1
|
Chen Y, Li T. Unveiling the Mechanisms of Pain in Endometriosis: Comprehensive Analysis of Inflammatory Sensitization and Therapeutic Potential. Int J Mol Sci 2025; 26:1770. [PMID: 40004233 PMCID: PMC11855056 DOI: 10.3390/ijms26041770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 02/10/2025] [Accepted: 02/17/2025] [Indexed: 02/27/2025] Open
Abstract
Endometriosis is a complicated, estrogen-dependent gynecological condition with a high morbidity rate. Pain, as the most common clinical symptom of endometriosis, severely affects women's physical and mental health and exacerbates socioeconomic burden. However, the specific mechanisms behind the occurrence of endometriosis-related pain remain unclear. It is currently believed that the occurrence of endometriosis pain is related to various factors, such as immune abnormalities, endocrine disorders, the brain-gut axis, angiogenesis, and mechanical stimulation. These factors induce systemic chronic inflammation, which stimulates the nerves and subsequently alters neural plasticity, leading to nociceptive sensitization and thereby causing chronic pain. In this paper, we compile and review the articles published on the study of nociceptive sensitization and endometriosis pain mechanisms. Starting from the factors influencing the chronic pain associated with endometriosis, we explain the relationship between these factors and chronic inflammation and further elaborate on the potential mechanisms by which chronic inflammation induces nociceptive sensitization. We aim to reveal the possible mechanisms of endometriosis pain, as well as nociceptive sensitization, and offer potential new targets for the treatment of endometriosis pain.
Collapse
Affiliation(s)
| | - Tian Li
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China;
| |
Collapse
|
2
|
Leng SZ, Fang MJ, Wang YM, Lin ZJ, Li QY, Xu YN, Mai CL, Wan JY, Yu Y, Wei M, Li Y, Zheng YF, Zhang KL, Wang YJ, Zhou LJ, Tan Z, Zhang H. Elevated plasma CXCL12 leads to pain chronicity via positive feedback upregulation of CXCL12/CXCR4 axis in pain synapses. J Headache Pain 2024; 25:213. [PMID: 39627724 PMCID: PMC11616163 DOI: 10.1186/s10194-024-01917-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 11/16/2024] [Indexed: 12/06/2024] Open
Abstract
BACKGROUND Chronic pain poses a clinical challenge due to its associated costly disability and treatment needs. Determining how pain transitions from acute to chronic is crucial for effective management. Upregulation of the chemokine C-X-C motif ligand 12 (CXCL12) in nociceptive pathway is associated with chronic pain. Our previous study has reported that elevated plasma CXCL12 mediates intracerebral neuroinflammation and the comorbidity of cognitive impairment in neuropathic pain, but whether it is also involved in the pathogenesis of pathologic pain has not been investigated. METHODS Intravenous or intrathecal injection (i.v. or i.t.) of recombinant mouse CXCL12, neutralizing antibody (anti-CXCL12) or AMD3100 [an antagonist of its receptor C-X-C chemokine receptor type 4 (CXCR4)] was used to investigate the role of CXCL12 signaling pathway in pain chronicity. Two behavioral tests were used to examine pain changes. ELISA, immunofluorescence staining, Western blot, quantitative Real Time-PCR and Cytokine array were applied to detect the expressions of different molecules. RESULTS We found that increased plasma CXCL12 was positively correlated with pain severity in both chronic pain patients and neuropathic pain model in mice with spared nerve injury (SNI). Neutralizing plasma CXCL12 mitigated SNI-induced hyperalgesia. A single i.v. injection of CXCL12 induced prolonged mechanical hyperalgesia and activation of the nociceptive pathway. Multiple intravenous CXCL12 caused persistent hypersensitivity, enhanced structural plasticity of nociceptors and up-regulation of the CXCL12/CXCR4 axis in the dorsal root ganglion (DRG) and spinal dorsal horn (SDH). However, intrathecal blocking of CXCL12/CXCR4 pathway by CXCL12 antibody or CXCR4 antagonist AMD3100 significantly alleviated CXCL12-induced pain hypersensitivity and pathological changes. CONCLUSIONS Our study provides strong evidence that a sustained increase in plasma CXCL12 contributes to neuropathic pain through a positive feedback loop that enhances nociceptor plasticity, and suggests that targeting CXCL12/CXCR4 axis in plasma or nociceptive pathways has potential value in regulating pain chronicity.
Collapse
Affiliation(s)
- Shi-Ze Leng
- Department of Anesthesiology, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, 510317, China
| | - Mei-Jia Fang
- Department of Physiology and Pain Research Center, Zhongshan School of Medicine and Guangdong Province Key Laboratory of Brain Function and Disease, Sun Yat-Sen University , Guangzhou, 510080, China
| | - Yi-Min Wang
- Department of Anesthesiology, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, 510317, China
| | - Zhen-Jia Lin
- Department of Physiology and Pain Research Center, Zhongshan School of Medicine and Guangdong Province Key Laboratory of Brain Function and Disease, Sun Yat-Sen University , Guangzhou, 510080, China
| | - Qian-Yi Li
- Department of Anesthesiology, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, 510317, China
| | - Ya-Nan Xu
- Department of Physiology and Pain Research Center, Zhongshan School of Medicine and Guangdong Province Key Laboratory of Brain Function and Disease, Sun Yat-Sen University , Guangzhou, 510080, China
| | - Chun-Lin Mai
- Department of Physiology and Pain Research Center, Zhongshan School of Medicine and Guangdong Province Key Laboratory of Brain Function and Disease, Sun Yat-Sen University , Guangzhou, 510080, China
| | - Jun-Ya Wan
- Department of Physiology and Pain Research Center, Zhongshan School of Medicine and Guangdong Province Key Laboratory of Brain Function and Disease, Sun Yat-Sen University , Guangzhou, 510080, China
| | - Yangyinhui Yu
- Department of Physiology and Pain Research Center, Zhongshan School of Medicine and Guangdong Province Key Laboratory of Brain Function and Disease, Sun Yat-Sen University , Guangzhou, 510080, China
| | - Ming Wei
- Department of Anesthesiology and Pain Clinic, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China
| | - Ying Li
- Department of Physiology and Pain Research Center, Zhongshan School of Medicine and Guangdong Province Key Laboratory of Brain Function and Disease, Sun Yat-Sen University , Guangzhou, 510080, China
| | - Yu-Fan Zheng
- Department of Physiology and Pain Research Center, Zhongshan School of Medicine and Guangdong Province Key Laboratory of Brain Function and Disease, Sun Yat-Sen University , Guangzhou, 510080, China
| | - Kai-Lang Zhang
- Department of Physiology and Pain Research Center, Zhongshan School of Medicine and Guangdong Province Key Laboratory of Brain Function and Disease, Sun Yat-Sen University , Guangzhou, 510080, China
| | - Ya-Juan Wang
- Department of Physiology and Pain Research Center, Zhongshan School of Medicine and Guangdong Province Key Laboratory of Brain Function and Disease, Sun Yat-Sen University , Guangzhou, 510080, China
| | - Li-Jun Zhou
- Department of Physiology and Pain Research Center, Zhongshan School of Medicine and Guangdong Province Key Laboratory of Brain Function and Disease, Sun Yat-Sen University , Guangzhou, 510080, China.
| | - Zhi Tan
- Department of Physiology and Pain Research Center, Zhongshan School of Medicine and Guangdong Province Key Laboratory of Brain Function and Disease, Sun Yat-Sen University , Guangzhou, 510080, China.
| | - Hui Zhang
- Department of Anesthesiology, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, 510317, China.
| |
Collapse
|
3
|
Zhang Z, Zhao W, Lv C, Wu Z, Liu W, Chang X, Yu Y, Xiao Z, He Y, Zhang H. Unraveling impact and potential mechanisms of baseline pain on efficacy of immunotherapy in lung cancer patients: a retrospective and bioinformatic analysis. Front Immunol 2024; 15:1456150. [PMID: 39654896 PMCID: PMC11625792 DOI: 10.3389/fimmu.2024.1456150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 10/30/2024] [Indexed: 12/12/2024] Open
Abstract
Objective Pain is a prevalent discomfort symptom associated with cancer, yet the correlations and potential mechanisms between pain and the efficacy of cancer immunotherapy remain uncertain. Methods Non-small cell lung cancer (NSCLC) patients who received immune checkpoint inhibitors (ICIs) in the inpatient department of Guangdong Provincial Hospital of Chinese Medicine from January 1, 2018, to December 31, 2021, were retrospectively enrolled. Through cox regression analysis, prognostic factors and independent prognostic factors affecting the efficacy of ICIs were identified, and a nomogram model was constructed. Hub cancer-related pain genes (CRPGs) were identified through bioinformatic analysis. Finally, the expression levels of hub CRPGs were detected using an enzyme-linked immunosorbent assay (ELISA). Results Before PSM, a total of 222 patients were enrolled in this study. Univariate and multivariate cox analysis indicated that bone metastasis and NRS scores were independent prognostic factors for the efficacy of ICIs. After PSM, a total of 94 people were enrolled in this study. Univariate cox analysis and multivariate cox analysis indicated that age, platelets, Dnlr, liver metastasis, bone metastasis, and NRS scores were independent prognostic factors for the efficacy of ICIs. A nomogram was constructed based on 6 independent prognostic factors with AUC values of 0.80 for 1-year, 0.73 for 2-year, and 0.80 for 3-year survival. ELISA assay results indicated that the level of CXCL12 significantly decreased compared to baseline after pain was relieved. Conclusion Baseline pain is an independent prognostic factor affecting the efficacy of ICIs in lung cancer, potentially through CXCL12-mediated inflammation promotion and immunosuppression.
Collapse
Affiliation(s)
- Zexin Zhang
- The Second Clinical School of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wenjie Zhao
- The Second Clinical School of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chang Lv
- The Second Clinical School of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zexia Wu
- The Second Clinical School of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wenhao Liu
- Clinical Medical College of Acupuncture Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xuesong Chang
- Deparment of Oncology, Guangdong Province Hospital of Chinese Medicine, Guangzhou, China
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yaya Yu
- Deparment of Oncology, Guangdong Province Hospital of Chinese Medicine, Guangzhou, China
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhenzhen Xiao
- Deparment of Oncology, Guangdong Province Hospital of Chinese Medicine, Guangzhou, China
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yihan He
- Deparment of Oncology, Guangdong Province Hospital of Chinese Medicine, Guangzhou, China
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Haibo Zhang
- Deparment of Oncology, Guangdong Province Hospital of Chinese Medicine, Guangzhou, China
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
4
|
Cao B, Xu Q, Shi Y, Zhao R, Li H, Zheng J, Liu F, Wan Y, Wei B. Pathology of pain and its implications for therapeutic interventions. Signal Transduct Target Ther 2024; 9:155. [PMID: 38851750 PMCID: PMC11162504 DOI: 10.1038/s41392-024-01845-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 04/08/2024] [Accepted: 04/25/2024] [Indexed: 06/10/2024] Open
Abstract
Pain is estimated to affect more than 20% of the global population, imposing incalculable health and economic burdens. Effective pain management is crucial for individuals suffering from pain. However, the current methods for pain assessment and treatment fall short of clinical needs. Benefiting from advances in neuroscience and biotechnology, the neuronal circuits and molecular mechanisms critically involved in pain modulation have been elucidated. These research achievements have incited progress in identifying new diagnostic and therapeutic targets. In this review, we first introduce fundamental knowledge about pain, setting the stage for the subsequent contents. The review next delves into the molecular mechanisms underlying pain disorders, including gene mutation, epigenetic modification, posttranslational modification, inflammasome, signaling pathways and microbiota. To better present a comprehensive view of pain research, two prominent issues, sexual dimorphism and pain comorbidities, are discussed in detail based on current findings. The status quo of pain evaluation and manipulation is summarized. A series of improved and innovative pain management strategies, such as gene therapy, monoclonal antibody, brain-computer interface and microbial intervention, are making strides towards clinical application. We highlight existing limitations and future directions for enhancing the quality of preclinical and clinical research. Efforts to decipher the complexities of pain pathology will be instrumental in translating scientific discoveries into clinical practice, thereby improving pain management from bench to bedside.
Collapse
Affiliation(s)
- Bo Cao
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Qixuan Xu
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
- Medical School of Chinese PLA, Beijing, 100853, China
| | - Yajiao Shi
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing, 100191, China
| | - Ruiyang Zhao
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
- Medical School of Chinese PLA, Beijing, 100853, China
| | - Hanghang Li
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
- Medical School of Chinese PLA, Beijing, 100853, China
| | - Jie Zheng
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing, 100191, China
| | - Fengyu Liu
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing, 100191, China.
| | - You Wan
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing, 100191, China.
| | - Bo Wei
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
5
|
Xie MX, Lai RC, Xiao YB, Zhang X, Cao XY, Tian XY, Chen AN, Chen ZY, Cao Y, Li X, Zhang XL. Endophilin A2 controls touch and mechanical allodynia via kinesin-mediated Piezo2 trafficking. Mil Med Res 2024; 11:17. [PMID: 38475827 DOI: 10.1186/s40779-024-00520-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 02/02/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND Tactile and mechanical pain are crucial to our interaction with the environment, yet the underpinning molecular mechanism is still elusive. Endophilin A2 (EndoA2) is an evolutionarily conserved protein that is documented in the endocytosis pathway. However, the role of EndoA2 in the regulation of mechanical sensitivity and its underlying mechanisms are currently unclear. METHODS Male and female C57BL/6 mice (8-12 weeks) and male cynomolgus monkeys (7-10 years old) were used in our experiments. Nerve injury-, inflammatory-, and chemotherapy-induced pathological pain models were established for this study. Behavioral tests of touch, mechanical pain, heat pain, and cold pain were performed in mice and nonhuman primates. Western blotting, immunostaining, co-immunoprecipitation, proximity ligation and patch-clamp recordings were performed to gain insight into the mechanisms. RESULTS The results showed that EndoA2 was primarily distributed in neurofilament-200-positive (NF200+) medium-to-large diameter dorsal root ganglion (DRG) neurons of mice and humans. Loss of EndoA2 in mouse NF200+ DRG neurons selectively impaired the tactile and mechanical allodynia. Furthermore, EndoA2 interacted with the mechanically sensitive ion channel Piezo2 and promoted the membrane trafficking of Piezo2 in DRG neurons. Moreover, as an adaptor protein, EndoA2 also bound to kinesin family member 5B (KIF5B), which was involved in the EndoA2-mediated membrane trafficking process of Piezo2. Loss of EndoA2 in mouse DRG neurons damaged Piezo2-mediated rapidly adapting mechanically activated currents, and re-expression of EndoA2 rescued the MA currents. In addition, interference with EndoA2 also suppressed touch sensitivity and mechanical hypersensitivity in nonhuman primates. CONCLUSIONS Our data reveal that the KIF5B/EndoA2/Piezo2 complex is essential for Piezo2 trafficking and for sustaining transmission of touch and mechanical hypersensitivity signals. EndoA2 regulates touch and mechanical allodynia via kinesin-mediated Piezo2 trafficking in sensory neurons. Our findings identify a potential new target for the treatment of mechanical pain.
Collapse
Affiliation(s)
- Man-Xiu Xie
- Department of Anesthesiology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, 510060, China
| | - Ren-Chun Lai
- Department of Anesthesiology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, 510060, China
| | - Yi-Bin Xiao
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
- Pain Research Center and Department of Physiology, Zhongshan School of Medicine of Sun Yat-Sen University, Guangzhou, 510080, China
| | - Xi Zhang
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
- Pain Research Center and Department of Physiology, Zhongshan School of Medicine of Sun Yat-Sen University, Guangzhou, 510080, China
| | - Xian-Ying Cao
- Engineering Technology Research Center for Elderly Health Management in Hainan Province, Haikou, 571137, China
- College of Food Science and Technology, Hainan University, Haikou, 570228, China
| | - Xiao-Yu Tian
- College of Food Science and Technology, Hainan University, Haikou, 570228, China
| | - An-Nan Chen
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
- Pain Research Center and Department of Physiology, Zhongshan School of Medicine of Sun Yat-Sen University, Guangzhou, 510080, China
| | - Zi-Yi Chen
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
- Pain Research Center and Department of Physiology, Zhongshan School of Medicine of Sun Yat-Sen University, Guangzhou, 510080, China
| | - Yan Cao
- College of Food Science and Technology, Hainan University, Haikou, 570228, China
| | - Xiao Li
- College of Food Science and Technology, Hainan University, Haikou, 570228, China
| | - Xiao-Long Zhang
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China.
| |
Collapse
|
6
|
Pethő G, Kántás B, Horváth Á, Pintér E. The Epigenetics of Neuropathic Pain: A Systematic Update. Int J Mol Sci 2023; 24:17143. [PMID: 38138971 PMCID: PMC10743356 DOI: 10.3390/ijms242417143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/30/2023] [Accepted: 12/02/2023] [Indexed: 12/24/2023] Open
Abstract
Epigenetics deals with alterations to the gene expression that occur without change in the nucleotide sequence in the DNA. Various covalent modifications of the DNA and/or the surrounding histone proteins have been revealed, including DNA methylation, histone acetylation, and methylation, which can either stimulate or inhibit protein expression at the transcriptional level. In the past decade, an exponentially increasing amount of data has been published on the association between epigenetic changes and the pathomechanism of pain, including its most challenging form, neuropathic pain. Epigenetic regulation of the chromatin by writer, reader, and eraser proteins has been revealed for diverse protein targets involved in the pathomechanism of neuropathic pain. They include receptors, ion channels, transporters, enzymes, cytokines, chemokines, growth factors, inflammasome proteins, etc. Most work has been invested in clarifying the epigenetic downregulation of mu opioid receptors and various K+ channels, two types of structures mediating neuronal inhibition. Conversely, epigenetic upregulation has been revealed for glutamate receptors, growth factors, and lymphokines involved in neuronal excitation. All these data cannot only help better understand the development of neuropathic pain but outline epigenetic writers, readers, and erasers whose pharmacological inhibition may represent a novel option in the treatment of pain.
Collapse
Affiliation(s)
- Gábor Pethő
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti Str. 12., H-7624 Pécs, Hungary; (B.K.); (E.P.)
- Department of Pharmacology, Faculty of Pharmacy, University of Pécs, Rókus Str. 2., H-7624 Pécs, Hungary;
| | - Boglárka Kántás
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti Str. 12., H-7624 Pécs, Hungary; (B.K.); (E.P.)
- Department of Obstetrics and Gynecology, University of Pécs, Édesanyák Str. 17., H-7624 Pécs, Hungary
| | - Ádám Horváth
- Department of Pharmacology, Faculty of Pharmacy, University of Pécs, Rókus Str. 2., H-7624 Pécs, Hungary;
| | - Erika Pintér
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti Str. 12., H-7624 Pécs, Hungary; (B.K.); (E.P.)
| |
Collapse
|
7
|
Wu S, Xiong T, Guo S, Zhu C, He J, Wang S. An up-to-date view of paclitaxel-induced peripheral neuropathy. J Cancer Res Ther 2023; 19:1501-1508. [PMID: 38156915 DOI: 10.4103/jcrt.jcrt_1982_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 07/12/2023] [Indexed: 01/03/2024]
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN),referring to the damage to the peripheral nerves caused by exposure to a neurotoxic chemotherapeutic agent, is a common side effect amongst patients undergoing chemotherapy. Paclitaxel-induced peripheral neuropathy (PIPN) can lead to dose reduction or early cessation of chemotherapy, which is not conducive to patients'survival. Even after treatment is discontinued, PIPN symptoms carried a greater risk of worsening and plagued the patient's life, leading to long-term morbidity in survivors. Here, we summarize the research progress for clinical manifestations, risk factors, pathogenesis, prevention and treatment of PIPN, so as to embark on the path of preventing PIPN with prolongation of patient's life quality on a long-term basis.
Collapse
Affiliation(s)
- Shan Wu
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Department of Pharmacy, People's Hospital of Leshan, Shizhong, Leshan, China
| | - Tu Xiong
- Department of Radiology, People's Hospital of Leshan, Shizhong, Leshan, China
| | - Shenglan Guo
- Department of Pharmacy, Huadu District People's Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Cuiyi Zhu
- Department of Pharmacy, People's Hospital of Leshan, Shizhong, Leshan, China
| | - Jing He
- Department of Pharmacy, People's Hospital of Leshan, Shizhong, Leshan, China
| | - Shurong Wang
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
8
|
Wang J, Yin C, Pan Y, Yang Y, Li W, Ni H, Liu B, Nie H, Xu R, Wei H, Zhang Y, Li Y, Hu Q, Tai Y, Shao X, Fang J, Liu B. CXCL13 contributes to chronic pain of a mouse model of CRPS-I via CXCR5-mediated NF-κB activation and pro-inflammatory cytokine production in spinal cord dorsal horn. J Neuroinflammation 2023; 20:109. [PMID: 37158939 PMCID: PMC10165831 DOI: 10.1186/s12974-023-02778-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 04/12/2023] [Indexed: 05/10/2023] Open
Abstract
BACKGROUND Complex regional pain syndrome type-I (CRPS-I) causes excruciating pain that affect patients' life quality. However, the mechanisms underlying CRPS-I are incompletely understood, which hampers the development of target specific therapeutics. METHODS The mouse chronic post-ischemic pain (CPIP) model was established to mimic CRPS-I. qPCR, Western blot, immunostaining, behavioral assay and pharmacological methods were used to study mechanisms underlying neuroinflammation and chronic pain in spinal cord dorsal horn (SCDH) of CPIP mice. RESULTS CPIP mice developed robust and long-lasting mechanical allodynia in bilateral hindpaws. The expression of inflammatory chemokine CXCL13 and its receptor CXCR5 was significantly upregulated in ipsilateral SCDH of CPIP mice. Immunostaining revealed CXCL13 and CXCR5 was predominantly expressed in spinal neurons. Neutralization of spinal CXCL13 or genetic deletion of Cxcr5 (Cxcr5-/-) significantly reduced mechanical allodynia, as well as spinal glial cell overactivation and c-Fos activation in SCDH of CPIP mice. Mechanical pain causes affective disorder in CPIP mice, which was attenuated in Cxcr5-/- mice. Phosphorylated STAT3 co-expressed with CXCL13 in SCDH neurons and contributed to CXCL13 upregulation and mechanical allodynia in CPIP mice. CXCR5 coupled with NF-κB signaling in SCDH neurons to trigger pro-inflammatory cytokine gene Il6 upregulation, contributing to mechanical allodynia. Intrathecal CXCL13 injection produced mechanical allodynia via CXCR5-dependent NF-κB activation. Specific overexpression of CXCL13 in SCDH neurons is sufficient to induce persistent mechanical allodynia in naïve mice. CONCLUSIONS These results demonstrated a previously unidentified role of CXCL13/CXCR5 signaling in mediating spinal neuroinflammation and mechanical pain in an animal model of CRPS-I. Our work suggests that targeting CXCL13/CXCR5 pathway may lead to novel therapeutic approaches for CRPS-I.
Collapse
Affiliation(s)
- Jie Wang
- Department of Neurobiology and Acupuncture Research, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310053, China
- Department of Rehabilitation in Traditional Chinese Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Chengyu Yin
- Department of Neurobiology and Acupuncture Research, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Yushuang Pan
- Department of Neurobiology and Acupuncture Research, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Yunqin Yang
- Department of Neurobiology and Acupuncture Research, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Wei Li
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Huadong Ni
- Department of Anesthesiology and Pain Research Center, The First Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Boyu Liu
- Department of Neurobiology and Acupuncture Research, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Huimin Nie
- Department of Neurobiology and Acupuncture Research, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Ruoyao Xu
- Department of Neurobiology and Acupuncture Research, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Huina Wei
- Department of Neurobiology and Acupuncture Research, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Yunwen Zhang
- Department of Neurobiology and Acupuncture Research, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Yuanyuan Li
- Department of Neurobiology and Acupuncture Research, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Qimiao Hu
- Department of Neurobiology and Acupuncture Research, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Yan Tai
- Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiaomei Shao
- Department of Neurobiology and Acupuncture Research, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Jianqiao Fang
- Department of Neurobiology and Acupuncture Research, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Boyi Liu
- Department of Neurobiology and Acupuncture Research, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| |
Collapse
|
9
|
Jiang W, Zhang LX, Tan XY, Yu P, Dong M. Inflammation and histone modification in chronic pain. Front Immunol 2023; 13:1087648. [PMID: 36713369 PMCID: PMC9880030 DOI: 10.3389/fimmu.2022.1087648] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 12/29/2022] [Indexed: 01/15/2023] Open
Abstract
Increasing evidence suggests that epigenetic mechanisms have great potential in the field of pain. The changes and roles of epigenetics of the spinal cord and dorsal root ganglia in the chronic pain process may provide broad insights for future pain management. Pro-inflammatory cytokines and chemokines released by microglia and astrocytes, as well as blood-derived macrophages, play critical roles in inducing and maintaining chronic pain, while histone modifications may play an important role in inflammatory metabolism. This review provides an overview of neuroinflammation and chronic pain, and we systematically discuss the regulation of neuroinflammation and histone modifications in the context of chronic pain. Specifically, we analyzed the role of epigenetics in alleviating or exacerbating chronic pain by modulating microglia, astrocytes, and the proinflammatory mediators they release. This review aimed to contribute to the discovery of new therapeutic targets for chronic pain.
Collapse
Affiliation(s)
- Wei Jiang
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Li-Xi Zhang
- Department of Thyroid Surgery, The First Hospital of Jilin University, Changchun, China
| | - Xuan-Yu Tan
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China
| | - Peng Yu
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, China,*Correspondence: Peng Yu, ; Ming Dong,
| | - Ming Dong
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China,*Correspondence: Peng Yu, ; Ming Dong,
| |
Collapse
|
10
|
Liu M, Mai JW, Luo DX, Liu GX, Xu T, Xin WJ, Lin SY, Li ZY. NFATc2-dependent epigenetic downregulation of the TSC2/Beclin-1 pathway is involved in neuropathic pain induced by oxaliplatin. Mol Pain 2023; 19:17448069231158289. [PMID: 36733258 PMCID: PMC9941598 DOI: 10.1177/17448069231158289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 01/16/2023] [Accepted: 01/29/2023] [Indexed: 02/04/2023] Open
Abstract
Neuropathic pain is a common dose-limiting side effect of oxaliplatin, which hampers the effective treatment of tumors. Here, we found that upregulation of transcription factor NFATc2 decreased the expression of Beclin-1, a critical molecule in autophagy, in the spinal dorsal horn, and contributed to neuropathic pain following oxaliplatin treatment. Meanwhile, manipulating autophagy levels by intrathecal injection of rapamycin (RAPA) or 3-methyladenine (3-MA) differentially altered mechanical allodynia in oxaliplatin-treated or naïve rats. Utilizing chromatin immunoprecipitation-sequencing (ChIP-seq) assay combined with bioinformatics analysis, we found that NFATc2 negatively regulated the transcription of tuberous sclerosis complex protein 2 (TSC2), which contributed to the oxaliplatin-induced Beclin-1 downregulation. Further assays revealed that NFATc2 regulated histone H4 acetylation and methylation in the TSC2 promoter site 1 in rats' dorsal horns with oxaliplatin treatment. These results suggested that NFATc2 mediated the epigenetic downregulation of the TSC2/Beclin-1 autophagy pathway and contributed to oxaliplatin-induced mechanical allodynia, which provided a new therapeutic insight for chemotherapy-induced neuropathic pain.
Collapse
Affiliation(s)
- Meng Liu
- Department of Anesthesia and Pain Medicine, Guangzhou First People’s Hospital, Guangzhou, China
| | - Jing-Wen Mai
- Department of Anesthesiology, Huizhou Central People’s Hospital, Huizhou, China
| | - De-Xing Luo
- Department of Anesthesiology, Huizhou Central People’s Hospital, Huizhou, China
| | - Guan-Xi Liu
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou Huiai Hospital, Guangzhou, China
| | - Ting Xu
- Department of Emergency Medicine, The First Affiliated Hospital of Sun Yat-Sen University and Zhongshan Medical School, Sun Yat-Sen University, China
| | - Wen-Jun Xin
- Department of Emergency Medicine, The First Affiliated Hospital of Sun Yat-Sen University and Zhongshan Medical School, Sun Yat-Sen University, China
| | - Su-Yan Lin
- Department of Neurology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhen-Yu Li
- Department of Emergency Medicine, The First Affiliated Hospital of Sun Yat-Sen University and Zhongshan Medical School, Sun Yat-Sen University, China
| |
Collapse
|
11
|
CircNf1-mediated CXCL12 expression in the spinal cord contributes to morphine analgesic tolerance. Brain Behav Immun 2023; 107:140-151. [PMID: 36202171 DOI: 10.1016/j.bbi.2022.09.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 09/20/2022] [Accepted: 09/30/2022] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND Severe pain in patients can be alleviated by morphine treatment. However, long-term morphine treatment induces analgesic tolerance and the molecular mechanism of morphine analgesic intolerance is still not fully elucidated. Therefore, a novel target for improving morphine analgesic tolerance is required. Whole-genome sequencing showed that circNf1 is highly expressed in the dorsal horns of morphine-treated rats. Circular RNAs (circRNAs) are known to be unique and conserved cellular molecules that are mostly present in cytoplasm and participate in various biochemical processes with different functions. Therefore, we focused on exploring the molecular mechanism by which circNf1 contributes to morphine analgesic tolerance. METHODS CircRNA sequencing revealed differential expression of circRNAs after morphine treatment, and bioinformatics software programs (miRNAda, PicTar, and RNAhybrid) were used to predict possible mRNAs and binding sites. RNA binding protein immunoprecipitation (RIP), chromatin isolation by RNA purification (ChIRP), fluorescence in situ hybridization (FISH), western blotting, biotin-coupled probe pull-down assay, luciferase assay, and quantitative real-time polymerase chain reaction (qRT-PCR) were conducted to detect and measure the expression levels of circRNAs, mRNAs, and proteins. Intrathecal injections of small interfering RNAs (siRNAs), microRNA (miRNA) agomirs, and functional virus microinjections were administered to artificially mediate the expression of molecules. Tail immersion and hotplate tests were performed to evaluate morphine analgesic tolerance. RESULTS Morphine-induced circNf1 expression was high in the spinal cord. RIP-PCR and luciferase assay data showed that circNf1 could combine with both miR-330-3p and miR-665, and FISH showed that circNf1 co-localized with miR-330-3p and miR-665. qRT-PCR assay showed downregulation of miR-330-3p and miR-665 in morphine-treated rats; western blotting results showed that CXCL12 increased after morphine treatment, however, the upregulation of CXCL12 could be alleviated after the intrathecal injection of miR-330-3p as well as miR-665 agomir. qRT-PCR indicated that circNf1 can bind to CXCL12 promoter, the increased circNf1 can enhance CXCL12 mRNA in naïve rats, and inhibition of circNf1 can alleviate the upregulation of CXCL12 mRNA in morphine-treated rats. Behavioral tests revealed that inhibition of circNf1 and CXCL12 and the enhancement of miR-330-3p and miR-665 can alleviate morphine analgesic tolerance. CONCLUSIONS Our study indicates a novel pathway that can contribute to morphine analgesic tolerance, the circRNA to cytokine pathway, in which circNf1 functions as a sponge for miR-330-3p and miR-665 and induces the upregulation of CXCL12 at both transcriptional and translational levels in morphine-treated rats.
Collapse
|
12
|
Sun Y, Chen L, Xu T, Gou B, Mai JW, Luo DX, Xin WJ, Wu JY. MiR-672-5p-Mediated Upregulation of REEP6 in Spinal Dorsal Horn Participates in Bortezomib-Induced Neuropathic Pain in Rats. Neurochem Res 2023; 48:229-237. [PMID: 36064821 DOI: 10.1007/s11064-022-03741-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 08/19/2022] [Accepted: 08/27/2022] [Indexed: 01/07/2023]
Abstract
Evidence shows that miRNAs are deeply involved in nervous system diseases, but whether miRNAs contribute to the bortezomib (BTZ)-induced neuropathic pain remains unclear. We aimed to investigate whether miRNAs contribute to bortezomib (BTZ)-induced neuropathic pain and explore the related downstream cascades. The level of miRNAs in the spinal dorsal horn was explored using miRNA microarray and PCR. MiR-672-5p was significantly downregulated in dorsal horn neurons in the rats with BTZ treatment. Intrathecal injection of miR-672-5p agomir blunted the increase of the amplitude and frequency of sEPSCs in dorsal horn neurons and mechanical allodynia induced by BTZ. In addition, the knockdown of miR-672-5p by intrathecal injection of antagomir increased the amplitude and frequency of sEPSCs in dorsal horn neurons and decreased the mechanical withdrawal threshold in naïve rats. Furthermore, silico analysis and the data from subsequent assays indicated that REEP6, a potential miR-672-5p-regulating molecule, was increased in the spinal dorsal horn of rats with BTZ-induced neuropathic pain. Blocking REEP6 alleviated the mechanical pain behavior induced by BTZ, whereas overexpressing REEP6 induced pain hypersensitivity in naïve rats. Importantly, we further found that miR-672-5p was expressed in the REEP6-positive cells, and overexpression or knockdown of miR-672-5p reversely regulated the REEP6 expression. Bioinformatics analysis and double-luciferase reporter assay showed the existence of interaction sites between REEP6 mRNA and miR-672-5p. Overall, our study demonstrated that miR-672-5p directly regulated the expression of REEP6, which participated in the neuronal hyperexcitability in the spinal dorsal horn and neuropathic pain following BTZ treatment. This signaling pathway may potentially serve as a novel therapeutic avenue for chemotherapeutic-induced mechanical hypersensitivity.
Collapse
Affiliation(s)
- Yang Sun
- Graduate Department, Department of Sport Medicine, Xi'an Physical Education University, Xi'an, 710068, Shanxi, China.,Department of Rehabilitation Medicine, The Second Affiliated Hospital of Xi'an Medical University, Xi'an, Shanxi, China
| | - Li Chen
- Zhongshan School of Medicine and Guangdong Province Key Laboratory of Brain Function and Disease, Sun Yat-Sen University, 74 Zhongshan Rd. 2, Guangzhou, 510080, China
| | - Ting Xu
- Zhongshan School of Medicine and Guangdong Province Key Laboratory of Brain Function and Disease, Sun Yat-Sen University, 74 Zhongshan Rd. 2, Guangzhou, 510080, China
| | - Bo Gou
- Graduate Department, Department of Sport Medicine, Xi'an Physical Education University, Xi'an, 710068, Shanxi, China
| | - Jing-Wen Mai
- Department of Anesthesiology, Huizhou Central People's Hospital, Huizhou, 516001, Guangdong, China
| | - De-Xing Luo
- Department of Anesthesiology, Huizhou Central People's Hospital, Huizhou, 516001, Guangdong, China
| | - Wen-Jun Xin
- Zhongshan School of Medicine and Guangdong Province Key Laboratory of Brain Function and Disease, Sun Yat-Sen University, 74 Zhongshan Rd. 2, Guangzhou, 510080, China
| | - Jia-Yan Wu
- Zhongshan School of Medicine and Guangdong Province Key Laboratory of Brain Function and Disease, Sun Yat-Sen University, 74 Zhongshan Rd. 2, Guangzhou, 510080, China.
| |
Collapse
|
13
|
Zhang XL, Lei Y, Xiao YB, Cao XY, Tian XY, Zhu YX, Zhang X, Xie MX. Hen Egg Lysozyme Alleviates Static Mechanical Pain Via NRF1-Parkin-TACAN Signaling Axis in Sensory Neurons. Neuroscience 2022; 502:52-67. [PMID: 35985504 DOI: 10.1016/j.neuroscience.2022.08.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 08/03/2022] [Accepted: 08/08/2022] [Indexed: 11/18/2022]
Abstract
Mechanical allodynia impinges on the life quality of patients. Hen Egg Lysozyme (HEL) is a substance extracted from eggs that is commonly used to inhibit bacterial activity. The role of HEL in regulating and treating pain is unclear. Here, we find that HEL selectively attenuates static mechanical allodynia of mice induced by complete Freund's adjuvant (CFA), spinal nerve ligation (SNL) and chemotherapeutic agent. RNA-seq screening reveals that CFA significantly reduces the expression of Parkin in dorsal root ganglion (DRG) neurons of mice, while pre-administration of HEL increases the expression of Parkin and remits the static mechanical allodynia induced by Parkin-siRNA. Moreover, HEL increases the interaction between nuclear respiratory factor 1 (NRF1) and histone acetyltransferase P300 and then enhances the NRF1 mediated histone acetylation in prkn promoter region in DRGs of mice. Further, Parkin interacts with mechanotransducing ion channel TACAN (Tmem120a) and knockdown of Parkin significantly increases the membrane trafficking of TACAN in sensory neurons of mice. While pre-administration of HEL inhibits the increased membrane trafficking of TACAN in sensory neurons of mice induced by Parkin-siRNA. In addition, pre-given of HEL also significantly attenuates the static mechanical allodynia induced by overexpression of TACAN in mice, and the effect of HEL can be blocked by Parkin-siRNA. This indicates that HEL increases the expression of Parkin through epigenetic mechanisms and then decreases TACAN membrane trafficking in sensory neurons to relieve static mechanical hypersensitivity. Therefore, we reveal a novel function of HEL, which is a potential substance for the treatment of static mechanical pain.
Collapse
Affiliation(s)
- Xiao-Long Zhang
- Medical Research Center of Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan Road 2, Guangzhou 510080, China
| | - Yi Lei
- Medical Research Center of Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan Road 2, Guangzhou 510080, China
| | - Yi-Bin Xiao
- Medical Research Center of Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan Road 2, Guangzhou 510080, China
| | - Xian-Ying Cao
- Engineering Technology Research Center for Elderly Health Management in Hainan Province, 18 Qiongshan Avenue, Haikou 571126, China
| | - Xiao-Yu Tian
- Department of Anesthesiology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng East Road, Guangzhou 510060, China; College of Food Science and Engineering, Hainan University, 58 Renmin Avenue, Haikou 570228, China
| | - Yuan-Xin Zhu
- Department of Anesthesiology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng East Road, Guangzhou 510060, China; College of Food Science and Engineering, Hainan University, 58 Renmin Avenue, Haikou 570228, China
| | - Xi Zhang
- Medical Research Center of Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan Road 2, Guangzhou 510080, China
| | - Man-Xiu Xie
- Department of Anesthesiology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng East Road, Guangzhou 510060, China.
| |
Collapse
|
14
|
Liang T, Chen XF, Yang Y, Yang F, Yu Y, Yang F, Wang XL, Wang JL, Sun W, Chen J. Secondary damage and neuroinflammation in the spinal dorsal horn mediate post-thalamic hemorrhagic stroke pain hypersensitivity: SDF1-CXCR4 signaling mediation. Front Mol Neurosci 2022; 15:911476. [PMID: 36034499 PMCID: PMC9416701 DOI: 10.3389/fnmol.2022.911476] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 07/22/2022] [Indexed: 11/13/2022] Open
Abstract
Central post-stroke pain (CPSP) is an intractable neuropathic pain, which can be caused by primary lesion of central somatosensory system. It is also a common sequelae of the thalamic hemorrhagic stroke (THS). So far, the underlying mechanisms of CPSP remain largely unknown. Our previous studies have demonstrated that SDF1-CXCR4 signaling in the hemorrhagic region contributes to the maintenance of the THS pain hypersensitivity via mediation of the thalamic neuroinflammation. But whether the spinal dorsal horn, an initial point of spinothalamic tract (STT), suffers from retrograde axonal degeneration from the THS region is still unknown. In this study, neuronal degeneration and loss in the spinal dorsal horn were detected 7 days after the THS caused by intra-thalamic collagenase (ITC) injection by immunohistochemistry, TUNEL staining, electron microscopy, and extracellular multi-electrode array (MEA) recordings, suggesting the occurrence of secondary apoptosis and death of the STT projecting neuronal cell bodies following primary THS via retrograde axonal degeneration. This retrograde degeneration was accompanied by secondary neuroinflammation characterized by an activation of microglial and astrocytic cells and upregulation of SDF1-CXCR4 signaling in the spinal dorsal horn. As a consequence, central sensitization was detected by extracellular MEA recordings of the spinal dorsal horn neurons, characterized by hyperexcitability of both wide dynamic range and nociceptive specific neurons to suprathreshold mechanical stimuli. Finally, it was shown that suppression of spinal neuroinflammation by intrathecal administration of inhibitors of microglia (minocycline) and astrocytes (fluorocitrate) and antagonist of CXCR4 (AMD3100) could block the increase in expression levels of Iba-1, GFAP, SDF1, and CXCR4 proteins in the dorsal spinal cord and ameliorate the THS-induced bilateral mechanical pain hypersensitivity, implicating that, besides the primary damage at the thalamus, spinal secondary damage and neuroinflammation also play the important roles in maintaining the central post-THS pain hypersensitivity. In conclusion, secondary neuronal death and neuroinflammation in the spinal dorsal horn can be induced by primary thalamic neural damage via retrograde axonal degeneration process. SDF1-CXCR4 signaling is involved in the mediation of secondary spinal neuroinflammation and THS pain hypersensitivity. This finding would provide a new therapeutic target for treatment of CPSP at the spinal level.
Collapse
Affiliation(s)
- Ting Liang
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical University, Xi’an, China
| | - Xue-Feng Chen
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical University, Xi’an, China
- Key Laboratory of Brain Stress and Behavior, People’s Liberation Army, Xi’an, China
| | - Yan Yang
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical University, Xi’an, China
- Key Laboratory of Brain Stress and Behavior, People’s Liberation Army, Xi’an, China
| | - Fei Yang
- Department of Anesthesiology and Perioperative Medicine, Clinical Medical College (900 Hospital of the Joint Logistic Support Force), Fujian Medical University, Fuzhou, China
| | - Yang Yu
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical University, Xi’an, China
- Key Laboratory of Brain Stress and Behavior, People’s Liberation Army, Xi’an, China
| | - Fan Yang
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical University, Xi’an, China
- Key Laboratory of Brain Stress and Behavior, People’s Liberation Army, Xi’an, China
| | - Xiao-Liang Wang
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical University, Xi’an, China
- Key Laboratory of Brain Stress and Behavior, People’s Liberation Army, Xi’an, China
| | - Jiang-Lin Wang
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical University, Xi’an, China
- Department of Pain Medicine, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Wei Sun
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical University, Xi’an, China
- Key Laboratory of Brain Stress and Behavior, People’s Liberation Army, Xi’an, China
- Wei Sun,
| | - Jun Chen
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical University, Xi’an, China
- Key Laboratory of Brain Stress and Behavior, People’s Liberation Army, Xi’an, China
- *Correspondence: Jun Chen, ,
| |
Collapse
|
15
|
Xiang C, Chen C, Li X, Wu Y, Xu Q, Wen L, Xiong W, Liu Y, Zhang T, Dou C, Ding X, Hu L, Chen F, Yan Z, Liang L, Wei G. Computational approach to decode the mechanism of curcuminoids against neuropathic pain. Comput Biol Med 2022; 147:105739. [PMID: 35763932 DOI: 10.1016/j.compbiomed.2022.105739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 06/09/2022] [Accepted: 06/11/2022] [Indexed: 11/19/2022]
Abstract
BACKGROUND Curcumin (CUR), demethoxycurcumin (DMC) and bisdemethoxycurcumin (BDMC) are the main components of turmeric that commonly used to treat neuropathic pain (NP). However, the mechanism of the therapy is not sufficiently clarified. Herein, network pharmacology, molecular docking and molecular dynamics (MD) approaches were used to investigate the mechanism of curcuminoids for NP treatment. METHODS Active targets of curcuminoids were obtained from the Swiss Target database, and NP-related targets were retrieved from GeneCards, OMIM, Drugbank and TTD databases. A protein-protein interaction (PPI) network was built to screen the core targets. Furthermore, DAVID was used for GO and KEGG pathway enrichment analyses. Interactions between potential targets and curcuminoids were assessed by molecular docking and the MD simulations were run for 100ns to validate the docking results on the top six complexes. RESULTS CUR, DMC, and BDMC had 100, 99 and 100 targets respectively. After overlapping with NP there were 33, 33 and 31 targets respectively. PPI network analysis of TOP 10 core targets, TNF, GSK3β were common targets of curcuminoids. Molecular docking and MD results indicated that curcuminoids bind strongly with the core targets. The GO and KEGG showed that curcuminoids regulated nitrogen metabolism, the serotonergic synapse and ErbB signaling pathway to alleviate NP. Furthermore, specific targets in these three compounds were also analysed at the same time. CONCLUSIONS This study systematically explored and compared the anti-NP mechanism of curcuminoids, providing a novel perspective for their utilization.
Collapse
Affiliation(s)
- Chunxiao Xiang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China.
| | - Chunlan Chen
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China.
| | - Xi Li
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China.
| | - Yating Wu
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China.
| | - Qing Xu
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China.
| | - Lingmiao Wen
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China.
| | - Wei Xiong
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China.
| | - Yanjun Liu
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China.
| | - Tinglan Zhang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China.
| | - Chongyang Dou
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China.
| | - Xian Ding
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China.
| | - Lin Hu
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China.
| | - Fangfang Chen
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China.
| | - Zhiyong Yan
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China.
| | - Lingli Liang
- Department of Physiology and Pathophysiology, Institute of Neuroscience, Translational Medicine Institute, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shanxi, China.
| | - Guihua Wei
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China.
| |
Collapse
|
16
|
Zhao YT, Deng J, Liu HM, Wei JY, Fan HT, Liu M, Xu T, Chen TF, He JY, Sun WM, Jia TY, Zhang XQ, Xin WJ. Adaptation of prelimbic cortex mediated by IL-6/STAT3/Acp5 pathway contributes to the comorbidity of neuropathic pain and depression in rats. J Neuroinflammation 2022; 19:144. [PMID: 35690777 PMCID: PMC9188197 DOI: 10.1186/s12974-022-02503-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 06/01/2022] [Indexed: 11/17/2022] Open
Abstract
Background The adaption of brain region is fundamental to the development and maintenance of nervous system disorders. The prelimbic cortex (PrL) participates in the affective components of the pain sensation. However, whether and how the adaptation of PrL contributes to the comorbidity of neuropathic pain and depression are unknown. Methods Using resting-state functional magnetic resonance imaging (rs-fMRI), genetic knockdown or overexpression, we systematically investigated the activity of PrL region in the pathogenesis of neuropathic pain/depression comorbid using the combined approaches of immunohistochemistry, electrophysiology, and behavior. Results The activity of PrL and the excitability of pyramidal neurons were decreased, and the osteoclastic tartrate-resistant acid phosphatase 5 (Acp5) expression in PrL neurons was upregulated following the acquisition of spared nerve injury (SNI)-induced comorbidity. Genetic knockdown of Acp5 in pyramidal neurons, but not parvalbumin (PV) neurons or somatostatin (SST) neurons, attenuated the decrease of spike number, depression-like behavior and mechanical allodynia in comorbidity rats. Overexpression of Acp5 in PrL pyramidal neurons decreased the spike number and induced the comorbid-like behavior in naïve rats. Moreover, the expression of interleukin-6 (IL-6), phosphorylated STAT3 (p-STAT3) and acetylated histone H3 (Ac-H3) were significantly increased following the acquisition of comorbidity in rats. Increased binding of STAT3 to the Acp5 gene promoter and the interaction between STAT3 and p300 enhanced acetylation of histone H3 and facilitated the transcription of Acp5 in PrL in the modeled rodents. Inhibition of IL-6/STAT3 pathway prevented the Acp5 upregulation and attenuated the comorbid-like behaviors in rats. Conclusions These data suggest that the adaptation of PrL mediated by IL-6/STAT3/Acp5 pathway contributed to the comorbidity of neuropathic pain/depression induced by SNI.
Collapse
Affiliation(s)
- Yu-Ting Zhao
- Neuroscience Program, Zhongshan School of Medicine, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhongshan Rd. 2, Guangzhou, China.,Zhongshan Medical School and Guangdong Province Key Laboratory of Brain Function and Disease, Sun Yat-Sen University, 510080, Guangzhou, China
| | - Jie Deng
- Neuroscience Program, Zhongshan School of Medicine, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhongshan Rd. 2, Guangzhou, China.,Zhongshan Medical School and Guangdong Province Key Laboratory of Brain Function and Disease, Sun Yat-Sen University, 510080, Guangzhou, China
| | - He-Ming Liu
- Neuroscience Program, Zhongshan School of Medicine, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhongshan Rd. 2, Guangzhou, China.,Zhongshan Medical School and Guangdong Province Key Laboratory of Brain Function and Disease, Sun Yat-Sen University, 510080, Guangzhou, China
| | - Jia-You Wei
- Neuroscience Program, Zhongshan School of Medicine, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhongshan Rd. 2, Guangzhou, China. .,Department of Interventional Medicine, Guangdong Provincial Engineering Research Center of Molecular Imaging, Guangdong Provincial Key Laboratory of Biomedical Imaging, Sun Yat-Sen University, Guangzhou, China.
| | - Hai-Ting Fan
- Neuroscience Program, Zhongshan School of Medicine, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhongshan Rd. 2, Guangzhou, China.,Department of Interventional Medicine, Guangdong Provincial Engineering Research Center of Molecular Imaging, Guangdong Provincial Key Laboratory of Biomedical Imaging, Sun Yat-Sen University, Guangzhou, China
| | - Meng Liu
- Guangzhou First People's Hospital, Guangzhou, China
| | - Ting Xu
- Neuroscience Program, Zhongshan School of Medicine, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhongshan Rd. 2, Guangzhou, China.,Zhongshan Medical School and Guangdong Province Key Laboratory of Brain Function and Disease, Sun Yat-Sen University, 510080, Guangzhou, China
| | | | - Jing-Yi He
- Guangzhou First People's Hospital, Guangzhou, China
| | - Wei-Ming Sun
- Neuroscience Program, Zhongshan School of Medicine, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhongshan Rd. 2, Guangzhou, China.,Department of Interventional Medicine, Guangdong Provincial Engineering Research Center of Molecular Imaging, Guangdong Provincial Key Laboratory of Biomedical Imaging, Sun Yat-Sen University, Guangzhou, China
| | - Tao-Yu Jia
- Neuroscience Program, Zhongshan School of Medicine, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhongshan Rd. 2, Guangzhou, China.,Department of Interventional Medicine, Guangdong Provincial Engineering Research Center of Molecular Imaging, Guangdong Provincial Key Laboratory of Biomedical Imaging, Sun Yat-Sen University, Guangzhou, China
| | - Xue-Qin Zhang
- Department of Applied Psychology, The Affiliated Brain Hospital of Guangzhou Medical University, Xinzao Road, Panyu District, Guangzhou, China.
| | - Wen-Jun Xin
- Neuroscience Program, Zhongshan School of Medicine, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhongshan Rd. 2, Guangzhou, China. .,Zhongshan Medical School and Guangdong Province Key Laboratory of Brain Function and Disease, Sun Yat-Sen University, 510080, Guangzhou, China. .,China Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong-Macao Greater Bay Area, Guangzhou, China.
| |
Collapse
|
17
|
Xu T, Liu CC, Xin WJ. The Epigenetic Mechanisms Involved in Chronic Pain in Rodents: A Mini- Review. Curr Neuropharmacol 2022; 20:1011-1021. [PMID: 34561983 PMCID: PMC9886825 DOI: 10.2174/1570159x19666210924104757] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/20/2021] [Accepted: 09/17/2021] [Indexed: 11/22/2022] Open
Abstract
Chronic pain is a common distressing neurological disorder and about 30% of the global population suffers from it. In addition to being highly prevalent, chronic pain causes a heavy economic and social burden. Although substantial progress has been achieved to dissect the underlying mechanism of chronic pain in the past few decades, the incidence and treatment of this neurological illness is yet not properly managed in clinical practice. While nerve injury-, chemotherapy- or inflammation-induced functional regulation of gene expression in the dorsal root ganglion and spinal cord are extensively reported to be involved in the pathogenic process of chronic pain, the specific mechanism of these altered transcriptional profile still remains unclear. Recent studies have shown that epigenetic mechanisms, including DNA/RNA methylation, histone modification and circular RNAs regulation, are involved in the occurrence and development of chronic pain. In this review, we provide a description of research on the role of epigenetic mechanism in chronic pain, summarize the latest clinical and preclinical advance in this field, and propose the potential directions for further research to elucidate the molecular mechanism underlying the pathogenesis of chronic pain.
Collapse
Affiliation(s)
- Ting Xu
- Guangdong Province Key Laboratory of Brain Function and Disease, Department of Physiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China; ,These authors contributed equally.
| | - Cui-Cui Liu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Rehabilitation Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China,These authors contributed equally.
| | - Wen-Jun Xin
- Guangdong Province Key Laboratory of Brain Function and Disease, Department of Physiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China; ,Address correspondence to this author at the Guangdong Province Key Laboratory of Brain Function and Disease, Department of Physiology, Zhongshan School of Medicine, Sun Yat-Sen University, 74 Zhongshan Rd. 2, Guangzhou, China; E-mail:
| |
Collapse
|
18
|
Khodaei M, Mehri S, Pour SR, Mahdavi S, Yarmohammadi F, Hayes AW, Karimi G. The protective effect of chemical and natural compounds against vincristine-induced peripheral neuropathy (VIPN). Naunyn Schmiedebergs Arch Pharmacol 2022; 395:907-919. [PMID: 35562512 DOI: 10.1007/s00210-022-02254-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 05/05/2022] [Indexed: 10/18/2022]
Abstract
Vincristine, an alkaloid extracted from Catharanthus rosea, is a class of chemotherapy drugs that act by altering the function of the microtubules and by inhibiting mitosis. Despite its widespread application, a major adverse effect of vincristine that limits treatment duration is the occurrence of peripheral neuropathy (PN). PN presents with several symptoms including numbness, painful sensation, tingling, and muscle weakness. Vincristine-induced PN involves impaired calcium homeostasis, an increase of reactive oxygen species (ROS), and the upregulation of tumor necrosis factor-alpha (TNF-α), and interleukin 1 beta (IL-1β) expression. Several potential approaches to attenuate the vincristine-induced PN including the concomitant administration of chemicals with vincristine have been reported. These chemicals have a variety of pharmaceutical properties including anti-inflammation, antioxidant, and inhibition of calcium channels and calcineurin signaling pathways and increased expression of nerve growth factor (NGF). This review summarized several of these compounds and the mechanisms of action that could lead to effective options in improving vincristine-induced peripheral neuropathy (VIPN).
Collapse
Affiliation(s)
- Mitra Khodaei
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Soghra Mehri
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran. .,Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Soroush Rashid Pour
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shakiba Mahdavi
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Fatemeh Yarmohammadi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - A Wallace Hayes
- Center for Environmental Occupational Risk Analysis and Management, College of Public Health, University of South Florida, Tampa, FL, USA.,Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, USA
| | - Gholamreza Karimi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran. .,Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
19
|
Lai CY, Hsieh MC, Yeh CM, Yang PS, Cheng JK, Wang HH, Lin KH, Nie ST, Lin TB, Peng HY. MicroRNA-489-3p attenuates neuropathic allodynia by regulating oncoprotein DEK/TET1-dependent epigenetic modification in the dorsal horn. Neuropharmacology 2022; 210:109028. [PMID: 35304174 DOI: 10.1016/j.neuropharm.2022.109028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 03/08/2022] [Accepted: 03/10/2022] [Indexed: 11/18/2022]
Abstract
Originally characterized as an oncoprotein overexpressed in many forms of cancer that participates in numerous cellular pathways, DEK has since been well described regarding the regulation of epigenetic markers and transcription factors in neurons. However, its role in neuropathic allodynia processes remain elusive and intriguingly complex. Here, we show that DEK, which is induced in spinal dorsal horn neurons after spinal nerve ligation (SNL), is regulated by miR-489-3p. Moreover, SNL-induced decrease in miR-489-3p expression increased the expression of DEK, which recruited TET1 to the promoter fragments of the Bdnf, Grm5, and Stat3 genes, thereby enhancing their transcription in the dorsal horn. Remarkably, these effects were also induced by intrathecally administering naïve animals with miR-489-3p inhibitor, which could be inhibited by knockdown of TET1 siRNA or DEK siRNA. Conversely, delivery of intrathecal miR-489-3p-mimic into SNL rats attenuated allodynia behavior and reversed protein expression coupled to the promoter segments in the dorsal horn. Thus, a spinal miR-489-3p/DEK/TET1 transcriptional axis may contribute to neuropathic allodynia. These results may provide a new target for treating neuropathic allodynia.
Collapse
Affiliation(s)
- Cheng-Yuan Lai
- Department of Medicine, Mackay Medical College, New Taipei, Taiwan
| | - Ming-Chun Hsieh
- Department of Medicine, Mackay Medical College, New Taipei, Taiwan
| | - Chou-Ming Yeh
- Division of Thoracic Surgery, Department of Health, Taichung Hospital, Executive Yuan, Taichung, Taiwan
| | - Po-Sheng Yang
- Department of Medicine, Mackay Medical College, New Taipei, Taiwan; Department of Surgery, Mackay Memorial Hospital, Taipei, Taiwan
| | - Jen-Kun Cheng
- Department of Medicine, Mackay Medical College, New Taipei, Taiwan; Department of Anesthesiology, Mackay Memorial Hospital, Taipei, Taiwan
| | - Hsueh-Hsiao Wang
- Department of Medicine, Mackay Medical College, New Taipei, Taiwan
| | - Kuan-Hung Lin
- Institute of Biomedical Sciences, MacKay Medical College, New Taipei City, Taiwan; Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Siao-Tong Nie
- Department of Medicine, Mackay Medical College, New Taipei, Taiwan
| | - Tzer-Bin Lin
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan; Department of Biotechnology, College of Medical and Health Science, Asia University, Taichung, Taiwan
| | - Hsien-Yu Peng
- Department of Medicine, Mackay Medical College, New Taipei, Taiwan.
| |
Collapse
|
20
|
Behrendt M. TRPM3 in the eye and in the nervous system - from new findings to novel mechanisms. Biol Chem 2022; 403:859-868. [PMID: 35240732 DOI: 10.1515/hsz-2021-0403] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 02/10/2022] [Indexed: 01/13/2023]
Abstract
The calcium-permeable cation channel TRPM3 can be activated by heat and the endogenous steroid pregnenolone sulfate. TRPM3's best understood function is its role as a peripheral noxious heat sensor in mice. However, the channel is expressed in various tissues and cell types including neurons as well as glial and epithelial cells. TRPM3 expression patterns differ between species and change during development. Furthermore, a plethora of TRPM3 variants that result from alternative splicing have been identified and the majority of these isoforms are yet to be characterized. Moreover, the mechanisms underlying regulation of TRPM3 are largely unexplored. In addition, a micro-RNA gene (miR-204) is located within the TRPM3 gene. This complexity makes it difficult to obtain a clear picture of TRPM3 characteristics. However, a clear picture is needed to unravel TRPM3's full potential as experimental tool, diagnostic marker and therapeutic target. Therefore, the newest data related to TRPM3 have to be discussed and to be put in context as soon as possible to be up-to-date and to accelerate the translation from bench to bedside. The aim of this review is to highlight recent results and developments with particular focus on findings from studies involving ocular tissues and cells or peripheral neurons of rodents and humans.
Collapse
Affiliation(s)
- Marc Behrendt
- Department of Experimental Pain Research, Medical Faculty Mannheim, University of Heidelberg, Ludolf-Krehl-Str. 13-17, D-68167 Mannheim, Germany
| |
Collapse
|
21
|
Abstract
Neuropathic pain (NP) is a common symptom in many diseases of the somatosensory
nervous system, which severely affects the patient’s quality of life.
Epigenetics are heritable alterations in gene expression that do not cause
permanent changes in the DNA sequence. Epigenetic modifications can affect gene
expression and function and can also mediate crosstalk between genes and the
environment. Increasing evidence shows that epigenetic modifications, including
DNA methylation, histone modification, non-coding RNA, and RNA modification, are
involved in the development and maintenance of NP. In this review, we focus on
the current knowledge of epigenetic modifications in the development and
maintenance of NP. Then, we illustrate different facets of epigenetic
modifications that regulate gene expression and their crosstalk. Finally, we
discuss the burgeoning evidence supporting the potential of emerging epigenetic
therapies, which has been valuable in understanding mechanisms and offers novel
and potent targets for NP therapy.
Collapse
Affiliation(s)
- Danzhi Luo
- Department of Anesthesiology, The First People’s Hospital of
Foshan, Foshan, China
- Sun Yet-Sen Memorial Hospital of Sun
Yet-Sen University, Guangzhou, China
| | - Xiaohong Li
- Department of Anesthesiology, The First People’s Hospital of
Foshan, Foshan, China
| | - Simin Tang
- Department of Anesthesiology, The Third Affiliated Hospital of
Southern Medical University, Guangzhou, China
| | - Fuhu Song
- Department of Anesthesiology, The Third Affiliated Hospital of
Southern Medical University, Guangzhou, China
| | - Wenjun Li
- Department of Anesthesiology, The Third Affiliated Hospital of
Southern Medical University, Guangzhou, China
| | - Guiling Xie
- Department of Anesthesiology, The Third Affiliated Hospital of
Southern Medical University, Guangzhou, China
| | - Jinshu Liang
- Department of Anesthesiology, The Third Affiliated Hospital of
Southern Medical University, Guangzhou, China
| | - Jun Zhou
- Department of Anesthesiology, The Third Affiliated Hospital of
Southern Medical University, Guangzhou, China
- Jun Zhou, Department of Anesthesiology, The
Third Affiliated Hospital of Southern Medical University, Guangzhou 510630,
China.
| |
Collapse
|
22
|
Vermeer CJC, Hiensch AE, Cleenewerk L, May AM, Eijkelkamp N. Neuro-immune interactions in paclitaxel-induced peripheral neuropathy. Acta Oncol 2021; 60:1369-1382. [PMID: 34313190 DOI: 10.1080/0284186x.2021.1954241] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Paclitaxel is a taxane-based chemotherapeutic agent used as a treatment in breast cancer. There is no effective prevention or treatment strategy for the most common side effect of peripheral neuropathy. In this manuscript, we reviewed the molecular mechanisms that contribute to paclitaxel-induced peripheral neuropathy (PIPN) with an emphasis on immune-related processes. METHODS A systematic search of the literature was conducted in PubMed, EMBASE and Cochrane Library. The SYRCLE's risk of bias tool was used to assess internal validity. RESULTS 156 studies conducted with rodent models were included. The risk of bias was high due to unclear methodology. Paclitaxel induces changes in myelinated axons, mitochondrial dysfunction, and mechanical hypersensitivity by affecting ion channels expression and function and facilitating spinal transmission. Paclitaxel-induced inflammatory responses are important contributors to PIPN. CONCLUSION Immune-related processes are an important mechanism contributing to PIPN. Studies in humans that validate these mechanistic data are highly needed to facilitate the development of therapeutic strategies.
Collapse
Affiliation(s)
- Cornelia J. C. Vermeer
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Anouk E. Hiensch
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Laurence Cleenewerk
- Center of Translational Immunology (CTI), University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Anne M. May
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Niels Eijkelkamp
- Center of Translational Immunology (CTI), University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
23
|
Kasembeli MM, Singhmar P, Ma J, Edralin J, Tang Y, Adams C, Heijnen CJ, Kavelaars A, Tweardy DJ. TTI-101: A competitive inhibitor of STAT3 that spares oxidative phosphorylation and reverses mechanical allodynia in mouse models of neuropathic pain. Biochem Pharmacol 2021; 192:114688. [PMID: 34274354 PMCID: PMC8478865 DOI: 10.1016/j.bcp.2021.114688] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 07/11/2021] [Accepted: 07/13/2021] [Indexed: 01/06/2023]
Abstract
Signal Transducer and Activator of Transcription (STAT) 3 emerged rapidly as a high-value target for treatment of cancer. However, small-molecule STAT3 inhibitors have been slow to enter the clinic due, in part, to serious adverse events (SAE), including lactic acidosis and peripheral neuropathy, which have been attributed to inhibition of STAT3's mitochondrial function. Our group developed TTI-101, a competitive inhibitor of STAT3 that targets the receptor pY705-peptide binding site within the Src homology 2 (SH2) domain to block its recruitment and activation. TTI-101 has shown target engagement, no toxicity, and evidence of clinical benefit in a Phase I study in patients with solid tumors. Here we report that TTI-101 did not affect mitochondrial function, nor did it cause STAT3 aggregation, chemically modify STAT3 or cause neuropathic pain. Instead, TTI-101 unexpectedly suppressed neuropathic pain induced by chemotherapy or in a spared nerve injury model. Thus, in addition to its direct anti-tumor effect, TTI-101 may be of benefit when administered to cancer patients at risk of developing chemotherapy-induced peripheral neuropathy (CIPN).
Collapse
Affiliation(s)
- Moses M Kasembeli
- The Department of Infectious Diseases, Infection Control & Employee Health, Division of Internal Medicine, University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030-4009, United States
| | - Pooja Singhmar
- The Department of Symptom Research, Division of Internal Medicine, University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030-4009, United States
| | - Jiacheng Ma
- The Department of Symptom Research, Division of Internal Medicine, University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030-4009, United States
| | - Jules Edralin
- The Department of Symptom Research, Division of Internal Medicine, University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030-4009, United States
| | - Yongfu Tang
- The Department of Symptom Research, Division of Internal Medicine, University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030-4009, United States
| | - Clydell Adams
- The Department of Infectious Diseases, Infection Control & Employee Health, Division of Internal Medicine, University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030-4009, United States
| | - Cobi J Heijnen
- The Department of Symptom Research, Division of Internal Medicine, University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030-4009, United States
| | - Annemieke Kavelaars
- The Department of Symptom Research, Division of Internal Medicine, University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030-4009, United States
| | - David J Tweardy
- The Department of Infectious Diseases, Infection Control & Employee Health, Division of Internal Medicine, University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030-4009, United States.
| |
Collapse
|
24
|
Xu M, Fei Y, He Q, Fu J, Zhu J, Tao J, Ni C, Xu C, Zhou Q, Yao M, Ni H. Electroacupuncture Attenuates Cancer-Induced Bone Pain via NF-κB/CXCL12 Signaling in Midbrain Periaqueductal Gray. ACS Chem Neurosci 2021; 12:3323-3334. [PMID: 34460214 DOI: 10.1021/acschemneuro.1c00224] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Electroacupuncture (EA) is effective in various chronic pains. NF-κB and CXCL12 modulate the formation of chronic pain. Herein, we hypothesized that EA alleviates cancer-induced bone pain (CIBP) through NF-κB/CXCL12 axis in midbrain periaqueductal gray (PAG), which participates in "top-down" pain modulatory circuits. In order to filter the optimum EA frequency for CIBP treatment, 2, 100, or 2/100 Hz EA was set up. In addition, ipsilateral, contralateral, and bilateral EA groups were established to affirm the optimal EA scheme. Bilateral 2/100 Hz EA was considered as the optimal therapeutic scheme and was applied in a subsequent experiment. Western blotting along with immunofluorescence illustrated that CIBP induces a rapid and substantial increase in CXCL12 protein level and NF-κB phosphorylation in vlPAG from day 6 to day 12. Anti-CXCL12 neutralizing antibody and pAAV-U6-shRNA(CXCL12)-CMV-EGFP-WPRE in vlPAG remarkably improved the mechanical pain threshold of the hind paw in CIBP model relative to the control. EA inhibited the upregulation of pNF-κB and CXCL12 in vlPAG of CIBP. The recombinant CXCL12 and pAAV-CMV-CXCL12-EF1a-EGFP-3Xflag-WPRE reversed the abirritation of EA in the CIBP rat model. NF-κB phosphorylation mediated-CXCL12 expression contributed to CIBP allodynia, whereas EA suppressed NF-κB phosphorylation in CIBP. According to the above evidence, we conclude that bilateral 2/100 Hz EA is an optimal therapeutic scheme for CIBP. The abirritation mechanism of EA might reduce the expression of CXCL12 by inhibiting the activation of NF-κB, which might lead to the restraint of descending facilitation of CIBP.
Collapse
Affiliation(s)
- Miao Xu
- Department of Anesthesiology and Pain Research Center, The Affiliated Hospital of Jiaxing University, 1882 Zhonghuan South Road, Jiaxing 314001, China
| | - Yong Fei
- Department of Anesthesiology and Pain Research Center, The Affiliated Hospital of Jiaxing University, 1882 Zhonghuan South Road, Jiaxing 314001, China
| | - Qiuli He
- Department of Anesthesiology and Pain Research Center, The Affiliated Hospital of Jiaxing University, 1882 Zhonghuan South Road, Jiaxing 314001, China
| | - Jie Fu
- Department of Anesthesiology and Pain Research Center, The Affiliated Hospital of Jiaxing University, 1882 Zhonghuan South Road, Jiaxing 314001, China
| | - Jianjun Zhu
- Department of Anesthesiology and Pain Research Center, The Affiliated Hospital of Jiaxing University, 1882 Zhonghuan South Road, Jiaxing 314001, China
| | - Jiachun Tao
- Department of Anesthesiology and Pain Research Center, The Affiliated Hospital of Jiaxing University, 1882 Zhonghuan South Road, Jiaxing 314001, China
| | - Chaobo Ni
- Department of Anesthesiology and Pain Research Center, The Affiliated Hospital of Jiaxing University, 1882 Zhonghuan South Road, Jiaxing 314001, China
| | - Chengfei Xu
- Department of Anesthesiology and Pain Research Center, The Affiliated Hospital of Jiaxing University, 1882 Zhonghuan South Road, Jiaxing 314001, China
| | - Qinghe Zhou
- Department of Anesthesiology and Pain Research Center, The Affiliated Hospital of Jiaxing University, 1882 Zhonghuan South Road, Jiaxing 314001, China
| | - Ming Yao
- Department of Anesthesiology and Pain Research Center, The Affiliated Hospital of Jiaxing University, 1882 Zhonghuan South Road, Jiaxing 314001, China
| | - Huadong Ni
- Department of Anesthesiology and Pain Research Center, The Affiliated Hospital of Jiaxing University, 1882 Zhonghuan South Road, Jiaxing 314001, China
| |
Collapse
|
25
|
Su W, Yu J, Liu Q, Ma L, Huang Y. CXCL12/CXCR4 signaling induced itch and pain sensation in a murine model of allergic contact dermatitis. Mol Pain 2021; 16:1744806920926426. [PMID: 32418467 PMCID: PMC7543150 DOI: 10.1177/1744806920926426] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Allergic contact dermatitis is a skin inflammatory disease manifested with itch and pain symptom around the inflamed area. Chemokines such as CXCL12 are involved in the pathophysiology of allergic contact dermatitis, but little has been known about the effect of CXCL12/CXCR4 signaling for nociceptive sensation accompanying allergic contact dermatitis. Our study showed that CXCL12 and CXCR4 were upregulated in trigeminal ganglion with the progression of allergic contact dermatitis through western blotting and immunofluorescence. CXCL12 and CXCR4 were mainly upregulated in small-diameter neurons, which were co-localized with nociceptive markers in trigeminal ganglion. CXCR4 and CXCL12 were also expressed in trigeminal ganglion neurons retrograded from the skin lesion. Intradermal injection of CXCL12 enhanced the itch- and pain-like behavior which could be relieved by AMD3100, a CXCR4 antagonist, without changes of mast cells. Our findings suggested that blockade of CXCL12/CXCR4 signaling pathway might be beneficial to relieve itch and pain sensation accompanying allergic contact dermatitis.
Collapse
Affiliation(s)
- Wenliang Su
- Department of Anesthesiology, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiawen Yu
- Department of Anesthesiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qing Liu
- Department of Anesthesiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lulu Ma
- Department of Anesthesiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuguang Huang
- Department of Anesthesiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
26
|
Triarico S, Romano A, Attinà G, Capozza MA, Maurizi P, Mastrangelo S, Ruggiero A. Vincristine-Induced Peripheral Neuropathy (VIPN) in Pediatric Tumors: Mechanisms, Risk Factors, Strategies of Prevention and Treatment. Int J Mol Sci 2021; 22:4112. [PMID: 33923421 PMCID: PMC8073828 DOI: 10.3390/ijms22084112] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/06/2021] [Accepted: 04/14/2021] [Indexed: 12/13/2022] Open
Abstract
Vincristine-induced peripheral neurotoxicity (VIPN) is a very common side effect of vincristine chemotherapy among pediatric patients with cancer. Neuropathy may be sensory, motor and/or autonomic, with consequent reduction, delay or discontinuation of vincristine-chemotherapy, but also pain, disability, reduced quality of life of patients and an increase in medical costs. Vincristine acts out its antineoplastic function by altering the normal assembly and disassembly of microtubules, with their consequent mitosis block and death. Vincristine leads to VIPN through a complex mechanism of damage, which occurs not only on the microtubules, but also on the endothelium and the mitochondria of nerve cells. Furthermore, both patient-related risk factors (age, race, ethnicity and genetic polymorphisms) and treatment-related risk factors (dose, time of infusion and drug-drug interactions) are involved in the pathogenesis of VIPN. There is a lack of consensus about the prophylaxis and treatment of VIPN among pediatric oncologic patients, despite several molecules (such as gabapentin, pyridoxine and pyridostigmine, glutamic acid and glutamine) having been already investigated in clinical trials. This review describes the molecular mechanisms of VIPN and analyzes the risk factors and the principal drugs adopted for the prophylaxis and treatment of VIPN in pediatric patients with cancer.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Antonio Ruggiero
- Pediatric Oncology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica Sacro Cuore, 00168 Rome, Italy; (S.T.); (A.R.); (G.A.); (M.A.C.); (P.M.); (S.M.)
| |
Collapse
|
27
|
Xie MX, Cao XY, Zeng WA, Lai RC, Guo L, Wang JC, Xiao YB, Zhang X, Chen D, Liu XG, Zhang XL. ATF4 selectively regulates heat nociception and contributes to kinesin-mediated TRPM3 trafficking. Nat Commun 2021; 12:1401. [PMID: 33658516 PMCID: PMC7930092 DOI: 10.1038/s41467-021-21731-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 02/09/2021] [Indexed: 12/30/2022] Open
Abstract
Effective treatments for patients suffering from heat hypersensitivity are lacking, mostly due to our limited understanding of the pathogenic mechanisms underlying this disorder. In the nervous system, activating transcription factor 4 (ATF4) is involved in the regulation of synaptic plasticity and memory formation. Here, we show that ATF4 plays an important role in heat nociception. Indeed, loss of ATF4 in mouse dorsal root ganglion (DRG) neurons selectively impairs heat sensitivity. Mechanistically, we show that ATF4 interacts with transient receptor potential cation channel subfamily M member-3 (TRPM3) and mediates the membrane trafficking of TRPM3 in DRG neurons in response to heat. Loss of ATF4 also significantly decreases the current and KIF17-mediated trafficking of TRPM3, suggesting that the KIF17/ATF4/TRPM3 complex is required for the neuronal response to heat stimuli. Our findings unveil the non-transcriptional role of ATF4 in the response to heat stimuli in DRG neurons.
Collapse
Affiliation(s)
- Man-Xiu Xie
- Department of Anesthesiology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng East Road, Guangzhou, China
| | - Xian-Ying Cao
- College of Food Science and Technology, Hainan University, 58 Renmin Avenue, Haikou, China
- State Key Laboratory of Marine Resources Utilization of South China Sea, 58 Renmin Avenue, Haikou, China
| | - Wei-An Zeng
- Department of Anesthesiology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng East Road, Guangzhou, China
| | - Ren-Chun Lai
- Department of Anesthesiology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng East Road, Guangzhou, China
| | - Lan Guo
- College of Food Science and Technology, Hainan University, 58 Renmin Avenue, Haikou, China
| | - Jun-Chao Wang
- Department of Anesthesiology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng East Road, Guangzhou, China
| | - Yi-Bin Xiao
- Pain Research Center and Department of Physiology, Zhongshan School of Medicine of Sun Yat-sen University, 74 Zhongshan Road 2, Guangzhou, China
| | - Xi Zhang
- Pain Research Center and Department of Physiology, Zhongshan School of Medicine of Sun Yat-sen University, 74 Zhongshan Road 2, Guangzhou, China
| | - Di Chen
- College of Food Science and Technology, Hainan University, 58 Renmin Avenue, Haikou, China
| | - Xian-Guo Liu
- Pain Research Center and Department of Physiology, Zhongshan School of Medicine of Sun Yat-sen University, 74 Zhongshan Road 2, Guangzhou, China.
| | - Xiao-Long Zhang
- Medical Research Center of Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan Rd. 2, Guangzhou, China.
| |
Collapse
|
28
|
Li GZ, Hu YH, Li DY, Zhang Y, Guo HL, Li YM, Chen F, Xu J. Vincristine-induced peripheral neuropathy: A mini-review. Neurotoxicology 2020; 81:161-171. [DOI: 10.1016/j.neuro.2020.10.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/29/2020] [Accepted: 10/07/2020] [Indexed: 12/11/2022]
|
29
|
Peng C, Chen XT, Xu H, Chen LP, Shen W. Role of the CXCR4/ALK5/Smad3 Signaling Pathway in Cancer-Induced Bone Pain. J Pain Res 2020; 13:2567-2576. [PMID: 33116799 PMCID: PMC7569080 DOI: 10.2147/jpr.s260508] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 09/15/2020] [Indexed: 11/23/2022] Open
Abstract
Purpose The chemokine receptor, CXCR4, and the transforming growth factor-beta receptor, ALK5, both contribute to various processes associated with the sensation of pain. However, the relationship between CXCR4 and ALK5 and the possible mechanisms promoted by ALK5 in the development of pain have not been evaluated. Materials and Methods Tumor cell implantation (TCI) technology was used to generate a model of cancer-induced bone pain (CIBP) in rats; intrathecal (i.t.) injections of small interfering (si) RNAs targeting CXCR4 and the ALK5-specific inhibitor, RepSox, were performed. Behavioral outcomes, Western blotting, and immunofluorescence techniques were used to evaluate the expression of the aforementioned specific target proteins in the CIBP model. Results The results revealed that i.t. administration of siRNAs targeting CXCR4 resulted in significant reductions in both mechanical and thermal hyperalgesia in rats with CIBP and likewise significantly reduced the expression of ALK5 in the spinal cord. Similarly, i.t. administration of RepSox also resulted in significant reductions in mechanical and thermal hyperalgesia in rats with CIBP together with diminished levels of spinal p-Smad3. Conclusion Taken together, our results suggest that CXCR4 expression in the spinal cord may be a critical mediator of CIBP via its capacity to activate ALK5 and downstream signaling pathways.
Collapse
Affiliation(s)
- Chong Peng
- Jiangsu Province Key Laboratory of Anesthesiology and Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu 221002, People's Republic of China
| | - Xue-Tai Chen
- Jiangsu Province Key Laboratory of Anesthesiology and Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu 221002, People's Republic of China
| | - Heng Xu
- Department of Pain Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, People's Republic of China
| | - Li-Ping Chen
- Department of Pain Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, People's Republic of China
| | - Wen Shen
- Jiangsu Province Key Laboratory of Anesthesiology and Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu 221002, People's Republic of China.,Department of Pain Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, People's Republic of China
| |
Collapse
|
30
|
Liu M, Zhang SB, Luo YX, Yang YL, Zhang XZ, Li B, Meng Y, Chen YJ, Guo RX, Xiong YC, Xin WJ, Li D. NFATc2-dependent epigenetic upregulation of CXCL14 is involved in the development of neuropathic pain induced by paclitaxel. J Neuroinflammation 2020; 17:310. [PMID: 33070779 PMCID: PMC7570122 DOI: 10.1186/s12974-020-01992-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 10/08/2020] [Indexed: 11/23/2022] Open
Abstract
Background The major dose-limiting toxicity of paclitaxel, one of the most commonly used drugs to treat solid tumor, is painful neuropathy. However, the molecular mechanisms underlying paclitaxel-induced painful neuropathy are largely unclarified. Methods Paw withdrawal threshold was measured in the rats following intraperitoneal injection of paclitaxel. The qPCR, western blotting, protein or chromatin immunoprecipitation, ChIP-seq identification of NFATc2 binding sites, and microarray analysis were performed to explore the molecular mechanism. Results We found that paclitaxel treatment increased the nuclear expression of NFATc2 in the spinal dorsal horn, and knockdown of NFATc2 with NFATc2 siRNA significantly attenuated the mechanical allodynia induced by paclitaxel. Further binding site analysis utilizing ChIP-seq assay combining with gene expression profile revealed a shift of NFATc2 binding site closer to TTS of target genes in dorsal horn after paclitaxel treatment. We further found that NFATc2 occupancy may directly upregulate the chemokine CXCL14 expression in dorsal horn, which was mediated by enhanced interaction between NFATc2 and p300 and consequently increased acetylation of histone H4 in CXCL14 promoter region. Also, knockdown of CXCL14 in dorsal horn significantly attenuated mechanical allodynia induced by paclitaxel. Conclusion These results suggested that enhanced interaction between p300 and NFATc2 mediated the epigenetic upregulation of CXCL14 in the spinal dorsal horn, which contributed to the chemotherapeutic paclitaxel-induced chronic pain. Supplementary information The online version contains supplementary material available at 10.1186/s12974-020-01992-1.
Collapse
Affiliation(s)
- Meng Liu
- Neuroscience Program, The Fifth Affiliated Hospital of Sun Yat-Sen University, Guangdong Province Key Laboratory of Brain Function and Disease, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Su-Bo Zhang
- Neuroscience Program, The Fifth Affiliated Hospital of Sun Yat-Sen University, Guangdong Province Key Laboratory of Brain Function and Disease, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Yu-Xuan Luo
- Department of Hematology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510630, China
| | - Yan-Ling Yang
- Department of Hematology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510630, China
| | - Xiang-Zhong Zhang
- Department of Hematology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510630, China
| | - Bo Li
- Department of Anesthesiology, Changhai Hospital, Naval Medical University, 168 Changhai Road, Shanghai, 200433, China
| | - Yan Meng
- Department of Anesthesiology, Changhai Hospital, Naval Medical University, 168 Changhai Road, Shanghai, 200433, China
| | - Yuan-Jie Chen
- Department of Anesthesiology, Changhai Hospital, Naval Medical University, 168 Changhai Road, Shanghai, 200433, China
| | - Rui-Xian Guo
- Neuroscience Program, The Fifth Affiliated Hospital of Sun Yat-Sen University, Guangdong Province Key Laboratory of Brain Function and Disease, Sun Yat-Sen University, Guangzhou, 510080, China. .,Department of Physiology and Pain Research Center, Zhongshan Medical School, Sun Yat-Sen University, 74 Zhongshan Road 2, Guangzhou, 510080, China.
| | - Yuan-Chang Xiong
- Department of Anesthesiology, Changhai Hospital, Naval Medical University, 168 Changhai Road, Shanghai, 200433, China
| | - Wen-Jun Xin
- Neuroscience Program, The Fifth Affiliated Hospital of Sun Yat-Sen University, Guangdong Province Key Laboratory of Brain Function and Disease, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Dai Li
- Department of Anesthesiology, Changhai Hospital, Naval Medical University, 168 Changhai Road, Shanghai, 200433, China.
| |
Collapse
|
31
|
Jiang BC, Liu T, Gao YJ. Chemokines in chronic pain: cellular and molecular mechanisms and therapeutic potential. Pharmacol Ther 2020; 212:107581. [DOI: 10.1016/j.pharmthera.2020.107581] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 05/15/2020] [Indexed: 02/08/2023]
|
32
|
da Costa R, Passos GF, Quintão NL, Fernandes ES, Maia JRL, Campos MM, Calixto JB. Taxane-induced neurotoxicity: Pathophysiology and therapeutic perspectives. Br J Pharmacol 2020; 177:3127-3146. [PMID: 32352155 PMCID: PMC7312267 DOI: 10.1111/bph.15086] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/17/2020] [Accepted: 04/25/2020] [Indexed: 12/28/2022] Open
Abstract
Taxane-derived drugs are antineoplastic agents used for the treatment of highly common malignancies. Paclitaxel and docetaxel are the most commonly used taxanes; however, other drugs and formulations have been used, such as cabazitaxel and nab-paclitaxel. Taxane treatment is associated with neurotoxicity, a well-known and relevant side effect, very prevalent amongst patients undergoing chemotherapy. Painful peripheral neuropathy is the most dose-limiting side effect of taxanes, affecting up to 97% of paclitaxel-treated patients. Central neurotoxicity is an emerging side effect of taxanes and it is characterized by cognitive impairment and encephalopathy. Besides impairing compliance to chemotherapy treatment, taxane-induced neurotoxicity (TIN) can adversely affect the patient's life quality on a long-term basis. Despite the clinical relevance, not many reviews have comprehensively addressed taxane-induced neurotoxicity when they are used therapeutically. This article provides an up-to-date review on the pathophysiology of TIN and the novel potential therapies to prevent or treat this side effect.
Collapse
Affiliation(s)
- Robson da Costa
- Faculdade de FarmáciaUniversidade Federal do Rio de JaneiroRio de JaneiroRJBrazil
| | - Giselle F. Passos
- Faculdade de FarmáciaUniversidade Federal do Rio de JaneiroRio de JaneiroRJBrazil
| | - Nara L.M. Quintão
- Programa de Pós‐graduação em Ciências FarmacêuticasUniversidade do Vale do ItajaíItajaíSCBrazil
| | - Elizabeth S. Fernandes
- Instituto Pelé Pequeno PríncipeCuritibaPRBrazil
- Programa de Pós‐graduação em Biotecnologia Aplicada à Saúde da Criança e do AdolescenteFaculdades Pequeno PríncipeCuritibaPRBrazil
| | | | - Maria Martha Campos
- Escola de Ciências da Saúde e da VidaPontifícia Universidade Católica do Rio Grande do SulPorto AlegreRSBrazil
| | - João B. Calixto
- Centro de Inovação e Ensaios Pré‐clínicos ‐ CIEnPFlorianópolisSCBrazil
| |
Collapse
|
33
|
Huang J, Chen D, Yan F, Wu S, Kang S, Xing W, Zeng W, Xie J. JTC-801 alleviates mechanical allodynia in paclitaxel-induced neuropathic pain through the PI3K/Akt pathway. Eur J Pharmacol 2020; 883:173306. [PMID: 32603693 DOI: 10.1016/j.ejphar.2020.173306] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 06/19/2020] [Accepted: 06/22/2020] [Indexed: 01/04/2023]
Abstract
Chemotherapy-induced peripheral neuropathy is a serious adverse effect of chemotherapeutic agents such as paclitaxel. JTC-801, a nociceptin/orphanin FQ opioid peptide (NOP) receptor antagonist, has been reported to attenuate neuropathic pain in several pain models. However, the therapeutic significance and function of JTC-801 in chemotherapy-induced peripheral neuropathy remain unclear. In this study, we determined the effect of JTC-801 on neuropathic pain induced by paclitaxel, and we explored the potential mechanism in the dorsal root ganglion (DRG). The behavioral test showed that single or multiple systemic administrations of JTC-801 significantly alleviated mechanical allodynia in paclitaxel-treated rats. Using Western blot analysis and immunohistochemistry, we found that paclitaxel increased the expression of phosphatidylinositol 3-kinase (PI3K) and phospho-Akt (p-Akt) in the DRG. Double immunofluorescence staining indicated that p-Akt was expressed in neurons in the DRG. Multiple injections of JTC-801 significantly inhibited the activation of Akt and decreased the expression of inflammatory cytokines. The data suggest that JTC-801 alleviates mechanical allodynia associated with paclitaxel-induced neuropathic pain via the PI3K/Akt pathway.
Collapse
Affiliation(s)
- Jingxiu Huang
- Department of Anesthesiology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in Southern China, Collaborative Innovation for Cancer Medicine, Guangzhou, Guangdong, 510000, China
| | - Dongtai Chen
- Department of Anesthesiology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in Southern China, Collaborative Innovation for Cancer Medicine, Guangzhou, Guangdong, 510000, China
| | - Fang Yan
- Department of Anesthesiology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in Southern China, Collaborative Innovation for Cancer Medicine, Guangzhou, Guangdong, 510000, China
| | - Shaoyong Wu
- Department of Anesthesiology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in Southern China, Collaborative Innovation for Cancer Medicine, Guangzhou, Guangdong, 510000, China
| | - Shiyang Kang
- Department of Anesthesiology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in Southern China, Collaborative Innovation for Cancer Medicine, Guangzhou, Guangdong, 510000, China
| | - Wei Xing
- Department of Anesthesiology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in Southern China, Collaborative Innovation for Cancer Medicine, Guangzhou, Guangdong, 510000, China
| | - Weian Zeng
- Department of Anesthesiology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in Southern China, Collaborative Innovation for Cancer Medicine, Guangzhou, Guangdong, 510000, China.
| | - Jingdun Xie
- Department of Anesthesiology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in Southern China, Collaborative Innovation for Cancer Medicine, Guangzhou, Guangdong, 510000, China.
| |
Collapse
|
34
|
Zheng Y, Sun Y, Yang Y, Zhang S, Xu T, Xin W, Wu S, Zhang X. GATA3-dependent epigenetic upregulation of CCL21 is involved in the development of neuropathic pain induced by bortezomib. Mol Pain 2020; 15:1744806919863292. [PMID: 31257992 PMCID: PMC6630071 DOI: 10.1177/1744806919863292] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The incidence of bortezomib-induced neuropathic pain hampers the progress of therapy for neoplasia and also negatively affects the quality of life of patients. However, the molecular mechanism underlying bortezomib-induced neuropathic pain remains unknown. In this study, we found that the application of bortezomib significantly increased the expression of GATA-binding protein 3 (GATA3) in the spinal dorsal horn, and intrathecal administration of GATA3 siRNA attenuated mechanical allodynia. Furthermore, chromatin immunoprecipitation sequencing showed that bortezomib treatment induced the redistribution of GATA3 to transcriptional relevant regions. Notably, combined with the results of mRNA microarray, we found that C–C motif chemokine ligand 21 (CCL21) had an increased GATA3 binding and upregulated mRNA expression in the dorsal horn after bortezomib treatment. Next, we found that bortezomib treatment induced CCL21 upregulation in the spinal neurons, which was significantly reduced upon GATA3 silencing. Blockade of CCL21 using the neutralizing antibody or special siRNA ameliorated mechanical allodynia induced by bortezomib. In addition, bortezomib treatment increased the acetylation of histone H3 and the interaction between GATA3 and CREB-binding protein. GATA3 siRNA suppressed the CCL21 upregulation by decreasing the acetylation of histone H3. Together, these results suggested that activation of GATA3 mediated the epigenetic upregulation of CCL21 in dorsal horn neurons, which contributed to the bortezomib-induced neuropathic pain.
Collapse
Affiliation(s)
- Yaochao Zheng
- 1 Department of Rehabilitation Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yang Sun
- 2 Department of Rehabilitation Medicine, The Second Affiliated Hospital of Xi'an Medical University, Xi'an, China
| | - Yanling Yang
- 3 Department of Hematology, The Third Affiliated Hospital, Sun Yet-Sen University, Guangzhou, China
| | - Subo Zhang
- 1 Department of Rehabilitation Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Ting Xu
- 4 Department of Physiology and Pain Research Center, Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan Medical School, Sun Yat-Sen University, Guangzhou, China
| | - Wenjun Xin
- 4 Department of Physiology and Pain Research Center, Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan Medical School, Sun Yat-Sen University, Guangzhou, China
| | - Shaoling Wu
- 1 Department of Rehabilitation Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xiangzhong Zhang
- 3 Department of Hematology, The Third Affiliated Hospital, Sun Yet-Sen University, Guangzhou, China
| |
Collapse
|
35
|
Zhang XZ, Luo DX, Bai XH, Ding HH, Liu M, Deng J, Mai JW, Yang YL, Zhang SB, Ruan XC, Zhang XQ, Xin WJ, Xu T. Upregulation of TRPC6 Mediated by PAX6 Hypomethylation Is Involved in the Mechanical Allodynia Induced by Chemotherapeutics in Dorsal Root Ganglion. Int J Neuropsychopharmacol 2020; 23:257-267. [PMID: 32124922 PMCID: PMC7177167 DOI: 10.1093/ijnp/pyaa014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 02/01/2020] [Accepted: 02/25/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Although the action mechanism of antineoplastic agents is different, oxaliplatin, paclitaxel, or bortezomib as first-line antineoplastic drugs can induce painful neuropathy. In rodents, mechanical allodynia is a common phenotype of painful neuropathy for 3 chemotherapeutics. However, whether there is a common molecular involved in the different chemotherapeutics-induced painful peripheral neuropathy remains unclear. METHODS Mechanical allodynia was tested by von Frey hairs following i.p. injection of vehicle, oxaliplatin, paclitaxel, or bortezomib in Sprague-Dawley rats. Reduced representation bisulfite sequencing and methylated DNA immunoprecipitation were used to detect the change of DNA methylation. Western blot, quantitative polymerase chain reaction, chromatin immunoprecipitation, and immunohistochemistry were employed to explore the molecular mechanisms. RESULTS In 3 chemotherapeutic models, oxaliplatin, paclitaxel, or bortezomib accordantly upregulated the expression of transient receptor potential cation channel, subfamily C6 (TRPC6) mRNA and protein without affecting the DNA methylation level of TRPC6 gene in DRG. Inhibition of TRPC6 by using TRPC6 siRNA (i.t., 10 consecutive days) relieved mechanical allodynia significantly following application of chemotherapeutics. Furthermore, the downregulated recruitment of DNA methyltransferase 3 beta (DNMT3b) at paired box protein 6 (PAX6) gene led to the hypomethylation of PAX6 gene and increased PAX6 expression. Finally, the increased PAX6 via binding to the TPRC6 promoter contributes to the TRPC6 increase and mechanical allodynia following chemotherapeutics treatment. CONCLUSIONS The TRPC6 upregulation through DNMT3b-mediated PAX6 gene hypomethylation participated in mechanical allodynia following application of different chemotherapeutic drugs.
Collapse
Affiliation(s)
- Xiang-Zhong Zhang
- The Third Affiliated Hospital, Sun Yet-Sen University, Guangzhou, Guangdong, China
| | - De-Xing Luo
- Department of Anesthesiology, Huizhou Central People’s Hospital, Huizhou, Guangdong, China
| | - Xiao-Hui Bai
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital Guangzhou, China
| | - Huan-Huan Ding
- Zhongshan School of Medicine, Guangdong Province Key Laboratory of Brain Function and Disease Sun Yat-Sen University, Guangzhou, China
| | - Meng Liu
- Zhongshan School of Medicine, Guangdong Province Key Laboratory of Brain Function and Disease Sun Yat-Sen University, Guangzhou, China
| | - Jie Deng
- Department of Anesthesia and Pain Medicine, Guangzhou First People’s Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jing-Wen Mai
- Department of Anesthesiology, Huizhou Central People’s Hospital, Huizhou, Guangdong, China
| | - Yan-Ling Yang
- The Third Affiliated Hospital, Sun Yet-Sen University, Guangzhou, Guangdong, China
| | - Su-Bo Zhang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Rehabilitation Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiang-Cai Ruan
- Department of Anesthesia and Pain Medicine, Guangzhou First People’s Hospital, Guangzhou Medical University, Guangzhou, China
| | - Xue-Qin Zhang
- The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China
| | - Wen-Jun Xin
- Zhongshan School of Medicine, Guangdong Province Key Laboratory of Brain Function and Disease Sun Yat-Sen University, Guangzhou, China
| | - Ting Xu
- Zhongshan School of Medicine, Guangdong Province Key Laboratory of Brain Function and Disease Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
36
|
Liu X, Tonello R, Ling Y, Gao YJ, Berta T. Paclitaxel-activated astrocytes produce mechanical allodynia in mice by releasing tumor necrosis factor-α and stromal-derived cell factor 1. J Neuroinflammation 2019; 16:209. [PMID: 31707979 PMCID: PMC6842526 DOI: 10.1186/s12974-019-1619-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 10/18/2019] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Paclitaxel is a widely used and potent chemotherapeutic agent for the treatment of cancer. However, patients receiving paclitaxel often develop an acute pain syndrome for which there are few treatment options. Astrocytes play an important role in the pathogenesis of pain in multiple preclinical models, as well as in paclitaxel-treated rodents. However, it is still unclear what the exact contribution of astrocytes may be in paclitaxel-associated acute pain syndrome (P-APS). METHODS P-APS was modeled by a single systemic or intrathecal injection of paclitaxel and astrocyte contribution tested by immunohistochemical, pharmacological, and behavioral approaches. Cell cultures were also prepared to assess whether paclitaxel treatment directly activates astrocytes and whether intrathecal injection of paclitaxel-treated astrocytes produces pain that is reminiscent of P-APS. RESULTS Systemic injection of paclitaxel resulted in increased expression of glial fibrillary acidic protein (a common marker of astrocytic activation), as well as both systemic or intrathecal injection of paclitaxel induced pain hypersensitivity indicated by the development of mechanical allodynia, which was significantly reversed by the astrocytic inhibitor L-α-AA. Cultured astrocytes were activated by paclitaxel with significant increases in protein levels for tumor necrosis factor-α (TNF-α) and stromal-derived cell factor 1 (SDF-1). Importantly, intrathecal injection of paclitaxel-activated astrocytes produced mechanical allodynia that was reversed by TNF-α and SDF-1 neutralizing antibodies. CONCLUSION Our results suggest for the first time that paclitaxel can directly activate astrocytes, which are sufficient to produce acute pain by releasing TNF-α and SDF-1. Targeting astrocytes and these cytokines may offer new treatments for P-APS.
Collapse
Affiliation(s)
- Xiaojuan Liu
- Department of Anesthesiology, Pain Research Center, University of Cincinnati College of Medicine, Cincinnati, OH USA
- Department of Pathogen Biology, Medical College, Nantong University, Nantong, Jiangsu China
| | - Raquel Tonello
- Department of Anesthesiology, Pain Research Center, University of Cincinnati College of Medicine, Cincinnati, OH USA
| | - Yuejuan Ling
- Department of Anesthesiology, Pain Research Center, University of Cincinnati College of Medicine, Cincinnati, OH USA
- Institute of Pain Medicine, Nantong University, Nantong, Jiangsu China
| | - Yong-Jing Gao
- Institute of Pain Medicine, Nantong University, Nantong, Jiangsu China
- Institute of Special Environmental Medicine, Nantong University, Nantong, Jiangsu China
| | - Temugin Berta
- Department of Anesthesiology, Pain Research Center, University of Cincinnati College of Medicine, Cincinnati, OH USA
| |
Collapse
|
37
|
Annexin 1 inhibits remifentanil-induced hyperalgesia and NMDA receptor phosphorylation via regulating spinal CXCL12/CXCR4 in rats. Neurosci Res 2019; 144:48-55. [DOI: 10.1016/j.neures.2018.07.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 07/13/2018] [Accepted: 07/23/2018] [Indexed: 02/01/2023]
|
38
|
Starobova H, Mueller A, Deuis JR, Carter DA, Vetter I. Inflammatory and Neuropathic Gene Expression Signatures of Chemotherapy-Induced Neuropathy Induced by Vincristine, Cisplatin, and Oxaliplatin in C57BL/6J Mice. THE JOURNAL OF PAIN 2019; 21:182-194. [PMID: 31260808 DOI: 10.1016/j.jpain.2019.06.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 06/04/2019] [Accepted: 06/13/2019] [Indexed: 12/21/2022]
Abstract
Vincristine, oxaliplatin, and cisplatin are commonly prescribed chemotherapeutic agents for the treatment of many tumors. However, a main side effect is chemotherapy-induced peripheral neuropathy (CIPN), which may lead to changes in chemotherapeutic treatment. Although symptoms associated with CIPN are recapitulated by mouse models, there is limited knowledge of how these drugs affect the expression of genes in sensory neurons. The present study carried out a transcriptomic analysis of dorsal root ganglia following vincristine, oxaliplatin, and cisplatin treatment with a view to gain insight into the comparative pathophysiological mechanisms of CIPN. RNA-Seq revealed 368, 295, and 256 differential expressed genes induced by treatment with vincristine, oxaliplatin, and cisplatin, respectively, and only 5 shared genes were dysregulated in all 3 groups. Cell type enrichment analysis and gene set enrichment analysis showed predominant effects on genes associated with the immune system after treatment with vincristine, while oxaliplatin treatment affected mainly neuronal genes. Treatment with cisplatin resulted in a mixed gene expression signature. PERSPECTIVE: These results provide insight into the recruitment of immune responses to dorsal root ganglia and indicate enhanced neuroinflammatory processes following administration of vincristine, oxaliplatin, and cisplatin. These gene expression signatures may provide insight into novel drug targets for treatment of CIPN.
Collapse
Affiliation(s)
- Hana Starobova
- Centre for Pain Research, Institute for Molecular Bioscience, University of Queensland, St Lucia, Queensland, Australia
| | - Alexander Mueller
- Centre for Pain Research, Institute for Molecular Bioscience, University of Queensland, St Lucia, Queensland, Australia
| | - Jennifer R Deuis
- Centre for Pain Research, Institute for Molecular Bioscience, University of Queensland, St Lucia, Queensland, Australia
| | - David A Carter
- Centre for Pain Research, Institute for Molecular Bioscience, University of Queensland, St Lucia, Queensland, Australia
| | - Irina Vetter
- Centre for Pain Research, Institute for Molecular Bioscience, University of Queensland, St Lucia, Queensland, Australia; School of Pharmacy, The University of Queensland, Woolloongabba, Queensland, Australia.
| |
Collapse
|
39
|
Zhong S, Zhou Z, Liang Y, Cheng X, Li Y, Teng W, Zhao M, Liu C, Guan M, Zhao C. Targeting strategies for chemotherapy-induced peripheral neuropathy: does gut microbiota play a role? Crit Rev Microbiol 2019; 45:369-393. [PMID: 31106639 DOI: 10.1080/1040841x.2019.1608905] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a progressive, often irreversible condition that produces severe neurological deficits. Emerging data suggest that chemotherapy also exerts detrimental effects on gut microbiota composition and intestinal permeability, contributing to dysbiosis and inflammation. Compared with other complications associated with chemotherapy, such as diarrhoea and mucositis, CIPN is of particular concern because it is the most common reason for terminating or suspending treatment. However, specific and effective curative treatment strategies are lacking. In this review, we provide an update on current preclinical and clinical understandings about the role of gut microbiota in CIPN. The gut microbiota serves as an intersection between the microbiome-gut-brain and the neuroimmune-endocrine axis, forming a complex network that can directly or indirectly affect key components involved in the manifestations of CIPN. Herein, we discuss several potential mechanisms within the context of the networks and summarize alterations in gut microbiome induced by chemotherapeutic drugs, providing great potential for researchers to target pathways associated with the gut microbiome and overcome CIPN.
Collapse
Affiliation(s)
- Shanshan Zhong
- Department of Neurology and Stroke Center, The First Hospital of China Medical University , Shenyang , PR China
| | - Zhike Zhou
- Department of Geriatrics, The First Hospital of China Medical University , Shenyang , PR China
| | - Yifan Liang
- Department of Neurology and Stroke Center, The First Hospital of China Medical University , Shenyang , PR China
| | - Xi Cheng
- Department of Neurology and Stroke Center, The First Hospital of China Medical University , Shenyang , PR China
| | - Yong Li
- Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University , Shenyang , PR China
| | - Weiyu Teng
- Department of Neurology and Stroke Center, The First Hospital of China Medical University , Shenyang , PR China
| | - Mei Zhao
- Department of Cardiology, Shengjing Hospital of China Medical University , Shenyang , PR China
| | - Chang Liu
- Department of Neurology and Stroke Center, The First Hospital of China Medical University , Shenyang , PR China
| | - Meiting Guan
- Department of Neurology and Stroke Center, The First Hospital of China Medical University , Shenyang , PR China
| | - Chuansheng Zhao
- Department of Neurology and Stroke Center, The First Hospital of China Medical University , Shenyang , PR China
| |
Collapse
|
40
|
de la Peña JBI, Song JJ, Campbell ZT. RNA control in pain: Blame it on the messenger. WILEY INTERDISCIPLINARY REVIEWS-RNA 2019; 10:e1546. [PMID: 31090211 DOI: 10.1002/wrna.1546] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 04/17/2019] [Accepted: 04/22/2019] [Indexed: 12/12/2022]
Abstract
mRNA function is meticulously controlled. We provide an overview of the integral role that posttranscriptional controls play in the perception of painful stimuli by sensory neurons. These specialized cells, termed nociceptors, precisely regulate mRNA polarity, translation, and stability. A growing body of evidence has revealed that targeted disruption of mRNAs and RNA-binding proteins robustly diminishes pain-associated behaviors. We propose that the use of multiple independent regulatory paradigms facilitates robust temporal and spatial precision of protein expression in response to a range of pain-promoting stimuli. This article is categorized under: RNA in Disease and Development > RNA in Disease Translation > Translation Regulation RNA Turnover and Surveillance > Regulation of RNA Stability.
Collapse
Affiliation(s)
- June Bryan I de la Peña
- Department of Biological Sciences and the Center for Advanced Pain Studies, University of Texas, Dallas, Richardson, Texas
| | - Jane J Song
- Department of Biological Sciences and the Center for Advanced Pain Studies, University of Texas, Dallas, Richardson, Texas
| | - Zachary T Campbell
- Department of Biological Sciences and the Center for Advanced Pain Studies, University of Texas, Dallas, Richardson, Texas
| |
Collapse
|
41
|
Liu ZY, Song ZW, Guo SW, He JS, Wang SY, Zhu JG, Yang HL, Liu JB. CXCL12/CXCR4 signaling contributes to neuropathic pain via central sensitization mechanisms in a rat spinal nerve ligation model. CNS Neurosci Ther 2019; 25:922-936. [PMID: 30955244 PMCID: PMC6698967 DOI: 10.1111/cns.13128] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 03/11/2019] [Accepted: 03/13/2019] [Indexed: 12/20/2022] Open
Abstract
Background Previous studies have demonstrated that the CXCL12/CXCR4 signaling axis is involved in the regulation of neuropathic pain (NP). Here, we performed experiments to test whether the CXCL12/CXCR4 signaling pathway contributes to the pathogenesis of neuropathic pain after spinal nerve ligation (SNL) via central sensitization mechanisms. Methods Neuropathic pain was induced and assessed in a SNL rat model. The expression and distribution of CXCL12 or CXCR4 were examined by immunofluorescence staining and western blot. The effects of CXCL12 rat peptide, CXCL12 neutralizing antibody, CXCR4 antagonist, and astrocyte metabolic inhibitor on pain hypersensitivity were explored by behavioral tests in naive or SNL rats. We measured the expression level of c‐Fos and CGRP to evaluate the sensitization of neurons by RT‐PCR. The activation of astrocyte and microglia was analyzed by measuring the level of GFAP and iba‐1. The mRNA levels of the pro‐inflammatory cytokines such as TNF‐α, IL‐1β, and IL‐6 and Connexin 30, Connexin 43, EAAT 1, EAAT 2 were also detected by RT‐PCR. Results First, we found that the expression of CXCL12 and CXCR4 was upregulated after SNL. CXCL12 was mainly expressed in the neurons while CXCR4 was expressed both in astrocytes and neurons in the spinal dorsal horn after SNL. Moreover, intrathecal administration of rat peptide, CXCL12, induced hypersensitivity in naive rats, which was partly reversed by fluorocitrate. In addition, the CXCL12 rat peptide increased mRNA levels of c‐Fos, GFAP, and iba‐1. A single intrathecal injection of CXCL12 neutralizing antibody transiently reversed neuropathic pain in the SNL rat model. Consecutive use of CXCL12 neutralizing antibody led to significant delay in the induction of neuropathic pain, and reduced the expression of GFAP and iba‐1 in the spinal dorsal horn. Finally, repeated intrathecal administration of the CXCR4 antagonist, AMD3100, significantly suppressed the initiation and duration of neuropathic pain. The mRNA levels of c‐Fos, CGRP, GFAP, iba‐1, and pro‐inflammatory cytokines, also including Connexin 30 and Connexin 43 were decreased after injection of AMD3100, while EAAT 1 and EAAT 2 mRNAs were increased. Conclusion We demonstrate that the CXCL12/CXCR4 signaling pathway contributes to the development and maintenance of neuropathic pain via central sensitization mechanisms. Importantly, intervening with CXCL12/CXCR4 presents an effective therapeutic approach to treat the neuropathic pain.
Collapse
Affiliation(s)
- Zhi-Yuan Liu
- Department of Spinal Surgery, The Third Affiliated Hospital of Soochow University, Changzhou, China.,Department of Orthopedics, The Affiliated Wujin Hospital of Jiangsu University, Changzhou, China
| | - Zhi-Wen Song
- Department of Spinal Surgery, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Shi-Wu Guo
- Department of Spinal Surgery, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Jun-Sheng He
- Department of Spinal Surgery, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Shen-Yu Wang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jian-Guo Zhu
- Department of Orthopedics, The Affiliated Wujin Hospital of Jiangsu University, Changzhou, China
| | - Hui-Lin Yang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jin-Bo Liu
- Department of Spinal Surgery, The Third Affiliated Hospital of Soochow University, Changzhou, China
| |
Collapse
|
42
|
Ding HH, Zhang SB, Lv YY, Ma C, Liu M, Zhang KB, Ruan XC, Wei JY, Xin WJ, Wu SL. TNF-α/STAT3 pathway epigenetically upregulates Nav1.6 expression in DRG and contributes to neuropathic pain induced by L5-VRT. J Neuroinflammation 2019; 16:29. [PMID: 30736806 PMCID: PMC6368780 DOI: 10.1186/s12974-019-1421-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Accepted: 01/29/2019] [Indexed: 01/05/2023] Open
Abstract
Background Studies showed that upregulation of Nav1.6 increased the neuronal excitability and participated in neuropathic pain in the dorsal root ganglion (DRG). However, the molecular mechanisms underlying Nav1.6 upregulation were not reported yet. Methods The paw withdrawal threshold was measured in the rodents following lumbar 5 ventral root transection (L5-VRT). Then qPCR, western blotting, immunoprecipitation, immunohistochemistry, and chromatin immunoprecipitation assays were performed to explore the molecular mechanisms in vivo and in vitro. Results We found that the levels of Nav1.6 and phosphorylated STAT3 were significantly increased in DRG neurons following L5-VRT, and TNF-α incubation also upregulated the Nav1.6 expression in cultured DRG neurons. Furthermore, immunoprecipitation and chromatin immunoprecipitation assays demonstrated that L5-VRT increased the binding of STAT3 to the Scn8a (encoding Nav1.6) promoter and the interaction between STAT3 and p300, which contributed to the enhanced transcription of Scn8a by increasing histone H4 acetylation in Scn8a promoter in DRG. Importantly, intraperitoneal injection of the TNF-α inhibitor thalidomide reduced the phosphorylation of STAT3 and decreased the recruitment of STAT3 and histone H4 hyperacetylation in the Scn8a promoter, thus subsequently attenuating Nav1.6 upregulation in DRG neurons and mechanical allodynia induced by L5-VRT. Conclusion These results suggested a new mechanism for Nav1.6 upregulation involving TNF-α/STAT3 pathway activation and subsequent STAT3-mediated histone H4 hyperacetylation in the Scn8a promoter region in DRG, which contributed to L5-VRT-induced neuropathic pain.
Collapse
Affiliation(s)
- Huan-Huan Ding
- Neuroscience Program, Zhongshan School of Medicine, the Fifth Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, 510080, China
| | - Su-Bo Zhang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Rehabilitation Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yan Jiang West Road, Guangzhou, 510120, Guangdong, China
| | - You-You Lv
- Neuroscience Program, Zhongshan School of Medicine, the Fifth Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, 510080, China
| | - Chao Ma
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Rehabilitation Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yan Jiang West Road, Guangzhou, 510120, Guangdong, China
| | - Meng Liu
- Neuroscience Program, Zhongshan School of Medicine, the Fifth Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, 510080, China
| | - Kui-Bo Zhang
- Neuroscience Program, Zhongshan School of Medicine, the Fifth Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xiang-Cai Ruan
- Department of Anesthesia and Pain Medicine, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, 510120, China
| | - Jia-You Wei
- Neuroscience Program, Zhongshan School of Medicine, the Fifth Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, 510080, China
| | - Wen-Jun Xin
- Neuroscience Program, Zhongshan School of Medicine, the Fifth Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, 510080, China
| | - Shao-Ling Wu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Rehabilitation Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yan Jiang West Road, Guangzhou, 510120, Guangdong, China.
| |
Collapse
|
43
|
Sirtuin 1 alleviates diabetic neuropathic pain by regulating synaptic plasticity of spinal dorsal horn neurons. Pain 2019; 160:1082-1092. [DOI: 10.1097/j.pain.0000000000001489] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
44
|
Chen K, Fan J, Luo ZF, Yang Y, Xin WJ, Liu CC. Reduction of SIRT1 epigenetically upregulates NALP1 expression and contributes to neuropathic pain induced by chemotherapeutic drug bortezomib. J Neuroinflammation 2018; 15:292. [PMID: 30342528 PMCID: PMC6195754 DOI: 10.1186/s12974-018-1327-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 10/08/2018] [Indexed: 12/11/2022] Open
Abstract
Background Bortezomib is a frequently used chemotherapeutic drug for the treatment of multiple myeloma and other nonsolid malignancies. Accumulating evidence has demonstrated that bortezomib-induced persistent pain serves as the most frequent reason for treatment discontinuation. Methods The von Frey test was performed to evaluate neuropathic pain behavior, and real-time quantitative reverse transcription polymerase chain reaction, chromatin immunoprecipitation, western blot, immunohistochemistry, and small interfering RNA were performed to explore the molecular mechanisms in adult male Sprague-Dawley rats. Results We found that application of bortezomib significantly increased the expression of NALP1 protein and mRNA levels in spinal dorsal horn neurons, and intrathecal application of NALP1 siRNA attenuated the bortezomib-induced mechanical allodynia. In addition, bortezomib also decreased the SIRT1 expression, and treatment with SIRT1 activator resveratrol ameliorated the NALP1 upregulation and mechanical allodynia induced by bortezomib. Meanwhile, knockdown of SIRT1 using the SIRT1 siRNA induced the NALP1 upregulation in dorsal horn and mechanical allodynia in normal animal. These results suggested that reduction of SIRT1 induced the NALP1 upregulation in dorsal horn neurons, and participated in bortezomib-induced mechanical allodynia. Importantly, we found that the binding of SIRT1 and NALP1 promoter region did not change before and after bortezomib treatment, but SIRT1 downregulation increased p-STAT3 expression. Furthermore, the activation of STAT3 enhanced the recruitment of p-STAT3 to the Nalp1 gene promoter, which increased the acetylation of histone H3 and H4 in NALP1 promoter regions and epigenetically upregulated NALP1 expression in the rodents with bortezomib treatment. Conclusion These findings suggested a new epigenetic mechanism for NALP1 upregulation involving SIRT1 reduction and subsequent STAT3-mediated histone hyperacetylation in NALP1 promoter region in dorsal horn neurons, which contributed to the bortezomib-induced mechanical allodynia.
Collapse
Affiliation(s)
- Kun Chen
- The Joint Research Centre of Gene Interference, Guangzhou University and Keele University for Gene Interference and Application, School of Life Science, Guangzhou University, 230 Waihuan West Road, Guangzhou, 510006, China.
| | - Jing Fan
- The Joint Research Centre of Gene Interference, Guangzhou University and Keele University for Gene Interference and Application, School of Life Science, Guangzhou University, 230 Waihuan West Road, Guangzhou, 510006, China
| | - Zhao-Fan Luo
- Department of Clinical Laboratory, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518017, China
| | - Ying Yang
- The Joint Research Centre of Gene Interference, Guangzhou University and Keele University for Gene Interference and Application, School of Life Science, Guangzhou University, 230 Waihuan West Road, Guangzhou, 510006, China
| | - Wen-Jun Xin
- Guangdong Province Key Laboratory of Brain Function and Disease, Department of Physiology and Pain Research Center, Zhongshan School of Medicine, Sun Yet-Sen University, Guangzhou, 510080, China
| | - Cui-Cui Liu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Rehabilitation Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yanjiang West Road, Guangzhou, 510120, China.
| |
Collapse
|
45
|
Wang X, Shen X, Xu Y, Xu S, Xia F, Zhu B, Liu Y, Wang W, Wu H, Wang F. The etiological changes of acetylation in peripheral nerve injury-induced neuropathic hypersensitivity. Mol Pain 2018; 14:1744806918798408. [PMID: 30105933 PMCID: PMC6144590 DOI: 10.1177/1744806918798408] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Neuropathic pain is a common chronic pain condition with mechanisms far clearly
been elucidated. Mounting preclinical and clinical studies have shown
neuropathic pain is highly associated with histone acetylation modification,
which follows expression regulation of various pain-related molecules such as
mGluR1/5, glutamate aspartate transporter, glutamate transporter-1, GAD65,
Nav1.8, Kv4.3, μ-opioid receptor, brain-derived neurotrophic
factor, and certain chemokines. As two types of pivotal enzymes involved in
histone acetylation, histone deacetylases induce histone deacetylation to
silence gene expression; in contrast, histone acetyl transferases facilitate
histone acetylation to potentiate gene transcription. Accordingly, upregulation
or blockade of acetylation may be a promising intervention direction for
neuropathic pain treatment. In fact, numerous animal studies have suggested
various histone deacetylase inhibitors, Sirt (class III histone deacetylases)
activators, and histone acetyl transferases inhibitors are effective in
neuropathic pain treatment via targeting specific epigenetic sites. In this
review, we summarize the characteristics of the molecules and mechanisms of
neuropathy-related acetylation, as well as the acetylation upregulation and
blockade for neuropathic pain therapy. Finally, we will discuss the current drug
advances focusing on neuropathy-related acetylation along with the underlying
treatment mechanisms.
Collapse
Affiliation(s)
- Xian Wang
- 1 Department of Anesthesiology, Obstetrics and Gynecology Hospital, Affiliated to Nanjing Medical University, Nanjing, China
| | - Xiaofeng Shen
- 1 Department of Anesthesiology, Obstetrics and Gynecology Hospital, Affiliated to Nanjing Medical University, Nanjing, China
| | - Yingli Xu
- 2 Nursing Center, Operating Room, Obstetrics and Gynecology Hospital, Affiliated to Nanjing Medical University, Nanjing, China
| | - Shiqin Xu
- 1 Department of Anesthesiology, Obstetrics and Gynecology Hospital, Affiliated to Nanjing Medical University, Nanjing, China
| | - Fan Xia
- 1 Department of Anesthesiology, Obstetrics and Gynecology Hospital, Affiliated to Nanjing Medical University, Nanjing, China
| | - Bei Zhu
- 3 Department of Nursing Science, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Yusheng Liu
- 1 Department of Anesthesiology, Obstetrics and Gynecology Hospital, Affiliated to Nanjing Medical University, Nanjing, China
| | - Wei Wang
- 1 Department of Anesthesiology, Obstetrics and Gynecology Hospital, Affiliated to Nanjing Medical University, Nanjing, China
| | - Haibo Wu
- 1 Department of Anesthesiology, Obstetrics and Gynecology Hospital, Affiliated to Nanjing Medical University, Nanjing, China.,3 Department of Nursing Science, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Fuzhou Wang
- 1 Department of Anesthesiology, Obstetrics and Gynecology Hospital, Affiliated to Nanjing Medical University, Nanjing, China.,4 Group of Neuropharmacology and Neurophysiology, Division of Neuroscience, The Bonoi Academy of Science and Education, Chapel Hill, NC, USA
| |
Collapse
|
46
|
Liu H, Wei J, Liu M, Wu S, Ma C, Liu C, Huang K, Zhang X, Guo R, Zhang K, Xin W. Epigenetic upregulation of CXCL12 expression contributes to the acquisition and maintenance of morphine-induced conditioned place preference. Exp Neurol 2018; 306:55-63. [DOI: 10.1016/j.expneurol.2018.04.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 03/19/2018] [Accepted: 04/27/2018] [Indexed: 01/05/2023]
|
47
|
Wang J, Zhang XS, Tao R, Zhang J, Liu L, Jiang YH, Ma SH, Song LX, Xia LJ. Upregulation of CX3CL1 mediated by NF-κB activation in dorsal root ganglion contributes to peripheral sensitization and chronic pain induced by oxaliplatin administration. Mol Pain 2018; 13:1744806917726256. [PMID: 28849713 PMCID: PMC5580849 DOI: 10.1177/1744806917726256] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Painful peripheral neuropathy is a severe side effect in oxaliplatin therapy that compromises cancer patients' quality of life. However, its underlying pathogenic mechanisms remain largely unknown. Here, we found that intraperitoneal consecutive administration of oxaliplatin significantly increased excitability of small diameter dorsal root ganglion neurons and induced thermal hyperalgesia in rats. Furthermore, the CX3CL1 expression was significantly increased after oxaliplatin treatment, and intrathecal injection of a neutralizing antibody against CX3CL1 markedly attenuated the enhanced excitability of dorsal root ganglion neurons and thermal hyperalgesia. Importantly, the upregulated CX3CL1 is mediated by the NF-κB signaling pathway, as inhibition of NF-κB p65 activation with pyrrolidine dithiocarbamate or p65 siRNA inhibited the upregulation of CX3CL1, the enhanced excitability of dorsal root ganglion neurons, and thermal hyperalgesia induced by oxaliplatin. Further studies with chromatin immunoprecipitation found that oxaliplatin treatment increased the recruitment of NF-κB p65 to the CX3Cl1 promoter region. Our results suggest that upregulation of CX3CL1 in dorsal root ganglion mediated by NF-κB activation contributes to the peripheral sensitization and chronic pain induced by oxaliplatin administration.
Collapse
Affiliation(s)
- Jing Wang
- 1 Department of Pain Management, Henan Provincial People's Hospital, Zhengzhou University, Zhengzhou, China
| | - Xin-Sheng Zhang
- 2 Department of Orthopaedics, Henan Provincial People's Hospital, Zhengzhou University, Zhengzhou, China
| | - Rong Tao
- 1 Department of Pain Management, Henan Provincial People's Hospital, Zhengzhou University, Zhengzhou, China
| | - Jie Zhang
- 3 Department of Rehabilitation Medicine, Guangdong Woman and Children Hospital, Guangzhou, China
| | - Lin Liu
- 1 Department of Pain Management, Henan Provincial People's Hospital, Zhengzhou University, Zhengzhou, China
| | - Ying-Hai Jiang
- 1 Department of Pain Management, Henan Provincial People's Hospital, Zhengzhou University, Zhengzhou, China
| | - Song-He Ma
- 1 Department of Pain Management, Henan Provincial People's Hospital, Zhengzhou University, Zhengzhou, China
| | - Lin-Xia Song
- 4 College of Life Science, Shandong University of Technology, Zibo, China
| | - Ling-Jie Xia
- 1 Department of Pain Management, Henan Provincial People's Hospital, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
48
|
Zhang XL, Ding HH, Xu T, Liu M, Ma C, Wu SL, Wei JY, Liu CC, Zhang SB, Xin WJ. Palmitoylation of δ-catenin promotes kinesin-mediated membrane trafficking of Nav1.6 in sensory neurons to promote neuropathic pain. Sci Signal 2018; 11:11/523/eaar4394. [PMID: 29588412 DOI: 10.1126/scisignal.aar4394] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Xiao-Long Zhang
- Neuroscience Program, Zhongshan School of Medicine, The Fifth Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Huan-Huan Ding
- Neuroscience Program, Zhongshan School of Medicine, The Fifth Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Ting Xu
- Neuroscience Program, Zhongshan School of Medicine, The Fifth Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Meng Liu
- Neuroscience Program, Zhongshan School of Medicine, The Fifth Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Chao Ma
- Department of Rehabilitation Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Shao-Ling Wu
- Department of Rehabilitation Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Jia-You Wei
- Neuroscience Program, Zhongshan School of Medicine, The Fifth Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Cui-Cui Liu
- Department of Rehabilitation Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Su-Bo Zhang
- Department of Rehabilitation Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Wen-Jun Xin
- Neuroscience Program, Zhongshan School of Medicine, The Fifth Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou 510080, China.
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| |
Collapse
|
49
|
Nie B, Liu C, Bai X, Chen X, Wu S, Zhang S, Huang Z, Xie M, Xu T, Xin W, Zeng W, Ouyang H. AKAP150 involved in paclitaxel-induced neuropathic pain via inhibiting CN/NFAT2 pathway and downregulating IL-4. Brain Behav Immun 2018; 68:158-168. [PMID: 29056557 DOI: 10.1016/j.bbi.2017.10.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Revised: 10/03/2017] [Accepted: 10/17/2017] [Indexed: 12/31/2022] Open
Abstract
Antitubulin chemotherapeutics agents, such as paclitaxel, are effective chemotherapy drugs for cancer treatment. However, painful neuropathy is a major adverse effect limiting the wider application of chemotherapeutics. In this study, we found that A-kinase anchor protein 150 (AKAP150) was significantly upregulated after paclitaxel injection. Inhibition of AKAP150 via siRNA or AKAP150flox/flox in rodents alleviated the pain behavior induced by paclitaxel, and partly restored the decreased calcineurin (CN) phosphatase activity after paclitaxel treatment. Paclitaxel decreased the expression of anti-inflammatory cytokine interleukin-4 (IL-4), and intrathecal injections of IL-4 effectively alleviated paclitaxel-induced hypersensitivity and the frequency of dorsal root ganglion (DRG) neurons action potential. The decreased CN enzyme activity, resulted in reduced protein expression of nuclear factor of activated T cells 2 (NFAT2) in cell nuclei. Chromatin immunoprecipitation showed that, NFAT2 binds to the IL-4 gene promoter regulating the protein expression of IL-4. Overexpression of NFAT2 by intrathecal injection of the AAV5-NFAT2-GFP virus alleviated the pain behavior induced by paclitaxel via increasing the expression of IL-4. Knocked down AKAP150 by siRNA or AAV5-Cre-GFP partly restored the expression of IL-4 in DRG. Our results indicated that regulation of IL-4 via the CN/NFAT2 pathway mediated by AKAP150 could be a pivotal treatment target for paclitaxel-induced neuropathic pain and or other neuropsychiatric disorders.
Collapse
Affiliation(s)
- Bilin Nie
- Department of Anesthesiology, Guangdong Women and Children Hospital, Guangzhou, China; Department of Anesthesiology, State Key Laboratory of Oncology in Southern China, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Cuicui Liu
- Department of Rehabilitation Medicine and Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaohui Bai
- Department of Rehabilitation Medicine and Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaodi Chen
- Department of Anesthesiology, State Key Laboratory of Oncology in Southern China, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Shaoyong Wu
- Department of Anesthesiology, State Key Laboratory of Oncology in Southern China, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Subo Zhang
- Department of Rehabilitation Medicine and Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhuxi Huang
- Department of Rehabilitation Medicine and Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Manxiu Xie
- Department of Anesthesiology, State Key Laboratory of Oncology in Southern China, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Ting Xu
- Zhongshan Medicine School, Guangdong Province Key Laboratory of Brain Function and Disease, Sun Yat-sen University, Guangzhou, China.
| | - Wenjun Xin
- Zhongshan Medicine School, Guangdong Province Key Laboratory of Brain Function and Disease, Sun Yat-sen University, Guangzhou, China
| | - Weian Zeng
- Department of Anesthesiology, State Key Laboratory of Oncology in Southern China, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Handong Ouyang
- Department of Anesthesiology, State Key Laboratory of Oncology in Southern China, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.
| |
Collapse
|
50
|
Meacham K, Shepherd A, Mohapatra DP, Haroutounian S. Neuropathic Pain: Central vs. Peripheral Mechanisms. Curr Pain Headache Rep 2018; 21:28. [PMID: 28432601 DOI: 10.1007/s11916-017-0629-5] [Citation(s) in RCA: 273] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
PURPOSE OF REVIEW Our goal is to examine the processes-both central and peripheral-that underlie the development of peripherally-induced neuropathic pain (pNP) and to highlight recent evidence for mechanisms contributing to its maintenance. While many pNP conditions are initiated by damage to the peripheral nervous system (PNS), their persistence appears to rely on maladaptive processes within the central nervous system (CNS). The potential existence of an autonomous pain-generating mechanism in the CNS creates significant implications for the development of new neuropathic pain treatments; thus, work towards its resolution is crucial. Here, we seek to identify evidence for PNS and CNS independently generating neuropathic pain signals. RECENT FINDINGS Recent preclinical studies in pNP support and provide key details concerning the role of multiple mechanisms leading to fiber hyperexcitability and sustained electrical discharge to the CNS. In studies regarding central mechanisms, new preclinical evidence includes the mapping of novel inhibitory circuitry and identification of the molecular basis of microglia-neuron crosstalk. Recent clinical evidence demonstrates the essential role of peripheral mechanisms, mostly via studies that block the initially damaged peripheral circuitry. Clinical central mechanism studies use imaging to identify potentially self-sustaining infra-slow CNS oscillatory activity that may be unique to pNP patients. While new preclinical evidence supports and expands upon the key role of central mechanisms in neuropathic pain, clinical evidence for an autonomous central mechanism remains relatively limited. Recent findings from both preclinical and clinical studies recapitulate the critical contribution of peripheral input to maintenance of neuropathic pain. Further clinical investigations on the possibility of standalone central contributions to pNP may be assisted by a reconsideration of the agreed terms or criteria for diagnosing the presence of central sensitization in humans.
Collapse
Affiliation(s)
- Kathleen Meacham
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA
- Washington University Pain Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Andrew Shepherd
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA
- Washington University Pain Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Durga P Mohapatra
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA
- Washington University Pain Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Simon Haroutounian
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA.
- Washington University Pain Center, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|