1
|
Miron VD, Pleșca DA, Bilașco A, Filimon C, Covaci S, Drăgănescu AC. The Role of Physical Examination and Clinical Scores in Distinguishing Streptococcal Colonization from Pharyngitis in Pediatric Patients: Insights from a Common Clinical Scenario. Microorganisms 2025; 13:529. [PMID: 40142420 PMCID: PMC11944544 DOI: 10.3390/microorganisms13030529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 02/24/2025] [Accepted: 02/25/2025] [Indexed: 03/28/2025] Open
Abstract
The accurate differentiation between asymptomatic carriage with group A streptococcus (GAS) and active streptococcal pharyngitis is a complex task with important clinical and public health implications. This work aims to highlight the key strategies necessary for optimizing the diagnostic and therapeutic management of pediatric pharyngitis. Clinical scores are essential tools for improving diagnostic accuracy. When combined with laboratory tests such as throat cultures and rapid antigen detection tests, these systems enable effective risk stratification of patients, supporting more precise treatment decisions. In addition to diagnostic strategies, the article underscores the importance of patient-centered communication, particularly with the families of pediatric patients. Clear, empathetic discussions about the condition, diagnostic rationale, and treatment plan help foster trust, enhance adherence to medical recommendations, and reduce anxiety related to potential complications. A critical outcome of these combined strategies is the reduction of unnecessary antibiotic use, which plays a pivotal role in preventing both overdiagnosis and overprescription. This, in turn, mitigates the growing threat of antimicrobial resistance, one of the most significant global health challenges. By integrating clinical expertise, standardized protocols, and effective communication, healthcare providers can promote judicious and effective management of streptococcal pharyngitis or asymptomatic carriage, contributing to improved individual and population health outcomes.
Collapse
Affiliation(s)
- Victor Daniel Miron
- Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (V.D.M.)
- National Institute for Infectious Diseases “Prof. Dr. Matei Balș”, 021105 Bucharest, Romania
| | - Doina Anca Pleșca
- Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (V.D.M.)
- Children’s Clinical Hospital Dr. Victor Gomoiu, 022102 Bucharest, Romania
| | - Anuța Bilașco
- Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (V.D.M.)
- National Institute for Infectious Diseases “Prof. Dr. Matei Balș”, 021105 Bucharest, Romania
| | - Claudiu Filimon
- Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (V.D.M.)
- Emergency Clinical Hospital, 014461 Bucharest, Romania
| | - Sigrid Covaci
- Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (V.D.M.)
| | - Anca Cristina Drăgănescu
- Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (V.D.M.)
- National Institute for Infectious Diseases “Prof. Dr. Matei Balș”, 021105 Bucharest, Romania
| |
Collapse
|
2
|
Smeesters PR, de Crombrugghe G, Tsoi SK, Leclercq C, Baker C, Osowicki J, Verhoeven C, Botteaux A, Steer AC. Global Streptococcus pyogenes strain diversity, disease associations, and implications for vaccine development: a systematic review. THE LANCET. MICROBE 2024; 5:e181-e193. [PMID: 38070538 DOI: 10.1016/s2666-5247(23)00318-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/25/2023] [Accepted: 09/27/2023] [Indexed: 02/12/2024]
Abstract
The high strain diversity of Streptococcus pyogenes serves as a major obstacle to vaccine development against this leading global pathogen. We did a systematic review of studies in PubMed, MEDLINE, and Embase that reported the global distribution of S pyogenes emm-types and emm-clusters from Jan 1, 1990, to Feb 23, 2023. 212 datasets were included from 55 countries, encompassing 74 468 bacterial isolates belonging to 211 emm-types. Globally, an inverse correlation was observed between strain diversity and the UNDP Human Development Index (HDI; r=-0·72; p<0·0001), which remained consistent upon subanalysis by global region and site of infection. Greater strain diversity was associated with a lower HDI, suggesting the role of social determinants in diseases caused by S pyogenes. We used a population-weighted analysis to adjust for the disproportionate number of epidemiological studies from high-income countries and identified 15 key representative isolates as vaccine targets. Strong strain type associations were observed between the site of infection (invasive, skin, and throat) and several streptococcal lineages. In conclusion, the development of a truly global vaccine to reduce the immense burden of diseases caused by S pyogenes should consider the multidimensional diversity of the pathogen, including its social and environmental context, and not merely its geographical distribution.
Collapse
Affiliation(s)
- Pierre R Smeesters
- Department of Paediatrics, Brussels University Hospital, Academic Children Hospital Queen Fabiola, Université libre de Bruxelles, Brussels, Belgium; Molecular Bacteriology Laboratory, European Plotkin Institute for Vaccinology, Université Libre de Bruxelles, Brussels, Belgium; Tropical Diseases Research Group, Murdoch Children's Research Institute, Melbourne, VIC, Australia; Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia.
| | - Gabrielle de Crombrugghe
- Department of Paediatrics, Brussels University Hospital, Academic Children Hospital Queen Fabiola, Université libre de Bruxelles, Brussels, Belgium; Molecular Bacteriology Laboratory, European Plotkin Institute for Vaccinology, Université Libre de Bruxelles, Brussels, Belgium
| | - Shu Ki Tsoi
- Tropical Diseases Research Group, Murdoch Children's Research Institute, Melbourne, VIC, Australia; Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia; Infectious Diseases Unit, Royal Children's Hospital Melbourne, Melbourne, VIC, Australia
| | - Céline Leclercq
- Department of Paediatrics, Brussels University Hospital, Academic Children Hospital Queen Fabiola, Université libre de Bruxelles, Brussels, Belgium
| | - Ciara Baker
- Tropical Diseases Research Group, Murdoch Children's Research Institute, Melbourne, VIC, Australia
| | - Joshua Osowicki
- Tropical Diseases Research Group, Murdoch Children's Research Institute, Melbourne, VIC, Australia; Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia; Infectious Diseases Unit, Royal Children's Hospital Melbourne, Melbourne, VIC, Australia
| | - Caroline Verhoeven
- Laboratoire d'enseignement des Mathématiques, Université Libre de Bruxelles, Brussels, Belgium
| | - Anne Botteaux
- Molecular Bacteriology Laboratory, European Plotkin Institute for Vaccinology, Université Libre de Bruxelles, Brussels, Belgium
| | - Andrew C Steer
- Tropical Diseases Research Group, Murdoch Children's Research Institute, Melbourne, VIC, Australia; Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia; Infectious Diseases Unit, Royal Children's Hospital Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
3
|
Brouwer S, Rivera-Hernandez T, Curren BF, Harbison-Price N, De Oliveira DMP, Jespersen MG, Davies MR, Walker MJ. Pathogenesis, epidemiology and control of Group A Streptococcus infection. Nat Rev Microbiol 2023; 21:431-447. [PMID: 36894668 PMCID: PMC9998027 DOI: 10.1038/s41579-023-00865-7] [Citation(s) in RCA: 131] [Impact Index Per Article: 65.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/06/2023] [Indexed: 03/11/2023]
Abstract
Streptococcus pyogenes (Group A Streptococcus; GAS) is exquisitely adapted to the human host, resulting in asymptomatic infection, pharyngitis, pyoderma, scarlet fever or invasive diseases, with potential for triggering post-infection immune sequelae. GAS deploys a range of virulence determinants to allow colonization, dissemination within the host and transmission, disrupting both innate and adaptive immune responses to infection. Fluctuating global GAS epidemiology is characterized by the emergence of new GAS clones, often associated with the acquisition of new virulence or antimicrobial determinants that are better adapted to the infection niche or averting host immunity. The recent identification of clinical GAS isolates with reduced penicillin sensitivity and increasing macrolide resistance threatens both frontline and penicillin-adjunctive antibiotic treatment. The World Health Organization (WHO) has developed a GAS research and technology road map and has outlined preferred vaccine characteristics, stimulating renewed interest in the development of safe and effective GAS vaccines.
Collapse
Affiliation(s)
- Stephan Brouwer
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | | | - Bodie F Curren
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia
| | - Nichaela Harbison-Price
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - David M P De Oliveira
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Magnus G Jespersen
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Mark R Davies
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Mark J Walker
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia.
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia.
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia.
| |
Collapse
|
4
|
Salie MT, Muhamed B, Engel K, Rampersadh K, Daniels R, Mhlanti L, Penfound TA, Sable CA, Zühlke LJ, Dale JB, Engel ME. Serum Immune Responses to Group A Streptococcal Antigens following Pharyngeal Acquisitions among Children in Cape Town, South Africa. mSphere 2023:e0011323. [PMID: 37154726 DOI: 10.1128/msphere.00113-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023] Open
Abstract
There is limited information on the human immune response following infection with group A Streptococcus (Strep A). Animal studies have shown, in addition to the M protein, that shared Strep A antigens elicit protective immunity. This study aimed to investigate the kinetics of antibody responses against a panel of Strep A antigens in a cohort of school-aged children in Cape Town, South Africa. Participants provided serial throat cultures and serum samples at two-monthly follow-up visits. Strep A recovered were emm-typed, and serum samples were analyzed by enzyme-linked immunosorbent assay (ELISA) to assess immune responses to thirty-five Strep A antigens (10-shared and 25-M peptides). Serologic evaluations were performed on serial serum samples from 42 selected participants (from 256 enrolled) based on the number of follow-up visits, the frequency of visits, and throat culture results. Among these, there were 44 Strep A acquisitions, 36 of which were successfully emm-typed. Participants were grouped into three clinical event groups based on culture results and immune responses. A preceding infection was most convincingly represented by a Strep A-positive culture with an immune response to at least one shared antigen and M peptide (11 events) or a Strep A-negative culture with antibody responses to shared antigens and M peptides (9 events). More than a third of participants demonstrated no immune response despite a positive culture. This study provided important information regarding the complexity and variability of human immune responses following pharyngeal acquisition of Strep A, as well as demonstrating the immunogenicity of Strep A antigens currently under consideration as potential vaccine candidates. IMPORTANCE There is currently limited information regarding the human immune response to group A streptococcal throat infection. An understanding of the kinetics and specificity of antibody responses against a panel of Group A Streptococcus (GAS) antigens will serve to refine diagnostic approaches and contribute to vaccine efforts, which together will serve to reduce the burden of rheumatic heart disease, a major source of morbidity and mortality especially in the developing world. This study, utilizing an antibody-specific assay, uncovered three patterns of response profiles following GAS infection, among 256 children presenting with sore throat to local clinics. Overall, the response profiles were complex and variable. Of note, a preceding infection was most convincingly represented by a GAS-positive culture with an immune response to at least one shared antigen and M peptide. Also, more than a third of participants demonstrated no immune response despite a positive culture. All antigens tested were immunogenic, providing guidance for future vaccine development.
Collapse
Affiliation(s)
- M Taariq Salie
- Department of Medicine (AFROStrep Research Initiative) and Cape Heart Institute, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Babu Muhamed
- Department of Medicine (AFROStrep Research Initiative) and Cape Heart Institute, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Department of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Kélin Engel
- Department of Medicine (AFROStrep Research Initiative) and Cape Heart Institute, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Kimona Rampersadh
- Department of Medicine (AFROStrep Research Initiative) and Cape Heart Institute, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Rezeen Daniels
- Department of Medicine (AFROStrep Research Initiative) and Cape Heart Institute, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Lwazi Mhlanti
- Department of Medicine (AFROStrep Research Initiative) and Cape Heart Institute, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Thomas A Penfound
- Department of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Craig A Sable
- Children's National Health System, Washington, DC, USA
| | - Liesl J Zühlke
- South African Medical Research Council, Cape Town, South Africa
- Division of Paediatric Cardiology, Department of Paediatrics, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - James B Dale
- Department of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Mark E Engel
- Department of Medicine (AFROStrep Research Initiative) and Cape Heart Institute, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
5
|
Arnold B, Bélard S, Alabi A, Hufnagel M, Berner R, Toepfner N. High Diversity of emm Types and Marked Tetracycline Resistance of Group A Streptococci and Other ß-Hemolytic Streptococci in Gabon, Central Africa. Pediatr Infect Dis J 2022; 41:405-410. [PMID: 35213863 DOI: 10.1097/inf.0000000000003483] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
BACKGROUND Group A ß-hemolytic streptococcus (GABHS) is a leading pathogen worldwide and post-streptococcal sequelae is a major cause of morbidity and mortality in resource-limited countries. The M protein (coded by the emm gene) is a key virulence factor and a component of GABHS vaccine candidates. As data on BHS in Central Africa are scarce, antibiotic resistance, emm diversity and potential vaccine coverage were investigated. METHODS In a prospective cross-sectional study, 1014 Gabonese were screened for streptococcal throat carriage, tonsillopharyngitis and pyoderma by throat and skin smear tests. All BHS were isolated, species were identified and analysis of antibiotic resistance, emm types and emm clusters was performed. RESULTS One hundred sixty-five BHS were detected, comprising 76 GABHS, 36 group C ß-hemolytic streptococcus (GCBHS) and 53 group G ß-hemolytic streptococcus (GGBHS) in 140 carrier, 9 tonsillopharyngitis and 16 pyoderma isolates. Eighty percentage of GABHS, 78% of GCBHS and 79% of GGBHS were tetracycline resistant. Forty-six emm types were identified. GABHS emm58, emm65 and emm81 were most prevalent (26%). Emm diversity of GABHS was the highest, GCBHS and GGBHS were less divers. Every second GABHS, every third GCBHS and every tenth GGBHS carrier was colonized with emm types detected in tonsillopharyngitis or pyoderma isolates. CONCLUSIONS Tetracycline resistance and emm type diversity was high among BHS carriers in Gabon with a potential coverage of 58% by the 30-valent GABHS vaccine. A relevant overlap of carrier emm types with emm types found in tonsillopharyngitis and pyoderma characterizes a shared pool of circulating BHS strains.
Collapse
Affiliation(s)
- Benjamin Arnold
- Department of Pediatrics, Carl Gustav Carus University Hospital, Technische Universität Dresden, Dresden, Germany
- Department of Infectious Disease/Tropical Medicine, Nephrology and Rheumatology, St. Georg Hospital, Leipzig, Germany
| | - Sabine Bélard
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité - Universitätsmedizin, Berlin
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
- Centre de Recherches Médicales de Lambaréné (CERMEL), Albert Schweitzer Hospital, Lambaréné, Gabon
- Berlin Institute of Health, Berlin, Germany
| | - Abraham Alabi
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
- Centre de Recherches Médicales de Lambaréné (CERMEL), Albert Schweitzer Hospital, Lambaréné, Gabon
| | - Markus Hufnagel
- Department of Pediatrics and Adolescent Medicine, University Medical Center, Medical Faculty, University of Freiburg, Freiburg, Germany
| | - Reinhard Berner
- Department of Pediatrics, Carl Gustav Carus University Hospital, Technische Universität Dresden, Dresden, Germany
| | - Nicole Toepfner
- Department of Pediatrics, Carl Gustav Carus University Hospital, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
6
|
Rwebembera J, Nascimento BR, Minja NW, de Loizaga S, Aliku T, dos Santos LPA, Galdino BF, Corte LS, Silva VR, Chang AY, Dutra WO, Nunes MCP, Beaton AZ. Recent Advances in the Rheumatic Fever and Rheumatic Heart Disease Continuum. Pathogens 2022; 11:179. [PMID: 35215123 PMCID: PMC8878614 DOI: 10.3390/pathogens11020179] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/14/2022] [Accepted: 01/24/2022] [Indexed: 12/13/2022] Open
Abstract
Nearly a century after rheumatic fever (RF) and rheumatic heart disease (RHD) was eradicated from the developed world, the disease remains endemic in many low- and middle-income countries (LMICs), with grim health and socioeconomic impacts. The neglect of RHD which persisted for a semi-centennial was further driven by competing infectious diseases, particularly the human immunodeficiency virus (HIV) pandemic. However, over the last two-decades, slowly at first but with building momentum, there has been a resurgence of interest in RF/RHD. In this narrative review, we present the advances that have been made in the RF/RHD continuum over the past two decades since the re-awakening of interest, with a more concise focus on the last decade's achievements. Such primary advances include understanding the genetic predisposition to RHD, group A Streptococcus (GAS) vaccine development, and improved diagnostic strategies for GAS pharyngitis. Echocardiographic screening for RHD has been a major advance which has unearthed the prevailing high burden of RHD and the recent demonstration of benefit of secondary antibiotic prophylaxis on halting progression of latent RHD is a major step forward. Multiple befitting advances in tertiary management of RHD have also been realized. Finally, we summarize the research gaps and provide illumination on profitable future directions towards global eradication of RHD.
Collapse
Affiliation(s)
- Joselyn Rwebembera
- Department of Adult Cardiology (JR), Uganda Heart Institute, Kampala 37392, Uganda
| | - Bruno Ramos Nascimento
- Departamento de Clinica Medica, Faculdade de Medicina da Universidade Federal de Minas Gerais, Belo Horizonte 30130-100, MG, Brazil; (B.R.N.); (L.P.A.d.S.); (B.F.G.); (L.S.C.); (V.R.S.); (M.C.P.N.)
- Servico de Cardiologia e Cirurgia Cardiovascular e Centro de Telessaude, Hospital das Clinicas da Universidade Federal de Minas Gerais, Avenida Professor Alfredo Balena 110, 1st Floor, Belo Horizonte 30130-100, MG, Brazil
| | - Neema W. Minja
- Rheumatic Heart Disease Research Collaborative in Uganda, Uganda Heart Institute, Kampala 37392, Uganda;
| | - Sarah de Loizaga
- School of Medicine, University of Cincinnati, Cincinnati, OH 45229, USA; (S.d.L.); (A.Z.B.)
| | - Twalib Aliku
- Department of Paediatric Cardiology (TA), Uganda Heart Institute, Kampala 37392, Uganda;
| | - Luiza Pereira Afonso dos Santos
- Departamento de Clinica Medica, Faculdade de Medicina da Universidade Federal de Minas Gerais, Belo Horizonte 30130-100, MG, Brazil; (B.R.N.); (L.P.A.d.S.); (B.F.G.); (L.S.C.); (V.R.S.); (M.C.P.N.)
| | - Bruno Fernandes Galdino
- Departamento de Clinica Medica, Faculdade de Medicina da Universidade Federal de Minas Gerais, Belo Horizonte 30130-100, MG, Brazil; (B.R.N.); (L.P.A.d.S.); (B.F.G.); (L.S.C.); (V.R.S.); (M.C.P.N.)
| | - Luiza Silame Corte
- Departamento de Clinica Medica, Faculdade de Medicina da Universidade Federal de Minas Gerais, Belo Horizonte 30130-100, MG, Brazil; (B.R.N.); (L.P.A.d.S.); (B.F.G.); (L.S.C.); (V.R.S.); (M.C.P.N.)
| | - Vicente Rezende Silva
- Departamento de Clinica Medica, Faculdade de Medicina da Universidade Federal de Minas Gerais, Belo Horizonte 30130-100, MG, Brazil; (B.R.N.); (L.P.A.d.S.); (B.F.G.); (L.S.C.); (V.R.S.); (M.C.P.N.)
| | - Andrew Young Chang
- Department of Epidemiology and Population Health, Stanford University School of Medicine, Stanford, CA 94305, USA;
| | - Walderez Ornelas Dutra
- Laboratory of Cell-Cell Interactions, Institute of Biological Sciences, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte 30130-100, MG, Brazil;
- National Institute of Science and Technology in Tropical Diseases (INCT-DT), Salvador 40170-970, BA, Brazil
| | - Maria Carmo Pereira Nunes
- Departamento de Clinica Medica, Faculdade de Medicina da Universidade Federal de Minas Gerais, Belo Horizonte 30130-100, MG, Brazil; (B.R.N.); (L.P.A.d.S.); (B.F.G.); (L.S.C.); (V.R.S.); (M.C.P.N.)
- Servico de Cardiologia e Cirurgia Cardiovascular e Centro de Telessaude, Hospital das Clinicas da Universidade Federal de Minas Gerais, Avenida Professor Alfredo Balena 110, 1st Floor, Belo Horizonte 30130-100, MG, Brazil
| | - Andrea Zawacki Beaton
- School of Medicine, University of Cincinnati, Cincinnati, OH 45229, USA; (S.d.L.); (A.Z.B.)
- Cincinnati Children’s Hospital Medical Center, The Heart Institute, Cincinnati, OH 45229, USA
| |
Collapse
|
7
|
Systematic Review and Meta-analysis of the Prevalence of Group A Streptococcal emm Clusters in Africa To Inform Vaccine Development. mSphere 2020; 5:5/4/e00429-20. [PMID: 32669471 PMCID: PMC7364215 DOI: 10.1128/msphere.00429-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Low vaccine coverage is of grave public health concern, particularly in developing countries where epidemiological data are often absent. To inform vaccine development for group A Streptococcus (GAS), we report on the epidemiology of the M protein emm clusters from GAS infections in Africa, where GAS-related illnesses and their sequelae, including rheumatic fever and rheumatic heart disease, are of a high burden. This first report of emm clusters across the continent indicates a high probably of coverage by the M protein-based vaccine currently undergoing testing were an emm-cluster based approach to be used. An emm-cluster based system was proposed as a standard typing scheme to facilitate and enhance future studies of group A Streptococcus (GAS) epidemiological surveillance, M protein function, and vaccine development strategies. We provide an evidence-based distribution of GAS emm clusters in Africa and assess the potential coverage of the new 30-valent vaccine in terms of an emm cluster-based approach. Two reviewers independently assessed studies retrieved from a comprehensive search and extracted relevant data. Meta-analyses were performed (random-effects model) to aggregate emm cluster prevalence estimates. Eight studies (n = 1,595 isolates) revealed the predominant emm clusters as E6 (18%; 95% confidence interval [CI], 12.6% to 24.0%), followed by E3 (14%; 95% CI, 11.2% to 17.4%) and E4 (13%; 95% CI, 9.5% to 16.0%). There was negligible variation in emm clusters with regard to regions, age, and socioeconomic status across the continent. Considering an emm cluster-based vaccine strategy, which assumes cross-protection within clusters, the 30-valent vaccine currently in clinical development would provide hypothetical coverage to 80.3% of isolates in Africa. This systematic review indicates the most predominant GAS emm cluster in Africa is E6 followed by E3, E4, and D4. The current 30-valent vaccine would provide considerable coverage across the diversity of emm cluster types in Africa. Future efforts could be directed toward estimating the overall potential coverage of the new 30-valent vaccine based on cross-opsonization studies with representative panels of GAS isolates from populations at highest risk for GAS diseases. IMPORTANCE Low vaccine coverage is of grave public health concern, particularly in developing countries where epidemiological data are often absent. To inform vaccine development for group A Streptococcus (GAS), we report on the epidemiology of the M protein emm clusters from GAS infections in Africa, where GAS-related illnesses and their sequelae, including rheumatic fever and rheumatic heart disease, are of a high burden. This first report of emm clusters across the continent indicates a high probably of coverage by the M protein-based vaccine currently undergoing testing were an emm-cluster based approach to be used.
Collapse
|
8
|
Barth DD, Moloi A, Mayosi BM, Engel ME. Prevalence of group A Streptococcal infection in Africa to inform GAS vaccines for rheumatic heart disease: A systematic review and meta-analysis. Int J Cardiol 2020; 307:200-208. [PMID: 31864789 DOI: 10.1016/j.ijcard.2019.11.109] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 11/14/2019] [Indexed: 10/25/2022]
Abstract
BACKGROUND The prevalence of group A streptococcal (GAS) disease is estimated at >18.1 million cases with an incidence of >1.78 million cases per year. While a significant cause of mortality and morbidity on the global scale, the burden of GAS disease in Africa is unknown. We conducted a systematic review on the prevalence of GAS disease among children and adults in Africa and the frequency and distribution of emm types among isolates. METHODS We performed a comprehensive literature search in a number of databases, using an African search filter. Two reviewers independently selected articles meeting pre-specified criteria and extracted relevant data as per a data extraction form. We applied the random-effects meta-analysis model to aggregate GAS prevalence estimates with 95% CI for GAS prevalence, incorporating the Freeman-Tukey transformation to account for between-study variability. RESULTS Twenty-five studies were included. Invasive GAS disease prevalence ranged from 0.6% to 10.8% in samples from normally-sterile sites including blood, CSF and soft tissue. A single study reported a prevalence of 74% in skin infections. Prevalence of emm types varied with up to 88 different strains reported, corresponding to a vaccine coverage of 28% to 65%. The pooled prevalence of GAS in persons presenting with pharyngitis was 21% (95% CI, 17% to 26%). CONCLUSIONS The prevalence of GAS remains high among symptomatic individuals residing in Africa. Data on molecular strain characterisation of GAS in Africa is largely non-existent, thus the need for further studies is warranted to inform current prevention efforts including vaccine development.
Collapse
Affiliation(s)
- Dylan D Barth
- Department of Medicine, Faculty of Health Sciences, University of Cape Town & Groote Schuur Hospital, Cape Town, South Africa; Wesfarmer's Centre for Vaccines and Infectious diseases, Telethon Kids Institute, Nedlands, Perth, Western Australia, Australia; Faculty of Health and Medical Sciences, University of Western Australia, Nedlands, Perth, Western Australia, Australia
| | - Annesinah Moloi
- South African Medical Research Council, Cape Town, South Africa; Department of Medicine, Faculty of Health Sciences, University of Cape Town & Groote Schuur Hospital, Cape Town, South Africa
| | - Bongani M Mayosi
- Department of Medicine, Faculty of Health Sciences, University of Cape Town & Groote Schuur Hospital, Cape Town, South Africa
| | - Mark E Engel
- Department of Medicine, Faculty of Health Sciences, University of Cape Town & Groote Schuur Hospital, Cape Town, South Africa.
| |
Collapse
|
9
|
DeWyer A, Scheel A, Webel AR, Longenecker CT, Kamarembo J, Aliku T, Engel ME, Bowen AC, Bwanga F, Hovis I, Chang A, Sarnacki R, Sable C, Dale JB, Carapetis J, Rwebembera J, Okello E, Beaton A. Prevalence of group A β-hemolytic streptococcal throat carriage and prospective pilot surveillance of streptococcal sore throat in Ugandan school children. Int J Infect Dis 2020; 93:245-251. [PMID: 31972290 DOI: 10.1016/j.ijid.2020.01.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 01/13/2020] [Accepted: 01/13/2020] [Indexed: 10/25/2022] Open
Abstract
OBJECTIVES Group A β-hemolytic Streptococcus (GAS), also known as Streptococcus pyogenes, is responsible for an annual 600 million cases of acute pharyngitis globally, with 92% of those infections occurring in low-resource settings. Further knowledge of the acute streptococcal pharyngitis burden in low-resource settings is essential if serious post-streptococcal complications - rheumatic fever (RF) and its long-term sequel rheumatic heart disease (RHD) - are to be prevented. METHODS Two studies were conducted in school-aged children (5-16 years): a cross-sectional study of streptococcal pharyngeal carriage followed by a prospective cohort study of streptococcal sore throat over 4 weeks from March to April 2017. RESULTS The cross-sectional study revealed an overall prevalence of GAS carriage of 15.9% (79/496, 95% confidence interval 12.8-19.5%). Among 532 children enrolled in the prospective cohort study, 358 (67%) reported 528 sore throats, with 221 (41.1%) experiencing at least one GAS-positive sore throat. The overall GAS-positive rate for sore throat was 41.8% (221/528). CONCLUSIONS The GAS pharyngeal carriage rates seen in Uganda (15.9%, 95% confidence interval 12.8-19.5%) are higher than the most recent pooled results globally, at 12% (range 6-28%). Additionally, pilot data suggest a substantially higher percentage of sore throat that was GAS-positive (41.8%) compared to pooled global rates when active recruitment is employed.
Collapse
Affiliation(s)
- Alyssa DeWyer
- Children's National Health System, Department of Cardiology 111 Michigan Ave NW, Washington DC, USA.
| | - Amy Scheel
- Emory University School of Medicine, Atlanta, Georgia, USA
| | - Allison R Webel
- Frances Payne Bolton School of Nursing Case Western Reserve University, Cleveland, Ohio
| | - Chris T Longenecker
- University Hospitals Harrington Heart & Vascular Institute, Case Western Reserve University, Cleveland, Ohio, USA
| | | | - Twalib Aliku
- Uganda Heart Institute, Mulago Hospital Complex, Kampala, Uganda
| | - Mark E Engel
- Department of Medicine, Groote Schuur Hospital and University of Cape Town, Cape Town, South Africa
| | - Asha C Bowen
- University of Western Australia, Perth, WA; Wesfarmers Centre for Vaccines and Infectious Diseases, Telethon Kids Institute, Perth, WA; Perth Children's Hospital, Perth, WA
| | - Freddie Bwanga
- Department of Medical Microbiology, School of Biomedical Sciences, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Ian Hovis
- Children's National Health System, Department of Cardiology 111 Michigan Ave NW, Washington DC, USA
| | - Aileen Chang
- Department of Dermatology, University of California, San Francisco, 505 Paranassus Avenue, San Francisco, CA, 94143, USA
| | - Rachel Sarnacki
- Children's National Health System, Department of Cardiology 111 Michigan Ave NW, Washington DC, USA
| | - Craig Sable
- Children's National Health System, Department of Cardiology 111 Michigan Ave NW, Washington DC, USA
| | - James B Dale
- Medicine, University of Tennessee, Memphis, TN, USA
| | - Jonathan Carapetis
- University of Western Australia, Perth, WA; Wesfarmers Centre for Vaccines and Infectious Diseases, Telethon Kids Institute, Perth, WA; Perth Children's Hospital, Perth, WA
| | | | - Emmy Okello
- Uganda Heart Institute, Mulago Hospital Complex, Kampala, Uganda
| | - Andrea Beaton
- Cincinnati Children's Hospital Medical Center, Cincinnati Ohio, USA
| |
Collapse
|
10
|
Pastural É, McNeil SA, MacKinnon-Cameron D, Ye L, Langley JM, Stewart R, Martin LH, Hurley GJ, Salehi S, Penfound TA, Halperin S, Dale JB. Safety and immunogenicity of a 30-valent M protein-based group a streptococcal vaccine in healthy adult volunteers: A randomized, controlled phase I study. Vaccine 2019; 38:1384-1392. [PMID: 31843270 DOI: 10.1016/j.vaccine.2019.12.005] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 11/26/2019] [Accepted: 12/03/2019] [Indexed: 11/25/2022]
Abstract
BACKGROUND Streptococcus pyogenes (group A Streptococcus, Strep A) is a widespread pathogen that continues to pose a significant threat to human health. The development of a Strep A vaccine remains an unmet global health need. One of the major vaccine strategies is the use of M protein, which is a primary virulence determinant and protective antigen. Multivalent recombinant M protein vaccines are being developed with N-terminal M peptides that contain opsonic epitopes but do not contain human tissue cross-reactive epitopes. METHODS We completed a Phase I trial of a recombinant 30-valent M protein-based Strep A vaccine (Strep A vaccine, StreptAnova™) comprised of four recombinant proteins containing N-terminal peptides from 30 M proteins of common pharyngitis and invasive and/or rheumatogenic serotypes, adjuvanted with aluminum hydroxide. The trial was observer-blinded and randomized in a 2:1 ratio for intramuscular administration of Strep A vaccine or an alum-based comparator in healthy adult volunteers, at 0, 30 and 180 days. Primary outcome measures were assessments of safety, including assays for antibodies that cross-reacted with host tissues, and immunogenicity assessed by ELISA with the individual vaccine peptides and by opsonophagocytic killing (OPK) assays in human blood. RESULTS Twenty-three Strep A-vaccinated participants and 13 controls completed the study. The Strep A vaccine was well-tolerated and there was no clinical evidence of autoimmunity and no laboratory evidence of tissue cross-reactive antibodies. The vaccine was immunogenic and elicited significant increases in geometric mean antibody levels to 24 of the 30 component M antigens by ELISA. Vaccine-induced OPK activity was observed against selected M types of Strep A in vaccinated participants that seroconverted to specific M peptides. CONCLUSION The Strep A vaccine was well tolerated and immunogenic in healthy adults, providing strong support for further clinical development. [ClinicalTrials.gov NCT02564237].
Collapse
Affiliation(s)
- Élodie Pastural
- Pan-Provincial Vaccine Enterprise Inc. (PREVENT), Saskatoon, Saskatchewan, Canada
| | - Shelly A McNeil
- Canadian Center for Vaccinology, Dalhousie University, IWK Health Centre, Nova Scotia Health Authority, Halifax, Nova Scotia, Canada; Division of Infectious Diseases, Department of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada.
| | - Donna MacKinnon-Cameron
- Canadian Center for Vaccinology, Dalhousie University, IWK Health Centre, Nova Scotia Health Authority, Halifax, Nova Scotia, Canada
| | - Lingyun Ye
- Canadian Center for Vaccinology, Dalhousie University, IWK Health Centre, Nova Scotia Health Authority, Halifax, Nova Scotia, Canada
| | - Joanne M Langley
- Canadian Center for Vaccinology, Dalhousie University, IWK Health Centre, Nova Scotia Health Authority, Halifax, Nova Scotia, Canada; Division of Infectious Diseases, Department of Pediatrics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Robert Stewart
- Division of Cardiology, Department of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Luis H Martin
- Pan-Provincial Vaccine Enterprise Inc. (PREVENT), Saskatoon, Saskatchewan, Canada
| | - Gregory J Hurley
- Division of Infectious Diseases, Department of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Sanaz Salehi
- Division of Infectious Diseases, Department of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Thomas A Penfound
- Division of Infectious Diseases, Department of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Scott Halperin
- Canadian Center for Vaccinology, Dalhousie University, IWK Health Centre, Nova Scotia Health Authority, Halifax, Nova Scotia, Canada; Division of Infectious Diseases, Department of Pediatrics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - James B Dale
- Division of Infectious Diseases, Department of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
11
|
Abstract
The development of a vaccine for group A streptococcus (GAS) is of paramount importance given that GAS infections cause more than 500,000 deaths annually across the world. This prospective passive surveillance laboratory study evaluated the potential coverage of the M protein-based vaccine currently under development. While a number of GAS strains isolated from this sub-Sahara African study were included in the current vaccine formulation, we nevertheless report that potential vaccine coverage for GAS infection in our setting was approximately 60%, with four of the most prevalent strains not included. This research emphasizes the need to reformulate the vaccine to improve coverage in areas where the burden of disease is high. Group A streptococcus (GAS) is responsible for a wide range of noninvasive group A streptococcal (non-iGAS) and invasive group A streptococcal (iGAS) infections. Information about the emm type variants of the M protein causing GAS disease is important to assess potential vaccine coverage of a 30-valent vaccine under development, particularly with respect to how they compare and contrast with non-iGAS isolates, especially in regions with a high burden of GAS. We conducted a prospective passive surveillance study of samples from patients attending public health facilities in Cape Town, South Africa. We documented demographic data and clinical presentation. emm typing was conducted using CDC protocols. GAS was commonly isolated from pus swabs, blood, deep tissue, and aspirates. Clinical presentations included wound infections (20%), bacteremia (15%), abscesses (9%), and septic arthritis (8%). Forty-six different emm types were identified, including M76 (16%), M81 (10%), M80 (6%), M43 (6%), and M183 (6%), and the emm types were almost evenly distributed between non-iGAS and iGAS isolates. There was a statistically significant association with M80 in patients presenting with noninvasive abscesses. Compared to the 30-valent vaccine under development, the levels of potential vaccine coverage for non-iGAS and iGAS infection were 60% and 58%, respectively, notably lower than the coverage in developed countries; five of the most prevalent emm types, M76, M81, M80, M43, and M183, were not included. The emm types from GAS isolated from patients with invasive disease did not differ significantly from those from noninvasive disease cases. There is low coverage of the multivalent M protein vaccine in our setting, emphasizing the need to reformulate the vaccine to improve coverage in areas where the burden of disease is high. IMPORTANCE The development of a vaccine for group A streptococcus (GAS) is of paramount importance given that GAS infections cause more than 500,000 deaths annually across the world. This prospective passive surveillance laboratory study evaluated the potential coverage of the M protein-based vaccine currently under development. While a number of GAS strains isolated from this sub-Sahara African study were included in the current vaccine formulation, we nevertheless report that potential vaccine coverage for GAS infection in our setting was approximately 60%, with four of the most prevalent strains not included. This research emphasizes the need to reformulate the vaccine to improve coverage in areas where the burden of disease is high.
Collapse
|
12
|
Abraham T, Sistla S. Decoding the molecular epidemiology of group A streptococcus - an Indian perspective. J Med Microbiol 2019; 68:1059-1071. [PMID: 31192782 DOI: 10.1099/jmm.0.001018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
PURPOSE Unlike western countries the knowledge of group A streptococcus (GAS) epidemiology in India remains patchy and incomplete. Typing is crucial for surveillance as well as in predicting the efficacy of multivalent M protein vaccine. The present study aimed to explore the emm types of 206 invasive and non-invasive GAS isolates from South India as well as reviewing all the published literature on GAS molecular epidemiology from India thereby generating a pan-Indian data to predict the conjectural coverage of the 30-valent M-protein vaccine in this population. METHODOLOGY emm typing and superantigen (SAg) profiling of GAS along with reviewing literatures on GAS molecular epidemiology from India. RESULTS This study revealed a high diversity of emm types with emm 63, 82, 183, 85, 92, 169, 42, 44, 106, 74, 12 being frequently encountered, belonging to twenty emm clusters. The pan-Indian data on prevalent emm types further supports our study findings with 135 emm different types. Six clusters dominated accounting for 80 % of the GAS isolates: E3(26 %), E6(20 %), E2(11 %), E4(10 %), D4(7 %), E1(6 %). No significant association was noted between emm types and the nature of infection (P≥0.05) while a few SAg profiles were significantly associated with certain emm types. Pan Indian data revealed that only 16 % of the emm types encountered were included in proposed 30-valent M protein based vaccine. CONCLUSION The coverage among the South Indian GAS isolates was 28.2 % which increased to only 46.6 % with the cross-opsonic effect, thus highlighting the importance of developing a specific multivalent vaccine including the prevalent emm types in India or considering the use of conserved C-repeat vaccines and non-M protein based vaccines.
Collapse
Affiliation(s)
- Tintu Abraham
- Department of Microbiology, JIPMER, Puducherry, India
| | | |
Collapse
|
13
|
|
14
|
Muthanna A, Salim HS, Hamat RA, Shamsuddin NH, Zakariah SZ. Clinical Screening Tools to Diagnose Group A Streptococcal Pharyngotonsillitis in Primary Care Clinics to Improve Prescribing Habits. Malays J Med Sci 2018; 25:6-21. [PMID: 30914875 PMCID: PMC6422577 DOI: 10.21315/mjms2018.25.6.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Accepted: 07/30/2018] [Indexed: 12/02/2022] Open
Abstract
This review highlights the clinical scoring tools used for the management of acute pharyngotonsillitis in primary care clinics. It will include the prevalence of group A pharyngotonsillitis among children and adults worldwide and the selective tests employed for diagnosing group A streptococcal pharyngotonsillitis. Pharyngotonsillitis is one of the common reasons for visits to primary care clinics worldwide, and physicians tend to prescribe antibiotics according to the clinical symptoms, which leads to overprescribing antibiotics. This in turn may lead to serious health impacts and severe reactions and may promote antibiotic resistance. These significantly add on to the health care costs. The available information from health organisations and previous studies has indicated the need to manage the diagnosis of pharyngotonsillitis to improve prescribing habits in primary care clinics.
Collapse
Affiliation(s)
- Abdulrahman Muthanna
- Department of Medical Microbiology and Parasitology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Hani Syahida Salim
- Department of Family Medicine, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Rukman Awang Hamat
- Department of Medical Microbiology and Parasitology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Nurainul Hana Shamsuddin
- Department of Family Medicine, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Siti Zulaikha Zakariah
- Department of Medical Microbiology and Parasitology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| |
Collapse
|
15
|
Cannon JW, Jack S, Wu Y, Zhang J, Baker MG, Geelhoed E, Fraser J, Carapetis JR. An economic case for a vaccine to prevent group A streptococcus skin infections. Vaccine 2018; 36:6968-6978. [PMID: 30340879 DOI: 10.1016/j.vaccine.2018.10.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Revised: 07/22/2018] [Accepted: 10/01/2018] [Indexed: 11/16/2022]
Abstract
BACKGROUND Group A streptococcus (GAS) causes an exceptionally diverse range of diseases, raising questions about the optimal product characteristics of a commercially viable vaccine. The objectives of this study were to (1) estimate the current health and economic burdens caused by 24 diseases attributable to GAS each year in Australia and (2) use these estimates to explore the value of a GAS vaccine for different clinical indications, age schedules, and population groups. METHODS For objective 1, we estimated the population heath and economic burdens by synthesising data from administrative databases, nationally representative surveys, literature reviews, public reimbursement schedules, and expert opinion. For objective 2, we modelled the prospective lifetime burden of GAS for all infants from birth, for children from 5 years of age, and for adults from 65 years of age. A vaccine was assumed to reduce each GAS disease by 70% for a period of 10 years, and the difference in outcomes between vaccinated and non-vaccinated cohorts were used to calculate the cost-effective value of vaccination. RESULTS The annual health and economic burdens of GAS diseases totalled 23,528 disability-adjusted life years and AU$185.1 million in healthcare costs respectively; approximately half of each measure was due to cellulitis, followed by other skin infections and throat infections. Reducing the incidence of throat infections, skin infections, and cellulitis in non-Indigenous cohorts resulted in 30%, 33%, and 28% of the total vaccine value for an infant schedule (cost-effective vaccine price AU$260 per course); 47%, 26%, and 22% of the value for a child schedule (AU$289); and 2%, 15% and 74% for an adult schedule (AU$489). CONCLUSIONS A vaccine that prevents GAS cellulitis and other skin infections, in addition to throat infections, would maximise its value and commercial viability, with a cost-effective price in line with other recently-licensed and funded vaccines in Australia.
Collapse
Affiliation(s)
- Jeffrey W Cannon
- Wesfarmers Centre for Vaccines and Infectious Diseases, Telethon Kids Institute, University of Western Australia, Perth, WA, Australia
| | - Susan Jack
- Department of Preventive and Social Medicine, University of Otago, Dunedin, New Zealand
| | - Yue Wu
- Wesfarmers Centre for Vaccines and Infectious Diseases, Telethon Kids Institute, University of Western Australia, Perth, WA, Australia
| | - Jane Zhang
- Department of Public Health, University of Otago, Wellington, New Zealand
| | - Michael G Baker
- Department of Public Health, University of Otago, Wellington, New Zealand
| | - Elizabeth Geelhoed
- School of Population and Global Health, University of Western Australia, Perth, WA, Australia
| | - John Fraser
- Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Jonathan R Carapetis
- Telethon Kids Institute, University of Western Australia, and Perth Children's Hospital, 15 Hospital Avenue, Nedlands, Western Australia 6009, Australia.
| |
Collapse
|
16
|
Madeira G, Chicavel D, Munguambe A, Langa J, Mocumbi A. Streptococcal pharyngitis in children with painful throat: missed opportunities for rheumatic heart disease prevention in endemic area of Africa. Cardiovasc Diagn Ther 2017; 7:421-423. [PMID: 28890879 DOI: 10.21037/cdt.2017.05.07] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Geoffrey Madeira
- Chronic Non-communicable Disease Division, Instituto Nacional de Saúde, Ministério da Saúde, Maputo, Mozambique
| | - Daniel Chicavel
- Chronic Non-communicable Disease Division, Instituto Nacional de Saúde, Ministério da Saúde, Maputo, Mozambique
| | - Alcides Munguambe
- Chronic Non-communicable Disease Division, Instituto Nacional de Saúde, Ministério da Saúde, Maputo, Mozambique
| | - José Langa
- Chronic Non-communicable Disease Division, Instituto Nacional de Saúde, Ministério da Saúde, Maputo, Mozambique
| | - Ana Mocumbi
- Chronic Non-communicable Disease Division, Instituto Nacional de Saúde, Ministério da Saúde, Maputo, Mozambique.,Department of Medicine, Faculty of Medicine, Universidade Eduardo Mondlane, Maputo, Mozambique
| |
Collapse
|
17
|
Musuku J, Lungu JC, Machila E, Jones C, Colin L, Schwaninger S, Musonda P, Tadmor B, Spector JM, Engel ME, Zühlke LJ. Epidemiology of pharyngitis as reported by Zambian school children and their families: implications for demand-side interventions to prevent rheumatic heart disease. BMC Infect Dis 2017; 17:473. [PMID: 28683722 PMCID: PMC5501010 DOI: 10.1186/s12879-017-2563-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 06/23/2017] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Prompt and appropriate treatment of streptococcal pharyngitis decreases the risk of acute rheumatic fever and rheumatic heart disease (RHD). Understanding public perceptions and behaviors related to sore throat is fundamental to inform health programs aimed at eliminating new cases of RHD in endemic regions. We sought to describe the epidemiology of pediatric pharyngitis and its treatment, as reported by children and their parents or guardians in Lusaka, Zambia. METHODS This was a cross-sectional investigation using interviews and written surveys, nested in a school-based RHD prevalence study. Students and their parents were asked to report number of sore throats in the previous 12 months, treatment received, and type and place of treatment. A focused history and physical examination to detect pharyngitis was conducted and children were referred for follow-up as indicated. RESULTS A total of 3462 students from 47 schools participated in the study, along with their parents or guardians. Six hundred and fifty eight (19%) parents/guardians reported their child had at least one sore throat in the previous year, and 835 (24%) of students reported at least one sore throat in the same time period. Girls were reported to have pharyngitis 50% more often than boys, and also made up two-thirds of the total students treated. Approximately two-thirds of children who had at least one episode of pharyngitis during the previous year were also reported to have received some form of treatment. The majority of treatments were received in government clinics (36.6%) and at home (26.3%). Half of treatments included an antibiotic. Nineteen students (0.5%) had clinically-apparent pharyngitis at screening. CONCLUSION Pharyngitis is common among school-aged children and adolescents in Zambia, with females reporting significantly more sore throat episodes than males. Parents/guardians have variable knowledge about the frequency of sore throat in their children, and management of pharyngitis may be suboptimal for many children since more than a quarter were reported to have received treatment without skilled assessment. These results provide insight into current perceptions and practices related to sore throat in Zambia and will be used to design public awareness activities aimed at reducing RHD.
Collapse
Affiliation(s)
- John Musuku
- University Teaching Hospital, Nationalist Rd, Lusaka, Zambia
| | - Joyce C Lungu
- University Teaching Hospital, Nationalist Rd, Lusaka, Zambia
| | | | - Catherine Jones
- Novartis Institutes for BioMedical Research, 5300 Chiron Way, Emeryville, CA, 94608, USA
| | - Laurence Colin
- Novartis Institutes for BioMedical Research, 250 Massachusetts Ave, Cambridge, MA, 02139, USA
| | - Sherri Schwaninger
- Novartis Institutes for BioMedical Research, 250 Massachusetts Ave, Cambridge, MA, 02139, USA.
| | | | - Brigitta Tadmor
- Novartis Institutes for BioMedical Research, 250 Massachusetts Ave, Cambridge, MA, 02139, USA
| | - Jonathan M Spector
- Novartis Institutes for BioMedical Research, 250 Massachusetts Ave, Cambridge, MA, 02139, USA
| | - Mark E Engel
- Department of Medicine, University of Cape Town, Rondebosch, Cape Town, 7700, South Africa
| | - Liesl J Zühlke
- Department of Paediatrics, Red Cross War Memorials Children's Hospital, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
18
|
Nayiga I, Okello E, Lwabi P, Ndeezi G. Prevalence of group a streptococcus pharyngeal carriage and clinical manifestations in school children aged 5-15 yrs in Wakiso District, Uganda. BMC Infect Dis 2017; 17:248. [PMID: 28381239 PMCID: PMC5382413 DOI: 10.1186/s12879-017-2353-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 03/28/2017] [Indexed: 11/18/2022] Open
Abstract
Background Beta-hemolytic streptococci carrier rates in children living in low-income countries are high ranging from 10 to 50%. Although most of these children are asymptomatic, they are a reservoir and pose a risk of transmission. The aim of this study was to determine the prevalence of group a streptococcus pharyngeal carriage and clinical manifestations in school going children in Wakiso district, Uganda. Methods A cross sectional study targeting children age 5–15 years in primary schools in one sub-county of Wakiso district was carried out. Three hundred and sixty-six children from five primary schools were enrolled and evaluated for group a streptococcus (GAS) carriage. A semi-structured questionnaire was used to collect data that included social demographics, school environment and clinical findings. For every enrolled child a throat swab was taken and cultured for GAS and blood was drawn for anti-streptolysin-O titres. Analysis of data was done using STATA. Results The prevalence of GAS carriage was 16%. The children with GAS positive cultures were mainly females. The factor associated with GAS carriage was the school location, with peri-urban schools more likely to have children with GAS compared to rural schools; AOR 2.48 (95% CI: 1.01 – 6.11), P = 0.049. There was no significant difference between the characteristic of children with GAS positive verses GAS negative throat swab cultures. Conclusion There is a high prevalence of GAS pharyngeal carriage among children aged 5–15 years attending primary schools in Wakiso District, Uganda. Electronic supplementary material The online version of this article (doi:10.1186/s12879-017-2353-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Irene Nayiga
- Department of Paediatrics & Child Health, College of health sciences, Makerere University, P.O Box 7072, Kampala, Uganda.
| | - Emmy Okello
- Uganda Heart Institute, Mulago Hospital Complex, PO Box 7051, Kampala, Uganda
| | - Peter Lwabi
- Department of Paediatrics & Child Health, College of health sciences, Makerere University, P.O Box 7072, Kampala, Uganda.,Uganda Heart Institute, Mulago Hospital Complex, PO Box 7051, Kampala, Uganda
| | - Grace Ndeezi
- Department of Paediatrics & Child Health, College of health sciences, Makerere University, P.O Box 7072, Kampala, Uganda
| |
Collapse
|
19
|
Group A Streptococcus, Acute Rheumatic Fever and Rheumatic Heart Disease: Epidemiology and Clinical Considerations. CURRENT TREATMENT OPTIONS IN CARDIOVASCULAR MEDICINE 2017; 19:15. [PMID: 28285457 PMCID: PMC5346434 DOI: 10.1007/s11936-017-0513-y] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
OPINION STATEMENT Early recognition of group A streptococcal pharyngitis and appropriate management with benzathine penicillin using local clinical prediction rules together with validated rapi-strep testing when available should be incorporated in primary health care. A directed approach to the differential diagnosis of acute rheumatic fever now includes the concept of low-risk versus medium-to-high risk populations. Initiation of secondary prophylaxis and the establishment of early medium to long-term care plans is a key aspect of the management of ARF. It is a requirement to identify high-risk individuals with RHD such as those with heart failure, pregnant women, and those with severe disease and multiple valve involvement. As penicillin is the mainstay of primary and secondary prevention, further research into penicillin supply chains, alternate preparations and modes of delivery is required.
Collapse
|
20
|
Barth DD, Engel ME, Whitelaw A, Alemseged A, Sadoh WE, Ali SKM, Sow SO, Dale J, Mayosi BM. Rationale and design of the African group A streptococcal infection registry: the AFROStrep study. BMJ Open 2016; 6:e010248. [PMID: 26916694 PMCID: PMC4769387 DOI: 10.1136/bmjopen-2015-010248] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
INTRODUCTION Group A β-haemolytic Streptococcus (GAS), a Gram-positive bacterium, also known as Streptococcus pyogenes, causes pyoderma, pharyngitis and invasive disease. Repeated GAS infections may lead to autoimmune diseases such as acute post-streptococcal glomerulonephritis, acute rheumatic fever (ARF) and rheumatic heart disease (RHD). Invasive GAS (iGAS) disease is an important cause of mortality and morbidity worldwide. The burden of GAS infections is, however, unknown in Africa because of lack of surveillance systems. METHODS AND ANALYSIS The African group A streptococcal infection registry (the AFROStrep study) is a collaborative multicentre study of clinical, microbiological, epidemiological and molecular characteristics for GAS infection in Africa. The AFROStrep registry comprises two components: (1) active surveillance of GAS pharyngitis cases from sentinel primary care centres (non-iGAS) and (2) passive surveillance of iGAS disease from microbiology laboratories. Isolates will also be subjected to DNA isolation to allow for characterisation by molecular methods and cryopreservation for long-term storage. The AFROStrep study seeks to collect comprehensive data on GAS isolates in Africa. The biorepository will serve as a platform for vaccine development in Africa. ETHICS AND DISSEMINATION Ethics approval for the AFROStrep registry has been obtained from the Human Research Ethics Committee at the University of Cape Town (HREC/REF: R006/2015). Each recruiting site will seek ethics approval from their local ethics' committee. All participants will be required to provide consent for inclusion into the registry as well as for the storage of isolates and molecular investigations to be conducted thereon. Strict confidentiality will be applied throughout. Findings and updates will be disseminated to collaborators, researchers, health planners and colleagues through peer-reviewed journal articles, conference publications and proceedings.
Collapse
Affiliation(s)
- Dylan D Barth
- Department of Medicine, Faculty of Health Sciences, University of Cape Town and Groote Schuur Hospital, Cape Town, South Africa
| | - Mark E Engel
- Department of Medicine, Faculty of Health Sciences, University of Cape Town and Groote Schuur Hospital, Cape Town, South Africa
| | - Andrew Whitelaw
- Department of Microbiology, National Health Laboratory Service, Tygerberg Hospital and Stellenbosch University, Tygerberg, South Africa
| | - Abdissa Alemseged
- Department of Laboratory Sciences and Pathology, College of Health Sciences, Jimma University, Jimma, Ethiopia
| | - Wilson E Sadoh
- Department of Child Health, School of Medicine, University of Benin and University of Benin Teaching Hospital, Benin City, Nigeria
| | - Sulafa K M Ali
- Department of Pediatrics and Child Health, Faculty of Medicine, University of Khartoum and Sudan Heart Institute, Khartoum, Sudan
| | - Samba O Sow
- Centre pour le Développement des Vaccins—Mali, Bamako, Mali
| | - James Dale
- Department of Medicine, Division of Infectious Diseases, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Bongani M Mayosi
- Department of Medicine, Faculty of Health Sciences, University of Cape Town and Groote Schuur Hospital, Cape Town, South Africa
| |
Collapse
|
21
|
Sheel M, Moreland NJ, Fraser JD, Carapetis J. Development of Group A streptococcal vaccines: an unmet global health need. Expert Rev Vaccines 2015; 15:227-38. [DOI: 10.1586/14760584.2016.1116946] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Meru Sheel
- Telethon Kids Institute, The University of Western Australia, Perth, Australia
| | - Nicole J Moreland
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - John D Fraser
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
- School of Medical Sciences, University of Auckland, Auckland, New Zealand
| | - Jonathan Carapetis
- Telethon Kids Institute, The University of Western Australia, Perth, Australia
- Princess Margaret Hospital for Children, Perth, Australia
| |
Collapse
|
22
|
|
23
|
Affiliation(s)
- Mohammed R Essop
- From the Division of Cardiology, CH-Baragwanath Hospital and University of the Witwatersrand, Johannesburg, South Africa.
| | - Ferande Peters
- From the Division of Cardiology, CH-Baragwanath Hospital and University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
24
|
Dale JB, Niedermeyer SE, Agbaosi T, Hysmith ND, Penfound TA, Hohn CM, Pullen M, Bright MI, Murrell DS, Shenep LE, Courtney HS. Protective immunogenicity of group A streptococcal M-related proteins. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2015; 22:344-50. [PMID: 25630406 PMCID: PMC4340887 DOI: 10.1128/cvi.00795-14] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 01/17/2015] [Indexed: 01/30/2023]
Abstract
Many previous studies have focused on the surface M proteins of group A streptococci (GAS) as virulence determinants and protective antigens. However, the majority of GAS isolates express M-related protein (Mrp) in addition to M protein, and both have been shown to be required for optimal virulence. In the current study, we evaluated the protective immunogenicity of Mrp to determine its potential as a vaccine component that may broaden the coverage of M protein-based vaccines. Sequence analyses of 33 mrp genes indicated that there are three families of structurally related Mrps (MrpI, MrpII, and MrpIII). N-terminal peptides of Mrps were cloned, expressed, and purified from M type 2 (M2) (MrpI), M4 (MrpII), and M49 (MrpIII) GAS. Rabbit antisera against the Mrps reacted at high titers with the homologous Mrp, as determined by enzyme-linked immunosorbent assay, and promoted bactericidal activity against GAS emm types expressing Mrps within the same family. Mice passively immunized with rabbit antisera against MrpII were protected against challenge infections with M28 GAS. Assays for Mrp antibodies in serum samples from 281 pediatric subjects aged 2 to 16 indicated that the Mrp immune response correlated with increasing age of the subjects. Affinity-purified human Mrp antibodies promoted bactericidal activity against a number of GAS representing different emm types that expressed an Mrp within the same family but showed no activity against emm types expressing an Mrp from a different family. Our results indicate that Mrps have semiconserved N-terminal sequences that contain bactericidal epitopes which are immunogenic in humans. These findings may have direct implications for the development of GAS vaccines.
Collapse
Affiliation(s)
- James B Dale
- Department of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA Department of Microbiology, Immunology and Biochemistry, Memphis, Tennessee, USA Department of Veterans Affairs Medical Center, Memphis, Tennessee, USA
| | - Shannon E Niedermeyer
- Department of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA Department of Veterans Affairs Medical Center, Memphis, Tennessee, USA
| | - Tina Agbaosi
- Department of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA Department of Veterans Affairs Medical Center, Memphis, Tennessee, USA
| | - Nicholas D Hysmith
- Department of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA Department of Veterans Affairs Medical Center, Memphis, Tennessee, USA St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Thomas A Penfound
- Department of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA Department of Veterans Affairs Medical Center, Memphis, Tennessee, USA
| | - Claudia M Hohn
- Department of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA Department of Veterans Affairs Medical Center, Memphis, Tennessee, USA
| | - Matthew Pullen
- Department of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA Department of Veterans Affairs Medical Center, Memphis, Tennessee, USA
| | - Michael I Bright
- Department of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA Department of Veterans Affairs Medical Center, Memphis, Tennessee, USA
| | - Daniel S Murrell
- Department of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA Department of Veterans Affairs Medical Center, Memphis, Tennessee, USA
| | - Lori E Shenep
- Department of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA Department of Veterans Affairs Medical Center, Memphis, Tennessee, USA
| | - Harry S Courtney
- Department of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA Department of Veterans Affairs Medical Center, Memphis, Tennessee, USA
| |
Collapse
|
25
|
Controlling acute rheumatic fever and rheumatic heart disease in developing countries: are we getting closer? Curr Opin Pediatr 2015; 27:116-23. [PMID: 25490689 DOI: 10.1097/mop.0000000000000164] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW To describe new developments (2013-2014) in acute rheumatic fever (ARF) and rheumatic heart disease (RHD) relevant to developing countries. RECENT FINDINGS Improved opportunities for the primary prevention of ARF now exist, because of point-of-care antigen tests for Streptococcus pyogenes, and clinical decision rules which inform management of pharyngitis without requiring culture results. There is optimism that a vaccine, providing protection against many ARF-causing S. pyogenes strains, may be available in coming years. Collaborative approaches to RHD control, including World Heart Federation initiatives and the development of registers, offer promise for better control of this disease. New data on RHD-associated costs provide persuasive arguments for better government-level investment in primary and secondary prevention. There is expanding knowledge of potential biomarkers and immunological profiles which characterize ARF/RHD, and genetic mutations conferring ARF/RHD risk, but as yet no new diagnostic testing strategy is ready for clinical application. SUMMARY Reduction in the disease burden and national costs of ARF and RHD are major priorities. New initiatives in the primary and secondary prevention of ARF/RHD, novel developments in pathogenesis and biomarker research and steady progress in vaccine development, are all causes for optimism for improving control of ARF/RHD, which affect the poorest of the poor.
Collapse
|
26
|
Baroux N, D'Ortenzio E, Amédéo N, Baker C, Ali Alsuwayyid B, Dupont-Rouzeyrol M, O'Connor O, Steer A, Smeesters PR. The emm-cluster typing system for Group A Streptococcus identifies epidemiologic similarities across the Pacific region. Clin Infect Dis 2014; 59:e84-92. [PMID: 24965347 DOI: 10.1093/cid/ciu490] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Group A Streptococcus (GAS)-related disease is responsible for high mortality and morbidity in the Pacific region. The high diversity of circulating strains in this region has hindered vaccine development due to apparently low vaccine coverage of type-specific vaccines. METHOD Prospective passive surveillance of all GAS isolates in New Caledonia was undertaken in 2012 using emm typing and emm-cluster typing. Molecular data were compared with the results from a prior study undertaken in the same country and with data from 2 other Pacific countries, Fiji and Australia. RESULTS A high incidence of invasive infection was demonstrated at 43 cases per 100 000 inhabitants (95% confidence interval, 35-52 cases per 100 000 inhabitants). Three hundred eighteen GAS isolates belonging to 47 different emm types were collected. In Noumea, only 30% of the isolates recovered in 2012 belonged to an emm type that was present in the same city in 2006, whereas 69% of the isolates collected in 2012 belonged to an emm cluster present in 2006. When comparing New Caledonian, Australian, and Fijian data, very few common emm types were found, but 79%-86% of the isolates from each country belonged to an emm cluster present in all 3 countries. A vaccine that could protect against the 10 most frequent emm clusters in the Pacific region would potentially provide coverage ranging from 83% to 92%. CONCLUSIONS This study confirms the high disease burden of GAS infection in New Caledonia and supports the added value of the emm-cluster typing system to analyze GAS epidemiology and to help inform global GAS vaccine formulation.
Collapse
Affiliation(s)
- Noémie Baroux
- Epidemiology of Infectious Diseases Research and Expertise Unit, Institut Pasteur de Nouvelle-Calédonie, Institut Pasteur International Network, Noumea, New Caledonia
| | - Eric D'Ortenzio
- Epidemiology of Infectious Diseases Research and Expertise Unit, Institut Pasteur de Nouvelle-Calédonie, Institut Pasteur International Network, Noumea, New Caledonia
| | - Nathalie Amédéo
- Epidemiology of Infectious Diseases Research and Expertise Unit, Institut Pasteur de Nouvelle-Calédonie, Institut Pasteur International Network, Noumea, New Caledonia
| | - Ciara Baker
- Centre for International Child Health, University of Melbourne Group A Streptococcus Research Group, Murdoch Childrens Research Institute, Melbourne, Australia
| | - Barakat Ali Alsuwayyid
- Group A Streptococcus Research Group, Murdoch Childrens Research Institute, Melbourne, Australia
| | - Myrielle Dupont-Rouzeyrol
- Dengue and Other Arboviruses Research and Expertise Unit, Institut Pasteur de Nouvelle-Calédonie, Institut Pasteur International Network, Noumea, New Caledonia
| | - Olivia O'Connor
- Dengue and Other Arboviruses Research and Expertise Unit, Institut Pasteur de Nouvelle-Calédonie, Institut Pasteur International Network, Noumea, New Caledonia
| | - Andrew Steer
- Centre for International Child Health, University of Melbourne Group A Streptococcus Research Group, Murdoch Childrens Research Institute, Melbourne, Australia Department of General Medicine, Royal Children's Hospital Melbourne, Melbourne, Australia
| | - Pierre R Smeesters
- Centre for International Child Health, University of Melbourne Group A Streptococcus Research Group, Murdoch Childrens Research Institute, Melbourne, Australia Laboratoire de Génétique et Physiologie Bactérienne, Institut de Biologie et de Médecine Moléculaires, Faculté des Sciences, Université Libre de Bruxelles, Gosselies, Belgium
| |
Collapse
|
27
|
Moreland NJ, Waddington CS, Williamson DA, Sriskandan S, Smeesters PR, Proft T, Steer AC, Walker MJ, Baker EN, Baker MG, Lennon D, Dunbar R, Carapetis J, Fraser JD. Working towards a Group A Streptococcal vaccine: Report of a collaborative Trans-Tasman workshop. Vaccine 2014; 32:3713-20. [DOI: 10.1016/j.vaccine.2014.05.017] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Accepted: 05/01/2014] [Indexed: 11/25/2022]
|