16/12/00233), Instituto de Salud Carlos III, 37007 Salamanca, Spain
- Correspondence: ; Tel.: +34-923-294-812; Fax: +34-923-294-743
| |
Collapse
|
34
|
Ovejero S, Moreaux J. Multi-omics tumor profiling technologies to develop precision medicine in multiple myeloma. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2021. [DOI: 10.37349/etat.2020.00034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Multiple myeloma (MM), the second most common hematologic cancer, is caused by accumulation of aberrant plasma cells in the bone marrow. Its molecular causes are not fully understood and its great heterogeneity among patients complicates therapeutic decision-making. In the past decades, development of new therapies and drugs have significantly improved survival of MM patients. However, resistance to drugs and relapse remain the most common causes of mortality and are the major challenges to overcome. The advent of high throughput omics technologies capable of analyzing big amount of clinical and biological data has changed the way to diagnose and treat MM. Integration of omics data (gene mutations, gene expression, epigenetic information, and protein and metabolite levels) with clinical histories of thousands of patients allows to build scores to stratify the risk at diagnosis and predict the response to treatment, helping clinicians to make better educated decisions for each particular case. There is no doubt that the future of MM treatment relies on personalized therapies based on predictive models built from omics studies. This review summarizes the current treatments and the use of omics technologies in MM, and their importance in the implementation of personalized medicine.
Collapse
Affiliation(s)
- Sara Ovejero
- Department of Biological Hematology, CHU Montpellier, 34295 Montpellier, France 2Institute of Human Genetics, UMR 9002 CNRS-UM, 34000 Montpellier, France
| | - Jerome Moreaux
- Department of Biological Hematology, CHU Montpellier, 34295 Montpellier, France 2Institute of Human Genetics, UMR 9002 CNRS-UM, 34000 Montpellier, France 3University of Montpellier, UFR Medicine, 34093 Montpellier, France 4 Institut Universitaire de France (IUF), 75000 Paris France
| |
Collapse
|
35
|
Ovejero S, Moreaux J. Multi-omics tumor profiling technologies to develop precision medicine in multiple myeloma. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2021; 2:65-106. [PMID: 36046090 PMCID: PMC9400753 DOI: 10.37349/etat.2021.00034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 01/06/2021] [Indexed: 11/19/2022] Open
Abstract
Multiple myeloma (MM), the second most common hematologic cancer, is caused by accumulation of aberrant plasma cells in the bone marrow. Its molecular causes are not fully understood and its great heterogeneity among patients complicates therapeutic decision-making. In the past decades, development of new therapies and drugs have significantly improved survival of MM patients. However, resistance to drugs and relapse remain the most common causes of mortality and are the major challenges to overcome. The advent of high throughput omics technologies capable of analyzing big amount of clinical and biological data has changed the way to diagnose and treat MM. Integration of omics data (gene mutations, gene expression, epigenetic information, and protein and metabolite levels) with clinical histories of thousands of patients allows to build scores to stratify the risk at diagnosis and predict the response to treatment, helping clinicians to make better educated decisions for each particular case. There is no doubt that the future of MM treatment relies on personalized therapies based on predictive models built from omics studies. This review summarizes the current treatments and the use of omics technologies in MM, and their importance in the implementation of personalized medicine.
Collapse
Affiliation(s)
- Sara Ovejero
- Department of Biological Hematology, CHU Montpellier, 34295 Montpellier, France 2Institute of Human Genetics, UMR 9002 CNRS-UM, 34000 Montpellier, France
| | - Jerome Moreaux
- Department of Biological Hematology, CHU Montpellier, 34295 Montpellier, France 2Institute of Human Genetics, UMR 9002 CNRS-UM, 34000 Montpellier, France 3UFR Medicine, University of Montpellier, 34093 Montpellier, France 4Institut Universitaire de France (IUF), 75000 Paris, France
| |
Collapse
|
36
|
Naicker SD, Feerick CL, Lynch K, Swan D, McEllistrim C, Henderson R, Leonard NA, Treacy O, Natoni A, Rigalou A, Cabral J, Chiu C, Sasser K, Ritter T, O'Dwyer M, Ryan AE. Cyclophosphamide alters the tumor cell secretome to potentiate the anti-myeloma activity of daratumumab through augmentation of macrophage-mediated antibody dependent cellular phagocytosis. Oncoimmunology 2021; 10:1859263. [PMID: 33552684 PMCID: PMC7849715 DOI: 10.1080/2162402x.2020.1859263] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Multiple Myeloma (MM) is a malignant disorder of plasma cells which, despite significant advances in treatment, remains incurable. Daratumumab, the first CD38 directed monoclonal antibody, has shown promising activity alone and in combination with other agents for MM treatment. Daratumumab is thought to have pleiotropic mechanisms of activity including natural killer (NK) cell-mediated antibody-dependent cellular cytotoxicity (ADCC). With the knowledge that CD38-expressing NK cells are depleted by daratumumab, we sought to investigate a potential mechanism of enhancing macrophage-mediated antibody-dependent cellular phagocytosis (ADCP) by combining daratumumab with cyclophosphamide (CTX). Cyclophosphamide’s immunomodulatory function was investigated by conditioning macrophages with tumor cell secretome collected from cyclophosphamide treated MM cell lines (CTX-TCS). Flow cytometry analysis revealed that CTX-TCS conditioning augmented the migratory capacity of macrophages and increased CD32 and CD64 Fcγ receptor expression on their cell surface. Daratumumab-specific tumor clearance was increased by conditioning macrophages with CTX-TCS in a dose-dependent manner. This effect was impeded by pre-incubating macrophages with Cytochalasin D (CytoD), an inhibitor of actin polymerization, indicating macrophage-mediated ADCP as the mechanism of clearance. CD64 expression on macrophages directly correlated with MM cell clearance and was essential to the observed synergy between cyclophosphamide and daratumumab, as tumor clearance was attenuated in the presence of a FcγRI/CD64 blocking agent. Cyclophosphamide independently enhances daratumumab-mediated killing of MM cells by altering the tumor microenvironment to promote macrophage recruitment, polarization to a pro-inflammatory phenotype, and directing ADCP. These findings support the addition of cyclophosphamide to existing or novel monoclonal antibody-containing MM regimens.
Collapse
Affiliation(s)
- Serika D Naicker
- Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing and Health Sciences, NUI Galway, Galway, Ireland.,Discipline of Pharmacology and Therapeutics, School of Medicine, College of Medicine, Nursing and Health Sciences, NUI Galway, Galway, Ireland.,School of Medicine, College of Medicine, Nursing and Health Sciences, NUI Galway, Galway, Ireland
| | - Claire L Feerick
- Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing and Health Sciences, NUI Galway, Galway, Ireland.,Discipline of Pharmacology and Therapeutics, School of Medicine, College of Medicine, Nursing and Health Sciences, NUI Galway, Galway, Ireland.,School of Medicine, College of Medicine, Nursing and Health Sciences, NUI Galway, Galway, Ireland
| | - Kevin Lynch
- Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing and Health Sciences, NUI Galway, Galway, Ireland.,Discipline of Pharmacology and Therapeutics, School of Medicine, College of Medicine, Nursing and Health Sciences, NUI Galway, Galway, Ireland.,School of Medicine, College of Medicine, Nursing and Health Sciences, NUI Galway, Galway, Ireland
| | - Dawn Swan
- School of Medicine, College of Medicine, Nursing and Health Sciences, NUI Galway, Galway, Ireland.,Department of Hematology, Galway University Hospital, Galway, Ireland.,Blood Cancer Network Ireland, Galway, Ireland
| | - Cian McEllistrim
- Department of Hematology, Galway University Hospital, Galway, Ireland
| | - Robert Henderson
- Department of Hematology, Galway University Hospital, Galway, Ireland
| | - Niamh A Leonard
- Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing and Health Sciences, NUI Galway, Galway, Ireland.,Discipline of Pharmacology and Therapeutics, School of Medicine, College of Medicine, Nursing and Health Sciences, NUI Galway, Galway, Ireland.,School of Medicine, College of Medicine, Nursing and Health Sciences, NUI Galway, Galway, Ireland
| | - Oliver Treacy
- Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing and Health Sciences, NUI Galway, Galway, Ireland.,Discipline of Pharmacology and Therapeutics, School of Medicine, College of Medicine, Nursing and Health Sciences, NUI Galway, Galway, Ireland.,School of Medicine, College of Medicine, Nursing and Health Sciences, NUI Galway, Galway, Ireland
| | - Alessandro Natoni
- School of Medicine, College of Medicine, Nursing and Health Sciences, NUI Galway, Galway, Ireland
| | - Athina Rigalou
- Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing and Health Sciences, NUI Galway, Galway, Ireland
| | - Joana Cabral
- Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing and Health Sciences, NUI Galway, Galway, Ireland.,School of Medicine, College of Medicine, Nursing and Health Sciences, NUI Galway, Galway, Ireland
| | | | - Kate Sasser
- Janssen Research and Development, Pennsylvania, USA
| | - Thomas Ritter
- Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing and Health Sciences, NUI Galway, Galway, Ireland.,School of Medicine, College of Medicine, Nursing and Health Sciences, NUI Galway, Galway, Ireland.,CÚRAM, SFI Research Centre for Medical Devices, NUI Galway, Galway, Ireland
| | - Michael O'Dwyer
- School of Medicine, College of Medicine, Nursing and Health Sciences, NUI Galway, Galway, Ireland.,Department of Hematology, Galway University Hospital, Galway, Ireland.,Blood Cancer Network Ireland, Galway, Ireland.,CÚRAM, SFI Research Centre for Medical Devices, NUI Galway, Galway, Ireland
| | - Aideen E Ryan
- Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing and Health Sciences, NUI Galway, Galway, Ireland.,Discipline of Pharmacology and Therapeutics, School of Medicine, College of Medicine, Nursing and Health Sciences, NUI Galway, Galway, Ireland.,School of Medicine, College of Medicine, Nursing and Health Sciences, NUI Galway, Galway, Ireland.,Blood Cancer Network Ireland, Galway, Ireland.,CÚRAM, SFI Research Centre for Medical Devices, NUI Galway, Galway, Ireland
| |
Collapse
|
37
|
Belantamab Mafodotin to Treat Multiple Myeloma: A Comprehensive Review of Disease, Drug Efficacy and Side Effects. ACTA ACUST UNITED AC 2021; 28:640-660. [PMID: 33494319 PMCID: PMC7924384 DOI: 10.3390/curroncol28010063] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/09/2021] [Accepted: 01/18/2021] [Indexed: 02/06/2023]
Abstract
Multiple myeloma (MM) is a hematologic malignancy characterized by excessive clonal proliferation of plasma cells. The treatment of multiple myeloma presents a variety of unique challenges due to the complex molecular pathophysiology and incurable status of the disease at this time. Given that MM is the second most common blood cancer with a characteristic and unavoidable relapse/refractory state during the course of the disease, the development of new therapeutic modalities is crucial. Belantamab mafodotin (belamaf, GSK2857916) is a first-in-class therapeutic, indicated for patients who have previously attempted four other treatments, including an anti-CD38 monoclonal antibody, a proteosome inhibitor, and an immunomodulatory agent. In November 2017, the FDA designated belamaf as a breakthrough therapy for heavily pretreated patients with relapsed/refractory multiple myeloma. In August 2020, the FDA granted accelerated approval as a monotherapy for relapsed or treatment-refractory multiple myeloma. The drug was also approved in the EU for this indication in late August 2020. Of note, belamaf is associated with the following adverse events: decreased platelets, corneal disease, decreased or blurred vision, anemia, infusion-related reactions, pyrexia, and fetal risk, among others. Further studies are necessary to evaluate efficacy in comparison to other standard treatment modalities and as future drugs in this class are developed.
Collapse
|