1
|
Dayani L, Haddadi F, Aliomrani M, Taheri A. Preparation and In vitro/In vivo Evaluation of Fingolimod hydrochloride Loaded Polymeric Mixed Nano-Micelles for Treatment of Multiple Sclerosis. J Neuroimmune Pharmacol 2025; 20:41. [PMID: 40237870 DOI: 10.1007/s11481-025-10203-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 04/08/2025] [Indexed: 04/18/2025]
Abstract
Fingolimod (FYN) is one of the approved medicines for treatment of multiple sclerosis (MS) while exhibiting several side effects such as liver enzyme elevation and cardiac damage. This study was aimed to prepare the mixed micelles of ascorbyl palmitate (AP) and alpha-tocopherol polyethylene glycol succinate (TPGS) as a delivery system for FYN. The mixed micelles were prepared by thin film hydration method at different ratios of AP/TPGS. Saturation solubility of the micelles was compared with the pure drug. The optimized formulation was characterized by scanning electron microscopy (SEM) and subjected for stability study at 5 ± 3 °C for 3 months. The effect of the prepared fingolimod loaded micelles (FYN-Micelle) was finally assessed by experimental autoimmune encephalomyelitis (EAE) model at the dose of 0.3, 1, and 3 mg/kg of fingolimod, which was administrated intraperitoneally. The results indicated that the prepared mixed micelles at the AP/TPGS ratio of 1:5 showed a particle size, zeta potential, and an entrapment efficiency of 116.86 ± 2.41 nm, 23.61 ± 4.56 mV, and 63.28 ± 5.31%, respectively. Also, this formulation was stable after a 3-month incubation at 5 ± 3 °C. SEM images displayed an amorphous state of the drug in the micelles. Animal studies confirmed that this formulation at the dose of 1 mg/kg could enhance the myelin density of the brain while reducing cardiac and hepatic impairment. Therefore, these findings suggested that FYN-Micelle could be exploited as an effective delivery system for fingolimod hydrochloride to treat MS.
Collapse
Affiliation(s)
- Ladan Dayani
- Novel Drug Delivery Systems Research Center, Department of Pharmaceutics, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fatemeh Haddadi
- Novel Drug Delivery Systems Research Center, Department of Pharmaceutics, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mehdi Aliomrani
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Azade Taheri
- Novel Drug Delivery Systems Research Center, Department of Pharmaceutics, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran.
- Department of Pharmaceutics, Faculty of Pharmacy and Novel Drug Delivery Systems Research Centre, Isfahan University of Medical Sciences, PO Box 81746 - 73461, Isfahan, Iran.
| |
Collapse
|
2
|
Gupta S, Gupta AK, Mehan S, Khan Z, Gupta GD, Narula AS. Disruptions in cellular communication: Molecular interplay between glutamate/NMDA signalling and MAPK pathways in neurological disorders. Neuroscience 2025; 569:331-353. [PMID: 39809360 DOI: 10.1016/j.neuroscience.2025.01.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/30/2024] [Accepted: 01/10/2025] [Indexed: 01/16/2025]
Abstract
Neurological disorders significantly impact the central nervous system, contributing to a growing public health crisis globally. The spectrum of these disorders includes neurodevelopmental and neurodegenerative diseases. This manuscript reviews the crucial roles of cellular signalling pathways in the pathophysiology of these conditions, focusing primarily on glutaminase/glutamate/NMDA receptor signalling, alongside the mitogen-activated protein kinase (MAPK) pathways-ERK1/2, C-JNK, and P38 MAPK. Activation of these pathways is often correlated with neuronal excitotoxicity, apoptosis, and inflammation, leading to many other pathological conditions such as traumatic brain injury, stroke, and brain tumor. The interplay between glutamate overstimulation and MAPK signalling exacerbates neurodegenerative processes, underscoring the complexity of cellular communication in maintaining neuronal health. Dysfunctional signalling alters synaptic plasticity and neuronal survival, contributing to cognitive impairments in various neurological diseases. The manuscript emphasizes the potential of targeting these signalling pathways for therapeutic interventions, promoting neuroprotection and reducing neuroinflammation. Incorporating insights from precision medicine and innovative drug delivery systems could enhance treatment efficacy. Overall, understanding the intricate mechanisms of these pathways is essential for developing effective strategies to mitigate the impact of neurological disorders and improve patient outcomes. This review highlights the necessity for further exploration into these signalling cascades to facilitate advancements in therapeutic approaches, ensuring better prognoses for individuals affected by neurological conditions.
Collapse
Affiliation(s)
- Sumedha Gupta
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab 144603, India
| | - Abhishek Kumar Gupta
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab 144603, India
| | - Sidharth Mehan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab 144603, India. https://mehanneuroscience.org
| | - Zuber Khan
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab, India Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab 144603, India
| | - Ghanshyam Das Gupta
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab, India Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab 144603, India
| | - Acharan S Narula
- Narula Research, LLC, 107 Boulder Bluff, Chapel Hill, NC 27516, USA
| |
Collapse
|
3
|
Philip V, Kraimi N, Zhang H, Lu J, Palma GD, Shimbori C, McCoy KD, Hapfelmeier S, Schären OP, Macpherson AJ, Chirdo F, Surette MG, Verdu EF, Liu F, Collins SM, Bercik P. Innate immune system signaling and intestinal dendritic cells migration to the brain underlie behavioral changes after microbial colonization in adult mice. Brain Behav Immun 2025; 127:238-250. [PMID: 40068794 DOI: 10.1016/j.bbi.2025.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 02/19/2025] [Accepted: 03/06/2025] [Indexed: 03/22/2025] Open
Abstract
BACKGROUND AND AIMS Accumulating evidence suggests the microbiota is a key factor in Disorders of Gut-Brain Interaction (DGBI), by affecting host immune and neural systems. However, the underlying mechanisms remain elusive due to their complexity and clinical heterogeneity of patients with DGBIs. We aimed to identify neuroimmune pathways that are critical in microbiota-gut-brain communication during de novo gut colonization. METHODS We employed a combination of gnotobiotic and state-of-the-art microbial tools, behavioral analysis, immune and pharmacological approaches. Germ-free wild type, TLR signaling-deficient MyD88-/- Ticam1-/- and lymphocyte-deficient SCID mice were studied before and after colonization with specific pathogen-free microbiota, Altered Schaedler Flora, E. coli or S. typhimurium (permanent or transient colonizers). TLR agonists and antagonists, CCR7 antagonist or immunomodulators were used to study immune pathways. We assessed brain c-Fos, brain-derived neurotrophic factor, and dendritic and glial cells by immunofluorescence, expression of neuroimmune genes by NanoString and performed brain proteomics. RESULTS Bacterial monocolonization, conventionalization or administration of microbial products to germ-free mice altered mouse behavior similarly, acting through Toll-like receptor or nucleotide-binding oligomerization domain signaling. The process required CD11b+CD11c+CD103+ dendritic cell activation and migration into the brain. The change in behavior did not require the continued presence of bacteria and was associated with activation of multiple neuro-immune networks in the gut and the brain. CONCLUSIONS Changes in neural plasticity occur rapidly upon initial gut microbial colonization and involve innate immune signaling to the brain, mediated by CD11b+CD11c+CD103+ dendritic cell migration. The results identify a new target with therapeutic potential for DGBIs developing in context of increased gut and blood-brain barrier permeability.
Collapse
Affiliation(s)
- Vivek Philip
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Canada; Campbell Family Mental Health Research Institute, the Centre for Addiction and Mental Health, Toronto, Canada
| | - Narjis Kraimi
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Canada
| | - Hailong Zhang
- Campbell Family Mental Health Research Institute, the Centre for Addiction and Mental Health, Toronto, Canada
| | - Jun Lu
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Canada
| | - Giada De Palma
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Canada
| | - Chiko Shimbori
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Canada
| | - Kathy D McCoy
- Department of Biomedical Research, University Hospital, Bern, Switzerland; Dept. of Physiology and Pharmacology, Snyder Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | | | - Olivier P Schären
- University of Bern, Institute for Infectious Diseases, Bern, Switzerland
| | | | - Fernando Chirdo
- Instituto de Estudios Inmunologicos y Fisiopatologicos - IIFP (UNLP-CONICET), La Plata, Argentina
| | - Michael G Surette
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Canada
| | - Elena F Verdu
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Canada
| | - Fang Liu
- Campbell Family Mental Health Research Institute, the Centre for Addiction and Mental Health, Toronto, Canada
| | - Stephen M Collins
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Canada
| | - Premysl Bercik
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Canada.
| |
Collapse
|
4
|
Otálora-Alcaraz A, Reilly T, Oró-Nolla M, Sun MC, Costelloe L, Kearney H, Patra PH, Downer EJ. The NLRP3 inflammasome: A central player in multiple sclerosis. Biochem Pharmacol 2025; 232:116667. [PMID: 39647604 DOI: 10.1016/j.bcp.2024.116667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/06/2024] [Accepted: 11/25/2024] [Indexed: 12/10/2024]
Abstract
Multiple sclerosis (MS) is a neurological autoimmune condition associated with many symptoms including spasticity, pain, limb numbness and weakness. It is characterised by inflammatory demyelination and axonal degeneration of the brain and spinal cord. A range of disease-modifying therapies (DMTs) are available to suppress inflammatory disease activity in MS, however, there is a pressing need for new therapeutic avenues as DMTs have a limited ability to suppress confirmed disability progression. A body of literature indicates that innate immune inflammation is linked to MS progression. The nucleotide-binding oligomerization domain (NOD)-like receptor pyrin domain containing protein 3 (NLRP3) inflammasome has a well-established function in innate immunity which is closely associated with the pathogenesis of neuroinflammatory conditions. Evidence suggests that the inflammasome may be a therapeutic target in disorders such as MS and at present, inhibitors of the NLRP3 inflammasome are in pre-clinical development. Therefore, this review systematically highlights the pathogenic role of inflammasomes in MS, presenting an overview of research evidence linking inflammasome-related polymorphisms to MS susceptibility, and gathering evidence investigating NLRP3 biomarkers in MS. The role of the NLRP3 inflammasome in murine models of MS is furthermore discussed. Finally, a significant component of this review focuses on evidence that NLRP3 signalling components are novel drug targets in MS. Overall this review defines the role of the inflammasome in MS pathogenesis and identifies inflammasome inhibitor targets that warrant full investigation in MS and related disorders.
Collapse
Affiliation(s)
- Almudena Otálora-Alcaraz
- Discipline of Physiology, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Thomas Reilly
- Discipline of Physiology, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Martí Oró-Nolla
- Discipline of Physiology, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Melody Cui Sun
- Discipline of Physiology, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Lisa Costelloe
- Department of Neurology, Beaumont Hospital, Dublin, Ireland
| | - Hugh Kearney
- MS Unit, Department of Neurology, St. James's Hospital, Dublin, Ireland; Academic Unit of Neurology, School of Medicine, Trinity College Dublin, Ireland
| | - Pabitra H Patra
- Transpharmation Ltd., London Biosciences Innovation Centre, London, United Kingdom
| | - Eric J Downer
- Discipline of Physiology, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland.
| |
Collapse
|
5
|
Pondelick AM, Moncayo LV, Donvito G, McLane VD, Gillespie JC, Hauser KF, Spiegel S, Lichtman AH, Sim-Selley LJ, Selley DE. Dissociation between the anti-allodynic effects of fingolimod (FTY720) and desensitization of S1P 1 receptor-mediated G-protein activation in a mouse model of sciatic nerve injury. Neuropharmacology 2024; 261:110165. [PMID: 39303855 DOI: 10.1016/j.neuropharm.2024.110165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/28/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
Sphingosine-1-phosphate (S1P) receptor (S1PR) agonists, such as fingolimod (FTY720), alleviate nociception in preclinical pain models by either activation (agonism) or inhibition (functional antagonism) of S1PR type-1 (S1PR1). However, the dose-dependence and temporal relationship between reversal of nociception and modulation of S1PR1 signaling has not been systematically investigated. This study examined the relationship between FTY720-induced antinociception and S1PR1 adaptation using a sciatic nerve chronic constriction injury (CCI) model of neuropathic pain in male and female C57Bl/6J mice. Daily injections of FTY720 for 14 days dose-dependently reversed CCI-induced mechanical allodynia without tolerance development, and concomitantly resulted in a dose-dependent reduction of G-protein activation by the S1PR1-selective agonist SEW2871 in the lumbar spinal cord and brain. These findings indicate FTY720-induced desensitization of S1PR1 signaling coincides with its anti-allodynic effects. Consistent with this finding, a single injection of FTY720 reversed mechanical allodynia while concomitantly producing partial desensitization of S1PR1-stimulated G-protein activation in the CNS. However, mechanical allodynia returned 24-hr post injection, despite S1PR1 desensitization at that time, demonstrating a dissociation between these measures. Furthermore, CCI surgery led to elevations of sphingolipid metabolites, including S1P, which were unaffected by daily FTY720 administration, suggesting FTY720 reversed mechanical allodynia by targeting S1PR1 rather than sphingolipid metabolism. Supporting this hypothesis, acute administration of the S1PR1-selective agonist CYM-5442 mimicked the anti-allodynic effect of FTY720. In contrast, the S1PR1-selective antagonist NIBR-0213 prevented the anti-allodynic effect of FTY720, but NIBR-0213 given alone did not affect nociception. These results indicate that FTY720 alleviates CCI-induced allodynia through a mechanism distinct from functional antagonism.
Collapse
Affiliation(s)
- Abby M Pondelick
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Lauren V Moncayo
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Giulia Donvito
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Virginia D McLane
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - James C Gillespie
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Kurt F Hauser
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Sarah Spiegel
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Aron H Lichtman
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Laura J Sim-Selley
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Dana E Selley
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA.
| |
Collapse
|
6
|
Dhir S, Derue H, Ribeiro-da-Silva A. Temporal changes of spinal microglia in murine models of neuropathic pain: a scoping review. Front Immunol 2024; 15:1460072. [PMID: 39735541 PMCID: PMC11671780 DOI: 10.3389/fimmu.2024.1460072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 11/18/2024] [Indexed: 12/31/2024] Open
Abstract
Neuropathic pain (NP) is an ineffectively treated, debilitating chronic pain disorder that is associated with maladaptive changes in the central nervous system, particularly in the spinal cord. Murine models of NP looking at the mechanisms underlying these changes suggest an important role of microglia, the resident immune cells of the central nervous system, in various stages of disease progression. However, given the number of different NP models and the resource limitations that come with tracking longitudinal changes in NP animals, many studies fail to truly recapitulate the patterns that exist between pain conditions and temporal microglial changes. This review integrates how NP studies are being carried out in murine models and how microglia changes over time can affect pain behavior in order to inform better study design and highlight knowledge gaps in the field. 258 peer-reviewed, primary source articles looking at spinal microglia in murine models of NP were selected using Covidence. Trends in the type of mice, statistical tests, pain models, interventions, microglial markers and temporal pain behavior and microglia changes were recorded and analyzed. Studies were primarily conducted in inbred, young adult, male mice having peripheral nerve injury which highlights the lack of generalizability in the data currently being collected. Changes in microglia and pain behavior, which were both increased, were tested most commonly up to 2 weeks after pain initiation despite aberrant microglia activity also being recorded at later time points in NP conditions. Studies using treatments that decrease microglia show decreased pain behavior primarily at the 1- and 2-week time point with many studies not recording pain behavior despite the involvement of spinal microglia dysfunction in their development. These results show the need for not only studying spinal microglia dynamics in a variety of NP conditions at longer time points but also for better clinically relevant study design considerations.
Collapse
Affiliation(s)
- Simran Dhir
- Department of Pharmacology and Therapeutics, School of Biomedical Sciences, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, Canada
| | - Hannah Derue
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Alfredo Ribeiro-da-Silva
- Department of Pharmacology and Therapeutics, School of Biomedical Sciences, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, Canada
| |
Collapse
|
7
|
Scheuren PS, Calvo M. Exploring neuroinflammation: A key driver in neuropathic pain disorders. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2024; 179:311-338. [PMID: 39580216 DOI: 10.1016/bs.irn.2024.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2024]
Abstract
Inflammation is a fundamental part of the body's natural defense mechanism, involving immune cells and inflammatory mediators to promote healing and protect against harm. In the event of a lesion or disease of the somatosensory nervous system, inflammation, however, triggers a cascade of changes in both the peripheral and central nervous systems, ultimately contributing to chronic neuropathic pain. Substantial evidence links neuroinflammation to various conditions associated with neuropathic pain. This chapter will explore the role of neuroinflammation in the initiation, maintenance, and resolution of peripheral and central neuropathic pain. Additionally, biomarkers of neuroinflammation in humans will be examined, emphasizing their relevance in different neuropathic pain disorders.
Collapse
Affiliation(s)
- Paulina S Scheuren
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, BC, Canada; Department of Anesthesiology, Pharmacology, and Therapeutics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada.
| | - Margarita Calvo
- Physiology Department, Pontificia Universidad Católica de Chile, Santiago, Chile; Millennium Nucleus for the Study of Pain (MiNuSPain), Santiago, Chile
| |
Collapse
|
8
|
Fan L, Li Q, Shi Y, Li X, Liu Y, Chen J, Sun Y, Chen A, Yang Y, Zhang X, Wang J, Wu L. Involvement of sphingosine-1-phosphate receptor 1 in pain insensitivity in a BTBR mouse model of autism spectrum disorder. BMC Med 2024; 22:504. [PMID: 39497100 PMCID: PMC11533282 DOI: 10.1186/s12916-024-03722-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 10/22/2024] [Indexed: 11/06/2024] Open
Abstract
BACKGROUND Abnormal sensory perception, particularly pain insensitivity (PAI), is a typical symptom of autism spectrum disorder (ASD). Despite the role of myelin metabolism in the regulation of pain perception, the mechanisms underlying ASD-related PAI remain unclear. METHODS The pain-associated gene sphingosine-1-phosphate receptor 1 (S1PR1) was identified in ASD samples through bioinformatics analysis. Its expression in the dorsal root ganglion (DRG) tissues of BTBR ASD model mice was validated using RNA-seq, western blot, RT-qPCR, and immunofluorescence. Pain thresholds were assessed using the von Frey and Hargreaves tests. Patch-clamp techniques measured KCNQ/M channel activity and neuronal action potentials. The expression of S1PR1, KCNQ/M, mitogen-activated protein kinase (MAPK), and cyclic AMP/protein kinase A (cAMP/PKA) signaling proteins was analyzed before and after inhibiting the S1P-S1PR1-KCNQ/M pathway via western blot and RT-qPCR. RESULTS Through integrated transcriptomic analysis of ASD samples, we identified the upregulated gene S1PR1, which is associated with sphingolipid metabolism and linked to pain perception, and confirmed its role in the BTBR mouse model of ASD. This mechanism involves the regulation of KCNQ/M channels in DRG neurons. The enhanced activity of KCNQ/M channels and the decreased action potentials in small and medium DRG neurons were correlated with PAI in a BTBR mouse model of ASD. Inhibition of the S1P/S1PR1 pathway rescued baseline insensitivity to pain by suppressing KCNQ/M channels in DRG neurons, mediated through the MAPK and cAMP/PKA pathways. Investigating the modulation and underlying mechanisms of the non-opioid pathway involving S1PR1 will provide new insights into clinical targeted interventions for PAI in ASD. CONCLUSIONS S1PR1 may contribute to PAI in the PNS in ASD. The mechanism involves KCNQ/M channels and the MAPK and cAMP/PKA signaling pathways. Targeting S1PR1 in the PNS could offer novel therapeutic strategies for the intervention of pain dysesthesias in individuals with ASD.
Collapse
Affiliation(s)
- Lili Fan
- Department of Children's and Adolescent Health, Public Health College, Harbin Medical University, Harbin, 150081, China
| | - Qi Li
- School of Nursing, Xuzhou Medical University, Xuzhou, 221004, China
| | - Yaxin Shi
- Department of Children's and Adolescent Health, Public Health College, Harbin Medical University, Harbin, 150081, China
| | - Xiang Li
- Department of Children's and Adolescent Health, Public Health College, Harbin Medical University, Harbin, 150081, China
| | - Yutong Liu
- Department of Children's and Adolescent Health, Public Health College, Harbin Medical University, Harbin, 150081, China
| | - Jiaqi Chen
- Department of Children's and Adolescent Health, Public Health College, Harbin Medical University, Harbin, 150081, China
| | - Yaqi Sun
- Department of Children's and Adolescent Health, Public Health College, Harbin Medical University, Harbin, 150081, China
| | - Anjie Chen
- Department of Children's and Adolescent Health, Public Health College, Harbin Medical University, Harbin, 150081, China
| | - Yuan Yang
- Department of Children's and Adolescent Health, Public Health College, Harbin Medical University, Harbin, 150081, China
| | - Xirui Zhang
- Department of Children's and Adolescent Health, Public Health College, Harbin Medical University, Harbin, 150081, China
| | - Jia Wang
- Department of Children's and Adolescent Health, Public Health College, Harbin Medical University, Harbin, 150081, China
| | - Lijie Wu
- Department of Children's and Adolescent Health, Public Health College, Harbin Medical University, Harbin, 150081, China.
- Department of Developmental Behavioral Pediatrics, The Sixth Affiliated Hospital of Harbin Medical University, Harbin, 150023, China.
| |
Collapse
|
9
|
Li H, Deng Z, Yu X, Lin J, Xie Y, Liao W, Ma Y, Zheng Q. Combining dual-view fusion pose estimation and multi-type motion feature extraction to assess arthritis pain in mice. Biomed Signal Process Control 2024; 92:106080. [DOI: 10.1016/j.bspc.2024.106080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2024]
|
10
|
Magni G, Riboldi B, Ceruti S. Human Glial Cells as Innovative Targets for the Therapy of Central Nervous System Pathologies. Cells 2024; 13:606. [PMID: 38607045 PMCID: PMC11011741 DOI: 10.3390/cells13070606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/13/2024] Open
Abstract
In vitro and preclinical in vivo research in the last 35 years has clearly highlighted the crucial physiopathological role of glial cells, namely astrocytes/microglia/oligodendrocytes and satellite glial cells/Schwann cells in the central and peripheral nervous system, respectively. Several possible pharmacological targets to various neurodegenerative disorders and painful conditions have therefore been successfully identified, including receptors and enzymes, and mediators of neuroinflammation. However, the translation of these promising data to a clinical setting is often hampered by both technical and biological difficulties, making it necessary to perform experiments on human cells and models of the various diseases. In this review we will, therefore, summarize the most relevant data on the contribution of glial cells to human pathologies and on their possible pharmacological modulation based on data obtained in post-mortem tissues and in iPSC-derived human brain cells and organoids. The possibility of an in vivo visualization of glia reaction to neuroinflammation in patients will be also discussed.
Collapse
Affiliation(s)
| | | | - Stefania Ceruti
- Laboratory of Pain Therapy and Neuroimmunology, Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, via Balzaretti, 9, 20133 Milan, Italy; (G.M.); (B.R.)
| |
Collapse
|
11
|
Shkodina AD, Bardhan M, Chopra H, Anyagwa OE, Pinchuk VA, Hryn KV, Kryvchun AM, Boiko DI, Suresh V, Verma A, Delva MY. Pharmacological and Non-pharmacological Approaches for the Management of Neuropathic Pain in Multiple Sclerosis. CNS Drugs 2024; 38:205-224. [PMID: 38421578 DOI: 10.1007/s40263-024-01072-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/14/2024] [Indexed: 03/02/2024]
Abstract
Multiple sclerosis is a chronic inflammatory disease that affects the central nervous system and can cause various types of pain including ongoing extremity pain, Lhermitte's phenomenon, trigeminal neuralgia, and mixed pain. Neuropathic pain is a major concern for individuals with multiple sclerosis as it is directly linked to myelin damage in the central nervous system and the management of neuropathic pain in multiple sclerosis is challenging as the options available have limited efficacy and can cause unpleasant side effects. The literature search was conducted across two databases, PubMed, and Google Scholar. Eligible studies included clinical trials, observational studies, meta-analyses, systematic reviews, and narrative reviews. The objective of this article is to provide an overview of literature on pharmacological and non-pharmacological strategies employed in the management of neuropathic pain in multiple sclerosis. Pharmacological options include cannabinoids, muscle relaxants (tizanidine, baclofen, dantrolene), anticonvulsants (benzodiazepines, gabapentin, phenytoin, carbamazepine, lamotrigine), antidepressants (duloxetine, venlafaxine, tricyclic antidepressants), opioids (naltrexone), and botulinum toxin variants, which have evidence from various clinical trials. Non-pharmacological approaches for trigeminal neuralgia may include neurosurgical methods. Non-invasive methods, physical therapy, and psychotherapy (cognitive behavioral therapy, acceptance and commitment therapy and mindfulness-based stress reduction) may be recommended for patients with neuropathic pain in multiple sclerosis. The choice of treatment depends on the severity and type of pain as well as other factors, such as patient preferences and comorbidities. There is a pressing need for healthcare professionals and researchers to prioritize the development of better strategies for managing multiple sclerosis-induced neuropathic pain.
Collapse
Affiliation(s)
- Anastasiia D Shkodina
- Department of Neurological diseases, Poltava State Medical University, Poltava, Ukraine
| | - Mainak Bardhan
- Neuro Medical Oncology, Miami Cancer Institute, Baptist Health South Florida, 8900 N. Kendall Drive, Miami, FL, 33176, USA.
| | - Hitesh Chopra
- Department of Biosciences, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, 602105, Tamil Nadu, India
| | | | - Viktoriia A Pinchuk
- Department of Neurological diseases, Poltava State Medical University, Poltava, Ukraine
| | - Kateryna V Hryn
- Department of Neurological diseases, Poltava State Medical University, Poltava, Ukraine
| | - Anzhelina M Kryvchun
- Department of Neurological diseases, Poltava State Medical University, Poltava, Ukraine
| | - Dmytro I Boiko
- Department of Psychiatry, Narcology and Medical Psychology, Poltava State Medical University, Poltava, Ukraine
| | - Vinay Suresh
- King George's Medical University, Lucknow, India
| | - Amogh Verma
- Rama Medical College Hospital and Research Centre, Hapur, India
| | - Mykhailo Yu Delva
- Department of Neurological diseases, Poltava State Medical University, Poltava, Ukraine
| |
Collapse
|
12
|
Mousavi SH, Lindsey JW, Westlund KN, Alles SRA. Trigeminal Neuralgia as a Primary Demyelinating Disease: Potential Multimodal Evidence and Remaining Controversies. THE JOURNAL OF PAIN 2024; 25:302-311. [PMID: 37643657 DOI: 10.1016/j.jpain.2023.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/17/2023] [Accepted: 08/23/2023] [Indexed: 08/31/2023]
Abstract
Trigeminal neuralgia is a heterogeneous disorder with likely multifactorial and complex etiology; however, trigeminal nerve demyelination and injury are observed in almost all patients with trigeminal neuralgia. The current management strategies for trigeminal neuralgia primarily involve anticonvulsants and surgical interventions, neither of which directly address demyelination, the pathological hallmark of trigeminal neuralgia, and treatments targeting demyelination are not available. Demyelination of the trigeminal nerve has been historically considered a secondary effect of vascular compression, and as a result, trigeminal neuralgia is not recognized nor treated as a primary demyelinating disorder. In this article, we review the evolution of our understanding of trigeminal neuralgia and provide evidence to propose its potential categorization, at least in some cases, as a primary demyelinating disease by discussing its course and similarities to multiple sclerosis, the most prevalent central nervous system demyelinating disorder. This proposed categorization may provide a basis in investigating novel treatment modalities beyond the current medical and surgical interventions, emphasizing the need for further research into demyelination of the trigeminal sensory pathway in trigeminal neuralgia. PERSPECTIVE: This article proposes trigeminal neuralgia as a demyelinating disease, supported by histological, clinical, and radiological evidence. Such categorization offers a plausible explanation for controversies surrounding trigeminal neuralgia. This perspective holds potential for future research and developing therapeutics targeting demyelination in the condition.
Collapse
Affiliation(s)
- Seyed H Mousavi
- Division of Multiple Sclerosis and Neuroimmunology, Department of Neurology, University of Texas Health Science Center at Houston (UTHealth), Houston, Texas
| | - John W Lindsey
- Division of Multiple Sclerosis and Neuroimmunology, Department of Neurology, University of Texas Health Science Center at Houston (UTHealth), Houston, Texas
| | - Karin N Westlund
- Department of Anesthesiology & Critical Care Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Sascha R A Alles
- Department of Anesthesiology & Critical Care Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| |
Collapse
|
13
|
Zarch RE, Semyari H, Tehranchi M, Rezapour A, Golghalyani V. Pleiotropic effect of intramucosal injection of FTY720 on angiogenesis and tissue healing after free gingival graft surgery: a comparative experimental study in rabbits. Clin Oral Investig 2023; 28:47. [PMID: 38153553 DOI: 10.1007/s00784-023-05450-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 12/17/2023] [Indexed: 12/29/2023]
Abstract
OBJECTIVES Free gingival graft surgery is the gold standard for increasing the size of keratinized tissue. Blood supply in the recipient site is critical for healing. Therefore, in this study, the effect of FTY720 on angiogenesis, healing, and scar tissue presence following free gingival graft surgery is investigated. MATERIALS AND METHODS Surgeries were performed on 10 New Zealand white rabbits. Rabbits were randomly assigned to two groups. In the experimental group, immediately after surgery, 2 and 4 days later, FTY-720 was injected into the tissue surrounding the recipient site. In the control group, the same frequency of placebo vehicle was injected. After 30 days, tissue samples were assessed histologically and histomorphometrically. RESULTS The blood vessel count (P < 0.000) and rete ridge formation (P < 0.05) in the experimental group were significantly higher, while the epithelial thickness was lower in this group (P < 0.000). There was no significant difference in the percentage of regions occupied by collagen fibres between the groups (P = 0.987). Furthermore, a significant and negative relationship between epithelial thickness and blood vessel count was shown (Pearson correlation coefficient = - 0.917). CONCLUSIONS The findings indicate that the angiogenic effects of FTY-720 in the recipient site of free gingival graft can be employed to promote tissue healing and reduce scar tissue presence. CLINICAL RELEVANCE A significant decrease in epithelial thickness and increase in angiogenesis as well as rete ridge formation score in the FTY-720 group were shown, which can be translated into improved tissue healing and less presence of scar tissue.
Collapse
Affiliation(s)
- Reyhaneh Eghbali Zarch
- Department of Periodontics, Faculty of Dentistry, Shahed University, Tehran, Iran.
- Department of Medical Affairs, Institut Straumann AG-Basel, Basel, Switzerland.
| | - Hassan Semyari
- Department of Periodontics, Faculty of Dentistry, Shahed University, Tehran, Iran
| | - Maryam Tehranchi
- Department of Periodontics, Faculty of Dentistry, Shahed University, Tehran, Iran
| | - Abbas Rezapour
- Department of Periodontics, Faculty of Dentistry, Shahed University, Tehran, Iran
| | | |
Collapse
|
14
|
Dalenogare DP, Souza Monteiro de Araújo D, Landini L, Titiz M, De Siena G, De Logu F, Geppetti P, Nassini R, Trevisan G. Neuropathic-like Nociception and Spinal Cord Neuroinflammation Are Dependent on the TRPA1 Channel in Multiple Sclerosis Models in Mice. Cells 2023; 12:1511. [PMID: 37296632 PMCID: PMC10252670 DOI: 10.3390/cells12111511] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/08/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
Background: Transient receptor potential ankyrin 1 (TRPA1) activation is implicated in neuropathic pain-like symptoms. However, whether TRPA1 is solely implicated in pain-signaling or contributes to neuroinflammation in multiple sclerosis (MS) is unknown. Here, we evaluated the TRPA1 role in neuroinflammation underlying pain-like symptoms using two different models of MS. Methods: Using a myelin antigen, Trpa1+/+ or Trpa1-/- female mice developed relapsing-remitting experimental autoimmune encephalomyelitis (RR-EAE) (Quil A as adjuvant) or progressive experimental autoimmune encephalomyelitis (PMS)-EAE (complete Freund's adjuvant). The locomotor performance, clinical scores, mechanical/cold allodynia, and neuroinflammatory MS markers were evaluated. Results: Mechanical and cold allodynia detected in RR-EAE, or PMS-EAE Trpa1+/+ mice, were not observed in Trpa1-/- mice. The increased number of cells labeled for ionized calcium-binding adapter molecule 1 (Iba1) or glial fibrillary acidic protein (GFAP), two neuroinflammatory markers in the spinal cord observed in both RR-EAE or PMS-EAE Trpa1+/+ mice, was reduced in Trpa1-/- mice. By Olig2 marker and luxol fast blue staining, prevention of the demyelinating process in Trpa1-/- induced mice was also detected. Conclusions: Present results indicate that the proalgesic role of TRPA1 in EAE mouse models is primarily mediated by its ability to promote spinal neuroinflammation and further strengthen the channel inhibition to treat neuropathic pain in MS.
Collapse
Affiliation(s)
- Diéssica Padilha Dalenogare
- Graduated Program in Pharmacology, Federal University of Santa Maria (UFSM), Santa Maria 97105-900, RS, Brazil;
| | - Daniel Souza Monteiro de Araújo
- Clinical Pharmacology Unit, Department of Health Sciences, University of Florence, 50139 Florence, Italy; (D.S.M.d.A.); (L.L.); (M.T.); (G.D.S.); (F.D.L.); (P.G.); (R.N.)
| | - Lorenzo Landini
- Clinical Pharmacology Unit, Department of Health Sciences, University of Florence, 50139 Florence, Italy; (D.S.M.d.A.); (L.L.); (M.T.); (G.D.S.); (F.D.L.); (P.G.); (R.N.)
| | - Mustafa Titiz
- Clinical Pharmacology Unit, Department of Health Sciences, University of Florence, 50139 Florence, Italy; (D.S.M.d.A.); (L.L.); (M.T.); (G.D.S.); (F.D.L.); (P.G.); (R.N.)
| | - Gaetano De Siena
- Clinical Pharmacology Unit, Department of Health Sciences, University of Florence, 50139 Florence, Italy; (D.S.M.d.A.); (L.L.); (M.T.); (G.D.S.); (F.D.L.); (P.G.); (R.N.)
| | - Francesco De Logu
- Clinical Pharmacology Unit, Department of Health Sciences, University of Florence, 50139 Florence, Italy; (D.S.M.d.A.); (L.L.); (M.T.); (G.D.S.); (F.D.L.); (P.G.); (R.N.)
| | - Pierangelo Geppetti
- Clinical Pharmacology Unit, Department of Health Sciences, University of Florence, 50139 Florence, Italy; (D.S.M.d.A.); (L.L.); (M.T.); (G.D.S.); (F.D.L.); (P.G.); (R.N.)
| | - Romina Nassini
- Clinical Pharmacology Unit, Department of Health Sciences, University of Florence, 50139 Florence, Italy; (D.S.M.d.A.); (L.L.); (M.T.); (G.D.S.); (F.D.L.); (P.G.); (R.N.)
| | - Gabriela Trevisan
- Graduated Program in Pharmacology, Federal University of Santa Maria (UFSM), Santa Maria 97105-900, RS, Brazil;
| |
Collapse
|
15
|
Sharma A, Behl T, Sharma L, Shah OP, Yadav S, Sachdeva M, Rashid S, Bungau SG, Bustea C. Exploring the molecular pathways and therapeutic implications of angiogenesis in neuropathic pain. Biomed Pharmacother 2023; 162:114693. [PMID: 37062217 DOI: 10.1016/j.biopha.2023.114693] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/26/2023] [Accepted: 04/10/2023] [Indexed: 04/18/2023] Open
Abstract
Recently, much attention has been paid to chronic neuro-inflammatory condition underlying neuropathic pain. It is generally linked with thermal hyperalgesia and tactile allodynia. It results due to injury or infection in the nervous system. The neuropathic pain spectrum covers a variety of pathophysiological states, mostly involved are ischemic injury viral infections associated neuropathies, chemotherapy-induced peripheral neuropathies, autoimmune disorders, traumatic origin, hereditary neuropathies, inflammatory disorders, and channelopathies. In CNS, angiogenesis is evident in inflammation of neurons and pain in bone cancer. The role of chemokines and cytokines is dualistic; their aggressive secretion produces detrimental effects, leading to neuropathic pain. However, whether the angiogenesis contributes and exists in neuropathic pain remains doubtful. In the present review, we elucidated summary of diverse mechanisms of neuropathic pain associated with angiogenesis. Moreover, an overview of multiple targets that have provided insights on the VEGF signaling, signaling through Tie-1 and Tie-2 receptor, erythropoietin pathway promoting axonal growth are also discussed. Because angiogenesis as a result of these signaling, results in inflammation, we focused on the mechanisms of neuropathic pain. These factors are mainly responsible for the activation of post-traumatic regeneration of the PNS and CNS. Furthermore, we also reviewed synthetic and herbal treatments targeting angiogenesis in neuropathic pain.
Collapse
Affiliation(s)
- Aditi Sharma
- School of Pharmaceutical Sciences, Shoolini University, Solan 173211, Himachal Pradesh, India
| | - Tapan Behl
- School of Health Sciences and Technology, University of Petroleum and Energy Studies, Bidholi, 248007 Dehradun, Uttarakhand, India.
| | - Lalit Sharma
- School of Pharmaceutical Sciences, Shoolini University, Solan 173211, Himachal Pradesh, India
| | - Om Prakash Shah
- School of Pharmaceutical Sciences, Shoolini University, Solan 173211, Himachal Pradesh, India
| | - Shivam Yadav
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences, Chhatrapati Shahu ji Maharaj University, Kanpur 208024, Uttar Pradesh, India
| | - Monika Sachdeva
- Fatima College of Health Sciences, Al Ain 00000, United Arab Emirates
| | - Summya Rashid
- Department of Pharmacology & Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Simona Gabriela Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea 410028, Romania; Doctoral School of Biomedical Sciences, University of Oradea, Oradea 410028, Romania.
| | - Cristiana Bustea
- Department of Preclinical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, Oradea 410073, Romania
| |
Collapse
|
16
|
Abstract
Neuropathic pain arises from injuries to the nervous system. It affects 20% of the adult US population and poses a major socioeconomic burden yet remains exceedingly difficult to treat. Current therapeutic approaches have limited efficacy and a large side effect profile that impedes their ability to treat neuropathic pain effectively. Preclinical research over the last 30 yr has established the critical role that pro-inflammatory neuro-immune cell interactions have in the development and maintenance of neuropathic pain arising from various etiologies. Pro-inflammatory neuro-immune cell interactions also underlie the development of adverse side effects of opioids and the loss of their efficacy to treat pain. Evidence from work in our lab and others in preclinical animal models have shown that signaling from the bioactive sphingolipid, sphingosine-1-phosphate (S1P), through the S1P receptor subtype 1 (S1PR1) modulates neuro-immune cell interactions. Here, we discuss how targeting S1P/S1PR1 signaling with S1PR1 antagonists already Food and Drug Administration-approved or in clinical trials for multiple sclerosis can provide a viable pharmacotherapeutic approach to reduce neuro-immune cell inflammatory signaling and potentially treat patients suffering neuropathic pain and the adverse effects of opioids.
Collapse
Affiliation(s)
- Daniela Salvemini
- Department of Pharmacology and Physiology, School of Medicine, Saint Louis University, Saint Louis, MO, USA
- Institute for Translational Neuroscience, Saint Louis University, Saint Louis, MO, USA
| | - Timothy M. Doyle
- Department of Pharmacology and Physiology, School of Medicine, Saint Louis University, Saint Louis, MO, USA
- Institute for Translational Neuroscience, Saint Louis University, Saint Louis, MO, USA
| |
Collapse
|
17
|
Akhilesh, Baidya ATK, Uniyal A, Das B, Kumar R, Tiwari V. Structure-based virtual screening and molecular dynamics simulation for the identification of sphingosine kinase-2 inhibitors as potential analgesics. J Biomol Struct Dyn 2022; 40:12472-12490. [PMID: 34519252 DOI: 10.1080/07391102.2021.1971559] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Neuropathic pain is due to an injury or disease of the somatosensory nervous system, which accounts for a significant economical and health burden to society. Due to poor understanding of their underlying mechanisms, the available treatments merely provide symptomatic relief and precipitates a variety of adverse effects. This suggests that there is an unmet medical need that must be addressed with effective strategies for the development of novel therapeutics. Sphingosine kinase 2 (SphK2) is an oncogenic lipid kinase that has emerged as a promising target for chronic pain and other diseases. In the present study, we have explored the structure-based virtual high-throughput screening of the Nuclei of Bioassays, Ecophysiology, and Biosynthesis of Natural Products Database (NuBBE) to identify potent natural products as inhibitors of SphK2. A molecular docking study was performed to calculate binding affinities and specificity to identify potential leads against SphK2. Initially, hits were selected by the implementation of absorption, distribution, metabolism, excretion and toxicity properties, Lipinski rule, and PAINS filters. The top-scoring hits also exhibiting an optimal ADMET profile were subjected to MM/GBSA free binding free energy calculation and molecular dynamics simulation. The results from molecular dynamics simulation revealed a stable ligand -SphK2 complex with protein and ligand RMSD within reasonable limits. Overall, we identified compounds, NuBBE_972 and NuBBE_1107 as potential inhibitors of SphK2 with optimal pharmacokinetic properties which have the potential to be developed as novel therapeutics for the management of chronic pain.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Akhilesh
- Neuroscience & Pain Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, India
| | - Anurag T K Baidya
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, India
| | - Ankit Uniyal
- Neuroscience & Pain Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, India
| | - Bhanuranjan Das
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, India
| | - Rajnish Kumar
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, India.,Department of Neuroscience Care and Society, Division of Neurogeriatrics, Karolinska Institute, Solna, Sweden
| | - Vinod Tiwari
- Neuroscience & Pain Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, India
| |
Collapse
|
18
|
Ding Y, Hu L, Wang X, Sun Q, Hu T, Liu J, Shen D, Zhang Y, Chen W, Wei C, Liu M, Liu D, Wang P, Zhang C, Zhang J, Li Q, Yang F. The contribution of spinal dorsal horn astrocytes in neuropathic pain at the early stage of EAE. Neurobiol Dis 2022; 175:105914. [DOI: 10.1016/j.nbd.2022.105914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/25/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022] Open
|
19
|
The FKBP51 Inhibitor SAFit2 Restores the Pain-Relieving C16 Dihydroceramide after Nerve Injury. Int J Mol Sci 2022; 23:ijms232214274. [PMID: 36430751 PMCID: PMC9695264 DOI: 10.3390/ijms232214274] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 11/19/2022] Open
Abstract
Neuropathic pain is a pathological pain state with a broad symptom scope that affects patients after nerve injuries, but it can also arise after infections or exposure to toxic substances. Current treatment possibilities are still limited because of the low efficacy and severe adverse effects of available therapeutics, highlighting an emerging need for novel analgesics and for a detailed understanding of the pathophysiological alterations in the onset and maintenance of neuropathic pain. Here, we show that the novel and highly specific FKBP51 inhibitor SAFit2 restores lipid signaling and metabolism in nervous tissue after nerve injury. More specifically, we identify that SAFit2 restores the levels of the C16 dihydroceramide, which significantly reduces the sensitization of the pain-mediating TRPV1 channel and subsequently the secretion of the pro-inflammatory neuropeptide CGRP in primary sensory neurons. Furthermore, we show that the C16 dihydroceramide is capable of reducing acute thermal hypersensitivity in a capsaicin mouse model. In conclusion, we report for the first time the C16 dihydroceramide as a novel and crucial lipid mediator in the context of neuropathic pain as it has analgesic properties, contributing to the pain-relieving properties of SAFit2.
Collapse
|
20
|
Lauro F, Giancotti LA, Kolar G, Harada CM, Harmon TA, Garrett TJ, Salvemini D. Role of Adenosine Kinase in Sphingosine-1-Phosphate Receptor 1-Induced Mechano-Hypersensitivities. Cell Mol Neurobiol 2022; 42:2909-2918. [PMID: 34773542 PMCID: PMC9098694 DOI: 10.1007/s10571-021-01162-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 10/22/2021] [Indexed: 12/21/2022]
Abstract
Emerging evidence implicates the sphingosine-1-phosphate receptor subtype 1 (S1PR1) in the development of neuropathic pain. Continued investigation of the signaling pathways downstream of S1PR1 are needed to support development of S1PR1 antagonists. In rodents, intrathecal (i.th.) injection of SEW2871, a selective S1PR1 agonist, activates the nod-like receptor family, pyrin domain containing 3 inflammasome, increases interleukin-1β (IL-1β) and causes behavioral hypersensitivity. I.th. injection of a IL-1β receptor antagonist blocks SEW2871-induced hypersensitivity, suggesting that IL-1β contributes to S1PR1's actions. Interestingly, previous studies have suggested that IL-1β increases the expression/activity of adenosine kinase (ADK), a key regulator of adenosine signaling at its receptors (ARs). Increased ADK expression reduces adenosine signaling whereas inhibiting ADK restores the action of adenosine. Here, we show that SEW287-induced behavioral hypersensitivity is associated with increased expression of ADK in astrocytes of the dorsal horn of the spinal cord. Moreover, the ADK inhibitor, ABT702, blocks SEW2871-induced hypersensitivity. These findings link ADK activation to S1PR1. If SEW2871-induced pain is mediated by IL-1β, which in turn activates ADK and leads to mechano-allodynia, then blocking ADK should attenuate IL-1β effects. In support of this idea, recombinant rat (rrIL-1β)-induced allodynia was blocked by at least 90% with ABT702, functionally linking ADK to IL-1β. Moreover, the selective A3AR antagonist, MRS1523, prevents the ability of ABT702 to block SEW2871 and IL-1β-induced allodynia, implicating A3AR signaling in the beneficial effects exerted by ABT702. Our findings provide novel mechanistic insight into how S1PR1 signaling in the spinal cord produces hypersensitivity through IL1-β and ADK activation.
Collapse
Affiliation(s)
- Filomena Lauro
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, 1402 South Grand Blvd., St. Louis, MO, 63104, USA
- Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University School of Medicine, 1402 South Grand Blvd., St. Louis, MO, 63104, USA
| | - Luigino Antonio Giancotti
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, 1402 South Grand Blvd., St. Louis, MO, 63104, USA
- Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University School of Medicine, 1402 South Grand Blvd., St. Louis, MO, 63104, USA
| | - Grant Kolar
- Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University School of Medicine, 1402 South Grand Blvd., St. Louis, MO, 63104, USA
- Department of Pathology, Saint Louis University School of Medicine, 1402 South Grand Blvd., St. Louis, MO, 63104, USA
| | - Caron Mitsue Harada
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, 1402 South Grand Blvd., St. Louis, MO, 63104, USA
- Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University School of Medicine, 1402 South Grand Blvd., St. Louis, MO, 63104, USA
| | - Taylor A Harmon
- Department of Chemistry, University of Florida, Gainesville, FL, 32610, USA
| | - Timothy J Garrett
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Daniela Salvemini
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, 1402 South Grand Blvd., St. Louis, MO, 63104, USA.
- Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University School of Medicine, 1402 South Grand Blvd., St. Louis, MO, 63104, USA.
| |
Collapse
|
21
|
Mirzaei M, Abyadeh M, Turner AJ, Wall RV, Chick JM, Paulo JA, Gupta VK, Basavarajappa D, Chitranshi N, Mirshahvaladi SSO, You Y, Fitzhenry MJ, Amirkhani A, Haynes PA, Klistorner A, Gupta V, Graham SL. Fingolimod effects on the brain are mediated through biochemical modulation of bioenergetics, autophagy, and neuroinflammatory networks. Proteomics 2022; 22:e2100247. [PMID: 35866514 PMCID: PMC9786555 DOI: 10.1002/pmic.202100247] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 06/30/2022] [Accepted: 07/18/2022] [Indexed: 12/30/2022]
Abstract
Fingolimod (FTY720) is an oral drug approved by the Food and Drug Administration (FDA) for management of multiple sclerosis (MS) symptoms, which has also shown beneficial effects against Alzheimer's (AD) and Parkinson's (PD) diseases pathologies. Although an extensive effort has been made to identify mechanisms underpinning its therapeutic effects, much remains unknown. Here, we investigated Fingolimod induced proteome changes in the cerebellum (CB) and frontal cortex (FC) regions of the brain which are known to be severely affected in MS, using a tandem mass tag (TMT) isobaric labeling-based quantitative mass-spectrometric approach to investigate the mechanism of action of Fingolimod. This study identified 6749 and 6319 proteins in CB and FC, respectively, and returned 2609 and 3086 differentially expressed proteins in mouse CB and FC, respectively, between Fingolimod treated and control groups. Subsequent bioinformatics analyses indicated a metabolic reprogramming in both brain regions of the Fingolimod treated group, where oxidative phosphorylation was upregulated while glycolysis and pentose phosphate pathway were downregulated. In addition, modulation of neuroinflammation in the Fingolimod treated group was indicated by upregulation of retrograde endocannabinoid signaling and autophagy pathways, and downregulation of neuroinflammation related pathways including neutrophil degranulation and the IL-12 mediated signaling pathway. Our findings suggest that Fingolimod may exert its protective effects on the brain by inducing metabolic reprogramming and neuroinflammation pathway modulation.
Collapse
Affiliation(s)
- Mehdi Mirzaei
- Department of Clinical MedicineFaculty of MedicineHealth and Human SciencesMacquarie Medical SchoolMacquarie UniversityMacquarie Park, North RydeSydneyNSWAustralia
| | | | - Anita J. Turner
- Department of Clinical MedicineFaculty of MedicineHealth and Human SciencesMacquarie Medical SchoolMacquarie UniversityMacquarie Park, North RydeSydneyNSWAustralia
| | - Roshana Vander Wall
- Department of Clinical MedicineFaculty of MedicineHealth and Human SciencesMacquarie Medical SchoolMacquarie UniversityMacquarie Park, North RydeSydneyNSWAustralia
| | - Joel M. Chick
- Department of Cell BiologyHarvard Medical SchoolBostonMassachusettsUSA
| | - Joao A. Paulo
- Department of Cell BiologyHarvard Medical SchoolBostonMassachusettsUSA
| | - Veer K. Gupta
- School of MedicineDeakin UniversityGeelongVICAustralia
| | - Devaraj Basavarajappa
- Department of Clinical MedicineFaculty of MedicineHealth and Human SciencesMacquarie Medical SchoolMacquarie UniversityMacquarie Park, North RydeSydneyNSWAustralia
| | - Nitin Chitranshi
- Department of Clinical MedicineFaculty of MedicineHealth and Human SciencesMacquarie Medical SchoolMacquarie UniversityMacquarie Park, North RydeSydneyNSWAustralia
| | - Seyed Shahab Oddin Mirshahvaladi
- Department of Clinical MedicineFaculty of MedicineHealth and Human SciencesMacquarie Medical SchoolMacquarie UniversityMacquarie Park, North RydeSydneyNSWAustralia
| | - Yuyi You
- Department of Clinical MedicineFaculty of MedicineHealth and Human SciencesMacquarie Medical SchoolMacquarie UniversityMacquarie Park, North RydeSydneyNSWAustralia
| | | | - Ardeshir Amirkhani
- Australian Proteome Analysis FacilityMacquarie UniversitySydneyNSWAustralia
| | - Paul A. Haynes
- School of Natural SciencesMacquarie UniversityMacquarie ParkNSWAustralia
- Biomolecular Discovery Research CentreMacquarie UniversitySydneyNSWAustralia
| | - Alexander Klistorner
- Department of Clinical MedicineFaculty of MedicineHealth and Human SciencesMacquarie Medical SchoolMacquarie UniversityMacquarie Park, North RydeSydneyNSWAustralia
| | - Vivek Gupta
- Department of Clinical MedicineFaculty of MedicineHealth and Human SciencesMacquarie Medical SchoolMacquarie UniversityMacquarie Park, North RydeSydneyNSWAustralia
| | - Stuart L. Graham
- Department of Clinical MedicineFaculty of MedicineHealth and Human SciencesMacquarie Medical SchoolMacquarie UniversityMacquarie Park, North RydeSydneyNSWAustralia
| |
Collapse
|
22
|
Arenas YM, Balzano T, Ivaylova G, Llansola M, Felipo V. The S1PR2-CCL2-BDNF-TrkB pathway mediates neuroinflammation and motor incoordination in hyperammonaemia. Neuropathol Appl Neurobiol 2022; 48:e12799. [PMID: 35152448 DOI: 10.1111/nan.12799] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 12/21/2021] [Accepted: 02/05/2022] [Indexed: 11/18/2024]
Abstract
AIMS Chronic hyperammonaemia and inflammation synergistically induce neurological impairment, including motor incoordination, in hepatic encephalopathy. Hyperammonaemic rats show neuroinflammation in the cerebellum which enhances GABAergic neurotransmission leading to motor incoordination. We aimed to identify underlying mechanisms. The aims were (1) to assess if S1PR2 is involved in microglial and astrocytic activation in the cerebellum of hyperammonaemic rats; (2) to identify pathways by which enhanced S1PR2 activation induces neuroinflammation and alters neurotransmission; (3) to assess if blocking S1PR2 reduces neuroinflammation and restores motor coordination in hyperammonaemic rats. METHODS We performed ex vivo studies in cerebellar slices from control or hyperammonaemic rats to identify pathways by which neuroinflammation enhances GABAergic neurotransmission in hyperammonaemia. Neuroinflammation and neurotransmission were assessed by immunochemistry/immunofluorescence and western blot. S1PR2 was blocked by intracerebral treatment with JTE-013 using osmotic mini-pumps. Motor coordination was assessed by beam walking. RESULTS Chronic hyperammonaemia enhances S1PR2 activation in the cerebellum by increasing its membrane expression. This increases CCL2, especially in Purkinje neurons. CCL2 activates CCR2 in microglia, leading to microglial activation, increased P2X4 membrane expression and BDNF in microglia. BDNF enhances TrkB activation in neurons, increasing KCC2 membrane expression. This enhances GABAergic neurotransmission, leading to motor incoordination in hyperammonaemic rats. Blocking S1PR2 in hyperammonaemic rats by intracerebral administration of JTE-013 normalises the S1PR2-CCL2-CCR2-BDNF-TrkB-KCC2 pathway, reduces glial activation and restores motor coordination in hyperammonaemic rats. CONCLUSIONS Enhanced S1PR2-CCL2-BDNF-TrkB pathway activation mediates neuroinflammation and incoordination in hyperammonaemia. The data raise a promising therapy for patients with hepatic encephalopathy using compounds targeting this pathway.
Collapse
Affiliation(s)
- Yaiza M Arenas
- Laboratory of Neurobiology, Centro Investigación Príncipe Felipe, Valencia, Spain
| | - Tiziano Balzano
- Laboratory of Neurobiology, Centro Investigación Príncipe Felipe, Valencia, Spain
| | - Gergana Ivaylova
- Laboratory of Neurobiology, Centro Investigación Príncipe Felipe, Valencia, Spain
| | - Marta Llansola
- Laboratory of Neurobiology, Centro Investigación Príncipe Felipe, Valencia, Spain
| | - Vicente Felipo
- Laboratory of Neurobiology, Centro Investigación Príncipe Felipe, Valencia, Spain
| |
Collapse
|
23
|
Sisignano M, Gribbon P, Geisslinger G. Drug Repurposing to Target Neuroinflammation and Sensory Neuron-Dependent Pain. Drugs 2022; 82:357-373. [PMID: 35254645 PMCID: PMC8899787 DOI: 10.1007/s40265-022-01689-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/08/2022] [Indexed: 12/12/2022]
Abstract
Around 20% of the American population have chronic pain and estimates in other Western countries report similar numbers. This represents a major challenge for global health care systems. Additional problems for the treatment of chronic and persistent pain are the comparably low efficacy of existing therapies, the failure to translate effects observed in preclinical pain models to human patients and related setbacks in clinical trials from previous attempts to develop novel analgesics. Drug repurposing offers an alternative approach to identify novel analgesics as it can bypass various steps of classical drug development. In recent years, several approved drugs were attributed analgesic properties. Here, we review available data and discuss recent findings suggesting that the approved drugs minocycline, fingolimod, pioglitazone, nilotinib, telmisartan, and others, which were originally developed for the treatment of different pathologies, can have analgesic, antihyperalgesic, or neuroprotective effects in preclinical and clinical models of inflammatory or neuropathic pain. For our analysis, we subdivide the drugs into substances that can target neuroinflammation or substances that can act on peripheral sensory neurons, and highlight the proposed mechanisms. Finally, we discuss the merits and challenges of drug repurposing for the development of novel analgesics.
Collapse
Affiliation(s)
- Marco Sisignano
- pharmazentrum frankfurt/ZAFES, Institute of Clinical Pharmacology, Johann Wolfgang Goethe-University, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany. .,Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596, Frankfurt am Main, Germany. .,Fraunhofer Cluster of Excellence for Immune-Mediated Diseases (CIMD), Theodor-Stern-Kai 7, 60596, Frankfurt am Main, Germany.
| | - Philip Gribbon
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, ScreeningPort, Schnackenburgallee 114, 22525, Hamburg, Germany.,Fraunhofer Cluster of Excellence for Immune-Mediated Diseases (CIMD), Theodor-Stern-Kai 7, 60596, Frankfurt am Main, Germany
| | - Gerd Geisslinger
- pharmazentrum frankfurt/ZAFES, Institute of Clinical Pharmacology, Johann Wolfgang Goethe-University, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany.,Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596, Frankfurt am Main, Germany.,Fraunhofer Cluster of Excellence for Immune-Mediated Diseases (CIMD), Theodor-Stern-Kai 7, 60596, Frankfurt am Main, Germany
| |
Collapse
|
24
|
Ghasemi-Kasman M, Nosratiyan N, Hashemian M, Ahmadian SR, Parsian H, Rostami-Mansoor S. Intranasal administration of fingolimod (FTY720) attenuates demyelination area in lysolecithin-induced demyelination model of rat optic chiasm. Mult Scler Relat Disord 2022; 59:103518. [DOI: 10.1016/j.msard.2022.103518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/19/2021] [Accepted: 01/09/2022] [Indexed: 11/16/2022]
|
25
|
Pan Q, Wang Y, Tian R, Wen Q, Qin G, Zhang D, Chen L, Zhang Y, Zhou J. Sphingosine-1 phosphate receptor 1 contributes to central sensitization in recurrent nitroglycerin-induced chronic migraine model. J Headache Pain 2022; 23:25. [PMID: 35144528 PMCID: PMC8903593 DOI: 10.1186/s10194-022-01397-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 01/29/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Central sensitization is an important pathophysiological mechanism of chronic migraine (CM), and microglia activation in trigeminocervical complex (TCC) contributes to the development of central sensitization. Emerging evidence implicates that blocking sphingosine-1-phosphate receptor 1 (S1PR1) can relieve the development of chronic pain and inhibit the activation of microglia. However, it is unclear whether S1PR1 is involved in the central sensitization of CM. Therefore, the purpose of this study is to explore the role of S1PR1 and its downstream signal transducers and activators of transcription 3 (STAT3) signaling pathway in the CM, mainly in inflammation. METHODS Chronic intermittent intraperitoneal injection of nitroglycerin (NTG) established a mouse model of CM. First, we observed the changes and subcellular localization of S1PR1 in the trigeminocervical complex (TCC). Then, W146, a S1PR1 antagonist; SEW2871, a S1PR1 agonist; AG490, a STAT3 inhibitor were applied by intraperitoneal injection to investigate the related molecular mechanism. The changes in the number of microglia and the expression of calcitonin gene-related peptide (CGRP) and c-fos in the TCC site were explored by immunofluorescence. In addition, we studied the effect of S1PR1 inhibitors on STAT3 in lipopolysaccharide-treated BV-2 microglia. RESULTS Our results showed that the expression of S1PR1 was increased after NTG injection and S1PR1 was colocalized with in neurons and glial cells in the TCC. The S1PR1 antagonist W146 alleviated NTG-induced hyperalgesia and suppressed the upregulation of CGRP, c-fos and pSTAT3 in the TCC. Importantly, blocking S1PR1 reduced activation of microglia. In addition, we found that inhibiting STAT3 signal also attenuated NTG-induced basal mechanical and thermal hyperalgesia. CONCLUSIONS Our results indicate that inhibiting S1PR1 signal could alleviate central sensitization and inhibit microglia activity caused by chronic NTG administration via STAT3 signal pathway, which provide a new clue for the clinical treatment of CM.
Collapse
Affiliation(s)
- Qi Pan
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1st You Yi Road, Yuzhong District, Chongqing, 400016, China
| | - Yunfeng Wang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1st You Yi Road, Yuzhong District, Chongqing, 400016, China.,Department of Neurology, Nanchong Central Hospital, The Second Clinical Medical College, North Sichuan Medical College, Nanchong, China
| | - Ruimin Tian
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1st You Yi Road, Yuzhong District, Chongqing, 400016, China
| | - Qianwen Wen
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Guangcheng Qin
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Dunke Zhang
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lixue Chen
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yixin Zhang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1st You Yi Road, Yuzhong District, Chongqing, 400016, China.
| | - Jiying Zhou
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1st You Yi Road, Yuzhong District, Chongqing, 400016, China.
| |
Collapse
|
26
|
Démosthènes A, Sion B, Giraudet F, Moisset X, Daulhac L, Eschalier A, Bégou M. In-Depth Characterization of Somatic and Orofacial Sensitive Dysfunctions and Interfering-Symptoms in a Relapsing-Remitting Experimental Autoimmune Encephalomyelitis Mouse Model. Front Neurol 2022; 12:789432. [PMID: 35111128 PMCID: PMC8801881 DOI: 10.3389/fneur.2021.789432] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 12/16/2021] [Indexed: 11/23/2022] Open
Abstract
Among the many symptoms (motor, sensory, and cognitive) associated with multiple sclerosis (MS), chronic pain is a common disabling condition. In particular, neuropathic pain symptoms are very prevalent and debilitating, even in early stages of the disease. Unfortunately, chronic pain still lacks efficient therapeutic agents. Progress is needed (i) clinically by better characterizing pain symptoms in MS and understanding the underlying mechanisms, and (ii) preclinically by developing a more closely dedicated model to identify new therapeutic targets and evaluate new drugs. In this setting, new variants of experimental autoimmune encephalomyelitis (EAE) are currently developed in mice to exhibit less severe motor impairments, thereby avoiding confounding factors in assessing pain behaviors over the disease course. Among these, the optimized relapsing-remitting EAE (QuilA-EAE) mouse model, induced using myelin oligodendrocyte glycoprotein peptide fragment (35–55), pertussis toxin, and quillaja bark saponin, seems very promising. Our study sought (i) to better define sensitive dysfunctions and (ii) to extend behavioral characterization to interfering symptoms often associated with pain during MS, such as mood disturbances, fatigue, and cognitive impairment, in this optimized QuilA-EAE model. We made an in-depth characterization of this optimized QuilA-EAE model, describing for the first time somatic thermal hyperalgesia associated with mechanical and cold allodynia. Evaluation of orofacial pain sensitivity showed no mechanical or thermal allodynia. Detailed evaluation of motor behaviors highlighted slight defects in fine motor coordination in the QuilA-EAE mice but without impact on pain evaluation. Finally, no anxiety-related or cognitive impairment was observed during the peak of sensitive symptoms. Pharmacologically, as previously described, we found that pregabalin, a treatment commonly used in neuropathic pain patients, induced an analgesic effect on mechanical allodynia. In addition, we showed an anti-hyperalgesic thermal effect on this model. Our results demonstrate that this QuilA-EAE model is clearly of interest for studying pain symptom development and so could be used to identify and evaluate new therapeutic targets. The presence of interfering symptoms still needs to be further characterized.
Collapse
Affiliation(s)
- Amélie Démosthènes
- Université Clermont Auvergne, Inserm, Neuro-Dol, Faculté de Pharmacie, Faculté de Médecine, Institut Analgesia, BP38, Clermont-Ferrand, France
| | - Benoît Sion
- Université Clermont Auvergne, Inserm, Neuro-Dol, Faculté de Pharmacie, Faculté de Médecine, Institut Analgesia, BP38, Clermont-Ferrand, France
| | - Fabrice Giraudet
- Université Clermont Auvergne, Inserm, Neuro-Dol, Faculté de Pharmacie, Faculté de Médecine, Institut Analgesia, BP38, Clermont-Ferrand, France
| | - Xavier Moisset
- Université Clermont Auvergne, CHU de Clermont-Ferrand, Inserm, Neuro-Dol, Faculté de Médecine, Institut Analgesia, BP38, Clermont-Ferrand, France
| | - Laurence Daulhac
- Université Clermont Auvergne, Inserm, Neuro-Dol, Faculté de Pharmacie, Faculté de Médecine, Institut Analgesia, BP38, Clermont-Ferrand, France
| | - Alain Eschalier
- Université Clermont Auvergne, Inserm, Neuro-Dol, Faculté de Pharmacie, Faculté de Médecine, Institut Analgesia, BP38, Clermont-Ferrand, France
| | - Mélina Bégou
- Université Clermont Auvergne, Inserm, Neuro-Dol, Faculté de Pharmacie, Faculté de Médecine, Institut Analgesia, BP38, Clermont-Ferrand, France
- *Correspondence: Mélina Bégou
| |
Collapse
|
27
|
Mirabelli E, Elkabes S. Neuropathic Pain in Multiple Sclerosis and Its Animal Models: Focus on Mechanisms, Knowledge Gaps and Future Directions. Front Neurol 2022; 12:793745. [PMID: 34975739 PMCID: PMC8716468 DOI: 10.3389/fneur.2021.793745] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 11/17/2021] [Indexed: 12/22/2022] Open
Abstract
Multiple sclerosis (MS) is a multifaceted, complex and chronic neurological disease that leads to motor, sensory and cognitive deficits. MS symptoms are unpredictable and exceedingly variable. Pain is a frequent symptom of MS and manifests as nociceptive or neuropathic pain, even at early disease stages. Neuropathic pain is one of the most debilitating symptoms that reduces quality of life and interferes with daily activities, particularly because conventional pharmacotherapies do not adequately alleviate neuropathic pain. Despite advances, the mechanisms underlying neuropathic pain in MS remain elusive. The majority of the studies investigating the pathophysiology of MS-associated neuropathic pain have been performed in animal models that replicate some of the clinical and neuropathological features of MS. Experimental autoimmune encephalomyelitis (EAE) is one of the best-characterized and most commonly used animal models of MS. As in the case of individuals with MS, rodents affected by EAE manifest increased sensitivity to pain which can be assessed by well-established assays. Investigations on EAE provided valuable insights into the pathophysiology of neuropathic pain. Nevertheless, additional investigations are warranted to better understand the events that lead to the onset and maintenance of neuropathic pain in order to identify targets that can facilitate the development of more effective therapeutic interventions. The goal of the present review is to provide an overview of several mechanisms implicated in neuropathic pain in EAE by summarizing published reports. We discuss current knowledge gaps and future research directions, especially based on information obtained by use of other animal models of neuropathic pain such as nerve injury.
Collapse
Affiliation(s)
- Ersilia Mirabelli
- Reynolds Family Spine Laboratory, Department of Neurosurgery, New Jersey Medical School, Rutgers the State University of New Jersey, Newark, NJ, United States.,Department of Biology and Chemistry, School of Health Sciences, Liberty University, Lynchburg, VA, United States
| | - Stella Elkabes
- Reynolds Family Spine Laboratory, Department of Neurosurgery, New Jersey Medical School, Rutgers the State University of New Jersey, Newark, NJ, United States
| |
Collapse
|
28
|
Yang XX, Yang C, Wang L, Zhou YB, Yuan X, Xiang N, Wang YP, Li XM. Molecular Mechanism of Sphingosine-1-Phosphate Receptor 1 Regulating CD4 + Tissue Memory in situ T Cells in Primary Sjogren's Syndrome. Int J Gen Med 2021; 14:6177-6188. [PMID: 34611431 PMCID: PMC8485922 DOI: 10.2147/ijgm.s327304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 08/25/2021] [Indexed: 11/23/2022] Open
Abstract
Objective Although extensive research has been carried out on CD4+T cells infiltrating the labial glands in patients with primary Sjögren’s Syndrome (pSS), it is still unclear how CD4+T cells remain in the labial gland tissue and develop into tissue resident cells. The aim of this study was to investigate the molecular mechanism by which CD4+T reside in labial glandular tissue of pSS patients. Methods Lymphocyte infiltration in labial salivary glands (LSG) of pSS patients was detected by H&E staining. Expression of sphingosine-1-phosphate receptor 1 (S1PR1) in LSG was examined by Immunohistochemistry. Immunofluorescence analyses were utilized to detect the co-expression of CD4, CD69 and S1PR1 in T cells of LSG of pSS patients. Expression of gene S1pr1 in peripheral blood CD4+T cells of healthy controls and pSS patients was detected by quantitative real-time PCR (QPCR). QPCR was used to examine the expression of gene S1pr1, Klf2, and Cd69 in the CD4+T cells that were co-cultured in vitro with cytokines TNF-α, TGF-β, and IL-33. Results S1PR1 was expressed in the infiltrating monocytes in LSG of pSS patients, and S1PR1 was weakly or even not expressed in cytoplasm of CD4+CD69+TRM cells of LSG in patients with pSS. Expression of gene S1pr1 in peripheral blood CD4+T cells of pSS patients was about three-fifths of that of healthy controls (P < 0.05). Expression of genes S1pr1 (P < 0.001) and Klf-2 (P < 0.001) was significantly decreased, and the expression of gene Cd69 (P < 0.05) was significantly increased in peripheral blood CD4+T cells of pSS patients co-cultured in vitro with cytokines TNF-α, TGF-β, and IL-33. Conclusion Our study suggests that the decrease of S1pr1 gene expression may provide a molecular basis for promoting the tissue retention and development of CD4+CD69+TRM cells.
Collapse
Affiliation(s)
- Xiao-Xiao Yang
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, People's Republic of China.,The First Affiliated Hospital of USTC, Department of Rheumatology and Immunology, University of Science and Technology of China, Hefei, People's Republic of China
| | - Chao Yang
- The First Affiliated Hospital of USTC, Department of Rheumatology and Immunology, University of Science and Technology of China, Hefei, People's Republic of China
| | - Li Wang
- The First Affiliated Hospital of USTC, Department of Rheumatology and Immunology, University of Science and Technology of China, Hefei, People's Republic of China
| | - Ying-Bo Zhou
- The First Affiliated Hospital of USTC, Department of Rheumatology and Immunology, University of Science and Technology of China, Hefei, People's Republic of China
| | - Xiang Yuan
- The First Affiliated Hospital of USTC, Department of Rheumatology and Immunology, University of Science and Technology of China, Hefei, People's Republic of China
| | - Nan Xiang
- The First Affiliated Hospital of USTC, Department of Rheumatology and Immunology, University of Science and Technology of China, Hefei, People's Republic of China
| | - Yi-Ping Wang
- Westmead Institute for Medical Research, University of Sydney, Sdyney, NSW, 2145, Australia
| | - Xiao-Mei Li
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, People's Republic of China.,The First Affiliated Hospital of USTC, Department of Rheumatology and Immunology, University of Science and Technology of China, Hefei, People's Republic of China
| |
Collapse
|
29
|
Wen ZH, Huang SY, Kuo HM, Chen CT, Chen NF, Chen WF, Tsui KH, Liu HT, Sung CS. Fumagillin Attenuates Spinal Angiogenesis, Neuroinflammation, and Pain in Neuropathic Rats after Chronic Constriction Injury. Biomedicines 2021; 9:biomedicines9091187. [PMID: 34572376 PMCID: PMC8470034 DOI: 10.3390/biomedicines9091187] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/26/2021] [Accepted: 09/07/2021] [Indexed: 12/21/2022] Open
Abstract
Introduction: Angiogenesis in the central nervous system is visible in animal models of neuroinflammation and bone cancer pain. However, whether spinal angiogenesis exists and contributes to central sensitization in neuropathic pain remains unclear. This study analyzes the impact of angiogenesis on spinal neuroinflammation in neuropathic pain. Methods: Rats with chronic constriction injury (CCI) to the sciatic nerve underwent the implantation of an intrathecal catheter. Fumagillin or vascular endothelial growth factor-A antibody (anti-VEGF-A) was administered intrathecally. Nociceptive behaviors, cytokine immunoassay, Western blot, and immunohistochemical analysis assessed the effect of angiogenesis inhibition on CCI-induced neuropathic pain. Results: VEGF, cluster of differentiation 31 (CD31), and von Willebrand factor (vWF) expressions increased after CCI in the ipsilateral lumbar spinal cord compared to that in the contralateral side of CCI and control rats from post-operative day (POD) 7 to 28, with a peak at POD 14. Tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and IL-6 concentrations, but not IL-10 levels, also increased in the ipsilateral spinal cord after CCI. Fumagillin and anti-VEGF-A reduced CCI-induced thermal hyperalgesia from POD 5 to 14 and mechanical allodynia from POD 3 to 14. Fumagillin reduced CCI-upregulated expressions of angiogenic factors and astrocytes. Furthermore, fumagillin decreased TNF-α and IL-6 amounts and increased IL-10 levels at POD 7 and 14, but not IL-1β concentrations. Conclusions: Fumagillin significantly ameliorates CCI-induced nociceptive sensitization, spinal angiogenesis, and astrocyte activation. Our results suggest that angiogenesis inhibitor treatment suppresses peripheral neuropathy-induced central angiogenesis, neuroinflammation, astrocyte activation, and neuropathic pain.
Collapse
Affiliation(s)
- Zhi-Hong Wen
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 804201, Taiwan; (Z.-H.W.); (H.-M.K.); (C.-T.C.); (W.-F.C.)
- Institute of BioPharmaceutical Sciences, National Sun Yat-sen University, Kaohsiung 804201, Taiwan
| | - Shi-Ying Huang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China;
| | - Hsiao-Mei Kuo
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 804201, Taiwan; (Z.-H.W.); (H.-M.K.); (C.-T.C.); (W.-F.C.)
- Center for Neuroscience, National Sun Yat-sen University, Kaohsiung 804201, Taiwan
| | - Chao-Ting Chen
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 804201, Taiwan; (Z.-H.W.); (H.-M.K.); (C.-T.C.); (W.-F.C.)
| | - Nan-Fu Chen
- Department of Surgery, Division of Neurosurgery, Kaohsiung Armed Forces General Hospital, Kaohsiung 802301, Taiwan;
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 804201, Taiwan
| | - Wu-Fu Chen
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 804201, Taiwan; (Z.-H.W.); (H.-M.K.); (C.-T.C.); (W.-F.C.)
- Department of Neurosurgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833401, Taiwan
| | - Kuan-Hao Tsui
- Department of Obstetrics and Gynecology, Kaohsiung Veterans General Hospital, Kaohsiung 813414, Taiwan;
- Institute of Clinical Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Hsin-Tzu Liu
- Department of Medical Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970473, Taiwan;
| | - Chun-Sung Sung
- Department of Anesthesiology, Division of Pain Management, Taipei Veterans General Hospital, Taipei 112201, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Correspondence: or ; Tel.: +886-2-2875-7549; Fax: +886-2-2875-1597
| |
Collapse
|
30
|
Benarroch EE. What Is the Role of Sphingosine-1-Phosphate Receptors in Pain? Neurology 2021; 96:525-528. [PMID: 33723022 DOI: 10.1212/wnl.0000000000011605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 01/15/2021] [Indexed: 12/15/2022] Open
|
31
|
Wang CC, Kuo JR, Wang SJ. Fingolimod inhibits glutamate release through activation of S1P1 receptors and the G protein βγ subunit-dependent pathway in rat cerebrocortical nerve terminals. Neuropharmacology 2021; 185:108451. [PMID: 33428887 DOI: 10.1016/j.neuropharm.2021.108451] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 12/30/2020] [Accepted: 01/03/2021] [Indexed: 01/28/2023]
Abstract
Fingolimod, a sphingosine-1-phosphate (S1P) receptor modulator approved for treating multiple sclerosis, is reported to prevent excitotoxic insult. Because excessive glutamate release is a major cause of neuronal damage in various neurological disorders, the effect of fingolimod on glutamate release in rat cerebrocortical nerve terminals (synaptosomes) was investigated in the current study. Fingolimod decreased 4-aminopyridine (4-AP)-stimulated glutamate release and calcium concentration elevation. Fingolimod-mediated inhibition of 4-AP-induced glutamate release was dependent on extracellular calcium, persisted in the presence of the glutamate transporter inhibitor DL-TBOA or intracellular Ca2+-releasing inhibitors dantrolene and CGP37157, and was prevented by blocking vesicular transporters or N- and P/Q-type channels. Western blot and immunocytochemical analysis revealed the presence of S1P1 receptor proteins in presynaptic terminals. Fingolimod-mediated inhibition of 4-AP-induced glutamate release was also abolished by the sphingosine kinase inhibitor DMS, selective S1P1 receptor antagonist W146, Gi/o protein inhibitor pertussis toxin, and G protein βγ subunit inhibitor gallein; however, it was unaffected by the adenylyl cyclase inhibitor SQ22536, protein kinase A inhibitor H89, and phospholipase C inhibitor U73122. These data indicate that fingolimod decreases glutamate release from rat cerebrocortical synaptosomes by suppressing N- and P/Q-type Ca2+ channel activity; additionally, the activation of presynaptic S1P1 receptors and the G protein βγ subunit participates in achieving the effect.
Collapse
Affiliation(s)
- Che Chuan Wang
- Department of Neurology, Chi Mei Medical Center, Tainan, Taiwan; Biotechnology, Southern Taiwan University of Science and Technology, Tainan, Taiwan
| | - Jinn Rung Kuo
- Department of Neurology, Chi Mei Medical Center, Tainan, Taiwan; Biotechnology, Southern Taiwan University of Science and Technology, Tainan, Taiwan
| | - Su Jane Wang
- School of Medicine, Fu Jen Catholic University, No.510, Zhongzheng Rd, Xinzhuang Dist, New Taipei City, 24205, Taiwan; Graduate Institute of Biomedical and Pharmaceutical Science, Fu Jen Catholic University, No.510, Zhongzheng Rd, Xinzhuang Dist, New Taipei City, 24205, Taiwan; Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan City, Taiwan.
| |
Collapse
|
32
|
Oliveira RAAD, Baptista AF, Sá KN, Barbosa LM, Nascimento OJMD, Listik C, Moisset X, Teixeira MJ, Andrade DCD. Pharmacological treatment of central neuropathic pain: consensus of the Brazilian Academy of Neurology. ARQUIVOS DE NEURO-PSIQUIATRIA 2020; 78:741-752. [DOI: 10.1590/0004-282x20200166] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 09/17/2020] [Indexed: 12/13/2022]
Abstract
ABSTRACT Background: Central neuropathic pain (CNP) is often refractory to available therapeutic strategies and there are few evidence-based treatment options. Many patients with neuropathic pain are not diagnosed or treated properly. Thus, consensus-based recommendations, adapted to the available drugs in the country, are necessary to guide clinical decisions. Objective: To develop recommendations for the treatment of CNP in Brazil. Methods: Systematic review, meta-analysis, and specialists opinions considering efficacy, adverse events profile, cost, and drug availability in public health. Results: Forty-four studies on CNP treatment were found, 20 were included in the qualitative analysis, and 15 in the quantitative analysis. Medications were classified as first-, second-, and third-line treatment based on systematic review, meta-analysis, and expert opinion. As first-line treatment, gabapentin, duloxetine, and tricyclic antidepressants were included. As second-line, venlafaxine, pregabalin for CND secondary to spinal cord injury, lamotrigine for CNP after stroke, and, in association with first-line drugs, weak opioids, in particular tramadol. For refractory patients, strong opioids (methadone and oxycodone), cannabidiol/delta-9-tetrahydrocannabinol, were classified as third-line of treatment, in combination with first or second-line drugs and, for central nervous system (CNS) in multiple sclerosis, dronabinol. Conclusions: Studies that address the treatment of CNS are scarce and heterogeneous, and a significant part of the recommendations is based on experts opinions. The CNP approach must be individualized, taking into account the availability of medication, the profile of adverse effects, including addiction risk, and patients' comorbidities.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Daniel Ciampi de Andrade
- Universidade de São Paulo, Brazil; Academia Brasileira de Neurologia, Brazil; Universidade de São Paulo, Brazil
| |
Collapse
|
33
|
Squillace S, Spiegel S, Salvemini D. Targeting the Sphingosine-1-Phosphate Axis for Developing Non-narcotic Pain Therapeutics. Trends Pharmacol Sci 2020; 41:851-867. [PMID: 33010954 DOI: 10.1016/j.tips.2020.09.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 09/02/2020] [Accepted: 09/10/2020] [Indexed: 02/07/2023]
Abstract
Chronic pain is a life-altering condition affecting millions of people. Current treatments are inadequate and prolonged therapies come with severe side effects, especially dependence and addiction to opiates. Identification of non-narcotic analgesics is of paramount importance. Preclinical and clinical studies suggest that sphingolipid metabolism alterations contribute to neuropathic pain development. Functional sphingosine-1-phosphate (S1P) receptor 1 (S1PR1) antagonists, such as FTY720/fingolimod, used clinically for non-pain conditions, are emerging as non-narcotic analgesics, supporting the repurposing of fingolimod for chronic pain treatment and energizing drug discovery focused on S1P signaling. Here, we summarize the role of S1P in pain to highlight the potential of targeting the S1P axis towards development of non-narcotic therapeutics, which, in turn, will hopefully help lessen misuse of opioid pain medications and address the ongoing opioid epidemic.
Collapse
Affiliation(s)
- Silvia Squillace
- Department of Pharmacology and Physiology and the Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Sarah Spiegel
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
| | - Daniela Salvemini
- Department of Pharmacology and Physiology and the Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University School of Medicine, St. Louis, MO 63104, USA.
| |
Collapse
|
34
|
Segal JP, Bannerman CA, Silva JR, Haird CM, Baharnoori M, Gilron I, Ghasemlou N. Chronic mechanical hypersensitivity in experimental autoimmune encephalomyelitis is regulated by disease severity and neuroinflammation. Brain Behav Immun 2020; 89:314-325. [PMID: 32688029 DOI: 10.1016/j.bbi.2020.07.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/05/2020] [Accepted: 07/10/2020] [Indexed: 11/19/2022] Open
Abstract
Chronic pain severely affects quality of life in more than half of people living with multiple sclerosis (MS). A commonly-used model of MS, experimental autoimmune encephalomyelitis (EAE), typically presents with hindlimb paralysis, neuroinflammation and neurodegeneration. However, this paralysis may hinder the use of pain behavior tests, with no apparent hypersensitivity observed post-peak disease. We sought to adapt the classic actively-induced EAE model to optimize its pain phenotype. EAE was induced with MOG35-55/CFA and 100-600 ng pertussis toxin (PTX), and mice were assessed for mechanical, cold and thermal sensitivity over a 28-day period. Spinal cord tissue was collected at 14 and 28 days post-injection to assess demyelination and neuroinflammation. Only mice treated with 100 ng PTX exhibited mechanical hypersensitivity. Hallmarks of disease pathology, including demyelination, immune cell recruitment, cytokine expression, glial activation, and neuronal damage were higher in EAE mice induced with moderate (200 ng) doses of pertussis toxin, compared to those treated with low (100 ng) levels. Immunostaining demonstrated activated astrocytes and myeloid/microglial cells in both EAE groups. These results indicate that a lower severity of EAE disease may allow for the study of pain behaviors while still presenting with disease pathology. By using this modified model, researchers may better study the mechanisms underlying pain.
Collapse
Affiliation(s)
- Julia P Segal
- Department of Biomedical & Molecular Sciences, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Courtney A Bannerman
- Department of Biomedical & Molecular Sciences, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Jaqueline R Silva
- Department of Biomedical & Molecular Sciences, Queen's University, Kingston, Ontario K7L 3N6, Canada; Department of Anesthesiology & Perioperative Medicine, Kingston Health Sciences Centre, Kingston, Ontario K7L 2V7, Canada
| | - Cortney M Haird
- Department of Biomedical & Molecular Sciences, Queen's University, Kingston, Ontario K7L 3N6, Canada; Department of Anesthesiology & Perioperative Medicine, Kingston Health Sciences Centre, Kingston, Ontario K7L 2V7, Canada
| | - Moogeh Baharnoori
- Department of Medicine, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Ian Gilron
- Department of Biomedical & Molecular Sciences, Queen's University, Kingston, Ontario K7L 3N6, Canada; Department of Anesthesiology & Perioperative Medicine, Kingston Health Sciences Centre, Kingston, Ontario K7L 2V7, Canada; Centre for Neuroscience Studies, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Nader Ghasemlou
- Department of Biomedical & Molecular Sciences, Queen's University, Kingston, Ontario K7L 3N6, Canada; Department of Anesthesiology & Perioperative Medicine, Kingston Health Sciences Centre, Kingston, Ontario K7L 2V7, Canada; Centre for Neuroscience Studies, Queen's University, Kingston, Ontario K7L 3N6, Canada.
| |
Collapse
|
35
|
Chua KC, Xiong C, Ho C, Mushiroda T, Jiang C, Mulkey F, Lai D, Schneider BP, Rashkin SR, Witte JS, Friedman PN, Ratain MJ, McLeod HL, Rugo HS, Shulman LN, Kubo M, Owzar K, Kroetz DL. Genomewide Meta-Analysis Validates a Role for S1PR1 in Microtubule Targeting Agent-Induced Sensory Peripheral Neuropathy. Clin Pharmacol Ther 2020; 108:625-634. [PMID: 32562552 DOI: 10.1002/cpt.1958] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 06/04/2020] [Indexed: 12/19/2022]
Abstract
Microtubule targeting agents (MTAs) are anticancer therapies commonly prescribed for breast cancer and other solid tumors. Sensory peripheral neuropathy (PN) is the major dose-limiting toxicity for MTAs and can limit clinical efficacy. The current pharmacogenomic study aimed to identify genetic variations that explain patient susceptibility and drive mechanisms underlying development of MTA-induced PN. A meta-analysis of genomewide association studies (GWAS) from two clinical cohorts treated with MTAs (Cancer and Leukemia Group B (CALGB) 40502 and CALGB 40101) was conducted using a Cox regression model with cumulative dose to first instance of grade 2 or higher PN. Summary statistics from a GWAS of European subjects (n = 469) in CALGB 40502 that estimated cause-specific risk of PN were meta-analyzed with those from a previously published GWAS of European ancestry (n = 855) from CALGB 40101 that estimated the risk of PN. Novel single nucleotide polymorphisms in an enhancer region downstream of sphingosine-1-phosphate receptor 1 (S1PR1 encoding S1PR1 ; e.g., rs74497159, βCALGB 40101 per allele log hazard ratio (95% confidence interval (CI)) = 0.591 (0.254-0.928), βCALGB 40502 per allele log hazard ratio (95% CI) = 0.693 (0.334-1.053); PMETA = 3.62 × 10-7 ) were the most highly ranked associations based on P values with risk of developing grade 2 and higher PN. In silico functional analysis identified multiple regulatory elements and potential enhancer activity for S1PR1 within this genomic region. Inhibition of S1PR1 function in induced pluripotent stem cell-derived human sensory neurons shows partial protection against paclitaxel-induced neurite damage. These pharmacogenetic findings further support ongoing clinical evaluations to target S1PR1 as a therapeutic strategy for prevention and/or treatment of MTA-induced neuropathy.
Collapse
Affiliation(s)
- Katherina C Chua
- Pharmaceutical Sciences and Pharmacogenomics Graduate Program, University of California San Francisco, San Francisco, California, USA.,Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California, USA
| | - Chenling Xiong
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California, USA
| | - Carol Ho
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California, USA
| | - Taisei Mushiroda
- Laboratory of Genotyping Development, Riken Center for Integrative Medical Sciences, Kanagawa, Japan
| | - Chen Jiang
- Department of Biostatistics and Bioinformatics, Duke University, Durham, North Carolina, USA.,Alliance Statistics and Data Center, Duke University, Durham, North Carolina, USA
| | - Flora Mulkey
- Department of Biostatistics and Bioinformatics, Duke University, Durham, North Carolina, USA.,Alliance Statistics and Data Center, Duke University, Durham, North Carolina, USA
| | - Dongbing Lai
- Indiana University School of Medicine, Indianapolis, Indiana, USA
| | | | - Sara R Rashkin
- Department of Biostatistics and Epidemiology, University of California San Francisco, San Francisco, California, USA
| | - John S Witte
- Department of Biostatistics and Epidemiology, University of California San Francisco, San Francisco, California, USA
| | - Paula N Friedman
- Department of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Mark J Ratain
- Department of Medicine, The University of Chicago, Chicago, Illinois, USA
| | - Howard L McLeod
- DeBartolo Family Personalized Medicine Institute, Moffitt Cancer Center, Tampa, Florida, USA
| | - Hope S Rugo
- Department of Medicine, University of California San Francisco, San Francisco, California, USA
| | - Lawrence N Shulman
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Michiaki Kubo
- Laboratory of Genotyping Development, Riken Center for Integrative Medical Sciences, Kanagawa, Japan
| | - Kouros Owzar
- Department of Biostatistics and Bioinformatics, Duke University, Durham, North Carolina, USA.,Alliance Statistics and Data Center, Duke University, Durham, North Carolina, USA
| | - Deanna L Kroetz
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California, USA.,Institute for Human Genetics, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
36
|
Abstract
A limited number of peripheral targets generate pain. Inflammatory mediators can sensitize these. The review addresses targets acting exclusively or predominantly on sensory neurons, mediators involved in inflammation targeting sensory neurons, and mediators involved in a more general inflammatory process, of which an analgesic effect secondary to an anti-inflammatory effect can be expected. Different approaches to address these systems are discussed, including scavenging proinflammatory mediators, applying anti-inflammatory mediators, and inhibiting proinflammatory or facilitating anti-inflammatory receptors. New approaches are contrasted to established ones; the current stage of progress is mentioned, in particular considering whether there is data from a molecular and cellular level, from animals, or from human trials, including an early stage after a market release. An overview of publication activity is presented, considering a IuPhar/BPS-curated list of targets with restriction to pain-related publications, which was also used to identify topics.
Collapse
Affiliation(s)
- Cosmin I Ciotu
- Center of Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstrasse 17, 1090, Vienna, Austria
| | - Michael J M Fischer
- Center of Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstrasse 17, 1090, Vienna, Austria.
| |
Collapse
|
37
|
Langeslag M, Kress M. The ceramide-S1P pathway as a druggable target to alleviate peripheral neuropathic pain. Expert Opin Ther Targets 2020; 24:869-884. [PMID: 32589067 DOI: 10.1080/14728222.2020.1787989] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Introduction: Neuropathic pain disorders are diverse, and the currently available therapies are ineffective in the majority of cases. Therefore, there is a major need for gaining novel mechanistic insights and developing new treatment strategies for neuropathic pain. Areas covered: We performed an in-depth literature search on the molecular mechanisms and systemic importance of the ceramide-to-S1P rheostat regulating neuron function and neuroimmune interactions in the development of neuropathic pain. Expert opinion: The S1P receptor modulator FTY720 (fingolimod, Gilenya®), LPA receptor antagonists and several mechanistically related compounds in clinical development raise great expectations for treating neuropathic pain disorders. Research on S1P receptors, S1P receptor modulators or SPHK inhibitors with distinct selectivity, pharmacokinetics and safety must provide more mechanistic insight into whether they may qualify as useful treatment options for neuropathic pain disorders. The functional relevance of genetic variations within the ceramide-to-S1P rheostat should be explored for an enhanced understanding of neuropathic pain pathogenesis. The ceramide-to-S1P rheostat is emerging as a critically important regulator hub of neuroimmune interactions along the pain pathway, and improved mechanistic insight is required to develop more precise and effective drug treatment options for patients suffering from neuropathic pain disorders.
Collapse
Affiliation(s)
- Michiel Langeslag
- Institute of Physiology, DPMP, Medical University Innsbruck , Austria
| | - Michaela Kress
- Institute of Physiology, DPMP, Medical University Innsbruck , Austria
| |
Collapse
|
38
|
Yang T, Wang X, Yuan Z, Miao Y, Wu Z, Chai Y, Yu Q, Wang H, Sun L, Huang X, Zhang L, Jiang Z. Sphingosine 1-phosphate receptor-1 specific agonist SEW2871 ameliorates ANIT-induced dysregulation of bile acid homeostasis in mice plasma and liver. Toxicol Lett 2020; 331:242-253. [PMID: 32579994 DOI: 10.1016/j.toxlet.2020.06.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 06/15/2020] [Accepted: 06/18/2020] [Indexed: 12/12/2022]
Abstract
Dysregulated bile acid (BA) homeostasis is an extremely significant pathological phenomenon of intrahepatic cholestasis, and the accumulated BA could further trigger hepatocyte injury. Here, we showed that the expression of sphingosine-1-phosphate receptor 1 (S1PR1) was down-regulated by α-naphthylisothiocyanate (ANIT) in vivo and in vitro. The up-regulated S1PR1 induced by SEW2871 (a specific agonist of S1PR1) could improve ANIT-induced deficiency of hepatocyte tight junctions (TJs), cholestatic liver injury and the disrupted BA homeostasis in mice. BA metabolic profiles showed that SEW2871 not only reversed the disruption of plasma BA homeostasis, but also alleviated BA accumulation in the liver of ANIT-treated mice. Further quantitative analysis of 19 BAs showed that ANIT increased almost all BAs in mice plasma and liver, all of which were restored by SEW2871. Our data demonstrated that the top performing BAs were taurine conjugated bile acids (T-), especially taurocholic acid (TCA). Molecular mechanism studies indicated that BA transporters, synthetase, and BAs nuclear receptors (NRs) might be the important factors that maintained BA homeostasis by SEW2871 in ANIT-induced cholestasis. In conclusion, these results demonstrated that S1PR1 selective agonists might be the novel and potential effective agents for the treatment of intrahepatic cholestasis by recovering dysregulated BA homeostasis.
Collapse
Affiliation(s)
- Tingting Yang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Xue Wang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China
| | - Zihang Yuan
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China
| | - Yingying Miao
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China
| | - Ziteng Wu
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China
| | - Yuanyuan Chai
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China
| | - Qiongna Yu
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China
| | - Haiyan Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Lixin Sun
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China; Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, China
| | - Xin Huang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China
| | - Luyong Zhang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China; Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Zhenzhou Jiang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
39
|
Anderson G. Integrating Pathophysiology in Migraine: Role of the Gut Microbiome and Melatonin. Curr Pharm Des 2020; 25:3550-3562. [PMID: 31538885 DOI: 10.2174/1381612825666190920114611] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 09/12/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND The pathoetiology and pathophysiology of migraine are widely accepted as unknown. METHODS The current article reviews the wide array of data associated with the biological underpinnings of migraine and provides a framework that integrates previously disparate bodies of data. RESULTS The importance of alterations in stress- and pro-inflammatory cytokine- induced gut dysbiosis, especially butyrate production, are highlighted. This is linked to a decrease in the availability of melatonin, and a relative increase in the N-acetylserotonin/melatonin ratio, which has consequences for the heightened glutamatergic excitatory transmission in migraine. It is proposed that suboptimal mitochondria functioning and metabolic regulation drive alterations in astrocytes and satellite glial cells that underpin the vasoregulatory and nociceptive changes in migraine. CONCLUSION This provides a framework not only for classical migraine associated factors, such as calcitonin-gene related peptide and serotonin, but also for wider factors in the developmental pathoetiology of migraine. A number of future research and treatment implications arise, including the clinical utilization of sodium butyrate and melatonin in the management of migraine.
Collapse
Affiliation(s)
- George Anderson
- CRC Scotland & London, Eccleston Square, London, United Kingdom
| |
Collapse
|
40
|
Sałat K. Chemotherapy-induced peripheral neuropathy-part 2: focus on the prevention of oxaliplatin-induced neurotoxicity. Pharmacol Rep 2020; 72:508-527. [PMID: 32347537 PMCID: PMC7329798 DOI: 10.1007/s43440-020-00106-1] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/09/2020] [Accepted: 04/15/2020] [Indexed: 01/07/2023]
Abstract
BACKGROUND Chemotherapy-induced peripheral neuropathy (CIPN) is regarded as one of the most common dose-limiting adverse effects of several chemotherapeutic agents, such as platinum derivatives (oxaliplatin and cisplatin), taxanes, vinca alkaloids and bortezomib. CIPN affects more than 60% of patients receiving anticancer therapy and although it is a nonfatal condition, it significantly worsens patients' quality of life. The number of analgesic drugs used to relieve pain symptoms in CIPN is very limited and their efficacy in CIPN is significantly lower than that observed in other neuropathic pain types. Importantly, there are currently no recommended options for effective prevention of CIPN, and strong evidence for the utility and clinical efficacy of some previously tested preventive therapies is still limited. METHODS The present article is the second one in the two-part series of review articles focused on CIPN. It summarizes the most recent advances in the field of studies on CIPN caused by oxaliplatin, the third-generation platinum-based antitumor drug used to treat colorectal cancer. Pharmacological properties of oxaliplatin, genetic, molecular and clinical features of oxaliplatin-induced neuropathy are discussed. RESULTS Available therapies, as well as results from clinical trials assessing drug candidates for the prevention of oxaliplatin-induced neuropathy are summarized. CONCLUSION Emerging novel chemical structures-potential future preventative pharmacotherapies for CIPN caused by oxaliplatin are reported.
Collapse
Affiliation(s)
- Kinga Sałat
- Department of Pharmacodynamics, Jagiellonian University Medical College, 9 Medyczna St., 30-688, Kraków, Poland.
| |
Collapse
|
41
|
Lee BJ, Kim JY, Cho HJ, Park D. Sphingosine 1-phosphate receptor modulation attenuate mechanical allodynia in mouse model of chronic complex regional pain syndrome by suppressing pathogenic astrocyte activation. Reg Anesth Pain Med 2020; 45:230-238. [DOI: 10.1136/rapm-2019-100801] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 12/30/2019] [Accepted: 01/04/2020] [Indexed: 11/04/2022]
Abstract
Background and objectivesFTY720 ((2-amino-2-)2-[4-octylphenyl]ethyl)-1,3-propanediol) is an Food and Drug Administration (FDA)-approved immunomodulatory drug for treating multiple sclerosis. It inhibits lymphocyte egression from lymphoid tissues by downregulating sphingosine-1 phosphate receptor (S1PR). To date, there has been no study on the effects of FTY720 on the chronic stage of the complex regional pain syndrome (CRPS) rodent model, despite its antiallodynic effect in previous studies. Thus, the aim of this study is to investigate the effect of FTY720 in a chronic stage of the CRPS mouse model.MethodThe authors used a mouse model of CRPS, involving tibia fracture/cast immobilization, to test the efficacy of intrathecal FTY720 (2.5 or 25 ng daily; 6 days) or vehicle during the chronic (7 weeks after fracture) stage of CRPS.ResultsIntrathecal recombinant FTY720 administration was antiallodynic in the chronic stage of the CRPS mouse model, and such an effect of FTY720 developed by modulating astrocyte activation in the spinal cord. Additionally, according to the in vitro data, the FTY720 treatment inhibited S1P-induced increase in the nitric oxide production and suppression of the NF-κB pathway, by inhibiting the phosphorylation of NF-κB/p65 in astrocytes without toxic effect on astrocytes.ConclusionCollectively, these results demonstrate that intrathecally administered FTY720 attenuates mechanical allodynia in the chronic stage of the CRPS mouse model.
Collapse
|
42
|
Robinson RR, Dietz AK, Maroof AM, Asmis R, Forsthuber TG. The role of glial-neuronal metabolic cooperation in modulating progression of multiple sclerosis and neuropathic pain. Immunotherapy 2019; 11:129-147. [PMID: 30730270 DOI: 10.2217/imt-2018-0153] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
While the etiology of multiple sclerosis (MS) remains unclear, research from the clinic and preclinical models identified the essential role of inflammation and demyelination in the pathogenesis of MS. Current treatments focused on anti-inflammatory processes are effective against acute episodes and relapsing-remitting MS, but patients still move on to develop secondary progressive MS. MS progression is associated with activation of microglia and astrocytes, and importantly, metabolic dysfunction leading to neuronal death. Neuronal death also contributes to chronic neuropathic pain. Metabolic support of neurons by glia may play central roles in preventing progression of MS and chronic neuropathic pain. Here, we review mechanisms of metabolic cooperation between glia and neurons and outline future perspectives exploring metabolic support of neurons by glia.
Collapse
Affiliation(s)
- Rachel R Robinson
- Department of Biology, University of Texas at San Antonio, TX 78249, USA
| | - Alina K Dietz
- Department of Biology, University of Texas at San Antonio, TX 78249, USA
| | - Asif M Maroof
- Department of Biology, University of Texas at San Antonio, TX 78249, USA
| | - Reto Asmis
- Department of Internal Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA
| | | |
Collapse
|
43
|
Adebiyi MG, Manalo J, Kellems RE, Xia Y. Differential role of adenosine signaling cascade in acute and chronic pain. Neurosci Lett 2019; 712:134483. [PMID: 31494223 DOI: 10.1016/j.neulet.2019.134483] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 06/14/2019] [Accepted: 09/04/2019] [Indexed: 12/21/2022]
Abstract
Adenosine is a signaling molecule induced under stress such as energy insufficiency and ischemic/hypoxic conditions. Adenosine controls multiple physiological and pathological cellular and tissue function by activation of four G protein-coupled receptors (GPCR). Functional role of adenosine signaling in acute pain has been widely studied. However, the role of adenosine signaling in chronic pain is poorly understood. At acute levels, adenosine can be beneficial to anti-pain whereas a sustained elevation of adenosine can be detrimental to promote chronic pain. In recent years, extensive progress has been made to define the role of adenosine signaling in chronic pain and to dissect molecular new insight underlying the development of chronic pain. In this review, we summarize the differential role of adenosine signaling cascade in acute and chronic pain with a major focus on recent studies revealing adenosine ADORA2B receptor activation in the pathology of chronic pain. We further provide a therapeutic outlook of how multiple adenosine signaling components can be useful to treat chronic pain.
Collapse
Affiliation(s)
- Morayo G Adebiyi
- Department of Biochemistry and Molecular Biology, The University of Texas McGovern Medical School, Houston, TX, USA; The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Jeanne Manalo
- Department of Biochemistry and Molecular Biology, The University of Texas McGovern Medical School, Houston, TX, USA; The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Rodney E Kellems
- Department of Biochemistry and Molecular Biology, The University of Texas McGovern Medical School, Houston, TX, USA; The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Yang Xia
- Department of Biochemistry and Molecular Biology, The University of Texas McGovern Medical School, Houston, TX, USA; The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA.
| |
Collapse
|
44
|
Grassi S, Mauri L, Prioni S, Cabitta L, Sonnino S, Prinetti A, Giussani P. Sphingosine 1-Phosphate Receptors and Metabolic Enzymes as Druggable Targets for Brain Diseases. Front Pharmacol 2019; 10:807. [PMID: 31427962 PMCID: PMC6689979 DOI: 10.3389/fphar.2019.00807] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 06/21/2019] [Indexed: 12/12/2022] Open
Abstract
The central nervous system is characterized by a high content of sphingolipids and by a high diversity in terms of different structures. Stage- and cell-specific sphingolipid metabolism and expression are crucial for brain development and maintenance toward adult age. On the other hand, deep dysregulation of sphingolipid metabolism, leading to altered sphingolipid pattern, is associated with the majority of neurological and neurodegenerative diseases, even those totally lacking a common etiological background. Thus, sphingolipid metabolism has always been regarded as a promising pharmacological target for the treatment of brain disorders. However, any therapeutic hypothesis applied to complex amphipathic sphingolipids, components of cellular membranes, has so far failed probably because of the high regional complexity and specificity of the different biological roles of these structures. Simpler sphingosine-based lipids, including ceramide and sphingosine 1-phosphate, are important regulators of brain homeostasis, and, thanks to the relative simplicity of their metabolic network, they seem a feasible druggable target for the treatment of brain diseases. The enzymes involved in the control of the levels of bioactive sphingoids, as well as the receptors engaged by these molecules, have increasingly allured pharmacologists and clinicians, and eventually fingolimod, a functional antagonist of sphingosine 1-phosphate receptors with immunomodulatory properties, was approved for the therapy of relapsing-remitting multiple sclerosis. Considering the importance of neuroinflammation in many other brain diseases, we would expect an extension of the use of such analogs for the treatment of other ailments in the future. Nevertheless, many aspects other than neuroinflammation are regulated by bioactive sphingoids in healthy brain and dysregulated in brain disease. In this review, we are addressing the multifaceted possibility to address the metabolism and biology of bioactive sphingosine 1-phosphate as novel targets for the development of therapeutic paradigms and the discovery of new drugs.
Collapse
Affiliation(s)
- Sara Grassi
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Laura Mauri
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Simona Prioni
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Livia Cabitta
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Sandro Sonnino
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Alessandro Prinetti
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Paola Giussani
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| |
Collapse
|
45
|
Sphingosine-1-phosphate receptor 1 activation in astrocytes contributes to neuropathic pain. Proc Natl Acad Sci U S A 2019; 116:10557-10562. [PMID: 31068460 DOI: 10.1073/pnas.1820466116] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Neuropathic pain afflicts millions of individuals and represents a major health problem for which there is limited effective and safe therapy. Emerging literature links altered sphingolipid metabolism to nociceptive processing. However, the neuropharmacology of sphingolipid signaling in the central nervous system in the context of chronic pain remains largely unexplored and controversial. We now provide evidence that sphingosine-1-phosphate (S1P) generated in the dorsal horn of the spinal cord in response to nerve injury drives neuropathic pain by selectively activating the S1P receptor subtype 1 (S1PR1) in astrocytes. Accordingly, genetic and pharmacological inhibition of S1PR1 with multiple antagonists in distinct chemical classes, but not agonists, attenuated and even reversed neuropathic pain in rodents of both sexes and in two models of traumatic nerve injury. These S1PR1 antagonists retained their ability to inhibit neuropathic pain during sustained drug administration, and their effects were independent of endogenous opioid circuits. Moreover, mice with astrocyte-specific knockout of S1pr1 did not develop neuropathic pain following nerve injury, thereby identifying astrocytes as the primary cellular substrate of S1PR1 activity. On a molecular level, the beneficial reductions in neuropathic pain resulting from S1PR1 inhibition were driven by interleukin 10 (IL-10), a potent neuroprotective and anti-inflammatory cytokine. Collectively, our results provide fundamental neurobiological insights that identify the cellular and molecular mechanisms engaged by the S1PR1 axis in neuropathic pain and establish S1PR1 as a target for therapeutic intervention with S1PR1 antagonists as a class of nonnarcotic analgesics.
Collapse
|
46
|
|
47
|
Kozłowski T, Choromanska B, Wojskowicz P, Astapczyk K, Łukaszewicz J, Rutkowski D, Dadan J, Rydzewska-Rosołowska A, Myśliwiec P. Laparoscopic adrenalectomy: lateral transperitoneal versus posterior retroperitoneal approach - prospective randomized trial. Wideochir Inne Tech Maloinwazyjne 2019; 14:160-169. [PMID: 31118978 PMCID: PMC6528120 DOI: 10.5114/wiitm.2019.84694] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 03/10/2019] [Indexed: 12/29/2022] Open
Abstract
INTRODUCTION Laparoscopic adrenalectomy has become the gold standard of surgical treatment for benign adrenal masses. Two alternative surgical approaches are currently advocated: the lateral transperitoneal approach (LTA) and the posterior retroperitoneal approach (PRA). Several randomized trials have compared LTA to PRA, but most of them included small numbers of patients or had stringent inclusion criteria. AIM To compare clinical results of LTA and PRA endoscopic adrenalectomies for tumors < 8 cm with wide inclusion criteria. MATERIAL AND METHODS We randomized 77 patients to either LTA (n = 33) or PRA (n = 44). The groups were comparable in terms of age, gender proportions, body mass index, tumor size, clinical and pathological diagnosis. We analyzed duration of surgery, intraoperative blood loss, postoperative pain, length of hospital stay and postoperative morbidity. RESULTS The follow-up concerned 98.8% of patients and was on average 28 (8-47) months long. There were no conversions. We identified significantly lower intensity of pain assessed 24 h after surgery in the PRA group (3.4 ±1), as compared to LTA (4.2 ±1), with lower prevalence of shoulder pain (2.3% vs. 30.3%, respectively). Postoperative hospital stay was shorter in the PRA (1.14 ±0.4) than in the LTA (1.36 ±0.5) group. Perioperative morbidity concerned 4 patients in each group with pain requiring oral analgesia > 7 days. CONCLUSIONS To our knowledge this is the largest prospective randomized study comparing LTA to PRA. We demonstrated safety, efficacy and very low morbidity of both techniques. The PRA proved superior to LTA in terms of lower intensity of postoperative pain and shorter hospital stay.
Collapse
Affiliation(s)
- Tomasz Kozłowski
- 1 Department of General and Endocrine Surgery, Medical University of Bialystok, Bialystok, Poland
| | - Barbara Choromanska
- 1 Department of General and Endocrine Surgery, Medical University of Bialystok, Bialystok, Poland
| | - Piotr Wojskowicz
- 1 Department of General and Endocrine Surgery, Medical University of Bialystok, Bialystok, Poland
| | - Kamil Astapczyk
- 1 Department of General and Endocrine Surgery, Medical University of Bialystok, Bialystok, Poland
| | - Jerzy Łukaszewicz
- 1 Department of General and Endocrine Surgery, Medical University of Bialystok, Bialystok, Poland
| | - Dominika Rutkowski
- 1 Department of General and Endocrine Surgery, Medical University of Bialystok, Bialystok, Poland
| | - Jacek Dadan
- 1 Department of General and Endocrine Surgery, Medical University of Bialystok, Bialystok, Poland
| | - Alicja Rydzewska-Rosołowska
- 2 Department of Nephrology and Hypertension with Dialysis Unit, Medical University of Bialystok, Bialystok, Poland
| | - Piotr Myśliwiec
- 1 Department of General and Endocrine Surgery, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
48
|
Rapamycin and fingolimod modulate Treg/Th17 cells in experimental autoimmune encephalomyelitis by regulating the Akt-mTOR and MAPK/ERK pathways. J Neuroimmunol 2018; 324:26-34. [DOI: 10.1016/j.jneuroim.2018.08.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 08/24/2018] [Accepted: 08/24/2018] [Indexed: 12/31/2022]
|