1
|
Lamichhane J, Upreti M, Nepal K, Upadhyay BP, Maharjan U, Shrestha RK, Chapagain RH, Banjara MR, Shrestha UT. Burden of human metapneumovirus infections among children with acute respiratory tract infections attending a Tertiary Care Hospital, Kathmandu. BMC Pediatr 2023; 23:388. [PMID: 37550689 PMCID: PMC10405573 DOI: 10.1186/s12887-023-04208-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 07/24/2023] [Indexed: 08/09/2023] Open
Abstract
BACKGROUND Acute respiratory infections (ARIs) are one of the most common causes of mortality and morbidity worldwide. Every year millions of children suffer from viral respiratory tract infections (RTIs) ranging from mild to severe illnesses. Human Metapneumovirus (HMPV) is among the most frequent viruses responsible for RTIs. However, HMPV infections and their severity among children have not been explored yet in Nepal. PURPOSE Therefore, the study was focused on HMPV infections and other potential viral etiologies or co-infections using multiplex PCR among children attending Kanti Children's Hospital and assessed the clinical characteristics of the infections as well as found the co-infections. A hospital-based cross-sectional study was designed and a convenience sampling method was used to enroll children of less than 15 years with flu-like symptoms from both outpatients and inpatients departments over three months of the study period. RESULTS HMPV infection (13.3%) was the most predominant infection among the different viral infections in children with ARIs in Kanti Children's Hospital. The HMPV was more prevalent in the age group less than three years (21.8%). Cough and fever were the most common clinical features present in all children infected with HMPV followed by rhinorrhea, sore throat, and wheezing. HMPV-positive children were diagnosed with pneumonia (42.9%), bronchiolitis (28.5%), upper respiratory tract infections (14.3%), and asthma (14.3%). The prevalence of HMPV was high in late winter (14.3%) followed by early spring (13.5%). CONCLUSIONS This study provides the baseline information on HMPV and associated co-infection with other respiratory viruses for the differential diagnosis based on molecular methods and also the comparison of clinical presentations among the different respiratory syndromes.
Collapse
Affiliation(s)
- Jyoti Lamichhane
- GoldenGate International College, Battisputali, Kathmandu, Nepal
| | - Milan Upreti
- GoldenGate International College, Battisputali, Kathmandu, Nepal
| | - Krishus Nepal
- GoldenGate International College, Battisputali, Kathmandu, Nepal
| | | | - Urusha Maharjan
- Central Diagnostic Laboratory & Research Center, Kamalpokhari, Kathmandu, Nepal
| | | | | | - Megha Raj Banjara
- Central Department of Microbiology, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | | |
Collapse
|
2
|
Johnson EK, Sylte D, Chaves SS, Li Y, Mahe C, Nair H, Paget J, van Pomeren T, Shi T, Viboud C, James SL. Hospital utilization rates for influenza and RSV: a novel approach and critical assessment. Popul Health Metr 2021; 19:31. [PMID: 34126993 PMCID: PMC8204427 DOI: 10.1186/s12963-021-00252-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 03/31/2021] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Influenza and respiratory syncytial virus (RSV) contribute significantly to the burden of acute lower respiratory infection (ALRI) inpatient care, but heterogeneous coding practices and availability of inpatient data make it difficult to estimate global hospital utilization for either disease based on coded diagnoses alone. METHODS This study estimates rates of influenza and RSV hospitalization by calculating the proportion of ALRI due to influenza and RSV and applying this proportion to inpatient admissions with ALRI coded as primary diagnosis. Proportions of ALRI attributed to influenza and RSV were extracted from a meta-analysis of 360 total sources describing inpatient hospital admissions which were input to a Bayesian mixed effects model over age with random effects over location. Results of this model were applied to inpatient admission datasets for 44 countries to produce rates of hospital utilization for influenza and RSV respectively, and rates were compared to raw coded admissions for each disease. RESULTS For most age groups, these methods estimated a higher national admission rate than the rate of directly coded influenza or RSV admissions in the same inpatient sources. In many inpatient sources, International Classification of Disease (ICD) coding detail was insufficient to estimate RSV burden directly. The influenza inpatient burden estimates in older adults appear to be substantially underestimated using this method on primary diagnoses alone. Application of the mixed effects model reduced heterogeneity between countries in influenza and RSV which was biased by coding practices and between-country variation. CONCLUSIONS This new method presents the opportunity of estimating hospital utilization rates for influenza and RSV using a wide range of clinical databases. Estimates generally seem promising for influenza and RSV associated hospitalization, but influenza estimates from primary diagnosis seem highly underestimated among older adults. Considerable heterogeneity remains between countries in ALRI coding (i.e., primary vs non-primary cause), and in the age profile of proportion positive for influenza and RSV across studies. While this analysis is interesting because of its wide data utilization and applicability in locations without laboratory-confirmed admission data, understanding the sources of variability and data quality will be essential in future applications of these methods.
Collapse
Affiliation(s)
- Emily K Johnson
- Institute of Health Metrics and Evaluation, University of Washington, Seattle, USA.
| | - Dillon Sylte
- Institute of Health Metrics and Evaluation, University of Washington, Seattle, USA
| | - Sandra S Chaves
- Foundation for Influenza Epidemiology, Fondation de France, Paris, France
- Vaccine Epidemiology and Modeling Department, Sanofi Pasteur, Lyon, France
| | - You Li
- Centre for Global Health, Usher Institute, University of Edinburgh, Edinburgh, UK
| | - Cedric Mahe
- Foundation for Influenza Epidemiology, Fondation de France, Paris, France
- Vaccine Epidemiology and Modeling Department, Sanofi Pasteur, Lyon, France
| | - Harish Nair
- Centre for Global Health, Usher Institute, University of Edinburgh, Edinburgh, UK
| | - John Paget
- Netherlands Institute for Health Services Research (Nivel), Utrecht, Netherlands
| | - Tayma van Pomeren
- Netherlands Institute for Health Services Research (Nivel), Utrecht, Netherlands
| | - Ting Shi
- Centre for Global Health, Usher Institute, University of Edinburgh, Edinburgh, UK
| | - Cecile Viboud
- Fogarty International Center, National Institutes of Health, Bethesda, USA
| | - Spencer L James
- Institute of Health Metrics and Evaluation, University of Washington, Seattle, USA
| |
Collapse
|
3
|
Chowdhury F, Shahid ASMSB, Ghosh PK, Rahman M, Hassan MZ, Akhtar Z, Muneer SME, Shahrin L, Ahmed T, Chisti MJ. Viral etiology of pneumonia among severely malnourished under-five children in an urban hospital, Bangladesh. PLoS One 2020; 15:e0228329. [PMID: 32017782 PMCID: PMC6999894 DOI: 10.1371/journal.pone.0228329] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Accepted: 01/13/2020] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND In Bangladesh, pneumonia has a higher mortality among malnourished children aged <5 years. Evaluating pneumonia etiology among malnourished children may help improve empiric treatment guidelines. METHODS During April 2015-December 2017, we conducted a case-control study among severe acute malnourished (SAM) children aged <5 years admitted to the Dhaka hospital of International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b). We enrolled hospital admitted SAM children with clinical or radiological pneumonia as cases (during April 2015 to March 2017) and hospital admitted SAM children without any respiratory symptom in the past 10 days before admission as controls (during February 2016 to December 2017). We tested nasopharyngeal wash from both case and control for respiratory syncytial virus (RSV), human metapneumovirus (HMPV), influenza viruses, human parainfluenza viruses (HPIV), rhinovirus and adenovirus by singleplex real-time reverse transcriptase polymerase chain reaction. To identify the independent association of pneumonia with viral pathogens during February 2016 to March 2017, we used multivariable logistic regression for calculating adjusted odds ratios. RESULTS We enrolled 360 cases and 334 controls. For case and control the median age was 8 months (IQR: 5-13) and 11 months (IQR: 6-18) (p = 0.001) respectively. Weight/age Z-score was -4.3 (SD ±0.7) for cases and -4.1 (SD ±1.1) for controls (p = 0.01). Among cases 68% had both clinical and radiological pneumonia, 1% had clinical pneumonia and 31% had only radiological pneumonia. Respiratory virus detection was high in cases compared to controls [69.9% (251) vs. 44.8% (148), p = 0.0001]. The most frequently detected viruses among cases were rhinoviruses (79, 22.0%) followed by RSV (32, 8.9%), adenovirus (23, 6.4%), HPIV (22, 6.1%), influenza virus (16, 4.5%), and HMPV (16, 4.5%). Among the controls, rhinoviruses (82, 24.8%) were most commonly detected one followed by adenovirus (26,7.9%), HMPV (5, 1.5%), HPIV (4, 1.2%), RSV (3, 0.9%), and influenza virus (2, 0.6%). RSV (OR 13.1; 95% CI: 1.6, 106.1), influenza virus (OR 8.7; 95% CI: 1.0, 78.9), HPIV (3.8; 95% CI: 1.0, 14.8), and HMPV (2.7; 95% CI: 1.3, 5.5) were independently associated with pneumonia while compared between 178 cases and 174 controls. CONCLUSION Viral etiology of pneumonia in SAM children were mainly attributable to RSV, influenza, HPIV and HMPV. Our study findings may help in planning further studies targeting vaccines or drugs against common respiratory viruses responsible for pneumonia among SAM children.
Collapse
Affiliation(s)
- Fahmida Chowdhury
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | | | - Probir Kumar Ghosh
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Mustafizur Rahman
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Md. Zakiul Hassan
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Zubair Akhtar
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - S. Mah-E- Muneer
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Lubaba Shahrin
- Nutrition and Clinical Services Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Tahmeed Ahmed
- Nutrition and Clinical Services Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Mohammod Jobayer Chisti
- Nutrition and Clinical Services Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| |
Collapse
|
4
|
Krishnan A, Kumar R, Broor S, Gopal G, Saha S, Amarchand R, Choudekar A, Purkayastha DR, Whitaker B, Pandey B, Narayan VV, Kabra SK, Sreenivas V, Widdowson MA, Lindstrom S, Lafond KE, Jain S. Epidemiology of viral acute lower respiratory infections in a community-based cohort of rural north Indian children. J Glob Health 2019; 9:010433. [PMID: 31131104 PMCID: PMC6513504 DOI: 10.7189/jogh.09.010433] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background In India, community-based acute lower respiratory infections (ALRI) burden studies are limited, hampering development of prevention and control strategies. Methods We surveyed children <10 years old at home weekly from August 2012-August 2014, for cough, sore throat, rhinorrhoea, ear discharge, and shortness of breath. Symptomatic children were assessed for ALRI using World Health Organization definitions. Nasal and throat swabs were obtained from all ALRI cases and asymptomatic controls and tested using polymerase chain reaction for respiratory syncytial virus (RSV), human metapneumovirus (hMPV), parainfluenza viruses (PIV), and influenza viruses (IV). We estimated adjusted odds ratios (aOR) using logistic regression to calculate etiologic fractions (EF). We multiplied agent-specific ALRI incidence rates by EF to calculate the adjusted incidence as episodes per child-year. Results ALRI incidence was 0.19 (95% confidence interval (CI) = 0.18-0.20) episode per child-year. Association between virus and ALRI was strongest for RSV (aOR = 15.9; 95% CI = 7.3-34.7; EF = 94%) and least for IV (aOR = 4.6; 95% CI = 2.0-10.6; EF = 78%). Adjusted agent-specific ALRI incidences were RSV (0.03, 95% CI = 0.02-0.03), hMPV (0.02, 95% CI = 0.01-0.02), PIV (0.02, 95% CI = 0.01-0.02), and IV (0.01, 95% CI = 0.01-0.01) episode per child-year. Conclusions ALRI among children in rural India was high; RSV was a significant contributor.
Collapse
Affiliation(s)
- Anand Krishnan
- All India Institute of Medical Sciences, New Delhi, India
| | - Rakesh Kumar
- All India Institute of Medical Sciences, New Delhi, India
| | - Shobha Broor
- SGT Medical College, Hospital & Research Institute, Gurgaon, India
| | - Giridara Gopal
- All India Institute of Medical Sciences, New Delhi, India
| | - Siddhartha Saha
- Influenza Division, US Centers for Disease Control and Prevention- India country office, New Delhi, India
| | | | | | | | - Brett Whitaker
- US Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Bharti Pandey
- All India Institute of Medical Sciences, New Delhi, India
| | | | - Sushil K Kabra
- All India Institute of Medical Sciences, New Delhi, India
| | | | - Marc-Alain Widdowson
- US Centers for Disease Control and Prevention, Atlanta, Georgia, USA.,Division of Global Health Protection, U.S. Centers for Disease Control and Prevention, Nairobi, Kenya
| | - Stephen Lindstrom
- US Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Kathryn E Lafond
- US Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Seema Jain
- Influenza Division, US Centers for Disease Control and Prevention- India country office, New Delhi, India.,US Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| |
Collapse
|
5
|
Bhuiyan MU, Snelling TL, West R, Lang J, Rahman T, Granland C, de Gier C, Borland ML, Thornton RB, Kirkham LAS, Sikazwe C, Martin AC, Richmond PC, Smith DW, Jaffe A, Blyth CC. The contribution of viruses and bacteria to community-acquired pneumonia in vaccinated children: a case -control study. Thorax 2019; 74:261-269. [PMID: 30337417 PMCID: PMC6467248 DOI: 10.1136/thoraxjnl-2018-212096] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 09/12/2018] [Accepted: 09/17/2018] [Indexed: 10/31/2022]
Abstract
INTRODUCTION Respiratory pathogens associated with childhood pneumonia are often detected in the upper respiratory tract of healthy children, making their contribution to pneumonia difficult to determine. We aimed to determine the contribution of common pathogens to pneumonia adjusting for rates of asymptomatic detection to inform future diagnosis, treatment and preventive strategies. METHODS A case-control study was conducted among children <18 years in Perth, Western Australia. Cases were children hospitalised with radiologically confirmed pneumonia; controls were healthy children identified from outpatient and local immunisation clinics. Nasopharyngeal swabs were collected and tested for 14 respiratory viruses and 6 bacterial species by Polymerase chain reaction (PCR). For each pathogen, adjusted odds ratio (aOR; 95% CI) was calculated using multivariate logistic regression and population-attributable fraction (95% CI) for pneumonia was estimated. RESULTS From May 2015 to October 2017, 230 cases and 230 controls were enrolled. At least one respiratory virus was identified in 57% of cases and 29% of controls (aOR: 4.7; 95% CI: 2.8 to 7.8). At least one bacterial species was detected in 72% of cases and 80% of controls (aOR: 0.7; 95% CI: 0.4 to 1.2). Respiratory syncytial virus (RSV) detection was most strongly associated with pneumonia (aOR: 58.4; 95% CI: 15.6 to 217.5). Mycoplasma pneumoniae was the only bacteria associated with pneumonia (aOR: 14.5; 95% CI: 2.2 to 94.8). We estimated that RSV, human metapneumovirus (HMPV), influenza, adenovirus and Mycoplasma pneumoniae were responsible for 20.2% (95% CI: 14.6 to 25.5), 9.8% (5.6% to 13.7%), 6.2% (2.5% to 9.7%), 4% (1.1% to 7.1%) and 7.2% (3.5% to 10.8%) of hospitalisations for childhood pneumonia, respectively. CONCLUSIONS Respiratory viruses, particularly RSV and HMPV, are major contributors to pneumonia in Australian children.
Collapse
Affiliation(s)
- Mejbah Uddin Bhuiyan
- Division of Paediatrics, School of Medicine, Faculty of Health and Medical Sciences, The University of Western Australia, Perth, Western Australia, Australia
- Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, Perth, Western Australia, Australia
| | - Thomas L Snelling
- Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, Perth, Western Australia, Australia
- Department of Infectious Diseases, Perth Children's Hospital, Perth, Western Australia, Australia
| | - Rachel West
- Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, Perth, Western Australia, Australia
| | - Jurissa Lang
- Department of Microbiology, PathWest Laboratory Medicine WA, Perth, Western Australia, Australia
| | - Tasmina Rahman
- Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, Perth, Western Australia, Australia
- School of Biomedical Sciences, Faculty of Health and Medical Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Caitlyn Granland
- Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, Perth, Western Australia, Australia
| | - Camilla de Gier
- Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, Perth, Western Australia, Australia
- School of Biomedical Sciences, Faculty of Health and Medical Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Meredith L Borland
- Division of Paediatrics, School of Medicine, Faculty of Health and Medical Sciences, The University of Western Australia, Perth, Western Australia, Australia
- Emergency Department, Perth Children's Hospital, Perth, Western Australia, Australia
- Division of Emergency Medicine, School of Medicine, Faculty of Health and Medical Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Ruth B Thornton
- Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, Perth, Western Australia, Australia
- School of Biomedical Sciences, Faculty of Health and Medical Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Lea-Ann S Kirkham
- Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, Perth, Western Australia, Australia
- School of Biomedical Sciences, Faculty of Health and Medical Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Chisha Sikazwe
- Department of Microbiology, PathWest Laboratory Medicine WA, Perth, Western Australia, Australia
- School of Biomedical Sciences, Faculty of Health and Medical Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Andrew C Martin
- Department of General Paediatrics, Perth Children's Hospital, Perth, Western Australia, Australia
| | - Peter C Richmond
- Division of Paediatrics, School of Medicine, Faculty of Health and Medical Sciences, The University of Western Australia, Perth, Western Australia, Australia
- Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, Perth, Western Australia, Australia
- Department of General Paediatrics, Perth Children's Hospital, Perth, Western Australia, Australia
| | - David W Smith
- Department of Microbiology, PathWest Laboratory Medicine WA, Perth, Western Australia, Australia
- School of Biomedical Sciences, Faculty of Health and Medical Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Adam Jaffe
- School of Women's and Children's Health, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Christopher C Blyth
- Division of Paediatrics, School of Medicine, Faculty of Health and Medical Sciences, The University of Western Australia, Perth, Western Australia, Australia
- Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, Perth, Western Australia, Australia
- Department of Infectious Diseases, Perth Children's Hospital, Perth, Western Australia, Australia
| |
Collapse
|
6
|
Bhuiyan MU, Snelling TL, West R, Lang J, Rahman T, Borland ML, Thornton R, Kirkham LA, Sikazwe C, Martin AC, Richmond PC, Smith DW, Jaffe A, Blyth CC. Role of viral and bacterial pathogens in causing pneumonia among Western Australian children: a case-control study protocol. BMJ Open 2018; 8:e020646. [PMID: 29549211 PMCID: PMC5857668 DOI: 10.1136/bmjopen-2017-020646] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 12/27/2017] [Accepted: 02/12/2018] [Indexed: 12/28/2022] Open
Abstract
INTRODUCTION Pneumonia is the leading cause of childhood morbidity and mortality globally. Introduction of the conjugate Haemophilus influenzae B and multivalent pneumococcal vaccines in developed countries including Australia has significantly reduced the overall burden of bacterial pneumonia. With the availability of molecular diagnostics, viruses are frequently detected in children with pneumonia either as primary pathogens or predispose to secondary bacterial infection. Many respiratory pathogens that are known to cause pneumonia are also identified in asymptomatic children, so the true contribution of these pathogens to childhood community-acquired pneumonia (CAP) remains unclear. Since the introduction of pneumococcal vaccines, very few comprehensive studies from developed countries have attempted to determine the bacterial and viral aetiology of pneumonia. We aim to determine the contribution of bacteria and viruses to childhood CAP to inform further development of effective diagnosis, treatment and preventive strategies. METHODS AND ANALYSIS We are conducting a prospective case-control study (PneumoWA) where cases are children with radiologically confirmed pneumonia admitted to Princess Margaret Hospital for Children (PMH) and controls are healthy children identified from PMH outpatient clinics and from local community immunisation clinics. The case-control ratio is 1:1 with 250 children to be recruited in each arm. Nasopharyngeal swabs are collected from both cases and controls to detect the presence of viruses and bacteria by PCR; pathogen load will be assessed by quantitative PCR. The prevalence of pathogens detected in cases and controls will be compared, the OR of detection and population attributable fraction to CAP for each pathogen will be determined; relationships between pathogen load and disease status and severity will be explored. ETHICS AND DISSEMINATION This study has been approved by the human research ethics committees of PMH, Perth, Australia (PMH HREC REF 2014117EP). Findings will be disseminated at research conferences and in peer-reviewed journals.
Collapse
Affiliation(s)
- Mejbah Uddin Bhuiyan
- Division of Paediatrics, Faculty of Health and Medical Sciences, School of Medicine, The University of Western Australia, Perth, Western Australia, Australia
- Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, Perth, Australia
| | - Thomas L Snelling
- Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, Perth, Australia
- Department of Infectious Diseases, Princess Margaret Hospital for Children, Perth, Australia
| | - Rachel West
- Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, Perth, Australia
| | - Jurissa Lang
- PathWest Laboratory Medicine WA, Perth, Australia
| | - Tasmina Rahman
- Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, Perth, Australia
- Faculty of Health and Medical Sciences, School of Biomedical Science, The University of Western Australia, Perth, Australia
| | - Meredith L Borland
- Department of Infectious Diseases, Princess Margaret Hospital for Children, Perth, Australia
| | - Ruth Thornton
- Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, Perth, Australia
- Faculty of Health and Medical Sciences, School of Biomedical Science, The University of Western Australia, Perth, Australia
| | - Lea-Ann Kirkham
- Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, Perth, Australia
- Faculty of Health and Medical Sciences, School of Biomedical Science, The University of Western Australia, Perth, Australia
| | | | - Andrew C Martin
- Department of Infectious Diseases, Princess Margaret Hospital for Children, Perth, Australia
| | - Peter C Richmond
- Division of Paediatrics, Faculty of Health and Medical Sciences, School of Medicine, The University of Western Australia, Perth, Western Australia, Australia
- Department of Infectious Diseases, Princess Margaret Hospital for Children, Perth, Australia
| | | | - Adam Jaffe
- Faculty of Medicine, School of Women's and Children's Health, University of New South Wales, Sydney, Australia
| | - Christopher C Blyth
- Division of Paediatrics, Faculty of Health and Medical Sciences, School of Medicine, The University of Western Australia, Perth, Western Australia, Australia
- Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, Perth, Australia
- Department of Infectious Diseases, Princess Margaret Hospital for Children, Perth, Australia
- PathWest Laboratory Medicine WA, Perth, Australia
| |
Collapse
|
7
|
Higdon MM, Hammitt LL, Deloria Knoll M, Baggett HC, Brooks WA, Howie SRC, Kotloff KL, Levine OS, Madhi SA, Murdoch DR, Scott JAG, Thea DM, Driscoll AJ, Karron RA, Park DE, Prosperi C, Zeger SL, O'Brien KL, Feikin DR. Should Controls With Respiratory Symptoms Be Excluded From Case-Control Studies of Pneumonia Etiology? Reflections From the PERCH Study. Clin Infect Dis 2018; 64:S205-S212. [PMID: 28575354 PMCID: PMC5447853 DOI: 10.1093/cid/cix076] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Many pneumonia etiology case-control studies exclude controls with respiratory illness from enrollment or analyses. Herein we argue that selecting controls regardless of respiratory symptoms provides the least biased estimates of pneumonia etiology. We review 3 reasons investigators may choose to exclude controls with respiratory symptoms in light of epidemiologic principles of control selection and present data from the Pneumonia Etiology Research for Child Health (PERCH) study where relevant to assess their validity. We conclude that exclusion of controls with respiratory symptoms will result in biased estimates of etiology. Randomly selected community controls, with or without respiratory symptoms, as long as they do not meet the criteria for case-defining pneumonia, are most representative of the general population from which cases arose and the least subject to selection bias.
Collapse
Affiliation(s)
- Melissa M Higdon
- Department of International Health, International Vaccine Access Center, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Laura L Hammitt
- Department of International Health, International Vaccine Access Center, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland.,Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi
| | - Maria Deloria Knoll
- Department of International Health, International Vaccine Access Center, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Henry C Baggett
- Global Disease Detection Center, Thailand Ministry of Public Health-US Centers for Disease Control and Prevention Collaboration, Nonthaburi.,Division of Global Health Protection, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - W Abdullah Brooks
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka and Matlab.,Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Stephen R C Howie
- Medical Research Council Unit, Basse, The Gambia.,Department of Paediatrics, University of Auckland, and.,Centre for International Health, University of Otago, Dunedin, New Zealand
| | - Karen L Kotloff
- Division of Infectious Disease and Tropical Pediatrics, Department of Pediatrics, Center for Vaccine Development, Institute of Global Health, University of Maryland School of Medicine, Baltimore
| | - Orin S Levine
- Department of International Health, International Vaccine Access Center, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland.,Bill & Melinda Gates Foundation, Seattle, Washington
| | - Shabir A Madhi
- Medical Research Council, Respiratory and Meningeal Pathogens Research Unit, and.,Department of Science and Technology/National Research Foundation: Vaccine Preventable Diseases Unit, University of the Witwatersrand, Johannesburg, South Africa
| | - David R Murdoch
- Department of Pathology, University of Otago, and.,Microbiology Unit, Canterbury Health Laboratories, Christchurch, New Zealand
| | - J Anthony G Scott
- Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi.,Department of Infectious Disease Epidemiology, London School of Hygiene & Tropical Medicine, United Kingdom
| | - Donald M Thea
- Center for Global Health and Development, Boston University School of Public Health, Massachusetts
| | - Amanda J Driscoll
- Department of International Health, International Vaccine Access Center, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Ruth A Karron
- Department of International Health, Center for Immunization Research, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Daniel E Park
- Department of International Health, International Vaccine Access Center, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland.,Milken Institute School of Public Health, Department of Epidemiology and Biostatistics, George Washington University, Washington, District of Columbia
| | - Christine Prosperi
- Department of International Health, International Vaccine Access Center, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Scott L Zeger
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland; and
| | - Katherine L O'Brien
- Department of International Health, International Vaccine Access Center, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Daniel R Feikin
- Department of International Health, International Vaccine Access Center, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland.,Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | | |
Collapse
|
8
|
Bates MN, Pokhrel AK, Chandyo RK, Valentiner-Branth P, Mathisen M, Basnet S, Strand TA, Burnett RT, Smith KR. Kitchen PM 2.5 concentrations and child acute lower respiratory infection in Bhaktapur, Nepal: The importance of fuel type. ENVIRONMENTAL RESEARCH 2018; 161:546-553. [PMID: 29241064 DOI: 10.1016/j.envres.2017.11.056] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 11/29/2017] [Accepted: 11/29/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Globally, solid fuels are used by about 3 billion people for cooking and a smaller number use kerosene. These fuels have been associated with acute lower respiratory infection (ALRI) in children. Previous work in Bhaktapur, Nepal, showed comparable relationships of biomass and kerosene cooking fuels with ALRI in young children, compared to those using electricity for cooking. We examine the relationship of kitchen PM2.5 concentrations to ALRI in those households. METHODS ALRI cases and age-matched controls were enrolled from a cohort of children 2-35 months old. 24-h PM2.5 was measured once in each participant's kitchen. The main analysis was carried out with conditional logistic regression, with PM2.5 measures specified both continuously and as quartiles. RESULTS In the kitchens of 393 cases and 431 controls, quartiles of increasing PM2.5 concentration were associated with a monotonic increase in odds ratios (OR): 1.51 (95% CI: 1.00, 2.27), 2.22 (1.47, 3.34), 2.48 (1.63, 3.77), for the 3 highest exposure quartiles. The general kitchen concentration-response shape across all stoves was supralinear. There was evidence for increased risk with biomass stoves, but the slope for kerosene stoves was steeper, the highest quartile OR being 5.36 (1.35, 21.3). Evidence for increased risk was also found for gas stoves. CONCLUSION Results support previous reports that biomass and kerosene cooking fuels are both ALRI risk factors, but suggests that PM2.5 from kerosene is more potent on a unit mass basis. Further studies with larger sample sizes and preferably using electricity as the baseline fuel are needed.
Collapse
Affiliation(s)
- Michael N Bates
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA 94720-7360, USA.
| | - Amod K Pokhrel
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA 94720-7360, USA
| | - Ram K Chandyo
- Centre for International Health, University of Bergen, N-5009 Bergen, Norway
| | - Palle Valentiner-Branth
- Department of Infectious Disease Epidemiology, Statens Serum Institut, Artillerivej 5, 2300 Copenhagen S, Denmark
| | - Maria Mathisen
- Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway
| | - Sudha Basnet
- Centre for International Health, University of Bergen, N-5009 Bergen, Norway; Child Health Department, Institute of Medicine, Tribhuvan University, Kathmandu, Nepal
| | - Tor A Strand
- Centre for International Health, University of Bergen, N-5009 Bergen, Norway; Department of Research, Innlandet Hospital Trust, Lillehammer, Norway
| | | | - Kirk R Smith
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA 94720-7360, USA
| |
Collapse
|
9
|
Hammitt LL, Feikin DR, Scott JAG, Zeger SL, Murdoch DR, O'Brien KL, Deloria Knoll M. Addressing the Analytic Challenges of Cross-Sectional Pediatric Pneumonia Etiology Data. Clin Infect Dis 2017; 64:S197-S204. [PMID: 28575372 PMCID: PMC5447845 DOI: 10.1093/cid/cix147] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Despite tremendous advances in diagnostic laboratory technology, identifying the pathogen(s) causing pneumonia remains challenging because the infected lung tissue cannot usually be sampled for testing. Consequently, to obtain information about pneumonia etiology, clinicians and researchers test specimens distant to the site of infection. These tests may lack sensitivity (eg, blood culture, which is only positive in a small proportion of children with pneumonia) and/or specificity (eg, detection of pathogens in upper respiratory tract specimens, which may indicate asymptomatic carriage or a less severe syndrome, such as upper respiratory infection). While highly sensitive nucleic acid detection methods and testing of multiple specimens improve sensitivity, multiple pathogens are often detected and this adds complexity to the interpretation as the etiologic significance of results may be unclear (ie, the pneumonia may be caused by none, one, some, or all of the pathogens detected). Some of these challenges can be addressed by adjusting positivity rates to account for poor sensitivity or incorporating test results from controls without pneumonia to account for poor specificity. However, no classical analytic methods can account for measurement error (ie, sensitivity and specificity) for multiple specimen types and integrate the results of measurements for multiple pathogens to produce an accurate understanding of etiology. We describe the major analytic challenges in determining pneumonia etiology and review how the common analytical approaches (eg, descriptive, case-control, attributable fraction, latent class analysis) address some but not all challenges. We demonstrate how these limitations necessitate a new, integrated analytical approach to pneumonia etiology data.
Collapse
Affiliation(s)
- Laura L Hammitt
- Department of International Health, International Vaccine Access Center, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
- Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi
| | - Daniel R Feikin
- Department of International Health, International Vaccine Access Center, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
- Division of Viral Diseases, National Center for Immunizations and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - J Anthony G Scott
- Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi
- Department of Infectious Disease Epidemiology, London School of Hygiene & Tropical Medicine, United Kingdom
| | - Scott L Zeger
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland; and
| | - David R Murdoch
- Department of Pathology, University of Otago, and
- Microbiology Unit, Canterbury Health Laboratories, Christchurch, New Zealand
| | - Katherine L O'Brien
- Department of International Health, International Vaccine Access Center, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Maria Deloria Knoll
- Department of International Health, International Vaccine Access Center, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| |
Collapse
|
10
|
Esposito S, Principi N. The role of the NxTAG® respiratory pathogen panel assay and other multiplex platforms in clinical practice. Expert Rev Mol Diagn 2016; 17:9-17. [PMID: 27899038 DOI: 10.1080/14737159.2017.1266260] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
INTRODUCTION The advent of nucleic acid amplification tests has significantly improved the aetiologic diagnosis of respiratory infections. However, multiplex real-time polymerase chain reaction (PCR) can be technologically challenging. Areas covered: This paper reports the results of the main published studies on the NxTAG Respiratory Pathogen Panel (RPP) and discusses the advantages and disadvantages of extensive use of multiplex assays in clinical practice. Expert commentary: Currently available data seem to indicate that routine use of multiplex assays, including NxTAG RPP Assay, should be recommended only when epidemiological data concerning circulation of viruses and bacteria have to be collected. Their use in clinical practice seems debatable. They have limited sensitivity and specificity at least in the identification of some infectious agents or, as in the case of NxTAG RPP, they have not been evaluated in a sufficient number of patients to allow definitive conclusions. In the future, the clinical relevance of multiplex assays, including NxTAG RPP, could significantly increase, mainly because a number of new antiviral agents effective against several respiratory viruses for which no drug is presently available will be marketed. In addition, it is highly likely that the efficiency of multiplex assays will be significantly improved.
Collapse
Affiliation(s)
- Susanna Esposito
- a Pediatric Highly Intensive Care Unit, Department of Pathophysiology and Transplantation , Università degli Studi di Milano, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico , Milan , Italy
| | - Nicola Principi
- a Pediatric Highly Intensive Care Unit, Department of Pathophysiology and Transplantation , Università degli Studi di Milano, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico , Milan , Italy
| |
Collapse
|
11
|
Campbell H, Bont L, Nair H. Respiratory syncytial virus (RSV) disease - new data needed to guide future policy. J Glob Health 2016; 5:020101. [PMID: 26755941 PMCID: PMC4693507 DOI: 10.7189/jogh.05.020101] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
RSV is the main cause of childhood lower respiratory infections, globally, an important cause of childhood wheeze and may be responsible for a substantial burden of disease in the very elderly and in adults with chronic medical problems, such as COPD. It is thus responsible for substantial healthcare and social costs. There are currently many companies and academic groups developing and testing candidate vaccines and there is an expectation that these will lead to effective and safe vaccines which will be available to health systems globally in the short – medium term. Despite this, there is an incomplete understanding of RSV disease, especially in adult groups, and large scale data are only available from a few countries and settings leading to low levels of awareness of the importance of this pathogen. We discuss the need for widespread national sentinel systems of RSV surveillance and some means by which this could be achieved. These data will be needed by national policy makers and immunisation advisory groups to guide future priority setting and decision making.
Collapse
Affiliation(s)
- Harry Campbell
- Centre for Global Health Research, Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, Scotland, UK
| | - Louis Bont
- Department of PediatricsUniversity Medical Center Utrecht, Utrecht, Netherlands
| | - Harish Nair
- Centre for Global Health Research, Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, Scotland, UK
| |
Collapse
|
12
|
Ali A, Akhund T, Warraich GJ, Aziz F, Rahman N, Umrani FA, Qureshi S, Petri WA, Bhutta Z, Zaidi AKM, Hughes MA. Respiratory viruses associated with severe pneumonia in children under 2 years old in a rural community in Pakistan. J Med Virol 2016; 88:1882-90. [PMID: 27096404 PMCID: PMC7166621 DOI: 10.1002/jmv.24557] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/15/2016] [Indexed: 12/12/2022]
Abstract
The objective of this study was to determine the incidence of respiratory viruses associated with severe pneumonia among children less than 2 years of age in the rural district of Matiari in Sindh, Pakistan. This study was a community‐based prospective cohort active surveillance of infants enrolled at birth and followed for 2 years. Cases were identified using the World Health Organization's Integrated Management of Childhood Illnesses’ definition of severe pneumonia. Nasopharyngeal swabs were obtained for assessment by multiplex RT‐PCR for eight viruses and their subtypes, including RSV, influenza virus, human metapneumovirus, enterovirus/rhinovirus, coronavirus, parainfluenza virus, adenovirus, and human bocavirus. Blood cultures were collected from febrile participants. A total of 817 newborns were enrolled and followed with fortnightly surveillance for 2 years, accounting for a total of 1,501 child‐years of follow‐up. Of the nasopharyngeal swabs collected, 77.8% (179/230) were positive for one or more of the above mentioned respiratory viruses. The incidence of laboratory confirmed viral‐associated pneumonia was 11.9 per 100 child‐years of follow‐up. Enterovirus/rhinovirus was detected in 51.7% patients, followed by parainfluenza virus type III (8.3%), and RSV (5.7%). Of the uncontaminated blood cultures, 1.4% (5/356) were positive. Respiratory viruses are frequently detected during acute respiratory infection episodes in children under 2 years old in a rural community in Pakistan. However, causal association is yet to be established and the concomitant role of bacteria as a co‐infection or super‐infection needs further investigation. J. Med. Virol. 88:1882–1890, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Asad Ali
- Department of Pediatrics and Child Health, Aga Khan University, Karachi, Pakistan
| | - Tauseef Akhund
- Department of Pediatrics and Child Health, Aga Khan University, Karachi, Pakistan
| | - Gohar Javed Warraich
- Department of Pediatrics and Child Health, Aga Khan University, Karachi, Pakistan
| | - Fatima Aziz
- Department of Pediatrics and Child Health, Aga Khan University, Karachi, Pakistan
| | - Najeeb Rahman
- Department of Pediatrics and Child Health, Aga Khan University, Karachi, Pakistan
| | - Fayyaz Ahmed Umrani
- Department of Pediatrics and Child Health, Aga Khan University, Karachi, Pakistan
| | - Shahida Qureshi
- Department of Pediatrics and Child Health, Aga Khan University, Karachi, Pakistan
| | - William A Petri
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Zulfiqar Bhutta
- Department of Pediatrics and Child Health, Aga Khan University, Karachi, Pakistan
| | - Anita K M Zaidi
- Department of Pediatrics and Child Health, Aga Khan University, Karachi, Pakistan
| | - Molly A Hughes
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia
| |
Collapse
|
13
|
Abstract
BACKGROUND The Aetiology of Neonatal Infection in South Asia (ANISA) study takes advantage of text messaging technology to record information required for randomizing the study population into a control subcohort. The text message system is also used for monitoring various study activities. METHODS When a child-health worker registers a newborn in the study, she sends a text message to a database server containing the study identification number and newborn's age at the time of registration. For each possible serious bacterial infection case, a study physician also sends a text message to the same server with the age of the young infant at the time of illness assessment. Using this information, a computer-based algorithm randomizes the newborn into a control subcohort. Text messages are also sent to alert the study physicians and study supervisors of a possible serious bacterial infection case being referred to health-care facilities. Phlebotomists working at remote specimen collection sites send text messages to the site laboratory personnel before sending the specimens through porters. DISCUSSION Real-time data entry and monitoring are challenging for any population-based study conducted in remote areas. Our text messaging system provides an opportunity to overcome this barrier where availability of data entry facilities is limited.
Collapse
|
14
|
Sambursky R, Shapiro N. Evaluation of a combined MxA and CRP point-of-care immunoassay to identify viral and/or bacterial immune response in patients with acute febrile respiratory infection. Eur Clin Respir J 2015; 2:28245. [PMID: 26672961 PMCID: PMC4676840 DOI: 10.3402/ecrj.v2.28245] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 09/01/2015] [Indexed: 11/17/2022] Open
Abstract
Background Challenges in the clinical differentiation of viral and/or bacterial respiratory infection lead to the misappropriation of antibiotics and increased healthcare costs. A tool to facilitate rapid and accurate point-of-care (POC) differentiation is needed. Methods and findings A prospective, single center, blinded, observational clinical trial was conducted at Beth Israel Deaconess Medical Center from December 2012 to August 2013 to determine the accuracy of a POC immunoassay to identify a clinically significant immune response to viral and/or bacterial infection. Sixty patients with acute febrile respiratory infection (19 pharyngitis and 41 lower respiratory tract infection [LRTI]) were enrolled. Participants provided fingerstick blood for immunoassay testing (myxovirus A [MxA] and c-reactive protein [CRP]) and four oropharyngeal samples for viral PCR and routine bacterial cell culture. A venous blood sample was collected. An ELISA was used to measure CRP and MxA. Paired serological testing was used to confirm atypical bacteria. A urine sample was provided for Streptococcus and Legionella antigen testing. Patients with suspected LRTI had sputum and blood cultures, chest X-ray, and WBC count measured. Viral infection was confirmed if oropharyngeal PCR was positive for viral pathogens. Bacterial infection was confirmed in positive throat or sputum cultures. Elevated immunoglobulin M antibodies or twofold increase in IgG antibodies between acute and convalescent phase indicated atypical bacteria. Positive Streptococcus or Legionella urine antigen assays also confirmed bacterial infection. The immunoassay correctly categorized subjects as 92% (22/24) negative, 80% (16/20) with bacterial infection, and 70% (7/10) with viral infection. Conclusions The interplay between an MxA value and a semi-quantitative CRP value can aid in the differentiation of infectious etiology. In isolation, neither MxA nor CRP alone is sensitive or specific. However, the pattern of results in a rapid immunoassay provides a sensitive and specific method to differentiate acute febrile respiratory infections. This diagnostic information may help reduce antibiotic misuse and resistance and lower healthcare costs.
Collapse
|
15
|
Shi T, McLean K, Campbell H, Nair H. Aetiological role of common respiratory viruses in acute lower respiratory infections in children under five years: A systematic review and meta-analysis. J Glob Health 2015; 5:010408. [PMID: 26445672 PMCID: PMC4593292 DOI: 10.7189/jogh.05.010408] [Citation(s) in RCA: 133] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Background Acute lower respiratory infection (ALRI) remains a major cause of childhood hospitalization and mortality in young children and the causal attribution of respiratory viruses in the aetiology of ALRI is unclear. We aimed to quantify the absolute effects of these viral exposures. Methods We conducted a systematic literature review (across 7 databases) of case–control studies published from 1990 to 2014 which investigated the viral profile of 18592 children under 5 years with and without ALRI. We then computed a pooled odds ratio and virus–specific attributable fraction among the exposed of 8 common viruses – respiratory syncytial virus (RSV), influenza (IFV), parainfluenza (PIV), human metapneumovirus (MPV), adenovirus (AdV), rhinovirus (RV), bocavirus (BoV), and coronavirus (CoV). Findings From the 23 studies included, there was strong evidence for causal attribution of RSV (OR 9.79; AFE 90%), IFV (OR 5.10; AFE 80%), PIV (OR 3.37; AFE 70%) and MPV (OR 3.76; AFE 73%), and less strong evidence for RV (OR 1.43; AFE 30%) in young children presenting with ALRI compared to those without respiratory symptoms (asymptomatic) or healthy children. However, there was no significant difference in the detection of AdV, BoV, or CoV in cases and controls. Conclusions This review supports RSV, IFV, PIV, MPV and RV as important causes of ALRI in young children, and provides quantitative estimates of the absolute proportion of virus–associated ALRI cases to which a viral cause can be attributed.
Collapse
Affiliation(s)
- Ting Shi
- Centre for Global Health Research, Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, Scotland, UK ; Joint authors in this position
| | - Kenneth McLean
- Centre for Global Health Research, Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, Scotland, UK ; Joint authors in this position
| | - Harry Campbell
- Centre for Global Health Research, Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, Scotland, UK ; Centre for Population Health Sciences, Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, Scotland, UK ; Joint authors in this position
| | - Harish Nair
- Centre for Global Health Research, Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, Scotland, UK ; Centre for Medical Informatics, Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, Scotland, UK ; Public Health Foundation of India, New Delhi, India ; Joint authors in this position
| |
Collapse
|
16
|
Rhedin S, Lindstrand A, Hjelmgren A, Ryd-Rinder M, Öhrmalm L, Tolfvenstam T, Örtqvist Å, Rotzén-Östlund M, Zweygberg-Wirgart B, Henriques-Normark B, Broliden K, Naucler P. Respiratory viruses associated with community-acquired pneumonia in children: matched case-control study. Thorax 2015; 70:847-53. [PMID: 26077969 DOI: 10.1136/thoraxjnl-2015-206933] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 05/25/2015] [Indexed: 01/12/2023]
Abstract
BACKGROUND Community-acquired pneumonia (CAP) is the leading cause of death in children worldwide and a substantial proportion of childhood CAP is caused by viruses. A better understanding of the role of virus infections in this condition is needed to improve clinical management and preventive measures. The aim of the study was therefore to assess the association between specific respiratory viruses and childhood CAP. METHODS A case-control study was conducted during 3 years in Stockholm, Sweden. Cases were children aged ≤5 years with radiological CAP. Healthy controls were consecutively enrolled at child health units during routine visits and matched to cases on age and calendar time. Nasopharyngeal aspirates were obtained and analysed by real-time PCR for 15 viruses. Multivariate conditional logistic regression was used to account for coinfections with other viruses and baseline characteristics. RESULTS A total of 121 cases, of which 93 cases met the WHO criteria for radiological pneumonia, and 240 controls were included in the study. Viruses were detected in 81% of the cases (n=98) and 56% of the controls (n=134). Influenza virus, metapneumovirus and respiratory syncytial virus were detected in 60% of cases and were significantly associated with CAP with ORs >10. There was no association with parainfluenza virus, human enterovirus or rhinovirus and coronavirus and bocavirus were negatively associated with CAP. CONCLUSIONS Our study indicates viral CAP is an underestimated disease and points out hMPV as a new important target for the prevention of childhood CAP.
Collapse
Affiliation(s)
- Samuel Rhedin
- Department of Medicine Solna, Infectious Diseases Unit, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Ann Lindstrand
- The Public Health Agency of Sweden, Stockholm, Sweden Department of Public Health Sciences, Karolinska Institutet, Stockholm, Sweden
| | - Annie Hjelmgren
- Department of Medicine Solna, Infectious Diseases Unit, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Malin Ryd-Rinder
- Department of Clinical Science and Education, Karolinska Institutet, Sachs' Children and Youth Hospital, South General Hospital, Stockholm, Sweden
| | - Lars Öhrmalm
- Department of Medicine Solna, Infectious Diseases Unit, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Thomas Tolfvenstam
- Department of Medicine Solna, Infectious Diseases Unit, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden The Public Health Agency of Sweden, Stockholm, Sweden
| | - Åke Örtqvist
- Department of Medicine Solna, Infectious Diseases Unit, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden Department of Communicable Disease and Control, Stockholm County Council, Stockholm, Sweden
| | - Maria Rotzén-Östlund
- Department of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Benita Zweygberg-Wirgart
- Department of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Birgitta Henriques-Normark
- Department of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Kristina Broliden
- Department of Medicine Solna, Infectious Diseases Unit, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Pontus Naucler
- Department of Medicine Solna, Infectious Diseases Unit, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
17
|
Lanaspa M, Annamalay AA, LeSouëf P, Bassat Q. Epidemiology, etiology, x-ray features, importance of co-infections and clinical features of viral pneumonia in developing countries. Expert Rev Anti Infect Ther 2014; 12:31-47. [PMID: 24410617 PMCID: PMC7103723 DOI: 10.1586/14787210.2014.866517] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Pneumonia is still the number one killer of young children globally, accounting for 18% of mortality in children under 5 years of age. An estimated 120 million new cases of pneumonia occur globally each year. In developing countries, management and prevention efforts against pneumonia have traditionally focused on bacterial pathogens. More recently however, viral pathogens have gained attention as a result of improved diagnostic methods, such as polymerase chain reaction, outbreaks of severe disease caused by emerging pathogens, discovery of new respiratory viruses as well as the decrease in bacterial pneumonia as a consequence of the introduction of highly effective conjugate vaccines. Although the epidemiology, etiology and clinical characterization of viral infections are being studied extensively in the developed world, little data are available from low- and middle-income countries. In this paper, we review the epidemiology, etiology, clinical and radiological features of viral pneumonia in developing countries.
Collapse
Affiliation(s)
- Miguel Lanaspa
- Barcelona Center for International Health Research, Hospital Clinic, University of Barcelona, Rosello 132, 08036 Barcelona, Spain
| | | | | | | |
Collapse
|
18
|
Rhedin S, Lindstrand A, Rotzén-Östlund M, Tolfvenstam T, Ohrmalm L, Rinder MR, Zweygberg-Wirgart B, Ortqvist A, Henriques-Normark B, Broliden K, Naucler P. Clinical utility of PCR for common viruses in acute respiratory illness. Pediatrics 2014; 133:e538-45. [PMID: 24567027 DOI: 10.1542/peds.2013-3042] [Citation(s) in RCA: 128] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Acute respiratory illness (ARI) accounts for a large proportion of all visits to pediatric health facilities. Quantitative real-time polymerase chain reaction (qPCR) analyses allow sensitive detection of viral nucleic acids, but it is not clear to what extent specific viruses contribute to disease because many viruses have been detected in asymptomatic children. Better understanding of how to interpret viral findings is important to reduce unnecessary use of antibiotics. OBJECTIVE To compare viral qPCR findings from children with ARI versus asymptomatic control subjects. METHODS Nasopharyngeal aspirates were collected from children aged ≤5 years with ARI and from individually matched, asymptomatic, population-based control subjects during a noninfluenza season. Samples were analyzed by using qPCR for 16 viruses. RESULTS Respiratory viruses were detected in 72.3% of the case patients (n = 151) and 35.4% of the control subjects (n = 74) (P = .001). Rhinovirus was the most common finding in both case patients and control subjects (47.9% and 21.5%, respectively), with a population-attributable proportion of 0.39 (95% confidence interval: 0.01 to 0.62). Metapneumovirus, parainfluenza viruses, and respiratory syncytial virus were highly overrepresented in case patients. Bocavirus was associated with ARI even after adjustment for coinfections with other viruses and was associated with severe disease. Enterovirus and coronavirus were equally common in case patients and control subjects. CONCLUSIONS qPCR detection of respiratory syncytial virus, metapneumovirus, or parainfluenza viruses in children with ARI is likely to be causative of disease; detection of several other respiratory viruses must be interpreted with caution due to high detection rates in asymptomatic children.
Collapse
Affiliation(s)
- Samuel Rhedin
- Department of Medicine Solna, Unit of Infectious Diseases, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Bates MN, Chandyo RK, Valentiner-Branth P, Pokhrel AK, Mathisen M, Basnet S, Shrestha PS, Strand TA, Smith KR. Acute lower respiratory infection in childhood and household fuel use in Bhaktapur, Nepal. ENVIRONMENTAL HEALTH PERSPECTIVES 2013; 121:637-42. [PMID: 23512278 PMCID: PMC3673188 DOI: 10.1289/ehp.1205491] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2012] [Accepted: 03/18/2013] [Indexed: 05/18/2023]
Abstract
BACKGROUND Globally, solid fuels are used by about 3 billion people for cooking. These fuels have been associated with many health effects, including acute lower respiratory infection (ALRI) in young children. Nepal has a high prevalence of use of biomass for cooking and heating. OBJECTIVE This case-control study was conducted among a population in the Bhaktapur municipality, Nepal, to investigate the relationship of cookfuel type to ALRI in young children. METHODS Cases with ALRI and age-matched controls were enrolled from an open cohort of children 2-35 months old, under active monthly surveillance for ALRI. A questionnaire was used to obtain information on family characteristics, including household cooking and heating appliances and fuels. The main analysis was carried out using conditional logistic regression. Population-attributable fractions (PAF) for stove types were calculated. RESULTS A total of 917 children (452 cases and 465 controls) were recruited into the study. Relative to use of electricity for cooking, ALRI was increased in association with any use of biomass stoves [odds ratio (OR) = 1.93; 95% CI: 1.24, 2.98], kerosene stoves (OR = 1.87; 95% CI: 1.24, 2.83), and gas stoves (OR = 1.62; 95% CI: 1.05, 2.50). Use of wood, kerosene, or coal heating was also associated with ALRI (OR = 1.45; 95% CI: 0.97, 2.14), compared with no heating or electricity or gas heating. PAFs for ALRI were 18.0% (95% CI: 8.1, 26.9%) and 18.7% (95% CI: 8.4%-27.8%), for biomass and kerosene stoves, respectively. CONCLUSIONS The study supports previous reports indicating that use of biomass as a household fuel is a risk factor for ALRI, and provides new evidence that use of kerosene for cooking may also be a risk factor for ALRI in young children.
Collapse
Affiliation(s)
- Michael N Bates
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, Berkeley, California 94720-7360, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Bosch AATM, Biesbroek G, Trzcinski K, Sanders EAM, Bogaert D. Viral and bacterial interactions in the upper respiratory tract. PLoS Pathog 2013; 9:e1003057. [PMID: 23326226 PMCID: PMC3542149 DOI: 10.1371/journal.ppat.1003057] [Citation(s) in RCA: 431] [Impact Index Per Article: 35.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Respiratory infectious diseases are mainly caused by viruses or bacteria that often interact with one another. Although their presence is a prerequisite for subsequent infections, viruses and bacteria may be present in the nasopharynx without causing any respiratory symptoms. The upper respiratory tract hosts a vast range of commensals and potential pathogenic bacteria, which form a complex microbial community. This community is assumed to be constantly subject to synergistic and competitive interspecies interactions. Disturbances in the equilibrium, for instance due to the acquisition of new bacteria or viruses, may lead to overgrowth and invasion. A better understanding of the dynamics between commensals and pathogens in the upper respiratory tract may provide better insight into the pathogenesis of respiratory diseases. Here we review the current knowledge regarding specific bacterial–bacterial and viral–bacterial interactions that occur in the upper respiratory niche, and discuss mechanisms by which these interactions might be mediated. Finally, we propose a theoretical model to summarize and illustrate these mechanisms.
Collapse
Affiliation(s)
- Astrid A. T. M. Bosch
- Department of Pediatric Immunology and Infectious Diseases, University Medical Center-Wilhelmina Children's Hospital, Utrecht, The Netherlands
| | - Giske Biesbroek
- Department of Pediatric Immunology and Infectious Diseases, University Medical Center-Wilhelmina Children's Hospital, Utrecht, The Netherlands
| | - Krzysztof Trzcinski
- Department of Pediatric Immunology and Infectious Diseases, University Medical Center-Wilhelmina Children's Hospital, Utrecht, The Netherlands
| | - Elisabeth A. M. Sanders
- Department of Pediatric Immunology and Infectious Diseases, University Medical Center-Wilhelmina Children's Hospital, Utrecht, The Netherlands
| | - Debby Bogaert
- Department of Pediatric Immunology and Infectious Diseases, University Medical Center-Wilhelmina Children's Hospital, Utrecht, The Netherlands
- * E-mail:
| |
Collapse
|
21
|
Viral and bacterial causes of severe acute respiratory illness among children aged less than 5 years in a high malaria prevalence area of western Kenya, 2007-2010. Pediatr Infect Dis J 2013; 32:e14-9. [PMID: 22914561 DOI: 10.1097/inf.0b013e31826fd39b] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND Few comprehensive data exist on the etiology of severe acute respiratory illness (SARI) among African children. METHODS From March 1, 2007 to February 28, 2010, we collected blood for culture and nasopharyngeal and oropharyngeal swabs for real-time quantitative polymerase chain reaction for 10 viruses and 3 atypical bacteria among children aged <5 years with SARI, defined as World Health Organization-classified severe or very severe pneumonia or oxygen saturation <90%, who visited a clinic in rural western Kenya. We collected swabs from controls without febrile or respiratory symptoms. We calculated odds ratios for infection among cases, adjusting for age and season in logistic regression. We calculated SARI incidence, adjusting for healthcare seeking for SARI in the community. RESULTS Two thousand nine hundred seventy-three SARI cases were identified (54% inpatient, 46% outpatient), yielding an adjusted incidence of 56 cases per 100 person-years. A pathogen was detected in 3.3% of noncontaminated blood cultures; non-typhi Salmonella (1.9%) and Streptococcus pneumoniae (0.7%) predominated. A pathogen was detected in 84% of nasopharyngeal/oropharyngeal specimens, the most common being rhino/enterovirus (50%), respiratory syncytial virus (RSV, 22%), adenovirus (16%) and influenza viruses (8%). Only RSV and influenza viruses were found more commonly among cases than controls (odds ratio 2.9, 95% confidence interval: 1.3-6.7 and odds ratio 4.8, 95% confidence interval: 1.1-21, respectively). Incidence of RSV, influenza viruses and S. pneumoniae were 7.1, 5.8 and 0.04 cases per 100 person-years, respectively. CONCLUSIONS Among Kenyan children with SARI, RSV and influenza virus are the most likely viral causes and pneumococcus the most likely bacterial cause. Contemporaneous controls are important for interpreting upper respiratory tract specimens.
Collapse
|
22
|
Hammitt LL, Kazungu S, Morpeth SC, Gibson DG, Mvera B, Brent AJ, Mwarumba S, Onyango CO, Bett A, Akech DO, Murdoch DR, Nokes DJ, Scott JAG. A preliminary study of pneumonia etiology among hospitalized children in Kenya. Clin Infect Dis 2012; 54 Suppl 2:S190-9. [PMID: 22403235 PMCID: PMC3297554 DOI: 10.1093/cid/cir1071] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Pneumonia is the leading cause of childhood death in the developing world. Higher-quality etiological data are required to reduce this mortality burden. METHODS We conducted a case-control study of pneumonia etiology among children aged 1-59 months in rural Kenya. Case patients were hospitalized with World Health Organization-defined severe pneumonia (SP) or very severe pneumonia (VSP); controls were outpatient children without pneumonia. We collected blood for culture, induced sputum for culture and multiplex polymerase chain reaction (PCR), and obtained oropharyngeal swab specimens for multiplex PCR from case patients, and serum for serology and nasopharyngeal swab specimens for multiplex PCR from case patients and controls. RESULTS Of 984 eligible case patients, 810 (84%) were enrolled in the study; 232 (29%) had VSP. Blood cultures were positive in 52 of 749 case patients (7%). A predominant potential pathogen was identified in sputum culture in 70 of 417 case patients (17%). A respiratory virus was detected by PCR from nasopharyngeal swab specimens in 486 of 805 case patients (60%) and 172 of 369 controls (47%). Only respiratory syncytial virus (RSV) showed a statistically significant association between virus detection in the nasopharynx and pneumonia hospitalization (odds ratio, 12.5; 95% confidence interval, 3.1-51.5). Among 257 case patients in whom all specimens (excluding serum specimens) were collected, bacteria were identified in 24 (9%), viruses in 137 (53%), mixed viral and bacterial infection in 39 (15%), and no pathogen in 57 (22%); bacterial causes outnumbered viral causes when the results of the case-control analysis were considered. CONCLUSIONS A potential etiology was detected in >75% of children admitted with SP or VSP. Except for RSV, the case-control analysis did not detect an association between viral detection in the nasopharynx and hospitalization for pneumonia.
Collapse
Affiliation(s)
- Laura L Hammitt
- Department of International Health, International Vaccine Access Center, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland 21205, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Moore HC, de Klerk N, Keil AD, Smith DW, Blyth CC, Richmond P, Lehmann D. Use of data linkage to investigate the aetiology of acute lower respiratory infection hospitalisations in children. J Paediatr Child Health 2012; 48:520-8. [PMID: 22077532 PMCID: PMC7166791 DOI: 10.1111/j.1440-1754.2011.02229.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIM To document the aetiology of acute lower respiratory infection (ALRI) hospitalisations in Western Australian children by linking population-based laboratory data with hospital morbidity data. METHODS Data from all ALRI hospitalisations and laboratory records related to respiratory pathogens between 2000 and 2005 were extracted and linked through a population-based record linkage system. The proportion of specimens that were positive for each respiratory viral or bacterial pathogen was documented. RESULTS Eight thousand nine hundred and eighty (45.2%) ALRI hospitalisations were linked to a laboratory record. Admissions to a private hospital and admissions from non-metropolitan areas were less likely to have a linked laboratory record. In 57.9% of linked hospitalisations, a respiratory virus and/or a bacterial pathogen was identified. Frequently identified viral pathogens included respiratory syncytial virus (RSV; n= 3226; 39.5% of those tested), influenza viruses (n= 664; 8.5%), parainfluenza virus type 3 (n= 348; 4.6%), picornaviruses (n= 292; 22.3%) and adenoviruses (n= 211; 2.7%). RSV was identified in 63.7% of bronchiolitis admissions in those aged under 6 months and 33.1% of pneumonia admissions in those aged under 12 months. Influenza viruses were identified in 81.6% of influenza-coded admissions. When a test was requested, Bordetella pertussis was identified in 21.2% of ALRI hospitalisations (n= 354), including 86.8% of whooping cough-coded admissions. CONCLUSIONS This is the first report of population-based data linkage between statewide laboratory data and hospitalisation records and demonstrates proof of principle. RSV continues to be an important pathogen in ALRI. As pathogens were identified across all diagnoses, relying on hospital diagnosis coding alone may not accurately estimate the burden of different categories of ALRI.
Collapse
Affiliation(s)
- Hannah C Moore
- Telethon Institute for Child Health Research, Centre for Child Health Research, Schools of Pathology and Laboratory Medicine, University of Western Australia, Perth, Western Australia, Australia.
| | - Nicholas de Klerk
- Telethon Institute for Child Health Research, Centre for Child Health Research, Schools of
| | - Anthony D Keil
- PathWest Laboratory Medicine WA, Princess Margaret Hospital for Children
| | - David W Smith
- Telethon Institute for Child Health Research, Centre for Child Health Research, Schools of,Pathology and Laboratory Medicine,,Biological, Biomolecular and Chemical Sciences,Department of Paediatric and Adolescent Medicine, Princess Margaret Hospital for Children, Perth, Western Australia, Australia
| | - Christopher C Blyth
- Paediatrics and Child Health, University of Western Australia,PathWest Laboratory Medicine WA, QEII Medical Centre
| | - Peter Richmond
- Paediatrics and Child Health, University of Western Australia,PathWest Laboratory Medicine WA, QEII Medical Centre
| | - Deborah Lehmann
- Telethon Institute for Child Health Research, Centre for Child Health Research, Schools of
| |
Collapse
|
24
|
Chidlow GR, Laing IA, Harnett GB, Greenhill AR, Phuanukoonnon S, Siba PM, Pomat WS, Shellam GR, Smith DW, Lehmann D. Respiratory viral pathogens associated with lower respiratory tract disease among young children in the highlands of Papua New Guinea. J Clin Virol 2012; 54:235-9. [PMID: 22595309 PMCID: PMC3383990 DOI: 10.1016/j.jcv.2012.04.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Revised: 04/03/2012] [Accepted: 04/17/2012] [Indexed: 11/18/2022]
Abstract
Background Acute lower respiratory tract infections (ALRI) commonly result in fatal outcomes in the young children of Papua New Guinea (PNG). However, comprehensive studies of the viral aetiology of ALRI have not been conducted in PNG for almost 30 years. Objectives To determine the viruses associated with ALRI among children living in the PNG highlands using sensitive molecular detection techniques. Study design Pernasal swabs were collected routinely between 1 week and 18 months of age and also during episodes of ALRI, as part of a neonatal pneumococcal conjugate vaccine trial. A tandem multiplex real-time PCR assay was used to test for a comprehensive range of respiratory viruses in samples collected from 221 young children. Picornavirus typing was supported by DNA sequence analysis. Results Recognized pathogenic respiratory viruses were detected in 198/273 (73%) samples collected from children with no evidence of ALRI and 69/80 (86%) samples collected during ALRI episodes. Human rhinoviruses (HRV) species A, B and C were detected in 152 (56%) samples from non-ALRI children and 50 (63%) samples collected during ALRI episodes. Partial structural region sequences for two new species C rhinoviruses were added to the GenBank database. ALRI was associated with detection of adenovirus species B (p < 0.01) or C (p < 0.05), influenza A (p < 0.0001) or respiratory syncytial virus (p < 0.0001). Multiple viruses were detected more often during ALRI episodes (49%) than when children displayed no symptoms of ALRI (18%) (p < 0.0001). Conclusions The burden of infection with respiratory viruses remains significant in young children living in the PNG highlands.
Collapse
Affiliation(s)
- Glenys R Chidlow
- Department of Microbiology, PathWest Laboratory Medicine WA, Nedlands, Australia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Stupica D, Lusa L, Petrovec M, Zigon N, Jevšnik M, Bogovič P, Strle F. Respiratory viruses in patients and employees in an intensive care unit. Infection 2012; 40:381-8. [PMID: 22350959 PMCID: PMC7099890 DOI: 10.1007/s15010-012-0245-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Accepted: 02/04/2012] [Indexed: 01/16/2023]
Abstract
Purpose To evaluate the frequency of respiratory viruses in a nonselected population of intensive care unit patients and employees and to investigate the clinical as well as the epidemiological association with virological findings. Methods Between 12 January and 5 March 2009, nasopharyngeal swabs were collected from 55 intensive care unit (ICU) patients and 41 medical personnel at 16 different time-points and tested for 11 respiratory viruses by single real-time PCR using TaqMan or MGB probes. Results Among the 55 ICU patients tested, there were 30 virus-positive respiratory specimens (30/173, 17.3%) and 23 patients who tested positive at least once for respiratory viruses (23/55, 41.8%). Only the time from admission to the ICU was associated with the probability of testing positive, with the probability of testing positive decreasing with increasing length of stay (P < 0.001). Of the 418 respiratory specimens collected from the healthcare personnel, 27 (6.5%) tested positive. Seventeen employees tested positive at least once for respiratory viruses (17/41, 41.5%). Among the employees, calendar time (P = 0.03) and having sick contacts at home (P = 0.006) were significantly associated with swab positivity. Among the study population, patients had a significantly higher probability of having a positive swab result than employees. The distribution of viruses differed between the two groups. Conclusions Our results suggest that when hygiene precautions are adopted, the possibility of transmitting selected respiratory viruses between patients and personnel is limited. They also point to a greater importance of the community over the hospital environment for acquisition of viral respiratory infections by ICU patients and employees. Electronic supplementary material The online version of this article (doi:10.1007/s15010-012-0245-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- D Stupica
- Department of Infectious Diseases, University Medical Center Ljubljana, Japljeva 2, 1525 Ljubljana, Slovenia.
| | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
BACKGROUND Pneumonia is among the leading causes of illness and death in children <5 years of age worldwide. There is little information on the viral etiology of severe pneumonia in low-income countries, where the disease burden is particularly high. METHODS We analyzed nasopharyngeal aspirates from 629 children 2 to 35 months of age meeting World Health Organization criteria for severe pneumonia and presenting at Kanti Children's Hospital, Kathmandu, Nepal, from January 2006 through June 2008. We examined one specimen from each child for 7 respiratory viruses using reverse transcription polymerase chain reaction. RESULTS We detected one or more respiratory viruses in 188 (30%; confidence interval: 26.4%-33.7%) of the 627 specimens with a valid polymerase chain reaction result, of which 88 (14%) yielded respiratory syncytial virus (RSV), 28 (4.5%) influenza A, 24 (5.8%) parainfluenza virus (PIV) type 3, 23 (3.7%) PIV type 1, 17 (2.7%) influenza B, 9 (1.4%) human metapneumovirus, and 5 (0.8%) PIV type 2. Episodes of severe pneumonia occurred in an epidemic pattern with 2 main annual peaks, the viral infections contributing importantly to these epidemics. The largest peaks of severe pneumonia coincided with peaks of RSV infection, which occurred during the last part of the monsoon season and in winter. CONCLUSIONS RSV was the dominant respiratory viral pathogen detected in young Nepalese children hospitalized with severe pneumonia.
Collapse
|
27
|
Abstract
Bacterial super-infections contribute to the significant morbidity and mortality associated with influenza and other respiratory virus infections. There are robust animal model data, but only limited clinical information on the effectiveness of licensed antiviral agents for the treatment of bacterial complications of influenza. The association of secondary bacterial pathogens with fatal pneumonia during the recent H1N1 influenza pandemic highlights the need for new development in this area. Basic and clinical research into viral-bacterial interactions over the past decade has revealed several mechanisms that underlie this synergism. By applying these insights to antiviral drug development, the potential exists to improve outcomes by means other than direct inhibition of the virus.
Collapse
Affiliation(s)
- Jonathan A McCullers
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|