1
|
Rémi C, Berner J, Dukic-Ott A, Hepperle C. [Clinical pharmacology of opioid analgesics]. Schmerz 2025:10.1007/s00482-025-00880-y. [PMID: 40202585 DOI: 10.1007/s00482-025-00880-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 02/03/2025] [Accepted: 02/24/2025] [Indexed: 04/10/2025]
Abstract
Opioids are essential for analgesia and part of a multifarious group of drugs. The study of the endogenous opioid system and its receptors contributes to a better understanding of the advantages and disadvantages of opioids and to develop possibilities for optimization of new substances. Interactions with the different opioid receptors and the non-opioid effects are important aspects that increasingly need to be considered in the treatment design to ensure safe and effective pain management.
Collapse
Affiliation(s)
- Constanze Rémi
- Klinik und Poliklinik für Palliativmedizin, Campus Großhadern, LMU Klinikum, Marchioninistr. 15, 81377, München, Deutschland.
- Klinikapotheke, LMU Klinikum, Marchioninistr. 15, 81377, München, Deutschland.
| | - Jennifer Berner
- Klinik und Poliklinik für Palliativmedizin, Campus Großhadern, LMU Klinikum, Marchioninistr. 15, 81377, München, Deutschland
| | - Aleksandra Dukic-Ott
- Klinik und Poliklinik für Palliativmedizin, Campus Großhadern, LMU Klinikum, Marchioninistr. 15, 81377, München, Deutschland
- Klinikapotheke, LMU Klinikum, Marchioninistr. 15, 81377, München, Deutschland
| | - Christina Hepperle
- Klinik und Poliklinik für Palliativmedizin, Campus Großhadern, LMU Klinikum, Marchioninistr. 15, 81377, München, Deutschland
| |
Collapse
|
2
|
Zhang X, Zhang Y, Du W. Alleviating role of ketamine in breast cancer cell-induced osteoclastogenesis and tumor bone metastasis-induced bone cancer pain through an SRC/EGR1/CST6 axis. BMC Cancer 2024; 24:1535. [PMID: 39695463 DOI: 10.1186/s12885-024-13290-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 12/04/2024] [Indexed: 12/20/2024] Open
Abstract
AIMS The analgesic effect of ketamine in cancer pain remains controversial. This research investigates the role of ketamine in bone metastasis-induced cancer pain in breast cancer (BC) and its associated molecular network. METHODS BC cell lines MDA-MB-231 and ZR-75-1 were treated with ketamine and malignant behaviors were assessed through CCK-8, colony formation, and Transwell assays. To evaluate the pro-osteoclastic effect in vitro, BC cells were co-cultured with RAW 264.7 cells. Alterations in the expression of SRC proto-oncogene (SRC), early growth response 1 (EGR1), and cystatin E/M (CST6) were induced in BC cells using lentivirus. MDA-MB-231 cells were injected intracardially into nude mice to examine tumor bone metastasis in vivo. Molecular interactions between SRC and EGR1, as well as between EGR1 and CST6 were analyzed via immunoprecipitation and luciferase assays. RESULTS Ketamine treatment suppressed viability, proliferation, migration and invasiveness, epithelial-mesenchymal transition, and pro-osteoclastic effect in BC cells. Ketamine also reduced osteoclastogenesis and tumor bone metastasis burden and alleviated pain in nude mice. SRC was identified as a target of ketamine. Overexpression of SRC in BC cells blocked the effects of ketamine. SRC bound to the EGR1 promoter, suppressing EGR1 transcription, whereas EGR1 activated CST6 transcription. Either EGR1 or CST6 overexpression counteracted the function of SRC overexpression and decreased the viability of BC cells and their pro-osteoclastic effect in vitro and in vivo. CONCLUSION This study demonstrates that ketamine alleviates BC cell-induced osteoclastogenesis and tumor bone metastasis by suppressing SRC and restoring the EGR1/CST6 axis.
Collapse
Affiliation(s)
- Xiaomin Zhang
- Department of Anesthesiology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, N0. 44 Xiaoheyan Road, Dadong District, Shenyang, 110042, Liaoning Province, China
| | - Yanmei Zhang
- Department of Anesthesiology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, N0. 44 Xiaoheyan Road, Dadong District, Shenyang, 110042, Liaoning Province, China
| | - Wei Du
- Department of Anesthesiology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, N0. 44 Xiaoheyan Road, Dadong District, Shenyang, 110042, Liaoning Province, China.
| |
Collapse
|
3
|
Zhang J, Wu P, Wen Q. Optimization strategies for mesenchymal stem cell-based analgesia therapy: a promising therapy for pain management. Stem Cell Res Ther 2024; 15:211. [PMID: 39020426 PMCID: PMC11256674 DOI: 10.1186/s13287-024-03828-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 07/02/2024] [Indexed: 07/19/2024] Open
Abstract
Pain is a very common and complex medical problem that has a serious impact on individuals' physical and mental health as well as society. Non-steroidal anti-inflammatory drugs and opioids are currently the main drugs used for pain management, but they are not effective in controlling all types of pain, and their long-term use can cause adverse effects that significantly impair patients' quality of life. Mesenchymal stem cells (MSCs) have shown great potential in pain treatment. However, limitations such as the low proliferation rate of MSCs in vitro and low survival rate in vivo restrict their analgesic efficacy and clinical translation. In recent years, researchers have explored various innovative approaches to improve the therapeutic effectiveness of MSCs in pain treatment. This article reviews the latest research progress of MSCs in pain treatment, with a focus on methods to enhance the analgesic efficacy of MSCs, including engineering strategies to optimize the in vitro culture environment of MSCs and to improve the in vivo delivery efficiency of MSCs. We also discuss the unresolved issues to be explored in future MSCs and pain research and the challenges faced by the clinical translation of MSC therapy, aiming to promote the optimization and clinical translation of MSC-based analgesia therapy.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Anesthesiology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116000, China
| | - Ping Wu
- Department of Anesthesiology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116000, China.
| | - Qingping Wen
- Department of Anesthesiology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116000, China.
| |
Collapse
|
4
|
Delanne-Cuménal M, Lamoine S, Meleine M, Aissouni Y, Prival L, Fereyrolles M, Barbier J, Cercy C, Boudieu L, Schopp J, Lazdunski M, Eschalier A, Lolignier S, Busserolles J. The TREK-1 potassium channel is involved in both the analgesic and anti-proliferative effects of riluzole in bone cancer pain. Biomed Pharmacother 2024; 176:116887. [PMID: 38852511 DOI: 10.1016/j.biopha.2024.116887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/03/2024] [Accepted: 06/03/2024] [Indexed: 06/11/2024] Open
Abstract
BACKGROUND The metastasis of tumors into bone tissue typically leads to intractable pain that is both very disabling and particularly difficult to manage. We investigated here whether riluzole could have beneficial effects for the treatment of prostate cancer-induced bone pain and how it could influence the development of bone metastasis. METHODS We used a bone pain model induced by intratibial injection of human PC3 prostate cancer cells into male SCID mice treated or not with riluzole administered in drinking water. We also used riluzole in vitro to assess its possible effect on PC3 cell viability and functionality, using patch-clamp. RESULTS Riluzole had a significant preventive effect on both evoked and spontaneous pain involving the TREK-1 potassium channel. Riluzole did not interfere with PC3-induced bone loss or bone remodeling in vivo. It also significantly decreased PC3 cell viability in vitro. The antiproliferative effect of riluzole is correlated with a TREK-1-dependent membrane hyperpolarization in these cells. CONCLUSION The present data suggest that riluzole could be very useful to manage evoked and spontaneous hypersensitivity in cancer-induced bone pain and has no significant adverse effect on cancer progression.
Collapse
Affiliation(s)
- Mélissa Delanne-Cuménal
- Université Clermont Auvergne, Inserm, CHU Clermont-Ferrand, Neuro-Dol, Clermont-Ferrand F63000, France
| | - Sylvain Lamoine
- Université Clermont Auvergne, Inserm, CHU Clermont-Ferrand, Neuro-Dol, Clermont-Ferrand F63000, France
| | - Mathieu Meleine
- Université Clermont Auvergne, Inserm, CHU Clermont-Ferrand, Neuro-Dol, Clermont-Ferrand F63000, France
| | - Youssef Aissouni
- Université Clermont Auvergne, Inserm, CHU Clermont-Ferrand, Neuro-Dol, Clermont-Ferrand F63000, France
| | - Laetitia Prival
- Université Clermont Auvergne, Inserm, CHU Clermont-Ferrand, Neuro-Dol, Clermont-Ferrand F63000, France
| | - Mathilde Fereyrolles
- Université Clermont Auvergne, Inserm, CHU Clermont-Ferrand, Neuro-Dol, Clermont-Ferrand F63000, France
| | - Julie Barbier
- Université Clermont Auvergne, Inserm, CHU Clermont-Ferrand, Neuro-Dol, Clermont-Ferrand F63000, France
| | - Christine Cercy
- Université Clermont Auvergne, Inserm, CHU Clermont-Ferrand, Neuro-Dol, Clermont-Ferrand F63000, France
| | - Ludivine Boudieu
- Université Clermont Auvergne, Inserm, CHU Clermont-Ferrand, Neuro-Dol, Clermont-Ferrand F63000, France
| | - Julien Schopp
- Université Clermont Auvergne, Inserm, CHU Clermont-Ferrand, Neuro-Dol, Clermont-Ferrand F63000, France
| | - Michel Lazdunski
- Université de Nice Sophia Antipolis, Valbonne 06560, France; CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, UMR 7275, 660 Route des Lucioles Sophia Antipolis, Valbonne 06560, France
| | - Alain Eschalier
- Université Clermont Auvergne, Inserm, CHU Clermont-Ferrand, Neuro-Dol, Clermont-Ferrand F63000, France; Institut Analgesia, Faculté de Médecine, BP38, Clermont-Ferrand 63001, France
| | - Stéphane Lolignier
- Université Clermont Auvergne, Inserm, CHU Clermont-Ferrand, Neuro-Dol, Clermont-Ferrand F63000, France
| | - Jérôme Busserolles
- Université Clermont Auvergne, Inserm, CHU Clermont-Ferrand, Neuro-Dol, Clermont-Ferrand F63000, France.
| |
Collapse
|
5
|
Jin L, Liu Y, Wu Y, Huang Y, Zhang D. REST Is Not Resting: REST/NRSF in Health and Disease. Biomolecules 2023; 13:1477. [PMID: 37892159 PMCID: PMC10605157 DOI: 10.3390/biom13101477] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 09/26/2023] [Accepted: 09/29/2023] [Indexed: 10/29/2023] Open
Abstract
Chromatin modifications play a crucial role in the regulation of gene expression. The repressor element-1 (RE1) silencing transcription factor (REST), also known as neuron-restrictive silencer factor (NRSF) and X2 box repressor (XBR), was found to regulate gene transcription by binding to chromatin and recruiting chromatin-modifying enzymes. Earlier studies revealed that REST plays an important role in the development and disease of the nervous system, mainly by repressing the transcription of neuron-specific genes. Subsequently, REST was found to be critical in other tissues, such as the heart, pancreas, skin, eye, and vascular. Dysregulation of REST was also found in nervous and non-nervous system cancers. In parallel, multiple strategies to target REST have been developed. In this paper, we provide a comprehensive summary of the research progress made over the past 28 years since the discovery of REST, encompassing both physiological and pathological aspects. These insights into the effects and mechanisms of REST contribute to an in-depth understanding of the transcriptional regulatory mechanisms of genes and their roles in the development and progression of disease, with a view to discovering potential therapeutic targets and intervention strategies for various related diseases.
Collapse
Affiliation(s)
- Lili Jin
- School of Life Sciences, Liaoning University, Shenyang 110036, China
| | - Ying Liu
- Department of Stem Cells and Regenerative Medicine, Key Laboratory of Cell Biology, National Health Commission of China, and Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang 110122, China
| | - Yifan Wu
- Department of Stem Cells and Regenerative Medicine, Key Laboratory of Cell Biology, National Health Commission of China, and Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang 110122, China
| | - Yi Huang
- Department of Stem Cells and Regenerative Medicine, Key Laboratory of Cell Biology, National Health Commission of China, and Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang 110122, China
| | - Dianbao Zhang
- Department of Stem Cells and Regenerative Medicine, Key Laboratory of Cell Biology, National Health Commission of China, and Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang 110122, China
| |
Collapse
|
6
|
Yuan W, Xiao J, Liao H, Xie Z, Zhao Y, Li C, Zhou K, Song XJ. Lactobacillus rhamnosus GG and butyrate supplementation in rats with bone cancer reduces mechanical allodynia and increases expression of μ-opioid receptor in the spinal cord. Front Mol Neurosci 2023; 16:1207911. [PMID: 37389091 PMCID: PMC10306308 DOI: 10.3389/fnmol.2023.1207911] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 05/30/2023] [Indexed: 07/01/2023] Open
Abstract
Introduction Chronic cancer pain is one of the most unbearable symptoms for the patients with advanced cancer. The treatment of cancer pain continues to possess a major challenge. Here, we report that adjusting gut microbiota via probiotics can reduce bone cancer pain (BCP) in rats. Methods The model of BCP was produced by tumor cell implantation (TCI) to the tibia in rats. Continuous feeding of Lactobacillus rhamnosus GG (LGG) was used to modulate the gut microbiota. Mechanical allodynia, bone destruction, fecal microbiota, and neurochemical changes in the primary dorsal root ganglion (DRG) and the spinal dorsal horn (DH) were assessed. Results LGG supplementation (109 CFU/rat/day) delayed the production of BCP for 3-4 days and significantly alleviated mechanical allodynia within the first 2 weeks after TCI. TCI-induced proinflammatory cytokines TNF-α and IL-β in the DH, and TCI-induced bone destruction in the tibia were both significantly reduced following LGG supplementation examined on day 8 after TCI. Meanwhile, we found that LGG supplementation, in addition to inhibiting TCI-induced pain, resulted in a significantly increased expression of the μ-opioid receptor (MOR) in the DH, but not in the DRG. LGG supplementation significantly potentiated the analgesic effect of morphine. Furthermore, LGG supplementation led to an increase in butyrate levels in the feces and serum and a decrease in histone deacetylase 2 (HDAC2) expression in the DH. Feeding TCI-rats with sodium butyrate solution alone, at a dose of 100 mg/kg, resulted in decreased pain, as well as decreased HDAC2 expression and increased MOR expression in the DH. The increased expression of MOR and decreased HDAC2 were also observed in neuro-2a cells when we treated the cells with serum from TCI rats with supplementation of LGG or sodium butyrate. Discussion This study provides evidence that reshaping the gut microbiota with probiotics LGG can delay the onset of cancer pain. The butyrate-HDAC2-MOR pathway may be the underlying mechanism for the analgesic effect of LGG. These findings shed light on an effective, safe, and non-invasive approach for cancer pain control and support the clinical implication of probiotics supplementation for patients with BCP.
Collapse
Affiliation(s)
- Wenxi Yuan
- Department of Medical Neuroscience, School of Medicine, Southern University of Science and Technology, Shenzhen, China
- SUSTech Center for Pain Medicine, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Jie Xiao
- Department of Medical Neuroscience, School of Medicine, Southern University of Science and Technology, Shenzhen, China
- SUSTech Center for Pain Medicine, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Huabao Liao
- Department of Medical Neuroscience, School of Medicine, Southern University of Science and Technology, Shenzhen, China
- SUSTech Center for Pain Medicine, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Zhiyuan Xie
- Department of Medical Neuroscience, School of Medicine, Southern University of Science and Technology, Shenzhen, China
- SUSTech Center for Pain Medicine, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Yiran Zhao
- Department of Medical Neuroscience, School of Medicine, Southern University of Science and Technology, Shenzhen, China
- SUSTech Center for Pain Medicine, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Cheng Li
- Department of Medical Neuroscience, School of Medicine, Southern University of Science and Technology, Shenzhen, China
- SUSTech Center for Pain Medicine, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Keying Zhou
- Department of Pediatrics, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, China
| | - Xue-Jun Song
- Department of Medical Neuroscience, School of Medicine, Southern University of Science and Technology, Shenzhen, China
- SUSTech Center for Pain Medicine, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
7
|
Li L, Chen J, Li YQ. The Downregulation of Opioid Receptors and Neuropathic Pain. Int J Mol Sci 2023; 24:ijms24065981. [PMID: 36983055 PMCID: PMC10053236 DOI: 10.3390/ijms24065981] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/18/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Neuropathic pain (NP) refers to pain caused by primary or secondary damage or dysfunction of the peripheral or central nervous system, which seriously affects the physical and mental health of 7-10% of the general population. The etiology and pathogenesis of NP are complex; as such, NP has been a hot topic in clinical medicine and basic research for a long time, with researchers aiming to find a cure by studying it. Opioids are the most commonly used painkillers in clinical practice but are regarded as third-line drugs for NP in various guidelines due to the low efficacy caused by the imbalance of opioid receptor internalization and their possible side effects. Therefore, this literature review aims to evaluate the role of the downregulation of opioid receptors in the development of NP from the perspective of dorsal root ganglion, spinal cord, and supraspinal regions. We also discuss the reasons for the poor efficacy of opioids, given the commonness of opioid tolerance caused by NP and/or repeated opioid treatments, an angle that has received little attention to date; in-depth understanding might provide a new method for the treatment of NP.
Collapse
Affiliation(s)
- Lin Li
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an 710072, China
- Department of Anatomy, Histology and Embryology and K. K. Leung Brain Research Centre, The Fourth Military Medical University, No. 169, West Changle Road, Xi'an 710032, China
| | - Jing Chen
- Department of Anatomy, Histology and Embryology and K. K. Leung Brain Research Centre, The Fourth Military Medical University, No. 169, West Changle Road, Xi'an 710032, China
| | - Yun-Qing Li
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an 710072, China
- Department of Anatomy, Histology and Embryology and K. K. Leung Brain Research Centre, The Fourth Military Medical University, No. 169, West Changle Road, Xi'an 710032, China
| |
Collapse
|
8
|
Pang J, Xin P, Kong Y, Wang Z, Wang X. Resolvin D2 Reduces Chronic Neuropathic Pain and Bone Cancer Pain via Spinal Inhibition of IL-17 Secretion, CXCL1 Release and Astrocyte Activation in Mice. Brain Sci 2023; 13:brainsci13010152. [PMID: 36672133 PMCID: PMC9856778 DOI: 10.3390/brainsci13010152] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/08/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
Chronic pain burdens patients and healthcare systems worldwide. Pain control remains urgently required. IL-17 (interleukin-17)-mediated neuroinflammation is of unique importance in spinal nociceptive transduction in pathological pain development. Recently, resolvin D2 (RvD2), as a bioactive, specialized pro-resolving mediator derived from docosahexaenoic acid, exhibits potent resolution of inflammation in several neurological disorders. This preclinical study evaluates the therapeutic potential and underlying targets of RvD2 in two mouse models of chronic pain, including sciatic nerve ligation-caused neuropathic pain and sarcoma-caused bone cancer pain. Herein, we report that repetitive injections of RvD2 (intrathecal, 500 ng) reduce the initiation of mechanical allodynia and heat hyperalgesia following sciatic nerve damage and bone cancer. Single exposure to RvD2 (intrathecal, 500 ng) attenuates the established neuropathic pain and bone cancer pain. Furthermore, systemic RvD2 (intravenous, 5 μg) therapy is effective in attenuating chronic pain behaviors. Strikingly, RvD2 treatment suppresses spinal IL-17 overexpression, chemokine CXCL1 release and astrocyte activation in mice undergoing sciatic nerve trauma and bone cancer. Pharmacological neutralization of IL-17 ameliorates chronic neuropathic pain and persistent bone cancer pain, as well as reducing spinal CXCL1 release. Recombinant IL-17-evoked acute pain behaviors and spinal CXCL1 release are mitigated after RvD2 administration. In addition, RvD2 treatment dampens exogenous CXCL1-caused transient pain phenotypes. Overall, these current findings identify that RvD2 therapy is effective against the initiation and persistence of long-lasting neuropathic pain and bone cancer pain, which may be through spinal down-modulation of IL-17 secretion, CXCL1 release and astrocyte activation.
Collapse
Affiliation(s)
- Jun Pang
- Department of Anesthesiology & Center for Brain Science, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China
- Department of Anesthesiology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan 030032, China
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Pengfei Xin
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Department of Stomatology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan 030032, China
| | - Ying Kong
- Department of Anesthesiology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan 030032, China
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhe Wang
- Department of Anesthesiology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan 030032, China
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiaopeng Wang
- Department of Anesthesiology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan 030032, China
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Correspondence:
| |
Collapse
|
9
|
Haroun R, Wood JN, Sikandar S. Mechanisms of cancer pain. FRONTIERS IN PAIN RESEARCH 2023; 3:1030899. [PMID: 36688083 PMCID: PMC9845956 DOI: 10.3389/fpain.2022.1030899] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 11/14/2022] [Indexed: 01/05/2023] Open
Abstract
Personalised and targeted interventions have revolutionised cancer treatment and dramatically improved survival rates in recent decades. Nonetheless, effective pain management remains a problem for patients diagnosed with cancer, who continue to suffer from the painful side effects of cancer itself, as well as treatments for the disease. This problem of cancer pain will continue to grow with an ageing population and the rapid advent of more effective therapeutics to treat the disease. Current pain management guidelines from the World Health Organisation are generalised for different pain severities, but fail to address the heterogeneity of mechanisms in patients with varying cancer types, stages of disease and treatment plans. Pain is the most common complaint leading to emergency unit visits by patients with cancer and over one-third of patients that have been diagnosed with cancer will experience under-treated pain. This review summarises preclinical models of cancer pain states, with a particular focus on cancer-induced bone pain and chemotherapy-associated pain. We provide an overview of how preclinical models can recapitulate aspects of pain and sensory dysfunction that is observed in patients with persistent cancer-induced bone pain or neuropathic pain following chemotherapy. Peripheral and central nervous system mechanisms of cancer pain are discussed, along with key cellular and molecular mediators that have been highlighted in animal models of cancer pain. These include interactions between neuronal cells, cancer cells and non-neuronal cells in the tumour microenvironment. Therapeutic targets beyond opioid-based management are reviewed for the treatment of cancer pain.
Collapse
Affiliation(s)
- Rayan Haroun
- Division of Medicine, Wolfson Institute of Biomedical Research, University College London, London, United Kingdom
| | - John N Wood
- Division of Medicine, Wolfson Institute of Biomedical Research, University College London, London, United Kingdom
| | - Shafaq Sikandar
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
10
|
Greco LA, Reay WR, Dayas CV, Cairns MJ. Pairwise genetic meta-analyses between schizophrenia and substance dependence phenotypes reveals novel association signals with pharmacological significance. Transl Psychiatry 2022; 12:403. [PMID: 36151087 PMCID: PMC9508072 DOI: 10.1038/s41398-022-02186-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/25/2022] [Accepted: 09/13/2022] [Indexed: 12/04/2022] Open
Abstract
Almost half of individuals diagnosed with schizophrenia also present with a substance use disorder, however, little is known about potential molecular mechanisms underlying this comorbidity. We used genetic analyses to enhance our understanding of the molecular overlap between these conditions. Our analyses revealed a positive genetic correlation between schizophrenia and the following dependence phenotypes: alcohol (rg = 0.368, SE = 0.076, P = 1.61 × 10-6), cannabis use disorder (rg = 0.309, SE = 0.033, P = 1.97 × 10-20) and nicotine (rg = 0.117, SE = 0.043, P = 7.0 × 10-3), as well as drinks per week (rg = 0.087, SE = 0.021, P = 6.36 × 10-5), cigarettes per day (rg = 0.11, SE = 0.024, P = 4.93 × 10-6) and life-time cannabis use (rg = 0.234, SE = 0.029, P = 3.74 × 10-15). We further constructed latent causal variable (LCV) models to test for partial genetic causality and found evidence for a potential causal relationship between alcohol dependence and schizophrenia (GCP = 0.6, SE = 0.22, P = 1.6 × 10-3). This putative causal effect with schizophrenia was not seen using a continuous phenotype of drinks consumed per week, suggesting that distinct molecular mechanisms underlying dependence are involved in the relationship between alcohol and schizophrenia. To localise the specific genetic overlap between schizophrenia and substance use disorders (SUDs), we conducted a gene-based and gene-set pairwise meta-analysis between schizophrenia and each of the four individual substance dependence phenotypes in up to 790,806 individuals. These bivariate meta-analyses identified 44 associations not observed in the individual GWAS, including five shared genes that play a key role in early central nervous system development. The results from this study further supports the existence of underlying shared biology that drives the overlap in substance dependence in schizophrenia, including specific biological systems related to metabolism and neuronal function.
Collapse
Affiliation(s)
- Laura A Greco
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton, NSW, Australia
| | - William R Reay
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton, NSW, Australia
| | - Christopher V Dayas
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia
| | - Murray J Cairns
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia.
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton, NSW, Australia.
| |
Collapse
|
11
|
Su XJ, Shen BD, Wang K, Song QX, Yang X, Wu DS, Shen HX, Zhu C. Roles of the Neuron-Restrictive Silencer Factor in the Pathophysiological Process of the Central Nervous System. Front Cell Dev Biol 2022; 10:834620. [PMID: 35300407 PMCID: PMC8921553 DOI: 10.3389/fcell.2022.834620] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 01/31/2022] [Indexed: 11/29/2022] Open
Abstract
The neuron-restrictive silencer factor (NRSF), also known as repressor element 1 (RE-1) silencing transcription factor (REST) or X2 box repressor (XBR), is a zinc finger transcription factor that is widely expressed in neuronal and non-neuronal cells. It is a master regulator of the nervous system, and the function of NRSF is the basis of neuronal differentiation, diversity, plasticity, and survival. NRSF can bind to the neuron-restrictive silencer element (NRSE), recruit some co-repressors, and then inhibit transcription of NRSE downstream genes through epigenetic mechanisms. In neurogenesis, NRSF functions not only as a transcriptional silencer that can mediate the transcriptional inhibition of neuron-specific genes in non-neuronal cells and thus give neuron cells specificity, but also as a transcriptional activator to induce neuronal differentiation. Many studies have confirmed the association between NRSF and brain disorders, such as brain injury and neurodegenerative diseases. Overexpression, underexpression, or mutation may lead to neurological disorders. In tumorigenesis, NRSF functions as an oncogene in neuronal tumors, such as neuroblastomas, medulloblastomas, and pheochromocytomas, stimulating their proliferation, which results in poor prognosis. Additionally, NRSF-mediated selective targets gene repression plays an important role in the development and maintenance of neuropathic pain caused by nerve injury, cancer, and diabetes. At present, several compounds that target NRSF or its co-repressors, such as REST-VP16 and X5050, have been shown to be clinically effective against many brain diseases, such as seizures, implying that NRSF and its co-repressors may be potential and promising therapeutic targets for neural disorders. In the present review, we introduced the biological characteristics of NRSF; reviewed the progress to date in understanding the roles of NRSF in the pathophysiological processes of the nervous system, such as neurogenesis, brain disorders, neural tumorigenesis, and neuropathic pain; and suggested new therapeutic approaches to such brain diseases.
Collapse
Affiliation(s)
- Xin-Jin Su
- Department of Spine Surgery, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Bei-Duo Shen
- Department of Spine Surgery, School of Medicine, Shanghai East Hospital, Tongji University, Shanghai, China
| | - Kun Wang
- Department of Spine Surgery, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Qing-Xin Song
- Department of Spine Surgery, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xue Yang
- Department of Spine Surgery, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - De-Sheng Wu
- Department of Spine Surgery, School of Medicine, Shanghai East Hospital, Tongji University, Shanghai, China
| | - Hong-Xing Shen
- Department of Spine Surgery, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Chao Zhu
- Department of Spine Surgery, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
12
|
Deng M, Zhang Z, Xing M, Liang X, Li Z, Wu J, Jiang S, Weng Y, Guo Q, Zou W. LncRNA MRAK159688 facilitates morphine tolerance by promoting REST-mediated inhibition of mu opioid receptor in rats. Neuropharmacology 2022; 206:108938. [PMID: 34982972 DOI: 10.1016/j.neuropharm.2021.108938] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/17/2021] [Accepted: 12/28/2021] [Indexed: 12/11/2022]
Abstract
Morphine tolerance (MT) caused by the long-term use of morphine is a major medical problem. The molecular mechanism of morphine tolerance remains elusive. Here, we established a morphine tolerance model in rats and verified whether the long noncoding RNA (lncRNA) MRAK159688 is involved in morphine tolerance and its specific molecular mechanism. We show the significant upregulation of MRAK159688 expression in the spinal cord of morphine-tolerant rats. Overexpression of MRAK159688 by a lentivirus reduces the analgesic efficacy of morphine and induces pain behavior. Downregulation of MRAK159688 using a small interfering RNA (siRNA) attenuates the formation of morphine tolerance, partially reverses the development of morphine tolerance and alleviates morphine-induced hyperalgesia. MRAK159688 is located in the nucleus and cytoplasm of neurons, and it colocalizes with repressor element-1 silencing transcription factor (REST) in the nucleus. MRAK159688 potentiates the expression and function of REST, thereby inhibiting the expression of mu opioid receptor (MOR) and subsequently inducing morphine tolerance. Moreover, REST overexpression blocks the effects of MRAK159688 siRNA on relieving morphine tolerance. In general, chronic morphine administration-mediated upregulation of MRAK159688 in the spinal cord contributes to morphine tolerance and hyperalgesia by promoting REST-mediated inhibition of MOR. MRAK159688 downregulation may represent a novel RNA-based therapy for morphine tolerance.
Collapse
Affiliation(s)
- Meiling Deng
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Zengli Zhang
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China; Department of Anesthesiology, Tianjin Medical University Cancer Institute & Hospital, Tianjin, 300000, China
| | - Manyu Xing
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Xia Liang
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China; Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, Guangdong, China
| | - Zhengyiqi Li
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Jing Wu
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Shasha Jiang
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Yingqi Weng
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Qulian Guo
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Wangyuan Zou
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|
13
|
Pereira V, Lamoine S, Cuménal M, Lolignier S, Aissouni Y, Pizzoccaro A, Prival L, Balayssac D, Eschalier A, Bourinet E, Busserolles J. Epigenetics Involvement in Oxaliplatin-Induced Potassium Channel Transcriptional Downregulation and Hypersensitivity. Mol Neurobiol 2021; 58:3575-3587. [PMID: 33772465 DOI: 10.1007/s12035-021-02361-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 03/15/2021] [Indexed: 01/10/2023]
Abstract
Peripheral neuropathy is the most frequent dose-limiting adverse effect of oxaliplatin. Acute pain symptoms that are induced or exacerbated by cold occur in almost all patients immediately following the first infusions. Evidence has shown that oxaliplatin causes ion channel expression modulations in dorsal root ganglia neurons, which are thought to contribute to peripheral hypersensitivity. Most dysregulated genes encode ion channels involved in cold and mechanical perception, noteworthy members of a sub-group of potassium channels of the K2P family, TREK and TRAAK. Downregulation of these K2P channels has been identified as an important tuner of acute oxaliplatin-induced hypersensitivity. We investigated the molecular mechanisms underlying this peripheral dysregulation in a murine model of neuropathic pain triggered by a single oxaliplatin administration. We found that oxaliplatin-mediated TREK-TRAAK downregulation, as well as downregulation of other K+ channels of the K2P and Kv families, involves a transcription factor known as the neuron-restrictive silencer factor (NRSF) and its epigenetic co-repressors histone deacetylases (HDACs). NRSF knockdown was able to prevent most of these K+ channel mRNA downregulation in mice dorsal root ganglion neurons as well as oxaliplatin-induced acute cold and mechanical hypersensitivity. Interestingly, pharmacological inhibition of class I HDAC reproduces the antinociceptive effects of NRSF knockdown and leads to an increased K+ channel expression in oxaliplatin-treated mice.
Collapse
Affiliation(s)
- Vanessa Pereira
- Université Clermont Auvergne, Inserm UMR-U1107, Neuro-Dol, 28, pl. H.Dunant, F-63000, Clermont-Ferrand, France
- Institut Analgesia, Faculté de Médecine, BP38, F-63001, Clermont-Ferrand, France
| | - Sylvain Lamoine
- Université Clermont Auvergne, Inserm UMR-U1107, Neuro-Dol, 28, pl. H.Dunant, F-63000, Clermont-Ferrand, France
- Institut Analgesia, Faculté de Médecine, BP38, F-63001, Clermont-Ferrand, France
| | - Mélissa Cuménal
- Université Clermont Auvergne, Inserm UMR-U1107, Neuro-Dol, 28, pl. H.Dunant, F-63000, Clermont-Ferrand, France
- Institut Analgesia, Faculté de Médecine, BP38, F-63001, Clermont-Ferrand, France
| | - Stéphane Lolignier
- Université Clermont Auvergne, Inserm UMR-U1107, Neuro-Dol, 28, pl. H.Dunant, F-63000, Clermont-Ferrand, France
- Institut Analgesia, Faculté de Médecine, BP38, F-63001, Clermont-Ferrand, France
| | - Youssef Aissouni
- Université Clermont Auvergne, Inserm UMR-U1107, Neuro-Dol, 28, pl. H.Dunant, F-63000, Clermont-Ferrand, France
- Institut Analgesia, Faculté de Médecine, BP38, F-63001, Clermont-Ferrand, France
| | - Anne Pizzoccaro
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS UMR-5203, INSERM U1091, F-34094, Montpellier, France
| | - Laetitia Prival
- Université Clermont Auvergne, Inserm UMR-U1107, Neuro-Dol, 28, pl. H.Dunant, F-63000, Clermont-Ferrand, France
- Institut Analgesia, Faculté de Médecine, BP38, F-63001, Clermont-Ferrand, France
| | - David Balayssac
- Université Clermont Auvergne, Inserm UMR-U1107, Neuro-Dol, 28, pl. H.Dunant, F-63000, Clermont-Ferrand, France
- Institut Analgesia, Faculté de Médecine, BP38, F-63001, Clermont-Ferrand, France
| | - Alain Eschalier
- Université Clermont Auvergne, Inserm UMR-U1107, Neuro-Dol, 28, pl. H.Dunant, F-63000, Clermont-Ferrand, France
- Institut Analgesia, Faculté de Médecine, BP38, F-63001, Clermont-Ferrand, France
| | - Emmanuel Bourinet
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS UMR-5203, INSERM U1091, F-34094, Montpellier, France
| | - Jérôme Busserolles
- Université Clermont Auvergne, Inserm UMR-U1107, Neuro-Dol, 28, pl. H.Dunant, F-63000, Clermont-Ferrand, France.
- Institut Analgesia, Faculté de Médecine, BP38, F-63001, Clermont-Ferrand, France.
| |
Collapse
|
14
|
Li J, Luan F, Song J, Dong J, Shang M. Clinical Efficacy of Controlled-Release Morphine Tablets Combined with Celecoxib in Pain Management and the Effects on WNK1 Expression. Clinics (Sao Paulo) 2021; 76:e1907. [PMID: 33503173 PMCID: PMC7798123 DOI: 10.6061/clinics/2021/e1907] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 09/29/2020] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVES This study was designed to evaluate the clinical efficacy of controlled-release morphine tablets combined with celecoxib in relieving osteocarcinoma-related pain and the effects of the combination on WNK1 expression. METHODS A total of 110 patients with osteocarcinoma-related pain were selected and divided into two groups based on the treatment administered, including the control group (treated with controlled-release morphine tablets alone) and the study group (treated with a combination of controlled-release morphine tablets and celecoxib). We compared the treatment efficacy, pain level (visual analog scale (VAS)), time of onset of breakthrough pain (BTP), dose of morphine, incidence of adverse events, quality of life (QOL) score, and With-no-lysine 1 (WNK1) expression in the peripheral blood (PB) as determined with qRT-PCR before and after treatment, of the two groups. RESULTS The total effective rate of the study group was higher than that of the control group, while the VAS score, time of onset of BTP, dose of morphine, incidence of adverse events, QOL score, and relative WNK1 expression in the PB were lower than those of the control group (p<0.05). CONCLUSION Combination treatment with controlled-release morphine tablets and celecoxib can be extensively used in the clinical setting because it effectively improves the symptoms, QOL score, and adverse effects in patients with osteocarcinoma-related pain.
Collapse
Affiliation(s)
- Jian Li
- Department of Joint Surgery, the Fourth People's Hospital of Jinan, Jinan, China
| | - Fanghai Luan
- Department of Orthopedic Surgery, the Fourth People's Hospital of Jinan, Jinan, China
| | - Jiangfeng Song
- Department of Orthopedic, Ju County People's Hospital, Rizhao, China
| | - Jianhua Dong
- Department of Orthopedic, Ju County People's Hospital, Rizhao, China
| | - Mingfu Shang
- Department of Spinal Cord Repairing, 960 Hospital of the Joint Logistics Support Force of PLA, Jinan, China
- *Corresponding author. E-mail:
| |
Collapse
|
15
|
Ma M, Zhou Y, Sun R, Shi J, Tan Y, Yang H, Zhang M, Shen R, Xu L, Wang Z, Fei J. STAT3 and AKT signaling pathways mediate oncogenic role of NRSF in hepatocellular carcinoma. Acta Biochim Biophys Sin (Shanghai) 2020; 52:1063-1070. [PMID: 32556117 DOI: 10.1093/abbs/gmaa069] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/06/2020] [Accepted: 03/09/2020] [Indexed: 02/07/2023] Open
Abstract
Neuron-restrictive silencer factor (NRSF) is a zinc finger protein that acts as a negative transcriptional regulator by recruiting histone deacetylases and other co-factors. It plays a crucial role in nervous system development and is recently reported to be involved in tumorigenesis in a tumor type-dependent manner; however, the role of NRSF in hepatocellular carcinoma (HCC) tumorigenesis remains unclear. Here, we found that NRSF expression was up-regulated in 27 of 49 human HCC tissue samples examined. Additionally, mice with conditional NRSF-knockout in the liver exhibited a higher tolerance against diethylnitrosamine (DEN)-induced acute liver injury and were less sensitive to DEN-induced HCC initiation. Our results showed that silencing NRSF in HepG2 cells using RNAi technology significantly inhibited HepG2 cell proliferation and severely hindered their migration and invasion potentials. Our results demonstrated that NRSF plays a pivotal role in promoting DEN-induced HCC initiation via a mechanism related to the STAT3 and AKT signaling pathways. Thus, NRSF could be a potential therapeutic target for treating human HCC.
Collapse
Affiliation(s)
- Ming Ma
- School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Yunhe Zhou
- School of Life Science and Technology, Tongji University, Shanghai 200092, China
- Sports and Health Research Center, Tongji University, Shanghai 200092, China
| | - Ruilin Sun
- Shanghai Engineering Research Center for Model Organisms, SMOC, Shanghai 201318, China
| | - Jiahao Shi
- School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Yutong Tan
- School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Hua Yang
- School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Mengjie Zhang
- School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Ruling Shen
- Joint Laboratory for Model Organism, Shanghai Laboratory Animal Research Center, Shanghai 201203, China
| | - Leon Xu
- School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Zhugang Wang
- Shanghai Engineering Research Center for Model Organisms, SMOC, Shanghai 201318, China
| | - Jian Fei
- School of Life Science and Technology, Tongji University, Shanghai 200092, China
- Shanghai Engineering Research Center for Model Organisms, SMOC, Shanghai 201318, China
- Joint Laboratory for Model Organism, Shanghai Laboratory Animal Research Center, Shanghai 201203, China
| |
Collapse
|
16
|
Zhu C, Wang K, Chen Z, Han Y, Chen H, Li Q, Liu Z, Qian L, Tang J, Shen H. Antinociceptive effect of intrathecal injection of miR-9-5p modified mouse bone marrow mesenchymal stem cells on a mouse model of bone cancer pain. J Neuroinflammation 2020; 17:85. [PMID: 32178691 PMCID: PMC7075036 DOI: 10.1186/s12974-020-01765-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 03/02/2020] [Indexed: 12/20/2022] Open
Abstract
Background A growing body of studies have indicated that bone marrow mesenchymal stem cells (BMSCs) have powerful analgesic effects in animal models of bone cancer pain. Here, we explored the molecular mechanisms underlying how BMSCs alleviate pain sensation in a mouse model of bone cancer pain. Methods C3H/HeN adult male mice were used to generate a bone cancer pain model. BMSCs were isolated from mouse bone marrow, modified by transfection with microRNA-9-5p (miR-9-5p), and infused into the spinal cord. Spontaneous flinches, paw withdrawal latency, limb-use score, and weight-bearing score were used to assess pain-related behaviors. ELISA, RT-PCR, western blot, and luciferase assay were used to assess gene expressions. Results Our results show that miR-9-5p regulated the expression of both repressor element silencing transcription factor (REST) and μ-opioid receptors (MOR) by targeting REST in primary mouse BMSCs. Overexpression of miR-9-5p reversed the activation of inflammatory pathway in TNF-α- and IL-6-treated BMSCs. In addition, miR-9-5p modified BMSCs alleviated cancer pain in the sarcoma-inoculated mouse model. MiR-9-5p modified BMSCs suppressed cytokine expression in the spinal cord of sarcoma-inoculated mice by suppressing REST gene expression. Conclusions Our results indicate that miR-9-5p modified BMSCs can relieve bone cancer pain via modulating neuroinflammation in the central nervous system, suggesting genetically modified BMSCs could be a promising cell therapy in pain management.
Collapse
Affiliation(s)
- Chao Zhu
- Department of Spine Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China.,Department of Orthopaedics, 987 Hospital of PLA, Xi'an, 721000, Shaanxi Province, China
| | - Kun Wang
- Department of Spine Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhi Chen
- Department of Spine Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yingchao Han
- Department of Spine Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hao Chen
- Department of Spine Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Quan Li
- Department of Spine Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zude Liu
- Department of Spine Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Lie Qian
- Department of Spine Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Jun Tang
- Department of Anesthesiology, Jinling Hospital, Medical School of Nanjing University, No. 305 East Zhongshan Road, Nanjing, 210002, Jiangsu, China.
| | - Hongxing Shen
- Department of Spine Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
17
|
Abstract
This paper is the fortieth consecutive installment of the annual anthological review of research concerning the endogenous opioid system, summarizing articles published during 2017 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides and receptors as well as effects of opioid/opiate agonists and antagonists. The review is subdivided into the following specific topics: molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors (1), the roles of these opioid peptides and receptors in pain and analgesia in animals (2) and humans (3), opioid-sensitive and opioid-insensitive effects of nonopioid analgesics (4), opioid peptide and receptor involvement in tolerance and dependence (5), stress and social status (6), learning and memory (7), eating and drinking (8), drug abuse and alcohol (9), sexual activity and hormones, pregnancy, development and endocrinology (10), mental illness and mood (11), seizures and neurologic disorders (12), electrical-related activity and neurophysiology (13), general activity and locomotion (14), gastrointestinal, renal and hepatic functions (15), cardiovascular responses (16), respiration and thermoregulation (17), and immunological responses (18).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, CUNY, 65-30 Kissena Blvd., Flushing, NY, 11367, United States.
| |
Collapse
|
18
|
Zhang F, Gigout S, Liu Y, Wang Y, Hao H, Buckley NJ, Zhang H, Wood IC, Gamper N. Repressor element 1-silencing transcription factor drives the development of chronic pain states. Pain 2019; 160:2398-2408. [PMID: 31206463 PMCID: PMC6756259 DOI: 10.1097/j.pain.0000000000001633] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 05/17/2019] [Accepted: 05/24/2019] [Indexed: 11/25/2022]
Abstract
Chronic pain is an unmet clinical problem with vast individual, societal, and economic impact. Pathologic activity of the peripheral somatosensory afferents is one of the major drivers of chronic pain. This overexcitable state of somatosensory neurons is, in part, produced by the dysregulation of genes controlling neuronal excitability. Despite intense research, a unifying theory behind neuropathic remodelling is lacking. Here, we show that transcriptional suppressor, repressor element 1-silencing transcription factor (REST; neuron-restrictive silencing factor, NRSF), is necessary and sufficient for the development of hyperalgesic state after chronic nerve injury or inflammation. Viral overexpression of REST in mouse dorsal root ganglion (DRG) induced prominent mechanical and thermal hyperalgesia in vivo. Sensory neuron-specific, inducible Rest knockout prevented the development of such hyperalgesic state in 3 different chronic pain models. Genetic deletion of Rest reverted injury-induced hyperalgesia. Moreover, viral overexpression of REST in the same neurons in which its gene has been genetically deleted restored neuropathic hyperalgesia. Finally, sensory neuron specific Rest knockout prevented injury-induced downregulation of REST target genes in DRG neurons. This work identified REST as a major regulator of peripheral somatosensory neuron remodelling leading to chronic pain. The findings might help to develop a novel therapeutic approache to combat chronic pain.
Collapse
Affiliation(s)
- Fan Zhang
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, China
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang, China
- The Key Laboratory of New Drug Pharmacology and Toxicology, Shijiazhuang, Hebei Province, China
| | - Sylvain Gigout
- Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Yu Liu
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, China
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang, China
- The Key Laboratory of New Drug Pharmacology and Toxicology, Shijiazhuang, Hebei Province, China
| | - Yiying Wang
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, China
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang, China
- The Key Laboratory of New Drug Pharmacology and Toxicology, Shijiazhuang, Hebei Province, China
| | - Han Hao
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, China
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang, China
- The Key Laboratory of New Drug Pharmacology and Toxicology, Shijiazhuang, Hebei Province, China
| | - Noel J. Buckley
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom
| | - Hailin Zhang
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, China
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang, China
- The Key Laboratory of New Drug Pharmacology and Toxicology, Shijiazhuang, Hebei Province, China
| | - Ian C. Wood
- Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Nikita Gamper
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, China
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang, China
- The Key Laboratory of New Drug Pharmacology and Toxicology, Shijiazhuang, Hebei Province, China
- Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
19
|
He XT, Zhou KX, Zhao WJ, Zhang C, Deng JP, Chen FM, Gu ZX, Li YQ, Dong YL. Inhibition of Histone Deacetylases Attenuates Morphine Tolerance and Restores MOR Expression in the DRG of BCP Rats. Front Pharmacol 2018; 9:509. [PMID: 29867508 PMCID: PMC5962808 DOI: 10.3389/fphar.2018.00509] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 04/27/2018] [Indexed: 01/21/2023] Open
Abstract
The easily developed morphine tolerance in bone cancer pain (BCP) significantly hindered its clinical use. Increasing evidence suggests that histone deacetylases (HDACs) regulate analgesic tolerance subsequent to continuous opioid exposure. However, whether HDACs contribute to morphine tolerance in the pathogenesis of BCP is still unknown. In the current study, we explored the possible engagement of HDACs in morphine tolerance during the pathogenesis of BCP. After intra-tibia tumor cell inoculation (TCI), we found that the increased expression of HDACs was negatively correlated with the decreased expression of MOR in the DRG following TCI. The paw withdrawal threshold (PWT) and percentage maximum possible effects (MPEs) decreased rapidly in TCI rats when morphine was used alone. In contrast, the concomitant use of SAHA and morphine significantly elevated the PWT and MPEs of TCI rats compared to morphine alone. Additionally, we found that SAHA administration significantly elevated MOR expression in the DRG of TCI rats with or without morphine treatment. Moreover, the TCI-induced increase in the co-expression of MOR and HDAC1 in neurons was significantly decreased after SAHA administration. These results suggest that HDACs are correlated with the downregulation of MOR in the DRG during the pathogenesis of BCP. Inhibition of HDACs using SAHA can be used to attenuate morphine tolerance in BCP.
Collapse
Affiliation(s)
- Xiao-Tao He
- Department of Human Anatomy, Histology and Embryology, K.K. Leung Brain Research Centre, Preclinical School of Medicine, The Fourth Military Medical University, Xi'an, China.,Department of Periodontology, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Kai-Xiang Zhou
- Department of Human Anatomy, Histology and Embryology, K.K. Leung Brain Research Centre, Preclinical School of Medicine, The Fourth Military Medical University, Xi'an, China.,Student Brigade, The Fourth Military Medical University, Xi'an, China
| | - Wen-Jun Zhao
- Department of Human Anatomy, Histology and Embryology, K.K. Leung Brain Research Centre, Preclinical School of Medicine, The Fourth Military Medical University, Xi'an, China.,Student Brigade, The Fourth Military Medical University, Xi'an, China
| | - Chen Zhang
- Department of Human Anatomy, Histology and Embryology, K.K. Leung Brain Research Centre, Preclinical School of Medicine, The Fourth Military Medical University, Xi'an, China.,Student Brigade, The Fourth Military Medical University, Xi'an, China
| | - Jian-Ping Deng
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Fa-Ming Chen
- Department of Periodontology, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Ze-Xu Gu
- State Key Laboratory of Military Stomatology, Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Yun-Qing Li
- Department of Human Anatomy, Histology and Embryology, K.K. Leung Brain Research Centre, Preclinical School of Medicine, The Fourth Military Medical University, Xi'an, China.,Joint Laboratory of Neuroscience at Hainan Medical University and The Fourth Military Medical University, Hainan Medical University, Haikou, China
| | - Yu-Lin Dong
- Department of Human Anatomy, Histology and Embryology, K.K. Leung Brain Research Centre, Preclinical School of Medicine, The Fourth Military Medical University, Xi'an, China
| |
Collapse
|
20
|
Zhuang L, Li K, Wang G, Shou T, Gao C, Mao Y, Bao M, Zhao M. Preconditioning with hydrogen sulfide prevents bone cancer pain in rats through a proliferator-activated receptor gamma/p38/Jun N-terminal kinase pathway. Exp Biol Med (Maywood) 2017; 243:57-65. [PMID: 29096563 DOI: 10.1177/1535370217740859] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Bone cancer pain (BCP) is a severe type of hyperpathic pain occurring with primary bone tumors or advanced cancers which metastasize to bones. BCP can detrimentally reduce quality of life and presents a challenge to modern medicine. Studies have shown that exogenous H2S may act as a neuroprotectant to protect against some diseases in central nervous system. The preset study aimed to investigate the antinociceptive effect of H2S in BCP. We first measured the changes of serum H2S in patients with BCP and analyzed the relationship between them, then investigated the effect of H2S preconditioning on BCP, and explored the mechanism in rat model. Our results revealed that serum H2S level was negatively correlated with pain scores. In the rat model of BCP, preconditioning with H2S significantly reduced BCP, demonstrated by the decrease of thermal hyperalgesia and mechanical allodynia. The mechanism of H2S preconditioning may involve microglia deactivation and inflammation inhibition in the spinal cord, in which the proliferator-activated receptor gamma/p38/Jun N-terminal kinase pathway is activated. Impact statement Bone cancer pain (BCP) significantly decreases the life quality of patients or their life expectancy and causes a severe health burden to the society. However, as the exact mechanism of BCP is still poorly understood, no effective treatment has been developed yet. There are some pain medicines now, but they have some inevitable side effects. Additional therapeutic strategies are urgently needed. First, we revealed that preconditioning with H2S significantly reduced BCP, demonstrated by the decrease of thermal hyperalgesia and mechanical allodynia. Second, the mechanism of H2S preconditioning was elucidated. It may involve microglia deactivation and inflammation inhibition in the spinal cord, in which the proliferator-activated receptor gamma/p38/Jun N-terminal kinase pathway is activated. This novel finding may significantly help us to understand the difference between the roles of endogenous H2S and exogenous H2S in the development of BCP and present us a new strategy of pain management.
Collapse
Affiliation(s)
- Li Zhuang
- 1 The Department of Palliative Medicine, The Third Affiliated Hospital of Kunming Medical University, Yunnan Tumor Hospital, Yunnan Palliative Medicine Research Center, Yunnan 650118, China
| | - Ke Li
- 2 The Second Department of Medicine, the Third Affiliated Hospital of Kunming Medical University, Yunnan Tumor Hospital, Yunnan 650118, China
| | - Gaowei Wang
- 3 Department of Medical Service, the Third Affiliated Hospital of Kunming Medical University, Yunnan Tumor Hospital, Yunnan 650118, China
| | - Tao Shou
- 4 Department of Oncology, the First People's Hospital of Yunnan Province, Yunnan 650032, China
| | - Chunlin Gao
- 2 The Second Department of Medicine, the Third Affiliated Hospital of Kunming Medical University, Yunnan Tumor Hospital, Yunnan 650118, China
| | - Yong Mao
- 5 Department of Pain Medicine, the Third Affiliated Hospital of Kunming Medical University, Yunnan Tumor Hospital, Yunnan 650118, China
| | - Mingliang Bao
- 2 The Second Department of Medicine, the Third Affiliated Hospital of Kunming Medical University, Yunnan Tumor Hospital, Yunnan 650118, China
| | - Mingli Zhao
- 6 The Third Department of Medicine, the Third Affiliated Hospital of Kunming Medical University Yunnan Tumor Hospital, Yunnan 650118, China
| |
Collapse
|