1
|
Wan J, Lin J, Zha T, Ciruela F, Jiang S, Wu Z, Fang X, Chen Q, Chen X. Temporomandibular disorders and mental health: shared etiologies and treatment approaches. J Headache Pain 2025; 26:52. [PMID: 40075300 PMCID: PMC11899861 DOI: 10.1186/s10194-025-01985-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 02/24/2025] [Indexed: 03/14/2025] Open
Abstract
The biopsychosocial model suggests that temporomandibular disorders (TMDs) often coexist with mental health disorders, particularly depression and anxiety, affecting a significant portion of the global population. The interplay between TMDs and mental health disorders contributes to a complex comorbidity, perpetuating a cycle of mutual influence and reinforcement. This review investigates the neurobiological mechanisms and epidemiological evidence supporting the shared etiology of TMDs and mental health disorders, exploring potential shared vulnerabilities and bidirectional causal relationships. Shared vulnerabilities between TMDs and mental health disorders may stem from genetic and epigenetic predispositions, psychosocial factors, and behavioral aspects. Inflammatory cytokines, neurotransmitters, neurotrophins, and neuropeptides play pivotal roles in both peripheral and central sensitization as well as neuroinflammation. Brain imaging studies suggest that TMDs and mental health disorders exhibit overlapping brain regions indicative of reward processing deficits and anomalies within the triple network model. Future research efforts are crucial for developing a comprehensive understanding of the underlying mechanisms and confirming the reciprocal causal effects between TMDs and mental health disorders. This review provides valuable insights for oral healthcare professionals, stressing the importance of optimizing treatment strategies for individuals dealing with concurrent TMDs and mental health issues through a personalized, holistic, and multidisciplinary approach.
Collapse
Affiliation(s)
- Jiamin Wan
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| | - Jiu Lin
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| | - Tingfeng Zha
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| | - Francisco Ciruela
- Pharmacology Unit, Department of Pathology and Experimental Therapeutics, School of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- Neuropharmacology & Pain Group, Neuroscience Program, IDIBELL-Bellvitge Institute for Biomedical Research, Barcelona, Spain
| | - Shaokang Jiang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| | - Zuping Wu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| | - Xinyi Fang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China.
| | - Qianming Chen
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China.
| | - Xiaoyan Chen
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China.
| |
Collapse
|
2
|
Heukamp NJ, Banaschewski T, Bokde AL, Desrivières S, Grigis A, Garavan H, Gowland P, Heinz A, Kandić M, Brühl R, Martinot JL, Paillère Martinot ML, Artiges E, Papadopoulos Orfanos D, Lemaitre H, Löffler M, Poustka L, Hohmann S, Millenet S, Fröhner JH, Smolka MN, Usai K, Vaidya N, Walter H, Whelan R, Schumann G, Flor H, Nees F. Adolescents' pain-related ontogeny shares a neural basis with adults' chronic pain in basothalamo-cortical organization. iScience 2024; 27:108954. [PMID: 38322983 PMCID: PMC10845062 DOI: 10.1016/j.isci.2024.108954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/19/2023] [Accepted: 01/15/2024] [Indexed: 02/08/2024] Open
Abstract
During late adolescence, the brain undergoes ontogenic organization altering subcortical-cortical circuitry. This includes regions implicated in pain chronicity, and thus alterations in the adolescent ontogenic organization could predispose to pain chronicity in adulthood - however, evidence is lacking. Using resting-state functional magnetic resonance imaging from a large European longitudinal adolescent cohort and an adult cohort with and without chronic pain, we examined links between painful symptoms and brain connectivity. During late adolescence, thalamo-, caudate-, and red nucleus-cortical connectivity were positively and subthalamo-cortical connectivity negatively associated with painful symptoms. Thalamo-cortical connectivity, but also subthalamo-cortical connectivity, was increased in adults with chronic pain compared to healthy controls. Our results indicate a shared basis in basothalamo-cortical circuitries between adolescent painful symptomatology and adult pain chronicity, with the subthalamic pathway being differentially involved, potentially due to a hyperconnected thalamo-cortical pathway in chronic pain and ontogeny-driven organization. This can inform neuromodulation-based prevention and early intervention.
Collapse
Affiliation(s)
- Nils Jannik Heukamp
- Institute of Medical Psychology and Medical Sociology, University Medical Center Schleswig-Holstein, Kiel University, Kiel, Germany
| | - Tobias Banaschewski
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, 68159 Mannheim, Germany
| | - Arun L.W. Bokde
- Discipline of Psychiatry, School of Medicine and Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Sylvane Desrivières
- Centre for Population Neuroscience and Precision Medicine (PONS), Institute of Psychiatry, Psychology & Neuroscience, SGDP Centre, King’s College London, London, UK
| | - Antoine Grigis
- NeuroSpin, CEA, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
| | - Hugh Garavan
- Departments of Psychiatry and Psychology, University of Vermont, Burlington, Vermont 05405, USA
| | - Penny Gowland
- Sir Peter Mansfield Imaging Centre School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, UK
| | - Andreas Heinz
- Department of Psychiatry and Psychotherapy CCM, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Mina Kandić
- Institute of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, Mannheim, Germany
| | - Rüdiger Brühl
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig, Berlin, Germany
| | - Jean-Luc Martinot
- Institut National de la Santé et de la Recherche Médicale, INSERM U A10 "Trajectoires développementales en psychiatrie", Université Paris-Saclay, Ecole Normale supérieure Paris-Saclay, CNRS, Centre Borelli, Gif-sur-Yvette, France
| | - Marie-Laure Paillère Martinot
- Institut National de la Santé et de la Recherche Médicale, INSERM U A10 "Trajectoires développementales en psychiatrie", Université Paris-Saclay, Ecole Normale supérieure Paris-Saclay, CNRS, Centre Borelli, Gif-sur-Yvette, France
- AP-HP, Sorbonne Université, Department of Child and Adolescent Psychiatry, Pitié-Salpêtrière Hospital, Paris, France
| | - Eric Artiges
- Institut National de la Santé et de la Recherche Médicale, INSERM U A10 "Trajectoires développementales en psychiatrie", Université Paris-Saclay, Ecole Normale supérieure Paris-Saclay, CNRS, Centre Borelli, Gif-sur-Yvette, France
- Psychiatry Department, EPS Barthélémy Durand, Etampes, France
| | | | - Herve Lemaitre
- NeuroSpin, CEA, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
- Institut des Maladies Neurodégénératives, UMR 5293, CNRS, CEA, Université de Bordeaux, 33076 Bordeaux, France
| | - Martin Löffler
- Institute of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, Mannheim, Germany
- Clinical Psychology, Department of Experimental Psychology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Integrative Spinal Research Group, Department of Chiropractic Medicine, University Hospital Balgrist, University of Zurich, Zurich, Switzerland
| | - Luise Poustka
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Medical Centre Göttingen, von-Siebold-Str. 5, 37075 Göttingen, Germany
| | - Sarah Hohmann
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, 68159 Mannheim, Germany
| | - Sabina Millenet
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, 68159 Mannheim, Germany
| | - Juliane H. Fröhner
- Department of Psychiatry and Neuroimaging Center, Technische Universität Dresden, Dresden, Germany
| | - Michael N. Smolka
- Department of Psychiatry and Neuroimaging Center, Technische Universität Dresden, Dresden, Germany
| | - Katrin Usai
- Institute of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, Mannheim, Germany
| | - Nilakshi Vaidya
- Centre for Population Neuroscience and Stratified Medicine (PONS), Department of Psychiatry and Neuroscience, Charité Universitätsmedizin, Berlin, Germany
| | - Henrik Walter
- Department of Psychiatry and Psychotherapy CCM, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Robert Whelan
- School of Psychology and Global Brain Health Institute, Trinity College Dublin, Berlin, Ireland
| | - Gunter Schumann
- Centre for Population Neuroscience and Stratified Medicine (PONS), Department of Psychiatry and Neuroscience, Charité Universitätsmedizin, Berlin, Germany
- Centre for Population Neuroscience and Precision Medicine (PONS), Institute for Science and Technology of Brain-inspired Intelligence (ISTBI), Fudan University, Shanghai, China
| | - Herta Flor
- Institute of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, Mannheim, Germany
- Department of Psychology, School of Social Sciences, University of Mannheim, 68131 Mannheim, Germany
| | - Frauke Nees
- Institute of Medical Psychology and Medical Sociology, University Medical Center Schleswig-Holstein, Kiel University, Kiel, Germany
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, 68159 Mannheim, Germany
- Institute of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, Mannheim, Germany
| | - IMAGEN Consortium
- Institute of Medical Psychology and Medical Sociology, University Medical Center Schleswig-Holstein, Kiel University, Kiel, Germany
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, 68159 Mannheim, Germany
- Discipline of Psychiatry, School of Medicine and Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
- Centre for Population Neuroscience and Precision Medicine (PONS), Institute of Psychiatry, Psychology & Neuroscience, SGDP Centre, King’s College London, London, UK
- NeuroSpin, CEA, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
- Departments of Psychiatry and Psychology, University of Vermont, Burlington, Vermont 05405, USA
- Sir Peter Mansfield Imaging Centre School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, UK
- Department of Psychiatry and Psychotherapy CCM, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Institute of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, Mannheim, Germany
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig, Berlin, Germany
- Institut National de la Santé et de la Recherche Médicale, INSERM U A10 "Trajectoires développementales en psychiatrie", Université Paris-Saclay, Ecole Normale supérieure Paris-Saclay, CNRS, Centre Borelli, Gif-sur-Yvette, France
- AP-HP, Sorbonne Université, Department of Child and Adolescent Psychiatry, Pitié-Salpêtrière Hospital, Paris, France
- Psychiatry Department, EPS Barthélémy Durand, Etampes, France
- Institut des Maladies Neurodégénératives, UMR 5293, CNRS, CEA, Université de Bordeaux, 33076 Bordeaux, France
- Clinical Psychology, Department of Experimental Psychology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Integrative Spinal Research Group, Department of Chiropractic Medicine, University Hospital Balgrist, University of Zurich, Zurich, Switzerland
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Medical Centre Göttingen, von-Siebold-Str. 5, 37075 Göttingen, Germany
- Department of Psychiatry and Neuroimaging Center, Technische Universität Dresden, Dresden, Germany
- Centre for Population Neuroscience and Stratified Medicine (PONS), Department of Psychiatry and Neuroscience, Charité Universitätsmedizin, Berlin, Germany
- School of Psychology and Global Brain Health Institute, Trinity College Dublin, Berlin, Ireland
- Centre for Population Neuroscience and Precision Medicine (PONS), Institute for Science and Technology of Brain-inspired Intelligence (ISTBI), Fudan University, Shanghai, China
- Department of Psychology, School of Social Sciences, University of Mannheim, 68131 Mannheim, Germany
| |
Collapse
|
3
|
Abstract
Adverse nocebo responses can cause harm to patients and interfere with treatment adherence and effects in both clinic practice and clinical trials. Nocebo responses refer to negative outcomes to active medical treatments in clinical trials or practice that cannot be explained by the treatment's pharmacologic effects. Negative expectancies and nocebo effects are less known than placebo responses. Nocebo effects can be triggered by verbal suggestions, prior negative experiences, observation of others experiencing negative outcomes, and other contextual and environmental factors. As research advances over the years, mechanistic knowledge is accumulating on the neurobiological mechanisms of nocebo effects. This review summarizes studies on different facets of nocebo effects and responses and discusses clinical implications, ethical considerations, and future directions.
Collapse
Affiliation(s)
- Luana Colloca
- Department of Pain and Translational Symptom Science and Placebo Beyond Opinions Center, School of Nursing, University of Maryland, Baltimore, Maryland, USA;
| |
Collapse
|
4
|
Kerr PL, Gregg JM. The Roles of Endogenous Opioids in Placebo and Nocebo Effects: From Pain to Performance to Prozac. ADVANCES IN NEUROBIOLOGY 2024; 35:183-220. [PMID: 38874724 DOI: 10.1007/978-3-031-45493-6_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Placebo and nocebo effects have been well documented for nearly two centuries. However, research has only relatively recently begun to explicate the neurobiological underpinnings of these phenomena. Similarly, research on the broader social implications of placebo/nocebo effects, especially within healthcare delivery settings, is in a nascent stage. Biological and psychosocial outcomes of placebo/nocebo effects are of equal relevance. A common pathway for such outcomes is the endogenous opioid system. This chapter describes the history of placebo/nocebo in medicine; delineates the current state of the literature related to placebo/nocebo in relation to pain modulation; summarizes research findings related to human performance in sports and exercise; discusses the implications of placebo/nocebo effects among diverse patient populations; and describes placebo/nocebo influences in research related to psychopharmacology, including the relevance of endogenous opioids to new lines of research on antidepressant pharmacotherapies.
Collapse
Affiliation(s)
- Patrick L Kerr
- West Virginia University School of Medicine-Charleston, Charleston, WV, USA.
| | - John M Gregg
- Department of Surgery, VTCSOM, Blacksburg, VA, USA
| |
Collapse
|
5
|
Nees F, Usai K, Kandić M, Zidda F, Heukamp NJ, Moliadze V, Löffler M, Flor H. The association of spouse interactions and emotional learning in interference related to chronic back pain. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2023; 13:100122. [PMID: 36910586 PMCID: PMC9996357 DOI: 10.1016/j.ynpai.2023.100122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 02/07/2023] [Accepted: 02/20/2023] [Indexed: 02/24/2023]
Abstract
Social interactions affect individual behaviours, preferences, and attitudes. This is also critical in the context of experiencing pain and expressing pain behaviours, and may relate to learned emotional responses. In this respect, individual variability in the medial prefrontal cortex (mPFC), which is involved in adjusting an organism's behaviour to its environment by evaluating and interpreting information within the context of past experiences, is important. It is critical for selecting suitable behavioural responses within a social environment and may reinforce maladaptation in chronic pain. In our study, we used brain imaging during appetitive and aversive pavlovian conditioning in persons with chronic back pain (CBP), subacute back pain (SABP), and healthy controls (HC), together with information on spouse responses to pain behaviours. We also examined the relationship of these responses with pain-related interference in the patients. Our findings yielded a significant negative association between mPFC responses to appetitive and aversive learning in CBP. We also observed a significant negative association for mPFC responses during aversive learning and distracting spouse responses, and a significant positive association between mPFC responses during appetitive learning and solicitous spouse responses in CBP. Both significantly predicted pain-related interference in the CBP group (explained variance up to 53%). Significant associations were not found for SABP or HC. Our findings support an association between appetitive and aversive pavlovian learning, related brain circuits and spouse responses to pain in CBP, where appetitive and aversive learning processes seem to be differentially involved. This can inform prevention and early intervention in a mechanistic approach.
Collapse
Affiliation(s)
- Frauke Nees
- Institute of Medical Psychology and Medical Sociology, University Medical Center Schleswig-Holstein, Kiel University, Kiel, Germany.,Institute of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Katrin Usai
- Institute of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Mina Kandić
- Institute of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Francesca Zidda
- Institute of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Nils Jannik Heukamp
- Institute of Medical Psychology and Medical Sociology, University Medical Center Schleswig-Holstein, Kiel University, Kiel, Germany
| | - Vera Moliadze
- Institute of Medical Psychology and Medical Sociology, University Medical Center Schleswig-Holstein, Kiel University, Kiel, Germany
| | - Martin Löffler
- Institute of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Herta Flor
- Institute of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
6
|
Grouper H, Löffler M, Flor H, Eisenberg E, Pud D. Increased functional connectivity between limbic brain areas in healthy individuals with high versus low sensitivity to cold pain: A resting state fMRI study. PLoS One 2022; 17:e0267170. [PMID: 35442971 PMCID: PMC9020745 DOI: 10.1371/journal.pone.0267170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 04/03/2022] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The representation of variability in sensitivity to pain by differences in neural connectivity patterns and its association with psychological factors needs further investigation. This study assessed differences in resting-state functional connectivity (rsFC) and its association to cognitive-affective aspects of pain in two groups of healthy subjects with low versus high sensitivity to pain (LSP vs. HSP). We hypothesized that HSP will show stronger connectivity in brain regions involved in the affective-motivational processing of pain and that this higher connectivity would be related to negative affective and cognitive evaluations of pain. METHODS Forty-eight healthy subjects were allocated to two groups according to their tolerability to cold stimulation (cold pressor test, CPT, 1°C). Group LSP (N = 24) reached the cut-off time of 180±0 sec and group HSP tolerated the CPT for an average of 13±4.8 sec. Heat, cold and mechanical evoked pain were measured, as well as pain-catastrophizing (PCS), depression, anxiety and stress (DASS-21). All subjects underwent resting state fMRI. ROI-to-ROI analysis was performed. RESULTS In comparison to the LSP, the HSP had stronger interhemispheric connectivity of the amygdala (p = 0.01) and between the amygdala and nucleus accumbens (NAc) (p = 0.01). Amygdala connectivity was associated with higher pain catastrophizing in the HSP only (p<0.01). CONCLUSIONS These findings suggest that high sensitivity to pain may be reflected by neural circuits involved in affective and motivational aspects of pain. To what extent this connectivity within limbic brain structures relates to higher alertness and more profound withdrawal behavior to aversive events needs to be further investigated.
Collapse
Affiliation(s)
- Hadas Grouper
- Faculty of Social Welfare and Health Sciences, University of Haifa, Haifa, Israel
| | - Martin Löffler
- Medical Faculty Mannheim, Institute of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Heidelberg University, Heidelberg, Germany
| | - Herta Flor
- Medical Faculty Mannheim, Institute of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Heidelberg University, Heidelberg, Germany
| | - Elon Eisenberg
- The Rappaport Faculty of Medicine, Technion—Israel Institute of Technology, Haifa, Israel
- Institute of Pain Medicine, Haifa, Israel
| | - Dorit Pud
- Faculty of Social Welfare and Health Sciences, University of Haifa, Haifa, Israel
| |
Collapse
|
7
|
Finan PH, Letzen J, Epstein DH, Mun CJ, Stull S, Kowalczyk WJ, Agage D, Phillips KA, Pizzagalli DA, Preston KL. Reward Responsiveness in Patients with Opioid Use Disorder on Opioid Agonist Treatment: Role of Comorbid Chronic Pain. PAIN MEDICINE 2021; 22:2019-2027. [PMID: 33624802 DOI: 10.1093/pm/pnab031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
OBJECTIVE Evidence suggests that blunted reward responsiveness may account for poor clinical outcomes in both opioid use disorder (OUD) and chronic pain. Understanding how individuals with OUD and comorbid chronic pain (OUD+CP) respond to rewards is, therefore, of clinical interest because it may reveal a potential point of behavioral intervention. METHODS Patients with OUD (n = 28) and OUD+CP (n = 19) on opioid agonist treatment were compared on: 1) the Probabilistic Reward Task (an objective behavioral measure of reward response bias) and 2) ecological momentary assessment of affective responses to pleasurable events. RESULTS Both the OUD and the OUD+CP groups evidenced an increase in reward response bias in the Probabilistic Reward Task. The rate of change in response bias across blocks was statistically significant in the OUD group (B = 0.06, standard error [SE] = 0.02, t = 3.92, P < 0.001, 95% confidence interval [CI]: 0.03 to 0.09) but not in the OUD+CP group (B = 0.03, SE = 0.02, t = 1.90, P = 0.07, 95% CI: -0.002 to 0.07). However, groups did not significantly differ in the rate of change in response bias across blocks (B = 0.03, SE = 0.02, t = 1.21, P = 0.23, 95% CI: -0.02 to 0.07). Groups did not significantly differ on state measures of reward responsiveness (P's ≥0.50). CONCLUSIONS Overall, findings across objective and subjective measures were mixed, necessitating follow-up with a larger sample. The results suggest that although there is a reward response bias in patients with OUD+CP treated with opioid agonist treatment relative to patients with OUD without CP, it is modest and does not appear to translate into patients' responses to rewarding events as they unfold in daily life.
Collapse
Affiliation(s)
- Patrick H Finan
- School of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Janelle Letzen
- School of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - David H Epstein
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, Maryland
| | - Chung Jung Mun
- School of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Samuel Stull
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, Maryland
| | - William J Kowalczyk
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, Maryland
| | - Daniel Agage
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, Maryland
| | - Karran A Phillips
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, Maryland
| | | | - Kenzie L Preston
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, Maryland
| |
Collapse
|
8
|
Case L, Adler-Neal AL, Wells RE, Zeidan F. The Role of Expectations and Endogenous Opioids in Mindfulness-Based Relief of Experimentally Induced Acute Pain. Psychosom Med 2021; 83:549-556. [PMID: 33480666 PMCID: PMC8415135 DOI: 10.1097/psy.0000000000000908] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
OBJECTIVE Expectations contribute to cognitive pain modulation through opioidergically mediated descending inhibition. Mindfulness meditation reduces pain independent of endogenous opioids, engaging unique corticothalamocortical mechanisms. However, it remains unknown whether expectations for pain relief predict mindfulness-induced analgesia and if these expectations are modified by endogenous opioids. METHODS In this secondary analysis of previously published work, 78 pain-free participants (mean age, 27 ± 7 years; 50% women) were randomized to a four-session mindfulness meditation or book listening regimen. Expectations for intervention-induced pain relief were assessed before and after each intervention. Pain ratings were examined after meditation or rest (control group) during noxious heat (49°C) and intravenous administration of saline placebo or the opioid antagonist naloxone (0.15 mg/kg bolus + 0.1 mg kg-1 h-1 infusion. RESULTS Mindfulness significantly lowered pain during saline and naloxone infusion. Higher expected pain relief from mindfulness predicted lower pain intensity (r(40) = -0.41, p = .009). The relationship between meditation-related expectations and pain intensity reductions was exhibited during naloxone (r(20) = -0.76, p < .001) but not saline (r(20) = -0.22, p = .36). Expectations for book listening-based analgesia did not significantly predict pain changes during saline (r(20) = -0.37, p = .11) or naloxone (r(18) = 0.26, p = .30) in the control group. CONCLUSIONS These novel findings demonstrate a significant role for expectations in mindfulness-based pain relief. However, this role was minimal during saline and stronger during opioid blockade, despite similar pain reductions. This supports growing evidence that mindfulness engages multiple mechanisms to reduce pain, suggesting that mindfulness might be an effective pain-reducing technique even for individuals with low expectations for pain relief.
Collapse
Affiliation(s)
- Laura Case
- Department of Anesthesiology, University of California at San Diego
| | | | | | - Fadel Zeidan
- Department of Anesthesiology, University of California at San Diego
- Department of Neurobiology and Anatomy, Wake Forest School of Medicine
| |
Collapse
|
9
|
Rizvi SJ, Gandhi W, Salomons T. Reward processing as a common diathesis for chronic pain and depression. Neurosci Biobehav Rev 2021; 127:749-760. [PMID: 33951413 DOI: 10.1016/j.neubiorev.2021.04.033] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 10/14/2020] [Accepted: 04/27/2021] [Indexed: 12/25/2022]
Abstract
Pain disorders and psychiatric illness are strongly comorbid, particularly in the context of Major Depressive Disorder (MDD). While these disorders account for a significant amount of global disability, the mechanisms of their overlap remain unclear. Understanding these mechanisms is of vital importance to developing prevention strategies and interventions that target both disorders. Of note, brain reward processing may be relevant to explaining how the comorbidity arises, given pain disorders and MDD can result in maladaptive reward responsivity that limits reward learning, appetitive approach behaviours and consummatory response. In this review, we discuss this research and explore the possibility of reward processing deficits as a common diathesis to explain the manifestation of pain disorders and MDD. Specifically, we hypothesize that contextual physical or psychological events (e.g. surgery, divorce) in the presence of a reward impairment diathesis worsens symptoms and results in a negative feedback loop that increases the chronicity and probability of developing the other disorder. We also highlight the implications for treatment and provide a framework for future research.
Collapse
Affiliation(s)
- Sakina J Rizvi
- Arthur Sommer Rotenberg Suicide and Depression Studies Program, St. Michael's Hospital, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada.
| | - Wiebke Gandhi
- School of Psychology and Clinical Language Sciences, University of Reading, Reading, United Kingdom
| | - Tim Salomons
- Department of Psychology, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
10
|
Mascarell Maričić L, Walter H, Rosenthal A, Ripke S, Quinlan EB, Banaschewski T, Barker GJ, Bokde ALW, Bromberg U, Büchel C, Desrivières S, Flor H, Frouin V, Garavan H, Itterman B, Martinot JL, Martinot MLP, Nees F, Orfanos DP, Paus T, Poustka L, Hohmann S, Smolka MN, Fröhner JH, Whelan R, Kaminski J, Schumann G, Heinz A. The IMAGEN study: a decade of imaging genetics in adolescents. Mol Psychiatry 2020; 25:2648-2671. [PMID: 32601453 PMCID: PMC7577859 DOI: 10.1038/s41380-020-0822-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 04/10/2020] [Accepted: 06/12/2020] [Indexed: 11/17/2022]
Abstract
Imaging genetics offers the possibility of detecting associations between genotype and brain structure as well as function, with effect sizes potentially exceeding correlations between genotype and behavior. However, study results are often limited due to small sample sizes and methodological differences, thus reducing the reliability of findings. The IMAGEN cohort with 2000 young adolescents assessed from the age of 14 onwards tries to eliminate some of these limitations by offering a longitudinal approach and sufficient sample size for analyzing gene-environment interactions on brain structure and function. Here, we give a systematic review of IMAGEN publications since the start of the consortium. We then focus on the specific phenotype 'drug use' to illustrate the potential of the IMAGEN approach. We describe findings with respect to frontocortical, limbic and striatal brain volume, functional activation elicited by reward anticipation, behavioral inhibition, and affective faces, and their respective associations with drug intake. In addition to describing its strengths, we also discuss limitations of the IMAGEN study. Because of the longitudinal design and related attrition, analyses are underpowered for (epi-) genome-wide approaches due to the limited sample size. Estimating the generalizability of results requires replications in independent samples. However, such densely phenotyped longitudinal studies are still rare and alternative internal cross-validation methods (e.g., leave-one out, split-half) are also warranted. In conclusion, the IMAGEN cohort is a unique, very well characterized longitudinal sample, which helped to elucidate neurobiological mechanisms involved in complex behavior and offers the possibility to further disentangle genotype × phenotype interactions.
Collapse
Affiliation(s)
- Lea Mascarell Maričić
- Department of Psychiatry and Psychotherapy, Charité-Universitätsmedizin Berlin, Campus Charité Mitte, Berlin, Germany
| | - Henrik Walter
- Department of Psychiatry and Psychotherapy, Charité-Universitätsmedizin Berlin, Campus Charité Mitte, Berlin, Germany
| | - Annika Rosenthal
- Department of Psychiatry and Psychotherapy, Charité-Universitätsmedizin Berlin, Campus Charité Mitte, Berlin, Germany
| | - Stephan Ripke
- Department of Psychiatry and Psychotherapy, Charité-Universitätsmedizin Berlin, Campus Charité Mitte, Berlin, Germany
| | - Erin Burke Quinlan
- Department of Social Genetic & Developmental Psychiatry, Institute of Psychiatry, King's College London, London, UK
| | - Tobias Banaschewski
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, 68159, Mannheim, Germany
| | - Gareth J Barker
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Arun L W Bokde
- Discipline of Psychiatry, School of Medicine and Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Uli Bromberg
- University Medical Centre Hamburg-Eppendorf, House W34, 3.OG, Martinistr. 52, 20246, Hamburg, Germany
| | - Christian Büchel
- Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, Mannheim, Germany
| | - Sylvane Desrivières
- Department of Social Genetic & Developmental Psychiatry, Institute of Psychiatry, King's College London, London, UK
| | - Herta Flor
- Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, Mannheim, Germany
- Department of Psychology, School of Social Sciences, University of Mannheim, 68131, Mannheim, Germany
| | - Vincent Frouin
- NeuroSpin, CEA, Université Paris-Saclay, F-91191, Gif-sur-Yvette, France
| | - Hugh Garavan
- Departments of Psychiatry and Psychology, University of Vermont, Burlington, VT, 05405, USA
| | - Bernd Itterman
- Physikalisch-Technische Bundesanstalt (PTB), Abbestr. 2-12, Berlin, Germany
| | - Jean-Luc Martinot
- Institut National de la Santé et de la Recherche Médicale, INSERM Unit 1000 "Neuroimaging& Psychiatry", University Paris Sud, University Paris Descartes-Sorbonne Paris Cité, and Maison de Solenn, Paris, France
| | - Marie-Laure Paillère Martinot
- Institut National de la Santé et de la Recherche Médicale, INSERM Unit 1000 "Neuroimaging & Psychiatry", University Paris Sud, University Paris Descartes, Sorbonne Université, and AP-HP, Department of Child and Adolescent Psychiatry, Pitié-Salpêtrière Hospital, Paris, France
| | - Frauke Nees
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, 68159, Mannheim, Germany
- Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, Mannheim, Germany
| | | | - Tomáš Paus
- Rotman Research Institute, Baycrest and Departments of Psychology and Psychiatry, University of Toronto, Toronto, ON, M6A 2E1, Canada
| | - Luise Poustka
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Medical Centre Göttingen, von-Siebold-Str. 5, 37075, Göttingen, Germany
| | - Sarah Hohmann
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, 68159, Mannheim, Germany
| | - Michael N Smolka
- Department of Psychiatry and Neuroimaging Center, TechnischeUniversität Dresden, Dresden, Germany
| | - Juliane H Fröhner
- Department of Psychiatry and Neuroimaging Center, TechnischeUniversität Dresden, Dresden, Germany
| | - Robert Whelan
- School of Psychology and Global Brain Health Institute, Trinity College Dublin, Dublin, Ireland
| | - Jakob Kaminski
- Department of Psychiatry and Psychotherapy, Charité-Universitätsmedizin Berlin, Campus Charité Mitte, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
| | - Gunter Schumann
- Department of Social Genetic & Developmental Psychiatry, Institute of Psychiatry, King's College London, London, UK
| | - Andreas Heinz
- Department of Psychiatry and Psychotherapy, Charité-Universitätsmedizin Berlin, Campus Charité Mitte, Berlin, Germany.
| |
Collapse
|
11
|
Brain-behaviour correlates of habitual motivation in chronic back pain. Sci Rep 2020; 10:11090. [PMID: 32632166 PMCID: PMC7338353 DOI: 10.1038/s41598-020-67386-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 06/04/2020] [Indexed: 11/18/2022] Open
Abstract
Chronic pain may sap the motivation for positive events and stimuli. This may lead to a negative behavioural cycle reducing the establishment of appetitive habitual engagement. One potential mechanism for this might be biased learning. In our experiment, chronic back pain patients and healthy controls completed an appetitive Pavlovian-instrumental transfer procedure. We examined participants` behaviour and brain activity and reported pain, depression and anxiety. Patients showed reduced habitual behaviour and increased responses in the hippocampus than controls. This behavioural bias was related to motivational value and reflected in the updating of brain activity in prefrontal–striatal–limbic circuits. Moreover, this was influenced by pain symptom duration, depression and anxiety (explained variance: up to 50.7%). Together, findings identify brain-behaviour pathways for maladaptive habitual learning and motivation in chronic back pain, which helps explaining why chronic pain can be resistant to change, and where clinical characteristics are significant modulators.
Collapse
|
12
|
Abstract
This paper is the fortieth consecutive installment of the annual anthological review of research concerning the endogenous opioid system, summarizing articles published during 2017 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides and receptors as well as effects of opioid/opiate agonists and antagonists. The review is subdivided into the following specific topics: molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors (1), the roles of these opioid peptides and receptors in pain and analgesia in animals (2) and humans (3), opioid-sensitive and opioid-insensitive effects of nonopioid analgesics (4), opioid peptide and receptor involvement in tolerance and dependence (5), stress and social status (6), learning and memory (7), eating and drinking (8), drug abuse and alcohol (9), sexual activity and hormones, pregnancy, development and endocrinology (10), mental illness and mood (11), seizures and neurologic disorders (12), electrical-related activity and neurophysiology (13), general activity and locomotion (14), gastrointestinal, renal and hepatic functions (15), cardiovascular responses (16), respiration and thermoregulation (17), and immunological responses (18).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, CUNY, 65-30 Kissena Blvd., Flushing, NY, 11367, United States.
| |
Collapse
|
13
|
Martin SL, Jones AKP, Brown CA, Kobylecki C, Silverdale MA. A neurophysiological investigation of anticipation to pain in Parkinson's disease. Eur J Neurosci 2019; 51:611-627. [DOI: 10.1111/ejn.14559] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 07/23/2019] [Accepted: 08/15/2019] [Indexed: 12/27/2022]
Affiliation(s)
- Sarah L. Martin
- The Human Pain Research Group Division of Neuroscience and Experimental Psychology University of Manchester Manchester UK
| | - Anthony K. P. Jones
- The Human Pain Research Group Division of Neuroscience and Experimental Psychology University of Manchester Manchester UK
| | | | - Christopher Kobylecki
- Institution is Department of Neurology Salford Royal NHS Foundation Trust Manchester Academic Health Science Centre The University of Manchester Manchester UK
| | - Monty A. Silverdale
- Institution is Department of Neurology Salford Royal NHS Foundation Trust Manchester Academic Health Science Centre The University of Manchester Manchester UK
| |
Collapse
|
14
|
DaSilva AF, Zubieta JK, DosSantos MF. Positron emission tomography imaging of endogenous mu-opioid mechanisms during pain and migraine. Pain Rep 2019; 4:e769. [PMID: 31579860 PMCID: PMC6727995 DOI: 10.1097/pr9.0000000000000769] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 05/04/2019] [Accepted: 05/25/2019] [Indexed: 11/26/2022] Open
Abstract
The enormous advancements in the medical imaging methods witnessed in the past decades have allowed clinical researchers to study the function of the human brain in vivo, both in health and disease. In addition, a better understanding of brain responses to different modalities of stimuli such as pain, reward, or the administration of active or placebo interventions has been achieved through neuroimaging methods. Although magnetic resonance imaging has provided important information regarding structural, hemodynamic, and metabolic changes in the central nervous system related to pain, magnetic resonance imaging does not address modulatory pain systems at the molecular level (eg, endogenous opioid). Such important information has been obtained through positron emission tomography, bringing insights into the neuroplastic changes that occur in the context of the pain experience. Positron emission tomography studies have not only confirmed the brain structures involved in pain processing and modulation but also have helped elucidate the neural mechanisms that underlie healthy and pathological pain regulation. These data have shown some of the biological basis of the interindividual variability in pain perception and regulation. In addition, they provide crucial information to the mechanisms that drive placebo and nocebo effects, as well as represent an important source of variability in clinical trials. Positron emission tomography studies have also permitted exploration of the dynamic interaction between behavior and genetic factors and between different pain modulatory systems. This narrative review will present a summary of the main findings of the positron emission tomography studies that evaluated the functioning of the opioidergic system in the context of pain.
Collapse
Affiliation(s)
- Alexandre F. DaSilva
- Headache & Orofacial Pain Effort (H.O.P.E.), Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - Jon-Kar Zubieta
- Department of Psychiatry, University of Utah Health, Salt Lake City, UT, USA
| | - Marcos F. DosSantos
- Instituto de Ciências Biomédicas (ICB), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| |
Collapse
|
15
|
|
16
|
Volumetric brain correlates of approach-avoidance behavior and their relation to chronic back pain. Brain Imaging Behav 2019; 14:1758-1768. [PMID: 31065925 DOI: 10.1007/s11682-019-00110-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Avoiding any harm, such as painful experiences, is an important ability for our physical and mental health. This avoidance behavior might be overactive under chronic pain, and the cortical and subcortical brain volumetry, which also often changes in chronic pain states, might be a significant correlate of this behavior. In the present study, we thus investigated the association between volumetric brain differences using 3 T structural magnetic resonance imaging and pain- versus pleasure-related approach-avoidance behavior using an Approach Avoidance Task in the laboratory in chronic back pain (N = 42; mean age: 51.34 years; 23 female) and healthy individuals (N = 43; mean age: 45.21 years; 15 female). We found significant differences in hippocampal, amygdala and accumbens volumes in patients compared to controls. The patients` hippocampal volume was significantly positively related to pain avoidance, the amygdala volume to positive approach, and the accumbens volume negatively to a bias to pain avoidance over positive approach. These associations were significantly moderated by pain symptom duration. Cortical structure may thus contribute to an overacting pain avoidance system in chronic back pain, and could, together with a reduction in approaching positive stimuli, be related to maladaptive choice and decision-making processes in chronic pain.
Collapse
|
17
|
Finan PH, Remeniuk B, Dunn KE. The risk for problematic opioid use in chronic pain: What can we learn from studies of pain and reward? Prog Neuropsychopharmacol Biol Psychiatry 2018; 87:255-262. [PMID: 28778406 PMCID: PMC5821601 DOI: 10.1016/j.pnpbp.2017.07.029] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 07/26/2017] [Accepted: 07/31/2017] [Indexed: 12/22/2022]
Abstract
Problematic prescription opioid use is cited as a primary contributor to the current 'opioid epidemic' in the United States, which is characterized by recent rapid increases in individuals seeking treatment for opioid dependence and staggering rates of opioid overdose deaths. Individuals with chronic pain are commonly prescribed opioids to treat pain, and by this mere exposure are at increased risk for the development of problematic opioid use. However, the factors contributing to variation in risk across patients have only recently begun to be unraveled. In the present review, we describe the recent and expanding literature on interactions between pain and reward system function in an effort to inform our understanding of risk for problematic opioid use in chronic pain. To that end, we describe the limited experimental evidence regarding opioid abuse liability under conditions of pain, and offer suggestions for how to advance a research agenda that better informs clinicians about the factors contributing to opioid addiction risk in patients with chronic pain. We raise mechanistic hypotheses by highlighting the primary conclusions of several recent reviews on the neurobiology of pain and reward, with an emphasis on describing dopamine deficits in chronic pain, the role of the reward system in mediating the affective and motivational components of pain, and the role of opponent reward/anti-reward processes in the perpetuation of pain states and the development of problematic opioid use behaviors. Finally, we also argue that positive affect-which is directly regulated by the mesolimbic reward system-is a key pain inhibitory factor that, when deficient, may increase risk for problematic opioid use, and present a model that integrates the potential contributions of pain, reward system function, and positive affect to problematic opioid use risk.
Collapse
Affiliation(s)
- Patrick H Finan
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, United States.
| | - Bethany Remeniuk
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, United States
| | - Kelly E Dunn
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, United States
| |
Collapse
|
18
|
Borsook D, Youssef AM, Simons L, Elman I, Eccleston C. When pain gets stuck: the evolution of pain chronification and treatment resistance. Pain 2018; 159:2421-2436. [PMID: 30234696 PMCID: PMC6240430 DOI: 10.1097/j.pain.0000000000001401] [Citation(s) in RCA: 162] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
It is well-recognized that, despite similar pain characteristics, some people with chronic pain recover, whereas others do not. In this review, we discuss possible contributions and interactions of biological, social, and psychological perturbations that underlie the evolution of treatment-resistant chronic pain. Behavior and brain are intimately implicated in the production and maintenance of perception. Our understandings of potential mechanisms that produce or exacerbate persistent pain remain relatively unclear. We provide an overview of these interactions and how differences in relative contribution of dimensions such as stress, age, genetics, environment, and immune responsivity may produce different risk profiles for disease development, pain severity, and chronicity. We propose the concept of "stickiness" as a soubriquet for capturing the multiple influences on the persistence of pain and pain behavior, and their stubborn resistance to therapeutic intervention. We then focus on the neurobiology of reward and aversion to address how alterations in synaptic complexity, neural networks, and systems (eg, opioidergic and dopaminergic) may contribute to pain stickiness. Finally, we propose an integration of the neurobiological with what is known about environmental and social demands on pain behavior and explore treatment approaches based on the nature of the individual's vulnerability to or protection from allostatic load.
Collapse
Affiliation(s)
- David Borsook
- Center for Pain and the Brain, Boston Children’s (BCH), McLean and Massachusetts Hospitals (MGH), Boston MA
- Departments of Anesthesia (BCH), Psychiatry (MGH, McLean) and Radiology (MGH)
| | - Andrew M Youssef
- Center for Pain and the Brain, Boston Children’s (BCH), McLean and Massachusetts Hospitals (MGH), Boston MA
| | - Laura Simons
- Department of Anesthesia, Stanford University, Palo Alto, CA
| | | | - Christopher Eccleston
- Centre for Pain Research, University of Bath, UK
- Department of Clinical and Health Psychology, Ghent University, Belgium
| |
Collapse
|
19
|
Nees F, Usai K, Löffler M, Flor H. The evaluation and brain representation of pleasant touch in chronic and subacute back pain. NEUROBIOLOGY OF PAIN 2018; 5:100025. [PMID: 31194113 PMCID: PMC6550103 DOI: 10.1016/j.ynpai.2018.10.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 10/27/2018] [Accepted: 10/28/2018] [Indexed: 12/26/2022]
Abstract
Chronic back pain (CBP) showed less positive evaluations of touch. Highest response to pleasant touch in SI and SII and insula in chronic back pain. Highest response to pleasant touch in ventral striatum in subacute back pain (SABP). Correlations of brain responses with pain interference in CBP and distress in SABP. Brain-behavior changes in pleasant touch processing may be a marker of pain chronicity.
If touch is perceived as pleasant, it can counteract the experience of pain. However, its pain-inhibitory function might be disturbed in chronic pain and this could contribute to pain-related interference. We investigated the perception of pleasant touch and its brain correlates in chronic back pain patients (CBP) compared to subacute back pain patients (SABP) and healthy controls (HC) using soft brush strokes. CBP showed less positive evaluations of touch. We found the highest activation in somatosensory and insular cortices in CBP, ventral striatum (VS) in SABP, and the orbitofrontal cortex in HC. Brain responses were significantly positively correlated with pleasantness ratings in HC and SABP, but not CBP. Further, the insula responses in CBP were positively correlated with pain-related interference and the VS activation in SABP correlated negatively with affective distress. Brain and behavioral changes in the processing of touch and its pleasantness may be a marker of pain chronicity and raise questions about the therapeutic value of pleasant touch in pain prevention and treatment.
Collapse
Affiliation(s)
- F Nees
- Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - K Usai
- Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - M Löffler
- Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - H Flor
- Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
20
|
Psychological Processes in Chronic Pain: Influences of Reward and Fear Learning as Key Mechanisms – Behavioral Evidence, Neural Circuits, and Maladaptive Changes. Neuroscience 2018; 387:72-84. [DOI: 10.1016/j.neuroscience.2017.08.051] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Revised: 08/22/2017] [Accepted: 08/29/2017] [Indexed: 01/09/2023]
|
21
|
Emotional and Motivational Pain Processing: Current State of Knowledge and Perspectives in Translational Research. Pain Res Manag 2018; 2018:5457870. [PMID: 30123398 PMCID: PMC6079355 DOI: 10.1155/2018/5457870] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 06/03/2018] [Indexed: 01/13/2023]
Abstract
Pain elicits fear and anxiety and promotes escape, avoidance, and adaptive behaviors that are essential for survival. When pain persists, motivational priority and attention shift to pain-related information. Such a shift often results in impaired functionality, leading to maladaptive pain-related fear and anxiety and escape and avoidance behaviors. Neuroimaging studies in chronic pain patients have established that brain activity, especially in cortical and mesolimbic regions, is different from activity observed during acute pain in control subjects. In this review, we discuss the psychophysiological and neuronal factors that may be associated with the transition to chronic pain. We review information from human studies on neural circuits involved in emotional and motivational pain processing and how these circuits are altered in chronic pain conditions. We then highlight findings from animal research that can increase our understanding of the molecular and cellular mechanisms underlying emotional-motivational pain processing in the brain. Finally, we discuss how translational approaches incorporating results from both human and animal investigations may aid in accelerating the discovery of therapies.
Collapse
|
22
|
Borsook D, Youssef AM, Barakat N, Sieberg CB, Elman I. Subliminal (latent) processing of pain and its evolution to conscious awareness. Neurosci Biobehav Rev 2018; 88:1-15. [PMID: 29476771 DOI: 10.1016/j.neubiorev.2018.02.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 02/07/2018] [Accepted: 02/19/2018] [Indexed: 12/18/2022]
Abstract
By unconscious or covert processing of pain we refer to nascent interactions that affect the eventual deliverance of pain awareness. Thus, internal processes (viz., repeated nociceptive events, inflammatory kindling, reorganization of brain networks, genetic) or external processes (viz., environment, socioeconomic levels, modulation of epigenetic status) contribute to enhancing or inhibiting the presentation of pain awareness. Here we put forward the notion that for many patients, ongoing sub-conscious changes in brain function are significant players in the eventual manifestation of chronic pain. In this review, we provide clinical examples of nascent or what we term pre-pain processes and the neurobiological mechanisms of how these changes may contribute to pain, but also potential opportunities to define the process for early therapeutic interventions.
Collapse
Affiliation(s)
- David Borsook
- Center for Pain and the Brain, 9 Hope Avenue, Mailbox 26, Waltham, MA, 06524-9936, United States.
| | - Andrew M Youssef
- Center for Pain and the Brain, 9 Hope Avenue, Mailbox 26, Waltham, MA, 06524-9936, United States
| | - Nadia Barakat
- Center for Pain and the Brain, 9 Hope Avenue, Mailbox 26, Waltham, MA, 06524-9936, United States
| | - Christine B Sieberg
- Center for Pain and the Brain, 9 Hope Avenue, Mailbox 26, Waltham, MA, 06524-9936, United States
| | - Igor Elman
- Dayton Veterans Affairs Medical Center 4100 West Third Street Dayton, OH, 45428, United States
| |
Collapse
|
23
|
|
24
|
Robust age, but limited sex, differences in mu-opioid receptors in the rat brain: relevance for reward and drug-seeking behaviors in juveniles. Brain Struct Funct 2017; 223:475-488. [PMID: 28871491 PMCID: PMC5772146 DOI: 10.1007/s00429-017-1498-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 08/12/2017] [Indexed: 11/27/2022]
Abstract
In the brain, the µ-opioid receptor (MOR) is involved in reward-seeking behaviors and plays a pivotal role in the mediation of opioid use disorders. Furthermore, reward-seeking behaviors and susceptibility to opioid addiction are particularly evident during the juvenile period, with a higher incidence of opioid use in males and higher sensitivity to opioids in females. Despite these age and sex differences in MOR-mediated behaviors, little is known regarding potential age and sex differences in the expression of MORs in the brain. Here, we used receptor autoradiography to compare MOR binding densities between juvenile and adult male and female rats. Age differences were found in MOR binding density in 12 out of 33 brain regions analyzed, with 11 regions showing higher MOR binding density in juveniles than in adults. These include the lateral septum, as well as sub-regions of the bed nucleus of the stria terminalis, hippocampus, and thalamus. Sex differences in MOR binding density were observed in only two brain regions, namely, the lateral septum (higher in males) and the posterior cortical nucleus of the amygdala (higher in females). Overall, these findings provide an important foundation for the generation of hypotheses regarding differential functional roles of MOR activation in juveniles versus adults. Specifically, we discuss the possibility that higher MOR binding densities in juveniles may allow for higher MOR activation, which could facilitate behaviors that are heightened during the juvenile period, such as reward and drug-seeking behaviors.
Collapse
|
25
|
Discovery of endogenous opioid systems: what it has meant for the clinician's understanding of pain and its treatment. Pain 2017; 158:2290-2300. [DOI: 10.1097/j.pain.0000000000001043] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
26
|
Opioidergic tone and pain susceptibility: interactions between reward systems and opioid receptors. Pain 2017; 158:185-186. [PMID: 28092322 DOI: 10.1097/j.pain.0000000000000726] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|