1
|
Zhang W, Zhang Y, Wang H, Sun X, Chen L, Zhou J. Animal Models of Chronic Migraine: From the Bench to Therapy. Curr Pain Headache Rep 2024; 28:1123-1133. [PMID: 38954246 DOI: 10.1007/s11916-024-01290-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2024] [Indexed: 07/04/2024]
Abstract
PURPOSE OF REVIEW Chronic migraine is a disabling progressive disorder without effective management approaches. Animal models have been developed and used in chronic migraine research. However, there are several problems with existing models. Therefore, we aimed to summarize and analyze existing animal models to facilitate translation from basic to clinical. RECENT FINDINGS The most commonly used models are the inflammatory soup induction model and the nitric oxide donor induction model. In addition, KATP openers have also been used in model induction. Based on the above models, some molecular targets have been identified, such as glutamate receptors. However, each model has its shortcomings and characteristics, and there are still some common problems that need to be solved, such as spontaneous headache, evaluation criteria after model establishment, and identification methods. In this review, we summarized and highlighted the advantages and limitations of the currently commonly used animal models of chronic migraine with a special focus on drug discovery and current therapeutic strategies, and discussed the directions that can be worked on in the future.
Collapse
Affiliation(s)
- Wei Zhang
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, 1 You Yi Road, Yu Zhong District, Chongqing, 400016, China
| | - Yun Zhang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Han Wang
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, 1 You Yi Road, Yu Zhong District, Chongqing, 400016, China
| | - Xuechun Sun
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lixue Chen
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, 1 You Yi Road, Yu Zhong District, Chongqing, 400016, China.
| | - Jiying Zhou
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
2
|
Liu Y, Gong Z, Zhai D, Yang C, Lu G, Wang S, Xiao S, Li C, Chen L, Lin X, Zhang S, Yu S, Dong Z. Unveiling the therapeutic potential of Dl-3-n-butylphthalide in NTG-induced migraine mouse: activating the Nrf2 pathway to alleviate oxidative stress and neuroinflammation. J Headache Pain 2024; 25:50. [PMID: 38565987 PMCID: PMC10986135 DOI: 10.1186/s10194-024-01750-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 03/12/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND Migraine stands as a prevalent primary headache disorder, with prior research highlighting the significant involvement of oxidative stress and inflammatory pathways in its pathogenesis and chronicity. Existing evidence indicates the capacity of Dl-3-n-butylphthalide (NBP) to mitigate oxidative stress and inflammation, thereby conferring neuroprotective benefits in many central nervous system diseases. However, the specific therapeutic implications of NBP in the context of migraine remain to be elucidated. METHODS We established a C57BL/6 mouse model of chronic migraine (CM) using recurrent intraperitoneal injections of nitroglycerin (NTG, 10 mg/kg), and prophylactic treatment was simulated by administering NBP (30 mg/kg, 60 mg/kg, 120 mg/kg) by gavage prior to each NTG injection. Mechanical threshold was assessed using von Frey fibers, and photophobia and anxious behaviours were assessed using a light/dark box and elevated plus maze. Expression of c-Fos, calcitonin gene-related peptide (CGRP), Nucleus factor erythroid 2-related factor 2 (Nrf2) and related pathway proteins in the spinal trigeminal nucleus caudalis (SP5C) were detected by Western blotting (WB) or immunofluorescence (IF). The expression of IL-1β, IL-6, TNF-α, Superoxide dismutase (SOD) and malondialdehyde (MDA) in SP5C and CGRP in plasma were detected by ELISA. A reactive oxygen species (ROS) probe was used to detect the expression of ROS in the SP5C. RESULTS At the end of the modelling period, chronic migraine mice showed significantly reduced mechanical nociceptive thresholds, as well as photophobic and anxious behaviours. Pretreatment with NBP attenuated nociceptive sensitization, photophobia, and anxiety in the model mice, reduced expression levels of c-Fos and CGRP in the SP5C and activated Nrf2 and its downstream proteins HO-1 and NQO-1. By measuring the associated cytokines, we also found that NBP reduced levels of oxidative stress and inflammation. Most importantly, the therapeutic effect of NBP was significantly reduced after the administration of ML385 to inhibit Nrf2. CONCLUSIONS Our data suggest that NBP may alleviate migraine by activating the Nrf2 pathway to reduce oxidative stress and inflammation in migraine mouse models, confirming that it may be a potential drug for the treatment of migraine.
Collapse
Affiliation(s)
- Yingyuan Liu
- Department of Neurology, the First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, China
- Medical School of Chinese PLA, Beijing, 100853, China
| | - Zihua Gong
- Department of Neurology, Bethune International Peace Hospital, Shijiazhuang, Hebei 050082, Hebei, China
| | - Deqi Zhai
- Department of Neurology, the First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, China
- Medical School of Chinese PLA, Beijing, 100853, China
| | - Chunxiao Yang
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Guangshuang Lu
- Department of Neurology, the First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, China
- Medical School of Chinese PLA, Beijing, 100853, China
| | - Shuqing Wang
- Department of Neurology, the First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, China
- Medical School of Chinese PLA, Beijing, 100853, China
| | - Shaobo Xiao
- Department of Neurology, the First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, China
- Medical School of Chinese PLA, Beijing, 100853, China
| | - Chenhao Li
- Department of Neurology, the First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, China
- Medical School of Chinese PLA, Beijing, 100853, China
| | - Ludan Chen
- Clinical School of Anhui Medical University, The Third Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
| | - Xiaoxue Lin
- Department of Neurology, the First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, China
- Medical School of Chinese PLA, Beijing, 100853, China
| | - Shuhua Zhang
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Shengyuan Yu
- Department of Neurology, the First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, China.
- Medical School of Chinese PLA, Beijing, 100853, China.
| | - Zhao Dong
- Department of Neurology, the First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, China.
- Medical School of Chinese PLA, Beijing, 100853, China.
| |
Collapse
|
3
|
Zhang Y, Gao Y, Liu QS, Zhou Q, Jiang G. Chemical contaminants in blood and their implications in chronic diseases. JOURNAL OF HAZARDOUS MATERIALS 2024; 466:133511. [PMID: 38262316 DOI: 10.1016/j.jhazmat.2024.133511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/27/2023] [Accepted: 01/10/2024] [Indexed: 01/25/2024]
Abstract
Artificial chemical products are widely used and ubiquitous worldwide and pose a threat to the environment and human health. Accumulating epidemiological and toxicological evidence has elucidated the contributions of environmental chemical contaminants to the incidence and development of chronic diseases that have a negative impact on quality of life or may be life-threatening. However, the pathways of exposure to these chemicals and their involvements in chronic diseases remain unclear. We comprehensively reviewed the research progress on the exposure risks of humans to environmental contaminants, their body burden as indicated by blood monitoring, and the correlation of blood chemical contaminants with chronic diseases. After entering the human body through various routes of exposure, environmental contaminants are transported to target organs through blood circulation. The application of the modern analytical techniques based on human plasma or serum specimens is promising for determining the body burden of environmental contaminants, including legacy persistent organic pollutants, emerging pollutants, and inorganic elements. Furthermore, their body burden, as indicated by blood monitoring correlates with the incidence and development of metabolic syndromes, cancers, chronic nervous system diseases, cardiovascular diseases, and reproductive disorders. On this basis, we highlight the urgent need for further research on environmental pollution causing health problems in humans.
Collapse
Affiliation(s)
- Yuzhu Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yurou Gao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Qian S Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China.
| | - Qunfang Zhou
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, PR China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310000, PR China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, PR China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310000, PR China
| |
Collapse
|
4
|
Rasmussen RH, Christensen SL, Calloe K, Nielsen BS, Rehfeld A, Taylor-Clark TE, Haanes KA, Taboureau O, Audouze K, Klaerke DA, Olesen J, Kristensen DM. Xenobiotic Exposure and Migraine-Associated Signaling: A Multimethod Experimental Study Exploring Cellular Assays in Combination with Ex Vivo and In Vivo Mouse Models. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:117003. [PMID: 37909725 PMCID: PMC10619430 DOI: 10.1289/ehp12413] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 09/13/2023] [Accepted: 09/25/2023] [Indexed: 11/03/2023]
Abstract
BACKGROUND Mechanisms for how environmental chemicals might influence pain has received little attention. Epidemiological studies suggest that environmental factors such as pollutants might play a role in migraine prevalence. Potential targets for pollutants are the transient receptor potential (TRP) channels ankyrin 1 (TRPA1) and vanilloid 1 (TRPV1), which on activation release pain-inducing neuropeptide calcitonin gene-related peptide (CGRP). OBJECTIVE In this study, we aimed to examine the hypothesis that environmental pollutants via TRP channel signaling and subsequent CGRP release trigger migraine signaling and pain. METHODS A calcium imaging-based screen of environmental chemicals was used to investigate activation of migraine pain-associated TRP channels TRPA1 and TRPV1. Based on this screen, whole-cell patch clamp and in silico docking were performed for the pesticide pentachlorophenol (PCP) as proof of concept. Subsequently, PCP-mediated release of CGRP and vasodilatory responses of cerebral arteries were investigated. Finally, we tested whether PCP could induce a TRPA1-dependent induction of cutaneous hypersensitivity in vivo in mice as a model of migraine-like pain. RESULTS A total of 16 out of the 52 screened environmental chemicals activated TRPA1 at 10 or 100 μ M . None of the investigated compounds activated TRPV1. Using PCP as a model of chemical interaction with TRPA1, in silico molecular modeling suggested that PCP is stabilized in a lipid-binding pocket of TRPA1 in comparison with TRPV1. In vitro, ex vivo, and in vivo experiments showed that PCP induced calcium influx in neurons and resulted in a TRPA1-dependent CGRP release from the brainstem and dilation of cerebral arteries. In a mouse model of migraine-like pain, PCP induced a TRPA1-dependent increased pain response (N total = 144 ). DISCUSSION Here we show that multiple environmental pollutants interact with the TRPA1-CGRP migraine pain pathway. The data provide valuable insights into how environmental chemicals can interact with neurobiology and provide a potential mechanism for putative increases in migraine prevalence over the last decades. https://doi.org/10.1289/EHP12413.
Collapse
Affiliation(s)
- Rikke H. Rasmussen
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital – Rigshospitalet, Glostrup, Denmark
| | - Sarah L. Christensen
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital – Rigshospitalet, Glostrup, Denmark
| | - Kirstine Calloe
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Brian Skriver Nielsen
- Department of Growth and Reproduction, Copenhagen University Hospital – Rigshospitalet, Copenhagen, Denmark
| | - Anders Rehfeld
- Department of Growth and Reproduction, Copenhagen University Hospital – Rigshospitalet, Copenhagen, Denmark
| | - Thomas E. Taylor-Clark
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, USA
| | - Kristian A. Haanes
- Department of Clinical Experimental Research, Rigshospitalet Glostrup, Glostrup, Denmark
- Department of Biology, Section of Cell Biology and Physiology, University of Copenhagen, Denmark
| | - Olivier Taboureau
- Unité de Biologie Fonctionnelle, Université Paris Cité, Centre national de la recherche scientifique (CNRS, French National Centre for Scientific Research), Institut national de la santé et de la recherche médicale (Inserm, National Institute of Health & Medical Research), Paris, France
| | | | - Dan A. Klaerke
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Jes Olesen
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital – Rigshospitalet, Glostrup, Denmark
| | - David M. Kristensen
- Department of Growth and Reproduction, Copenhagen University Hospital – Rigshospitalet, Copenhagen, Denmark
- Institut de recherche en santé, environnement et travail (Irset) – UMR_S 1085, Université de Rennes, Inserm, École des hautes études en santé publique (EHESP), Rennes, France
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
| |
Collapse
|
5
|
Fila M, Pawlowska E, Szczepanska J, Blasiak J. Epigenetic Connections of the TRPA1 Ion Channel in Pain Transmission and Neurogenic Inflammation - a Therapeutic Perspective in Migraine? Mol Neurobiol 2023; 60:5578-5591. [PMID: 37326902 PMCID: PMC10471718 DOI: 10.1007/s12035-023-03428-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 06/05/2023] [Indexed: 06/17/2023]
Abstract
Persistent reprogramming of epigenetic pattern leads to changes in gene expression observed in many neurological disorders. Transient receptor potential cation channel subfamily A member 1 (TRPA1), a member of the TRP channels superfamily, is activated by many migraine triggers and expressed in trigeminal neurons and brain regions that are important in migraine pathogenesis. TRP channels change noxious stimuli into pain signals with the involvement of epigenetic regulation. The expression of the TRPA1 encoding gene, TRPA1, is modulated in pain-related syndromes by epigenetic alterations, including DNA methylation, histone modifications, and effects of non-coding RNAs: micro RNAs (miRNAs), long non-coding RNAs, and circular RNAs. TRPA1 may change epigenetic profile of many pain-related genes as it may modify enzymes responsible for epigenetic modifications and expression of non-coding RNAs. TRPA1 may induce the release of calcitonin gene related peptide (CGRP), from trigeminal neurons and dural tissue. Therefore, epigenetic regulation of TRPA1 may play a role in efficacy and safety of anti-migraine therapies targeting TRP channels and CGRP. TRPA1 is also involved in neurogenic inflammation, important in migraine pathogenesis. The fundamental role of TRPA1 in inflammatory pain transmission may be epigenetically regulated. In conclusion, epigenetic connections of TRPA1 may play a role in efficacy and safety of anti-migraine therapy targeting TRP channels or CGRP and they should be further explored for efficient and safe antimigraine treatment. This narrative/perspective review presents information on the structure and functions of TRPA1 as well as role of its epigenetic connections in pain transmission and potential in migraine therapy.
Collapse
Affiliation(s)
- Michal Fila
- Department of Developmental Neurology and Epileptology, Polish Mother's Memorial Hospital Research Institute, 93-338, Lodz, Poland
| | - Elzbieta Pawlowska
- Department of Pediatric Dentistry, Medical University of Lodz, 92-217, Lodz, Poland
| | - Joanna Szczepanska
- Department of Pediatric Dentistry, Medical University of Lodz, 92-217, Lodz, Poland
| | - Janusz Blasiak
- Department of Molecular Genetics, University of Lodz, 90-236, Lodz, Poland.
| |
Collapse
|
6
|
Bavarsad NH, Bagheri S, Kourosh-Arami M, Komaki A. Aromatherapy for the brain: Lavender's healing effect on epilepsy, depression, anxiety, migraine, and Alzheimer's disease: A review article. Heliyon 2023; 9:e18492. [PMID: 37554839 PMCID: PMC10404968 DOI: 10.1016/j.heliyon.2023.e18492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 07/17/2023] [Accepted: 07/19/2023] [Indexed: 08/10/2023] Open
Abstract
Neurological diseases affect the nervous system, including the brain, spinal cord, cranial nerves, nerve roots, autonomic nervous system, neuromuscular junctions, and muscles. Herbal medicine has long been used to cure these diseases. One of these plants is lavender, which is composed of various compounds, including terpenes, such as linalool, limonene, triterpenes, linalyl acetate, alcohols, ketones, polyphenols, coumarins, cineole, and flavonoids. In this review, the literature was searched using scientific search engines and databases (Google Scholar, Science Direct, Scopus, and PubMed) for papers published between 1982 and 2020 via keywords, including review, lavender, and neurological disorders. This plant exerts its healing effect on many diseases, such as anxiety and depression through an inhibitory effect on GABA. The anti-inflammatory effects of this plant have also been documented. It improves depression by regulating glutamate receptors and inhibiting calcium channels and serotonergic factors, such as SERT. Its antiepileptic mechanism is due to an increase in the inhibitory effect of GABA and potassium current and a decrease in sodium current. Therefore, many vegetable oils are also used in herbal medicine. In this review, the healing effect of lavender on several neurological disorders, including epilepsy, depression, anxiety, migraine, and Alzheimer's disease was investigated. All findings strongly support the traditional uses of lavender. More clinical studies are needed to investigate the effect of the plants' pharmacological active constituents on the treatment of life-threatening diseases in humans. The limitations of this study are the low quality and the limited number of clinical studies. Different administration methods of lavender are one of the limitations of this review.
Collapse
Affiliation(s)
- Nazanin Hatami Bavarsad
- Department of Neuroscience, School of Science and Advanced Technologies in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Shokufeh Bagheri
- Department of Neuroscience, School of Science and Advanced Technologies in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Masoumeh Kourosh-Arami
- Department of Neuroscience, School of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Alireza Komaki
- Department of Neuroscience, School of Science and Advanced Technologies in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
7
|
Hu Z, Zhang Y, Yu W, Li J, Yao J, Zhang J, Wang J, Wang C. Transient receptor potential ankyrin 1 (TRPA1) modulators: Recent update and future perspective. Eur J Med Chem 2023; 257:115392. [PMID: 37269667 DOI: 10.1016/j.ejmech.2023.115392] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 04/17/2023] [Accepted: 04/17/2023] [Indexed: 06/05/2023]
Abstract
The transient receptor potential ankyrin 1 (TRPA1) channel is a non-selective cation channel that senses irritant chemicals. Its activation is closely associated with pain, inflammation, and pruritus. TRPA1 antagonists are promising treatments for these diseases, and there has been a recent upsurge in their application to new areas such as cancer, asthma, and Alzheimer's disease. However, due to the generally disappointing performance of TRPA1 antagonists in clinical studies, scientists must pursue the development of antagonists with higher selectivity, metabolic stability, and solubility. Moreover, TRPA1 agonists provide a deeper understanding of activation mechanisms and aid in antagonist screening. Therefore, we summarize the TRPA1 antagonists and agonists developed in recent years, with a particular focus on structure-activity relationships (SARs) and pharmacological activity. In this perspective, we endeavor to keep abreast of cutting-edge ideas and provide inspiration for the development of more effective TRPA1-modulating drugs.
Collapse
Affiliation(s)
- Zelin Hu
- Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; College of Life Sciences, Sichuan University, Chengdu, 610064, China
| | - Ya Zhang
- Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; College of Life Sciences, Sichuan University, Chengdu, 610064, China
| | - Wenhan Yu
- College of Letters & Science, University of California, Berkeley, Berkeley, 94720, California, United States
| | - Junjie Li
- Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jiaqi Yao
- Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; College of Life Sciences, Sichuan University, Chengdu, 610064, China
| | - Jifa Zhang
- Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jiaxing Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, 38163, Tennessee, United States
| | - Chengdi Wang
- Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
8
|
Xu H, Xu M, Jc Z, Ye F, Liu X, Liu Y, Jin X. Short-term environmental nitrogen dioxide exposure and neurology clinic visits for headaches, a time-series study in Wuhan, China. BMC Public Health 2023; 23:828. [PMID: 37147646 PMCID: PMC10161479 DOI: 10.1186/s12889-023-15770-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 04/26/2023] [Indexed: 05/07/2023] Open
Abstract
BACKGROUND Previous studies showed the adverse impacts of air pollution on headache attacks in developed countries. However, evidence is limited to the impact of exposure to air pollutants on headache attacks. In this study, we aimed to explore the impact of nitrogen dioxide (NO2) exposure on neurology clinic visits (NCVs) for headache onsets. METHODS Records of NCVs for headaches, concentrations of ambient NO2, and meteorological variables were collected in Wuhan, China, from January 1st, 2017, to November 30th, 2019. A time-series study was conducted to investigate the short-term effects of NO2 exposure on daily NCVs for headaches. Stratified analyses were also computed according to season, age, and sex, and the exposure-response (E-R) curve was then plotted. RESULTS A total of 11,436 records of NCVs for headaches were enrolled in our study during the period. A 10-μg/m3 increase of ambient NO2 corresponded to a 3.64% elevation of daily NCVs for headaches (95%CI: 1.02%, 6.32%, P = 0.006). Moreover, females aged less than 50 years of age were more susceptible compared to males (4.10% vs. 2.97%, P = 0.007). The short-term effects of NO2 exposure on daily NCVs for headaches were stronger in cool seasons than in warm seasons (6.31% vs. 0.79%, P = 0.0009). CONCLUSION Our findings highlight that short-term exposure to ambient NO2 positively correlated with NCVs for headaches in Wuhan, China, and the adverse effects varied by season, age, and sex.
Collapse
Affiliation(s)
- Haoyue Xu
- The Emergency Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
- The Second Clinical School of Wuhan University, Wuhan, 430071, Hubei, China
| | - Min Xu
- Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Zheng Jc
- The Second Clinical School of Wuhan University, Wuhan, 430071, Hubei, China
| | - Fei Ye
- Department of Neurology, Wuhan Central Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, Hubei, China
| | - Xiaozhou Liu
- Department of Neurology, Wuhan Central Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, Hubei, China
| | - Yumin Liu
- Department of Neurology, Zhongnan Hospital of Wuhan University, WuhanHubei, 430071, China
| | - Xiaoqing Jin
- The Emergency Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China.
| |
Collapse
|
9
|
Wen Q, Wang Y, Pan Q, Tian R, Zhang D, Qin G, Zhou J, Chen L. MicroRNA-155-5p promotes neuroinflammation and central sensitization via inhibiting SIRT1 in a nitroglycerin-induced chronic migraine mouse model. J Neuroinflammation 2021; 18:287. [PMID: 34893074 PMCID: PMC8665643 DOI: 10.1186/s12974-021-02342-5] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 12/05/2021] [Indexed: 12/03/2022] Open
Abstract
Background Previous studies have confirmed that the microglial activation and subsequent inflammatory responses in the trigeminal nucleus caudalis (TNC) are involved in the central sensitization of chronic migraine (CM). MicroRNA-155-5p has been shown to modulate the polarization of microglia and participate in inflammatory processes in a variety of neurological diseases. However, its role in CM remains unclear. The purpose of this study was to determine the precise role of miR-155-5p in CM. Methods A model of CM in C57BL/6 mice was established by recurrent intraperitoneal injection of nitroglycerin (NTG). Mechanical and thermal hyperalgesia were evaluated by Von Frey filaments and radiant heat. The expression of miR-155-5p was examined by qRT-PCR, and the mRNA and protein levels of silent information regulator 1(SIRT1) were measured by qRT-PCR, Western blotting (WB) and immunofluorescence (IF) analysis. The miR-155-5p antagomir, miR-155-5p agomir, SRT1720 (a SIRT1 activator) and EX527 (a SIRT1 inhibitor) were administered to confirm the effects of miR-155-5p and SIRT1 on neuroinflammation and the central sensitization of CM. ELISA, WB and IF assays were applied to evaluate the expression of TNF-α, myeloperoxidase (MPO), IL-10, p-ERK, p-CREB, calcitonin gene-related peptide (CGRP), c-Fos and microglial activation. The cellular localization of SIRT1 was illustrated by IF. Results After the NTG-induced mouse model of CM was established, the expression of miR-155-5p was increased. The level of SIRT1 was decreased, and partly colocalized with Iba1 in the TNC. The miR-155-5p antagomir and SRT1720 downregulated the expression of p-ERK, p-CREB, CGRP, and c-Fos, alleviating microglial activation and decreasing inflammatory substances (TNF-α, MPO). The administration of miR-155-5p agomir or EX527 exacerbated neuroinflammation and central sensitization. Importantly, the miR-155-5p agomir elevated CGRP and c-Fos expression and microglial activation, which could subsequently be alleviated by SRT1720. Conclusions These data demonstrate that upregulated miR-155-5p in the TNC participates in the central sensitization of CM. Inhibiting miR-155-5p alleviates neuroinflammation by activating SIRT1 in the TNC of CM mice.
Collapse
Affiliation(s)
- Qianwen Wen
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, 1st You Yi Road, Yu Zhong, Chongqing, 400016, China
| | - Yunfeng Wang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Department of Neurology, Nanchong Central Hospital, Nanchong, China
| | - Qi Pan
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ruimin Tian
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Dunke Zhang
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, 1st You Yi Road, Yu Zhong, Chongqing, 400016, China
| | - Guangcheng Qin
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, 1st You Yi Road, Yu Zhong, Chongqing, 400016, China
| | - Jiying Zhou
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lixue Chen
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, 1st You Yi Road, Yu Zhong, Chongqing, 400016, China.
| |
Collapse
|
10
|
Nie L, Jiang L, Quinn JP, Grubb BD, Wang M. TRPA1-Mediated Src Family Kinases Activity Facilitates Cortical Spreading Depression Susceptibility and Trigeminovascular System Sensitization. Int J Mol Sci 2021; 22:12273. [PMID: 34830154 PMCID: PMC8620265 DOI: 10.3390/ijms222212273] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/06/2021] [Accepted: 11/06/2021] [Indexed: 01/09/2023] Open
Abstract
Transient receptor potential ankyrin 1 (TRPA1) plays a role in migraine and is proposed as a promising target for migraine therapy. However, TRPA1-induced signaling in migraine pathogenesis is poorly understood. In this study, we explored the hypothesis that Src family kinases (SFKs) transmit TRPA1 signaling in regulating cortical spreading depression (CSD), calcitonin gene-related peptide (CGRP) release and neuroinflammation. CSD was monitored in mouse brain slices via intrinsic optical imaging, and in rats using electrophysiology. CGRP level and IL-1β gene expression in mouse trigeminal ganglia (TG) was detected using Enzyme-linked Immunosorbent Assay and Quantitative Polymerase Chain Reaction respectively. The results showed a SFKs activator, pYEEI (EPQY(PO3H2)EEEIPIYL), reversed the reduced cortical susceptibility to CSD by an anti-TRPA1 antibody in mouse brain slices. Additionally, the increased cytosolic phosphorylated SFKs at Y416 induced by CSD in rat ipsilateral cerebral cortices was attenuated by pretreatment of the anti-TRPA1 antibody perfused into contralateral ventricles. In mouse TG, a SFKs inhibitor, saracatinib, restored the CGRP release and IL-1β mRNA level increased by a TRPA1 activator, umbellulone. Moreover, umbellulone promoted SFKs phosphorylation, which was reduced by a PKA inhibitor, PKI (14-22) Amide. These data reveal a novel mechanism of migraine pathogenesis by which TRPA1 transmits signaling to SFKs via PKA facilitating CSD susceptibility and trigeminovascular system sensitization.
Collapse
Affiliation(s)
- Lingdi Nie
- Centre for Neuroscience, Department of Biological Sciences, Xi’an Jiaotong-Liverpool University (XJTLU), Suzhou 215123, China; (L.N.); (L.J.)
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, Liverpool L69 7ZB, UK; (J.P.Q.); (B.D.G.)
| | - Liwen Jiang
- Centre for Neuroscience, Department of Biological Sciences, Xi’an Jiaotong-Liverpool University (XJTLU), Suzhou 215123, China; (L.N.); (L.J.)
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, Liverpool L69 7ZB, UK; (J.P.Q.); (B.D.G.)
| | - John P. Quinn
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, Liverpool L69 7ZB, UK; (J.P.Q.); (B.D.G.)
| | - Blair D. Grubb
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, Liverpool L69 7ZB, UK; (J.P.Q.); (B.D.G.)
| | - Minyan Wang
- Centre for Neuroscience, Department of Biological Sciences, Xi’an Jiaotong-Liverpool University (XJTLU), Suzhou 215123, China; (L.N.); (L.J.)
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, Liverpool L69 7ZB, UK; (J.P.Q.); (B.D.G.)
| |
Collapse
|
11
|
Insights into the role of epigenetic mechanisms in migraine: the future perspective of disease management. THE NUCLEUS 2021. [DOI: 10.1007/s13237-021-00366-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
12
|
Elser H, Morello-Frosch R, Jacobson A, Pressman A, Kioumourtzoglou MA, Reimer R, Casey JA. Air pollution, methane super-emitters, and oil and gas wells in Northern California: the relationship with migraine headache prevalence and exacerbation. Environ Health 2021; 20:45. [PMID: 33865403 PMCID: PMC8053292 DOI: 10.1186/s12940-021-00727-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 04/12/2021] [Indexed: 05/25/2023]
Abstract
BACKGROUND Migraine-an episodic disorder characterized by severe headache that can lead to disability-affects over 1 billion people worldwide. Prior studies have found that short-term exposure to fine particulate matter (PM2.5), nitrogen dioxide (NO2), and ozone increases risk of migraine-related emergency department (ED) visits. Our objective was to characterize the association between long-term exposure to sources of harmful emissions and common air pollutants with both migraine headache and, among patients with migraine, headache severity. METHODS From the Sutter Health electronic health record database, we identified 89,575 prevalent migraine cases between 2014 and 2018 using a migraine probability algorithm (MPA) score and 270,564 frequency-matched controls. Sutter Health delivers care to 3.5 million patients annually in Northern California. Exposures included 2015 annual average block group-level PM2.5 and NO2 concentrations, inverse-distance weighted (IDW) methane emissions from 60 super-emitters located within 10 km of participant residence between 2016 and 2018, and IDW active oil and gas wells in 2015 within 10 km of each participant. We used logistic and negative binomial mixed models to evaluate the association between environmental exposures and (1) migraine case status; and (2) migraine severity (i.e., MPA score > 100, triptan prescriptions, neurology visits, urgent care migraine visits, and ED migraine visits per person-year). Models controlled for age, sex, race/ethnicity, Medicaid use, primary care visits, and block group-level population density and poverty. RESULTS In adjusted analyses, for each 5 ppb increase in NO2, we observed 2% increased odds of migraine case status (95% CI: 1.00, 1.05) and for each 100,000 kg/hour increase in IDW methane emissions, the odds of case status also increased (OR = 1.04, 95% CI: 1.00, 1.08). We found no association between PM2.5 or oil and gas wells and migraine case status. PM2.5 was linearly associated with neurology visits, migraine-specific urgent care visits, and MPA score > 100, but not triptans or ED visits. NO2 was associated with migraine-specific urgent care and ED visits, but not other severity measures. We observed limited or null associations between continuous measures of methane emissions and proximity to oil and gas wells and migraine severity. CONCLUSIONS Our findings illustrate the potential role of long-term exposure to multiple ambient air pollutants for prevalent migraine and migraine severity.
Collapse
Affiliation(s)
- Holly Elser
- Stanford University School of Medicine, Stanford Center for Population Health Sciences, Stanford, USA
| | - Rachel Morello-Frosch
- Department of Environmental Science, Policy, and Management and School of Public Health, University of California Berkeley, Berkeley, CA USA
| | - Alice Jacobson
- Research, Development and Dissemination, Sutter Health, Sacramento, USA
| | - Alice Pressman
- Research, Development and Dissemination, Sutter Health, Sacramento, USA
| | - Marianthi-Anna Kioumourtzoglou
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, 722 W 168th St, Rm 1206, New York, NY 10032-3727 USA
| | - Richard Reimer
- Department of Neurology and Neurological Science, Stanford University School of Medicine, Stanford, USA
| | - Joan A. Casey
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, 722 W 168th St, Rm 1206, New York, NY 10032-3727 USA
| |
Collapse
|
13
|
Yuan R, Zhang D, Yang J, Wu Z, Luo C, Han L, Yang F, Lin J, Yang M. Review of aromatherapy essential oils and their mechanism of action against migraines. JOURNAL OF ETHNOPHARMACOLOGY 2021; 265:113326. [PMID: 32877718 DOI: 10.1016/j.jep.2020.113326] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/23/2020] [Accepted: 08/25/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Migraines have become a major threat to human health, as they significantly affect human health and quality of life due to a high prevalence rate, attack rate and pain intensity. Aromatherapy, with its comfortable and pleasant natural characteristics and rapid and efficient characteristics, is widely favored by patients in the folk. Chinese folk also have the application history and related records of aromatic plants in the treatment of migraine. AIM OF THE STUDY This study was conducted to review the pathogenesis of migraine, the application of plant essential oils in the treatment of migraine, and further explore the material basis and mechanism of action of plant essential oils against migraine. MATERIALS AND METHODS Search the electronic literature of essential oils with anti-migraine effect in Google Scholar, PubMed and China National Knowledge Infrastructure, and further search the research situation of the monomer components of essential oils in migraine, inflammation, pain and other aspects. RESULTS studies show that there are 10 types of plant essential oils that could relieve migraine symptoms, and that 16 monomers may play a role in migraine treatment by effectively inhibiting neurogenic inflammation, hyperalgesia and balancing vasorelaxation. CONCLUSION Aromatic plant essential oils can relieve migraine effectively, these findings can be used as an important part of the development of anti-migraine drugs.
Collapse
Affiliation(s)
- Ruifang Yuan
- Pharmacy School, State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Dingkun Zhang
- Pharmacy School, State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Jinhui Yang
- Sichuan Baicao Jinggong Biotechnology Co., Ltd., Chengdu, 610000, PR China
| | - Zhenfeng Wu
- Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, PR China
| | - Chuanhong Luo
- Pharmacy School, State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Li Han
- Pharmacy School, State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Fangli Yang
- Sinopharm Sichuan Orthopedic Tehnology & Equipment Co., Ltd., Chengdu, 610000, PR China
| | - Junzhi Lin
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, PR China; School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, PR China.
| | - Ming Yang
- Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, PR China.
| |
Collapse
|
14
|
Shibata M, Tang C. Implications of Transient Receptor Potential Cation Channels in Migraine Pathophysiology. Neurosci Bull 2021; 37:103-116. [PMID: 32870468 PMCID: PMC7811976 DOI: 10.1007/s12264-020-00569-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 05/11/2020] [Indexed: 12/19/2022] Open
Abstract
Migraine is a common and debilitating headache disorder. Although its pathogenesis remains elusive, abnormal trigeminal and central nervous system activity is likely to play an important role. Transient receptor potential (TRP) channels, which transduce noxious stimuli into pain signals, are expressed in trigeminal ganglion neurons and brain regions closely associated with the pathophysiology of migraine. In the trigeminal ganglion, TRP channels co-localize with calcitonin gene-related peptide, a neuropeptide crucially implicated in migraine pathophysiology. Many preclinical and clinical data support the roles of TRP channels in migraine. In particular, activation of TRP cation channel V1 has been shown to regulate calcitonin gene-related peptide release from trigeminal nerves. Intriguingly, several effective anti-migraine therapies, including botulinum neurotoxin type A, affect the functions of TRP cation channels. Here, we discuss currently available data regarding the roles of major TRP cation channels in the pathophysiology of migraine and the therapeutic applicability thereof.
Collapse
Affiliation(s)
- Mamoru Shibata
- Department of Neurology, Keio University School of Medicine, Tokyo, 160-8582, Japan.
- Department of Neurology, Tokyo Dental College Ichikawa General Hospital, Chiba, 272-8513, Japan.
| | - Chunhua Tang
- Department of Neurology, Keio University School of Medicine, Tokyo, 160-8582, Japan
- Department of Neurology and Center for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
| |
Collapse
|
15
|
Kopruszinski CM, Navratilova E, Swiokla J, Dodick DW, Chessell IP, Porreca F. A novel, injury-free rodent model of vulnerability for assessment of acute and preventive therapies reveals temporal contributions of CGRP-receptor activation in migraine-like pain. Cephalalgia 2020; 41:305-317. [PMID: 32985222 DOI: 10.1177/0333102420959794] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
AIM Development and characterization of a novel injury-free preclinical model of migraine-like pain allowing mechanistic assessment of both acute and preventive treatments. METHODS A "two-hit" hyperalgesic priming strategy was used to induce vulnerability to a normally subthreshold challenge with umbellulone, a transient receptor potential ankyrin 1 (TRPA1) activator, in uninjured female and male C57BL/6 mice. Priming (i.e. the first hit) was induced by three consecutive daily episodes of restraint stress; repeated umbellulone was also evaluated for potential priming effects. Sixteen days after the first restraint stress, mice received inhalational umbellulone (i.e. the second hit) to elicit migraine-like pain. Medications currently used for acute or preventive migraine therapy including propranolol (a beta blocker) and sumatriptan (5HT1B/D agonist), as well as olcegepant, an experimental calcitonin gene related peptide (CGRP) receptor antagonist and nor-Binaltorphimine (nor-BNI), an experimental long-acting kappa opioid receptor (KOR) antagonist, were investigated for their efficacy to block priming and prevent or reverse umbellulone-induced allodynia in primed animals. To assess migraine-like pain, cutaneous allodynia was determined by responses to periorbital or hindpaw probing with von Frey filaments. RESULTS Repeated restraint stress, but not umbellulone exposure, produced transient cutaneous allodynia that resolved within 16 d. Restraint stress produced long-lasting priming that persisted beyond 16 d, as demonstrated by reinstatement of cutaneous allodynia following inhalational umbellulone challenge. Pretreatment with propranolol or nor-BNI prior to restraint stress prevented both transient cutaneous allodynia and priming, demonstrated by a lack of umbellulone-induced cutaneous allodynia. Following establishment of restraint stress priming, olcegepant, but not propranolol or nor-BNI, prevented umbellulone-induced cutaneous allodynia. When administered 1 h after umbellulone, sumatriptan, but not olcegepant, reversed umbellulone-induced cutaneous allodynia in restraint stress-primed rats. CONCLUSION We have developed a novel injury-free model with translational relevance that can be used to study mechanisms relevant to migraine-like pain and to evaluate novel acute or preventive treatments. Restraint stress priming induced a state of vulnerability to a subthreshold stimulus that has been referred to as "latent sensitization". The development of latent sensitization could be prevented by blockade of stress pathways with propranolol or with a kappa opioid receptor antagonist. Following establishment of latent sensitization, subthreshold stimulation with umbellulone reinstated cutaneous allodynia, likely from activation of meningeal TRPA1-expressing nociceptors. Accordingly, in restraint stress-primed animals, sumatriptan reversed umbellulone-induced cutaneous allodynia, supporting peripheral sites of action, while propranolol and nor-BNI were not effective. Surprisingly, olcegepant was effective in mice with latent sensitization when given prior to, but not after, umbellulone challenge, suggesting time-dependent contributions of calcitonin gene-related peptide receptor signaling in promoting migraine-like pain in this model. Activation of the calcitonin gene-related peptide receptor participates in initiating, but has a more limited role in maintaining, pain responses, supporting the efficacy of small molecule calcitonin gene-related peptide antagonists as preventive medications. Additionally, the effectiveness of sumatriptan in reversal of established pain thus suggests modulation of additional, non-calcitonin gene-related peptide receptor-mediated nociceptive mechanisms. Kappa opioid receptor antagonists may represent a novel preventive therapy for stress-related migraine.
Collapse
Affiliation(s)
| | - Edita Navratilova
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - Juliana Swiokla
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA
| | | | - Iain P Chessell
- Neuroscience, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Frank Porreca
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA.,Department of Neurology, Mayo Clinic, Phoenix, AZ, USA
| |
Collapse
|
16
|
Vijayaraghavan R, Deb U, Gutch PK. Effect of dibenz(b,f)-1,4-oxazepine aerosol on the breathing pattern and respiratory variables by continuous recording and analysis in unanaesthetised mice. Toxicol Rep 2020; 7:1121-1126. [PMID: 32953463 PMCID: PMC7486425 DOI: 10.1016/j.toxrep.2020.08.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 08/19/2020] [Accepted: 08/23/2020] [Indexed: 12/02/2022] Open
Abstract
Dibenz (b,f)-1,4-oxazepine (CR) is a riot control agent. Respiratory variables and breathing pattern were recorded continuously in mice. CR produced concentration dependent sensory irritation without pulmonary irritation. Concentrations below 158.2 mg/m3 showed recovery to normal breathing. Study shows CR causes sensory irritation only and may not cause lung injury.
A riot control agent has to be a sensory irritant of a reversible type without pulmonary irritation as the later can cause lung injury. The aim of the present study is to continuously record and analyse breathing pattern and respiratory variables of dibenz (b,f)-1,4-oxazepine (CR) in unanaesthetised mice during and after exposure. The lowest concentration of 0.65 mg/m3 did not produce any effect on the breathing pattern. As high as 500 fold increase (315.9 mg/m3) in the concentration was used and no mortality was observed. CR produced a concentration dependent sensory irritation, without pulmonary irritation or airflow obstruction, showing that it may not cause any lung injury. The sensory irritation was initiated within 5 min of exposure due to the activation of TRPA1 receptors of the upper respiratory tract. Immediate recovery of normal breath without sensory irritation was observed in all the concentrations except the highest concentration of 315.9 mg/m3. Corresponding to the sensory irritation there was concentration dependent respiratory depression. The 50 percent respiratory depression (RD50) in this experiment was 152 mg/m3 and the estimated threshold limit value for occupational exposure was 4.56 mg/m3. The present study shows that CR causes sensory irritation only which is completely recoverable.
Collapse
Affiliation(s)
| | - Utsab Deb
- Defence Research Laboratory, Tezpur, 784001, India
| | | |
Collapse
|
17
|
Verkest C, Häfner S, Ávalos Prado P, Baron A, Sandoz G. Migraine and Two-Pore-Domain Potassium Channels. Neuroscientist 2020; 27:268-284. [PMID: 32715910 DOI: 10.1177/1073858420940949] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Migraine is a common, disabling neurological disorder with a genetic, environmental, and hormonal component with an annual prevalence estimated at ~15%. It is characterized by attacks of severe, usually unilateral and throbbing headache, and can be accompanied by nausea, vomiting, and photophobia. Migraine is clinically divided into two main subtypes: migraine with aura, when it is preceded by transient neurological disturbances due to cortical spreading depression (CSD), and migraine without aura. Activation and sensitization of trigeminal sensory neurons, leading to the release of pro-inflammatory peptides, is likely a key component in headache pain initiation and transmission in migraine. In the present review, we will focus on the function of two-pore-domain potassium (K2P) channels, which control trigeminal sensory neuron excitability and their potential interest for developing new drugs to treat migraine.
Collapse
Affiliation(s)
- Clément Verkest
- CNRS, INSERM, iBV, Université Cote d'Azur, Nice, France.,Laboratories of Excellence, Ion Channel Science and Therapeutics Nice, France.,Université Cote d'Azur, CNRS, INSERM, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France
| | - Stephanie Häfner
- CNRS, INSERM, iBV, Université Cote d'Azur, Nice, France.,Laboratories of Excellence, Ion Channel Science and Therapeutics Nice, France
| | - Pablo Ávalos Prado
- CNRS, INSERM, iBV, Université Cote d'Azur, Nice, France.,Laboratories of Excellence, Ion Channel Science and Therapeutics Nice, France
| | - Anne Baron
- Laboratories of Excellence, Ion Channel Science and Therapeutics Nice, France.,Université Cote d'Azur, CNRS, INSERM, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France
| | - Guillaume Sandoz
- CNRS, INSERM, iBV, Université Cote d'Azur, Nice, France.,Laboratories of Excellence, Ion Channel Science and Therapeutics Nice, France
| |
Collapse
|
18
|
Dux M, Babes A, Manchen J, Sertel-Nakajima J, Vogler B, Schramm J, Messlinger K. High-dose phenylephrine increases meningeal blood flow through TRPV1 receptor activation and release of calcitonin gene-related peptide. Eur J Pain 2019; 24:383-397. [PMID: 31661581 DOI: 10.1002/ejp.1495] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 10/18/2019] [Accepted: 10/21/2019] [Indexed: 01/03/2023]
Abstract
BACKGROUND The α1 -adrenoceptor agonist, phenylephrine, is used at high concentrations as a mydriatic agent and for the treatment of nasal congestion. Among its adverse side-effects transient burning sensations are reported indicating activation of the trigeminal nociceptive system. METHODS Neuropeptide release, calcium imaging and meningeal blood flow recordings were applied in rodent models of meningeal nociception to clarify possible receptor mechanisms underlying these pain phenomena. RESULTS Phenylephrine above 10 mM dose-dependently released calcitonin gene-related peptide (CGRP) from the dura mater and isolated trigeminal ganglia, whereas hyperosmotic mannitol at 90 mM was ineffective. The phenylephrine-evoked release was blocked by the transient receptor potential vanilloid 1 (TRPV1) antagonist BCTC and did not occur in trigeminal ganglia of TRPV1-deficient mice. Phenylephrine at 30 mM caused calcium transients in cultured trigeminal ganglion neurons responding to the TRPV1 agonist capsaicin and in HEK293T cells expressing human TRPV1. Local application of phenylephrine at micromolar concentrations to the exposed rat dura mater reduced meningeal blood flow, whereas concentrations above 10 mM caused increased meningeal blood flow. The flow increase was abolished by pre-application of the CGRP receptor antagonist CGRP8-37 or the TRPV1 antagonist BCTC. CONCLUSIONS Phenylephrine at high millimolar concentrations activates TRPV1 receptor channels of perivascular afferents and, upon calcium inflow, releases CGRP, which increases meningeal blood flow. Activation of TRPV1 receptors may underlie trigeminal nociception leading to cranial pain such as local burning sensations or headaches caused by administration of high doses of phenylephrine. SIGNIFICANCE Phenylephrine is used at high concentrations as a mydriaticum and for treating nasal congestion. As adverse side-effects burning sensations and headaches have been described. Phenylephrine at high concentrations causes calcium transients in trigeminal afferents, CGRP release and increased meningeal blood flow upon activation of TRPV1 receptor channels, which is likely underlying the reported pain phenomena.
Collapse
Affiliation(s)
- Mária Dux
- Department of Physiology, University of Szeged, Szeged, Hungary
| | - Alexandru Babes
- Department of Anatomy, Physiology and Biophysics, University of Bucharest, Bucharest, Romania
| | - Jessica Manchen
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-University Erlangen-Nürnberg, Nürnberg, Germany
| | - Julika Sertel-Nakajima
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-University Erlangen-Nürnberg, Nürnberg, Germany
| | - Birgit Vogler
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-University Erlangen-Nürnberg, Nürnberg, Germany
| | - Jana Schramm
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-University Erlangen-Nürnberg, Nürnberg, Germany
| | - Karl Messlinger
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-University Erlangen-Nürnberg, Nürnberg, Germany
| |
Collapse
|
19
|
Talavera K, Startek JB, Alvarez-Collazo J, Boonen B, Alpizar YA, Sanchez A, Naert R, Nilius B. Mammalian Transient Receptor Potential TRPA1 Channels: From Structure to Disease. Physiol Rev 2019; 100:725-803. [PMID: 31670612 DOI: 10.1152/physrev.00005.2019] [Citation(s) in RCA: 253] [Impact Index Per Article: 42.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The transient receptor potential ankyrin (TRPA) channels are Ca2+-permeable nonselective cation channels remarkably conserved through the animal kingdom. Mammals have only one member, TRPA1, which is widely expressed in sensory neurons and in non-neuronal cells (such as epithelial cells and hair cells). TRPA1 owes its name to the presence of 14 ankyrin repeats located in the NH2 terminus of the channel, an unusual structural feature that may be relevant to its interactions with intracellular components. TRPA1 is primarily involved in the detection of an extremely wide variety of exogenous stimuli that may produce cellular damage. This includes a plethora of electrophilic compounds that interact with nucleophilic amino acid residues in the channel and many other chemically unrelated compounds whose only common feature seems to be their ability to partition in the plasma membrane. TRPA1 has been reported to be activated by cold, heat, and mechanical stimuli, and its function is modulated by multiple factors, including Ca2+, trace metals, pH, and reactive oxygen, nitrogen, and carbonyl species. TRPA1 is involved in acute and chronic pain as well as inflammation, plays key roles in the pathophysiology of nearly all organ systems, and is an attractive target for the treatment of related diseases. Here we review the current knowledge about the mammalian TRPA1 channel, linking its unique structure, widely tuned sensory properties, and complex regulation to its roles in multiple pathophysiological conditions.
Collapse
Affiliation(s)
- Karel Talavera
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Justyna B Startek
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Julio Alvarez-Collazo
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Brett Boonen
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Yeranddy A Alpizar
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Alicia Sanchez
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Robbe Naert
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Bernd Nilius
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| |
Collapse
|
20
|
Benemei S, Dussor G. TRP Channels and Migraine: Recent Developments and New Therapeutic Opportunities. Pharmaceuticals (Basel) 2019; 12:E54. [PMID: 30970581 PMCID: PMC6631099 DOI: 10.3390/ph12020054] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 04/01/2019] [Accepted: 04/04/2019] [Indexed: 12/18/2022] Open
Abstract
Migraine is the second-most disabling disease worldwide, and the second most common neurological disorder. Attacks can last many hours or days, and consist of multiple symptoms including headache, nausea, vomiting, hypersensitivity to stimuli such as light and sound, and in some cases, an aura is present. Mechanisms contributing to migraine are still poorly understood. However, transient receptor potential (TRP) channels have been repeatedly linked to the disorder, including TRPV1, TRPV4, TRPM8, and TRPA1, based on their activation by pathological stimuli related to attacks, or their modulation by drugs/natural products known to be efficacious for migraine. This review will provide a brief overview of migraine, including current therapeutics and the link to calcitonin gene-related peptide (CGRP), a neuropeptide strongly implicated in migraine pathophysiology. Discussion will then focus on recent developments in preclinical and clinical studies that implicate TRP channels in migraine pathophysiology or in the efficacy of therapeutics. Given the use of onabotulinum toxin A (BoNTA) to treat chronic migraine, and its poorly understood mechanism, this review will also cover possible contributions of TRP channels to BoNTA efficacy. Discussion will conclude with remaining questions that require future work to more fully evaluate TRP channels as novel therapeutic targets for migraine.
Collapse
Affiliation(s)
- Silvia Benemei
- Headache Centre, Careggi University Hospital, Viale Pieraccini 18, 50139 Florence, Italy.
| | - Greg Dussor
- School of Behavioral and Brain Sciences, Center for Advanced Pain Studies, The University of Texas at Dallas, Richardson, TX 75080, USA.
| |
Collapse
|
21
|
Zhang L, Kunkler PE, Knopp KL, Oxford GS, Hurley JH. Role of intraganglionic transmission in the trigeminovascular pathway. Mol Pain 2019; 15:1744806919836570. [PMID: 30784351 PMCID: PMC6440047 DOI: 10.1177/1744806919836570] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 01/29/2019] [Accepted: 01/29/2019] [Indexed: 01/14/2023] Open
Abstract
Migraine is triggered by poor air quality and odors through unknown mechanisms. Activation of the trigeminovascular pathway by environmental irritants may occur via activation of transient receptor potential ankyrin 1 (TRPA1) receptors on nasal trigeminal neurons, but how that results in peripheral and central sensitization is unclear. The anatomy of the trigeminal ganglion suggests that noxious nasal stimuli are not being transduced to the meninges by axon reflex but likely through intraganglionic transmission. Consistent with this concept, we injected calcitonin gene-related peptide, adenosine triphosphate, or glutamate receptor antagonists or a gap junction channel blocker directly and exclusively into the trigeminal ganglion and blocked meningeal blood flow changes in response to acute nasal TRP agonists. Previously, we observed chronic sensitization of the trigeminovascular pathway after acrolein exposure, a known TRPA1 receptor agonist. To explore the mechanism of this sensitization, we utilized laser dissection microscopy to separately harvest nasal and meningeal trigeminal neuron populations in the absence or presence of acrolein exposure. mRNA levels of neurotransmitters important in migraine were then determined by reverse transcription polymerase chain reaction. TRPA1 message levels were significantly increased in meningeal cell populations following acrolein exposure compared to room air exposure. This was specific to TRPA1 message in meningeal cell populations as changes were not observed in either nasal trigeminal cell populations or dorsal root ganglion populations. Taken together, these data suggest an important role for intraganglionic transmission in acute activation of the trigeminovascular pathway. It also supports a role for upregulation of TRPA1 receptors in peripheral sensitization and a possible mechanism for chronification of migraine after environmental irritant exposure.
Collapse
Affiliation(s)
- LuJuan Zhang
- The Department of Biochemistry and Molecular Biology, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Phillip Edward Kunkler
- The Department of Biochemistry and Molecular Biology, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Kelly L Knopp
- Lilly Research Laboratories, Eli Lilly & Company, Indianapolis, IN, USA
| | - Gerry Stephen Oxford
- Department of Pharmacology and Toxicology, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Joyce Harts Hurley
- Department of Medical and Molecular Genetics, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
22
|
Leishman E, Kunkler PE, Hurley JH, Miller S, Bradshaw HB. Bioactive Lipids in Cancer, Inflammation and Related Diseases : Acute and Chronic Mild Traumatic Brain Injury Differentially Changes Levels of Bioactive Lipids in the CNS Associated with Headache. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1161:193-217. [PMID: 31562631 DOI: 10.1007/978-3-030-21735-8_16] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Headache is a common complaint after mild traumatic brain injury (mTBI). Changes in the CNS lipidome were previously associated with acrolein-induced headache in rodents. mTBI caused similar headache-like symptoms in rats; therefore, we tested the hypothesis that mTBI might likewise alter the lipidome. Using a stereotaxic impactor, rats were given either a single mTBI or a series of 4 mTBIs 48 h apart. 72 h later for single mTBI and 7 days later for repeated mTBI, the trigeminal ganglia (TG), trigeminal nucleus (TNC), and cerebellum (CER) were isolated. Using HPLC/MS/MS, ~80 lipids were measured in each tissue and compared to sham controls. mTBI drove widespread alterations in lipid levels. Single mTBI increased arachidonic acid and repeated mTBI increased prostaglandins in all 3 tissue types. mTBI affected multiple TRPV agonists, including N-arachidonoyl ethanolamine (AEA), which increased in the TNC and CER after single mTBI. After repeated mTBI, AEA increased in the TG, but decreased in the TNC. Common to all tissue types in single and repeated mTBI was an increase the AEA metabolite, N-arachidonoyl glycine, a potent activator of microglial migration. Changes in the CNS lipidome associated with mTBI likely play a role in headache and in long-term neurodegenerative effects of repeated mTBI.
Collapse
Affiliation(s)
- Emma Leishman
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Phillip E Kunkler
- Stark Neurosciences Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Joyce H Hurley
- Stark Neurosciences Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Sally Miller
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Heather B Bradshaw
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA.
| |
Collapse
|
23
|
Abstract
A large series of different ion channels have been identified and investigated as potential targets for new medicines for the treatment of a variety of human diseases, including pain. Among these channels, the voltage gated calcium channels (VGCC) are inhibited by drugs for the treatment of migraine, neuropathic pain or intractable pain. Transient receptor potential (TRP) channels are emerging as important pain transducers as they sense low pH media or oxidative stress and other mediators and are abundantly found at sites of inflammation or tissue injury. Low pH may also activate acid sensing ion channels (ASIC) and mechanical forces stimulate the PIEZO channels. While potent agonists of TRP channels due to their desensitizing action on pain transmission are used as topical applications, the potential of TRP antagonists as pain therapeutics remains an exciting field of investigation. The study of ASIC or PIEZO channels in pain signaling is in an early stage, whereas antagonism of the purinergic P2X3 channels has been reported to provide beneficial effects in chronic intractable cough. The present chapter covers these intriguing channels in great detail, highlighting their diverse mechanisms and broad potential for therapeutic utility.
Collapse
Affiliation(s)
- Francesco De Logu
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, Italy
| | - Pierangelo Geppetti
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, Italy.
| |
Collapse
|
24
|
Reed BD, McKee KS, Plegue MA, Park SK, Haefner HK, Harlow SD. Environmental Exposure History and Vulvodynia Risk: A Population-Based Study. J Womens Health (Larchmt) 2018; 28:69-76. [PMID: 30307787 DOI: 10.1089/jwh.2018.7188] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Risk factors for vulvodynia continue to be elusive. We evaluated the association between past environmental exposures and the presence of vulvodynia. MATERIALS AND METHODS The history of 28 lifetime environmental exposures was queried in the longitudinal population-based Woman-to-Woman Health Study on the 24-month follow-up survey. Relationships between these and vulvodynia case status were assessed using multinomial logistic regression. RESULTS Overall, 1585 women completed the 24-month survey, the required covariate responses, and questions required for case status assessment. Screening positive as a vulvodynia case was associated with history of exposures to home-sprayed chemicals (insecticides, fungicides, herbicides-odds ratio [OR] 2.47, 95% confidence interval [CI] 1.71-3.58, p < 0.0001), home rodent poison and mothballs (OR 1.62, 95% CI 1.25-2.09, p < 0.001), working with solvents and paints (OR 2.49, 95% CI 1.68-3.70, p < 0.0001), working as a housekeeper/maid (OR 2.07, 95% CI 1.42-3.00, p < 0.0001), working as a manicurist/hairdresser (OR 2.00, 95% CI 1.14-3.53, p < 0.05), and working at a dry cleaning facility (OR 2.13, 95% CI 1.08-4.19, p < 0.05). When classified into nine individual environmental exposure categories and all included in the same model, significant associations remained for four categories (home-sprayed chemicals, home rodent poison or mothballs, paints and solvents, and working as a housekeeper). CONCLUSIONS This preliminary evaluation suggests a positive association between vulvodynia and the reported history of exposures to a number of household and work-related environmental toxins. Further investigation of timing and dose of environmental exposures, relationship to clinical course, and treatment outcomes is warranted.
Collapse
Affiliation(s)
- Barbara D Reed
- 1 Department of Family Medicine, University of Michigan, Ann Arbor, Michigan
| | - Kimberly S McKee
- 2 Department of Obstetrics, Gynecology, University of Michigan, Ann Arbor, Michigan
| | - Melissa A Plegue
- 1 Department of Family Medicine, University of Michigan, Ann Arbor, Michigan
| | - Sung Kyun Park
- 3 Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, Michigan
| | - Hope K Haefner
- 2 Department of Obstetrics, Gynecology, University of Michigan, Ann Arbor, Michigan
| | - Sioban D Harlow
- 3 Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|