1
|
Wang R. Electroacupuncture Alleviates Neuropathic Pain and Negative Emotion in Mice by Regulating Gut Microbiota [Letter]. J Pain Res 2025; 18:1207-1208. [PMID: 40092726 PMCID: PMC11910063 DOI: 10.2147/jpr.s523215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Accepted: 03/04/2025] [Indexed: 03/19/2025] Open
Affiliation(s)
- Ruoxuan Wang
- Heilongjiang University of Chinese Medicine, Harbin, People's Republic of China
| |
Collapse
|
2
|
Yan Z, Zhang H, Liu S, Cui J, Zhu Y, Zhao G, Liu R, Cui R. A cross-sectional study exploring relationships between triglyceride glucose index, atherogenic index of plasma, and chronic pain: NHANES 1999-2004. Lipids Health Dis 2025; 24:73. [PMID: 40001207 PMCID: PMC11852554 DOI: 10.1186/s12944-025-02496-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 02/18/2025] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND Triglyceride glucose (TyG) index and atherogenic index of plasma (AIP) are indicators of insulin resistance. However, inadequate evidence indicates that the TyG index, AIP, and chronic pain are linked. METHODS Data from the National Health and Nutrition Examination Survey (NHANES) between 1999 and 2004 were used. Directed acyclic graphs were used to identify 11 potential confounders. The TyG index and AIP were treated as continuous variables in the multivariate logistic regression models to assess their association with chronic pain. Furthermore, the nonlinear relationships between these indices and outcomes were investigated using restricted cubic spline plots. Subsequently, subgroup analyses were conducted for the sensitive populations. Receiver operating characteristic curves were used to compare the relationships between indices and outcomes. Ultimately, two sensitivity analyses were performed. RESULTS This study identified nonlinear associations between the TyG index, AIP, and chronic pain in 16,996,513 Americans. The odds ratio and 95% confidence interval for the TyG index (per 1 standard deviation increase) was 1.17 (1.02, 1.33), and for AIP (per 1 standard deviation increase) was 1.19 (1.07, 1.34). According to the subgroup analyses, the relationships between exposure and outcome were more pronounced in the non-diabetic population. The TyG index and AIP performed similarly in assessing chronic pain in ROC curves. Additionally, the results of the two sensitivity analyses matched the conclusions of the main study. CONCLUSIONS Nonlinear correlations between the TyG index, AIP, and chronic pain were identified among adults in the United States. This demonstrated that the TyG index and AIP displayed similar effectiveness in predicting the risk of chronic pain.
Collapse
Affiliation(s)
- Zi Yan
- Mudanjiang Collaborative Innovation Center for Development and Application of Northern Medicinal Resources, Mudanjiang, 157000, China
- Mudanjiang Medical University, Mudanjiang, 157000, China
| | - Hongyu Zhang
- Department of Neurosurgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Shumei Liu
- Mudanjiang Medical University, Mudanjiang, 157000, China
| | - Jian Cui
- Mudanjiang Medical University, Mudanjiang, 157000, China
| | - Yanfei Zhu
- Mudanjiang Medical University, Mudanjiang, 157000, China
| | - Guoxu Zhao
- Mudanjiang Medical University, Mudanjiang, 157000, China
| | - Renwei Liu
- Mudanjiang Medical University, Mudanjiang, 157000, China
| | - Rongjun Cui
- Mudanjiang Collaborative Innovation Center for Development and Application of Northern Medicinal Resources, Mudanjiang, 157000, China.
- Mudanjiang Medical University, Mudanjiang, 157000, China.
| |
Collapse
|
3
|
Salberg S, Macowan M, Doshen A, Yamakawa GR, Sgro M, Marsland B, Henderson LA, Mychasiuk R. A high fat, high sugar diet exacerbates persistent post-surgical pain and modifies the brain-microbiota-gut axis in adolescent rats. Neuroimage 2025; 307:121057. [PMID: 39870258 DOI: 10.1016/j.neuroimage.2025.121057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 01/11/2025] [Accepted: 01/24/2025] [Indexed: 01/29/2025] Open
Abstract
Persistent post-surgical pain (PPSP) occurs in a proportion of patients following surgical interventions. Research suggests that specific microbiome components are important for brain development and function, with recent studies demonstrating that chronic pain results in changes to the microbiome. Consumption of a high fat, high sugar (HFHS) diet can drastically alter composition of the microbiome and is a modifiable risk factor for many neuroinflammatory conditions. Therefore, we investigated how daily consumption of a HFHS diet modified the development of PPSP, brain structure and function, and the microbiome. In addition, we identified significant correlations between the microbiome and brain in animals with PPSP. Male and female rats were maintained on a control or HFHS diet. Animals were further allocated to a sham or surgery on postnatal day (p) p35. The von Frey task measured mechanical nociceptive sensitivity at a chronic timepoint (p65-67). Between p68-72 rats underwent in-vivo MRI to examine brain volume and diffusivity. At p73 fecal samples were used for downstream 16 s rRNA sequencing. Spearman correlation analyses were performed between individual microbial abundance and MRI diffusivity to determine if specific bacterial species were associated with PPSP-induced brain changes. We found that consumption of a HFHS diet exacerbated PPSP in adolescents. The HFHS diet reduced overall brain volume and increased white and grey matter density. The HFHS diet interacted with the surgical intervention to modify diffusivity in numerous brain regions which were associated with specific changes to the microbiome. These findings demonstrate that premorbid characteristics can influence the development of PPSP and advance our understanding of the contribution that the microbiome has on function of the brain-microbiota-gut axis.
Collapse
Affiliation(s)
- Sabrina Salberg
- Department of Neuroscience, Monash University, Melbourne, VIC, Australia; Gastroenterology, Immunology, Neuroscience (GIN) Discovery Program, Australia
| | - Matthew Macowan
- Gastroenterology, Immunology, Neuroscience (GIN) Discovery Program, Australia; Department of Immunology, Monash University, Melbourne, VIC, Australia
| | - Angela Doshen
- School of Medical Sciences (Neuroscience), Brain and Mind Centre, University of Sydney, NSW, Australia
| | - Glenn R Yamakawa
- Department of Neuroscience, Monash University, Melbourne, VIC, Australia; Gastroenterology, Immunology, Neuroscience (GIN) Discovery Program, Australia
| | - Marissa Sgro
- Department of Neuroscience, Monash University, Melbourne, VIC, Australia; Gastroenterology, Immunology, Neuroscience (GIN) Discovery Program, Australia
| | - Benjamin Marsland
- Gastroenterology, Immunology, Neuroscience (GIN) Discovery Program, Australia; Department of Immunology, Monash University, Melbourne, VIC, Australia
| | - Luke A Henderson
- School of Medical Sciences (Neuroscience), Brain and Mind Centre, University of Sydney, NSW, Australia
| | - Richelle Mychasiuk
- Department of Neuroscience, Monash University, Melbourne, VIC, Australia; Gastroenterology, Immunology, Neuroscience (GIN) Discovery Program, Australia.
| |
Collapse
|
4
|
Huang Z, Zheng B, Wang Z, Chen X, Wang Y. Effect of visceral fat area on prognosis of patients undergoing radical gastrectomy and construction of nomogram. World J Surg Oncol 2025; 23:33. [PMID: 39893482 PMCID: PMC11786549 DOI: 10.1186/s12957-024-03623-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 12/15/2024] [Indexed: 02/04/2025] Open
Abstract
BACKGROUND We aim to investigate the impact of visceral fat area (VFA) on the prognosis of patients following radical gastric resection and develop a nomogram prediction model to forecast the prognosis of gastric cancer patients. METHODS We retrospectively analyzed 156 patients who underwent laparoscopic radical gastrectomy for distal gastric cancer in the 900th hospital of the Joint Logistics Support Force from April 2018 to April 2020. We collected the CT image data and clinicopathological data one week prior to the operation and then used software to calculate the VFA, dividing it into two groups: a low VFA group (n = 71) and a high VFA group (n = 85). We compared the clinicopathological characteristics and early postoperative complications of the two groups. The Pearson χ2 test was used to analyze the correlation between body mass index (BMI) and VFA. We used the Kaplan-Meier method to draw the survival curve, analyzed the independent risk factors affecting the prognosis of gastric cancer patients using univariate and multivariate Cox regression models, and established a nomogram model for patient prognosis prediction. RESULTS The results of CT showed that VFA value was (95.89 ± 41.40) cm², and body mass index (BMI) was positively correlated with VFA value (r = 0.291, P < 0.001). The ROC curve shows that VFA can predict the prognosis of patients with gastric cancer significantly better than BMI (AUC = 0.826 vs. AUC = 0.707, P = 0.016). The incidence of incision fat liquefaction, pancreatic fistula, and abdominal infection in the high VFA group was higher than that in the low VFA group (P < 0.05). We followed up with all patients for 0.5-48.5 months, with a median follow-up time of 30 months. We used the Kaplan-Meier method to draw the survival curve. The results showed that the overall survival rate of patients in the high VFA group was significantly higher than that in the low VFA group (χ2 = 38.208, P < 0.001), and the high BMI group was significantly higher than that in the low BMI group (χ2 = 29.767, P < 0.001). Age, the degree of differentiation, complications after surgery, VFA, ASA grading, and TNM staging were all found to have independent effects on the prognosis of gastric cancer patients (Multivariate Cox regression analysis). Multivariate Cox regression analysis led to the construction of a nomogram prediction model for the total survival of gastric cancer patients. Its internal verification C-index was 0.881 (95% CI: 0.852-0.910), and the calibration chart showed good consistency. CONCLUSIONS Age, differentiation degree, postoperative complications, VFA, ASA grading, and TNM staging are independent influencing factors for the prognosis of patients with gastric cancer. The constructed nomogram has excellent prediction accuracy and is helpful to evaluate the prognosis of patients.
Collapse
Affiliation(s)
- Zhicheng Huang
- Department of General Surgery, Fuzhou General Teaching Hospital, Fujian University of Traditional Chinese Medicine, 900th Hospital of Joint Logistics Support Force, Fuzhou, 350025, China
| | - Baohua Zheng
- Department of General Surgery, Fuzhou General Teaching Hospital, Fujian University of Traditional Chinese Medicine, 900th Hospital of Joint Logistics Support Force, Fuzhou, 350025, China
| | - Zhiwei Wang
- Department of General Surgery, Fuzhou General Teaching Hospital, Fujian University of Traditional Chinese Medicine, 900th Hospital of Joint Logistics Support Force, Fuzhou, 350025, China
| | - Xiaobin Chen
- Department of General Surgery, Fuzhou General Teaching Hospital, Fujian University of Traditional Chinese Medicine, 900th Hospital of Joint Logistics Support Force, Fuzhou, 350025, China
| | - Yu Wang
- Department of General Surgery, Fuzhou General Teaching Hospital, Fujian University of Traditional Chinese Medicine, 900th Hospital of Joint Logistics Support Force, Fuzhou, 350025, China.
| |
Collapse
|
5
|
Zhao Y, Chen M, Li J, Li Z, Xu Z, Liao Z, Xu K, Huang X. A diagnostic study on the application of segmental somatosensory evoked potential examination to acquired premature ejaculation. Sex Med 2024; 12:qfae075. [PMID: 39539763 PMCID: PMC11560315 DOI: 10.1093/sexmed/qfae075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 10/13/2024] [Indexed: 11/16/2024] Open
Abstract
Background Premature ejaculation (PE), affecting approximate 5%, has an unclear pathogenesis, limited treatment efficacy, and a lack of effective diagnostic methods. Aim This prospective diagnostic study aimed to compare segmental dorsal penile nerve somatosensory evoked potentials (DNSEP) differences among patients with acquired premature ejaculation (APE), primary premature ejaculation (PPE), and healthy controls. Method This prospective diagnostic study examined patients suffering from PE who visited the outpatient clinic of the Department of Urology of the Second Affiliated Hospital of Zhejiang University School of Medicine from January 1, 2022 to February 28, 2023. According to the definition of PE by the ISSM, 16 cases comprised the healthy control group, 31 in the APE group, and 28 in the PPE group. Each group was examined based on the segmental DNSEP with electrodes recording at multiple locations (the selected location was at the Cz and the C7). The latency time of the evoked potential obtained at Cz was P40, and that obtained at C7 was P30. The P30/P40 ratios of P40, P30, and DNSEP wave amplitudes at C7 and Cz were compared among the 3 groups of patients. Result No group differences were found in P40 latency at Cz. However, PPE showed higher DNSEP amplitude at Cz, while APE showed lower amplitudes compared with controls. Both APE and PPE had significantly shorter P30 latency at C7 than controls. SEP amplitude at C7 was similar in APE and PPE but lower than in controls. The P30/P40 ratio was lower in APE compared with PPE and controls. Clinical implications Segmental SEP may offer more assistance in localizing neurological lesions, potentially guiding clinical treatment. Strengths and limitations In this study, the innovative use of the P30/P40 ratio was proposed, maintaining consistency in emotional states and measurement conditions for the same patient. However, limitations include a restricted number of patient cases and challenges in obtaining a diverse control group, potentially introducing bias. In addition, not considering subclinical premature ejaculation and the comorbidity of PE + ED (LCEE) in patient stratification is another limitation of this study. Results suggest a correlation between secondary PE and underlying conditions, such as obesity and lumbar spine injuries. The study validates multi-site somatosensory-evoked potential examination for locating neural lesions but acknowledges the need for future invasive needle electrode AEP testing to analyze neuropathological changes more comprehensively. Conclusion In conclusion, segmental DNSEP examination aids in localizing neuropathy in APE patients, and the P30/P40 ratio proves more accurate in diagnosing APE than P40 alone.
Collapse
Affiliation(s)
- Yin Zhao
- The Second Clinical Medical College, Zhejiang Chinese Medical University, HangZhou, ZheJiang, 310053, China
| | - Minhui Chen
- The Second Clinical Medical College, Zhejiang Chinese Medical University, HangZhou, ZheJiang, 310053, China
| | - Jiacheng Li
- Department of Urology, The First People’s Hospital of JianDe, HangZhou, ZheJiang, 311600, China
| | - Zheyang Li
- The Second Clinical Medical College, Zhejiang Chinese Medical University, HangZhou, ZheJiang, 310053, China
| | - Zilei Xu
- The Second Clinical Medical College, Zhejiang Chinese Medical University, HangZhou, ZheJiang, 310053, China
| | - Zedong Liao
- Department of Urology, The Second Affiliated Hospital ZheJiang University School of Medicine, HangZhou, ZheJiang, 310009, China
| | - Keli Xu
- The Second Clinical Medical College, Zhejiang Chinese Medical University, HangZhou, ZheJiang, 310053, China
| | - Xiaojun Huang
- Department of Urology, The First People’s Hospital of JianDe, HangZhou, ZheJiang, 311600, China
| |
Collapse
|
6
|
Saika F, Fukazawa Y, Hatano Y, Kishioka S, Hino Y, Hino S, Suzuki K, Kiguchi N. Sexually dimorphic effects of pexidartinib on nerve injury-induced neuropathic pain in mice. Glia 2024; 72:1402-1417. [PMID: 38591338 DOI: 10.1002/glia.24535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/28/2024] [Accepted: 03/29/2024] [Indexed: 04/10/2024]
Abstract
It is well-established that spinal microglia and peripheral macrophages play critical roles in the etiology of neuropathic pain; however, growing evidence suggests sex differences in pain hypersensitivity owing to microglia and macrophages. Therefore, it is crucial to understand sex- and androgen-dependent characteristics of pain-related myeloid cells in mice with nerve injury-induced neuropathic pain. To deplete microglia and macrophages, pexidartinib (PLX3397), an inhibitor of the colony-stimulating factor 1 receptor, was orally administered, and mice were subjected to partial sciatic nerve ligation (PSL). Following PSL induction, healthy male and female mice and male gonadectomized (GDX) mice exhibited similar levels of spinal microglial activation, peripheral macrophage accumulation, and mechanical allodynia. Treatment with PLX3397 significantly suppressed mechanical allodynia in normal males; this was not observed in female and GDX male mice. Sex- and androgen-dependent differences in the PLX3397-mediated preventive effects were observed on spinal microglia and dorsal root ganglia (DRG) macrophages, as well as in expression patterns of pain-related inflammatory mediators in these cells. Conversely, no sex- or androgen-dependent differences were detected in sciatic nerve macrophages, and inhibition of peripheral CC-chemokine receptor 5 prevented neuropathic pain in both sexes. Collectively, these findings demonstrate the presence of considerable sex- and androgen-dependent differences in the etiology of neuropathic pain in spinal microglia and DRG macrophages but not in sciatic nerve macrophages. Given that the mechanisms of neuropathic pain may differ among experimental models and clinical conditions, accumulating several lines of evidence is crucial to comprehensively clarifying the sex-dependent regulatory mechanisms of pain.
Collapse
Affiliation(s)
- Fumihiro Saika
- Department of Physiological Sciences, School of Pharmaceutical Sciences, Wakayama Medical University, Wakayama, Japan
- Faculty of Wakayama Health Care Sciences, Takarazuka University of Medical and Health Care, Wakayama, Japan
| | - Yohji Fukazawa
- Department of Anatomy, Kansai University of Health Sciences, Osaka, Japan
| | - Yu Hatano
- Faculty of Life and Environmental Sciences, University of Yamanashi, Yamanashi, Japan
| | - Shiroh Kishioka
- Faculty of Wakayama Health Care Sciences, Takarazuka University of Medical and Health Care, Wakayama, Japan
| | - Yuko Hino
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Shinjiro Hino
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Kentaro Suzuki
- Faculty of Life and Environmental Sciences, University of Yamanashi, Yamanashi, Japan
| | - Norikazu Kiguchi
- Department of Physiological Sciences, School of Pharmaceutical Sciences, Wakayama Medical University, Wakayama, Japan
| |
Collapse
|
7
|
Raff H, Hainsworth KR, Woyach VL, Weihrauch D, Wang X, Dean C. Probiotic and high-fat diet: effects on pain assessment, body composition, and cytokines in male and female adolescent and adult rats. Am J Physiol Regul Integr Comp Physiol 2024; 327:R123-R132. [PMID: 38780441 PMCID: PMC11444502 DOI: 10.1152/ajpregu.00082.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/02/2024] [Accepted: 05/17/2024] [Indexed: 05/25/2024]
Abstract
Obesity in adolescence is increasing in frequency and is associated with elevated proinflammatory cytokines and chronic pain in a sex-dependent manner. Dietary probiotics may mitigate these detrimental effects of obesity. Using a Long-Evans adolescent and adult rat model of overweight (high-fat diet (HFD) - 45% kcal from fat from weaning), we determined the effect of a single-strain dietary probiotic [Lactiplantibacillus plantarum 299v (Lp299v) from weaning] on the theoretically increased neuropathic injury-induced pain phenotype and inflammatory cytokines. We found that although HFD increased fat mass, it did not markedly affect pain phenotype, particularly in adolescence, but there were subtle differences in pain in adult male versus female rats. The combination of HFD and Lp299v augmented the increase in leptin in adolescent females. There were many noninteracting main effects of age, diet, and probiotic on an array of cytokines and adipokines with adults being higher than adolescents, HFD higher than the control diet, and a decrease with probiotic compared with placebo. Of particular interest were the probiotic-induced increases in IL12p70 in female adolescents on an HFD. We conclude that a more striking pain phenotype could require a higher and longer duration caloric diet or a different etiology of pain. A major strength of our study was that a single-strain probiotic had a wide range of inhibiting effects on most proinflammatory cytokines. The positive effect of the probiotic on leptin in female adolescent rats is intriguing and worthy of exploration.NEW & NOTEWORTHY A single-strain probiotic (Lp299v) had a wide range of inhibiting effects on most proinflammatory cytokines (especially IL12p70) measured in this high-fat diet rat model of mild obesity. The positive effect of probiotic on leptin in female adolescent rats is intriguing and worthy of exploration.
Collapse
Affiliation(s)
- Hershel Raff
- Division of Endocrinology and Molecular Medicine, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Department of Surgery, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Keri R Hainsworth
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Jane B. Pettit Pain and Headache Center, Children's Wisconsin, Milwaukee, Wisconsin, United States
| | - Victoria L Woyach
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Research Division, Zablocki Veterans Affairs Medical Center, Milwaukee, Wisconsin, United States
| | - Dorothee Weihrauch
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Research Division, Zablocki Veterans Affairs Medical Center, Milwaukee, Wisconsin, United States
| | - Xuemeng Wang
- Center for Advancing Population Science, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Caron Dean
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Research Division, Zablocki Veterans Affairs Medical Center, Milwaukee, Wisconsin, United States
| |
Collapse
|
8
|
Zuo Q, Park NH, Lee JK, Santaliz-Casiano A, Madak-Erdogan Z. Navigating nonalcoholic fatty liver disease (NAFLD): Exploring the roles of estrogens, pharmacological and medical interventions, and life style. Steroids 2024; 203:109330. [PMID: 37923152 DOI: 10.1016/j.steroids.2023.109330] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/28/2023] [Accepted: 10/31/2023] [Indexed: 11/07/2023]
Abstract
The pursuit of studying this subject is driven by the urgency to address the increasing global prevalence of Non-Alcoholic Fatty Liver Disease (NAFLD) and its profound health implications. NAFLD represents a significant public health concern due to its association with metabolic disorders, cardiovascular complications, and the potential progression to more severe conditions like non-alcoholic steatohepatitis (NASH), fibrosis, and cirrhosis. Liver estrogen signaling is important for maintaining liver function, and loss of estrogens increases the likelihood of NAFLD in postmenopausal women. Understanding the multifaceted mechanisms underlying NAFLD pathogenesis, its varied treatment strategies, and their effectiveness is crucial for devising comprehensive and targeted interventions. By unraveling the intricate interplay between genetics, lifestyle, hormonal regulation, and gut microbiota, we can unlock insights into risk stratification, early detection, and personalized therapeutic approaches. Furthermore, investigating the emerging pharmaceutical interventions and dietary modifications offers the potential to revolutionize disease management. This review reinforces the role of collaboration in refining NAFLD comprehension, unveiling novel therapeutic pathways, and ultimately improving patient outcomes for this intricate hepatic condition.
Collapse
Affiliation(s)
- Qianying Zuo
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | - Nicole Hwajin Park
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | - Jenna Kathryn Lee
- Department of Neuroscience, Northwestern University, Evanston, IL 60208, USA
| | - Ashlie Santaliz-Casiano
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | - Zeynep Madak-Erdogan
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Carl R. Woese Institute of Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
9
|
Ma L, Deng D, Zhang T, Zhao W, Liu C, Huang S, Xu F, Wang Y, Zhao S, Ding Y, Huang Y, Wang K, Zhang Y, Yang X, Cao S, Chen X. STING-IFN-I pathway relieves incision induced acute postoperative pain via inhibiting the neuroinflammation in dorsal root ganglion of rats. Inflamm Res 2023; 72:1551-1565. [PMID: 37433890 DOI: 10.1007/s00011-023-01764-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 06/13/2023] [Accepted: 06/30/2023] [Indexed: 07/13/2023] Open
Abstract
BACKGROUND The purpose of this study was to study the effect of STING-IFN-I pathway on incision induced postoperative pain in rats and its possible mechanisms. METHODS The pain thresholds were evaluated by measuring the mechanical withdrawal threshold and the thermal withdrawal latency. The satellite glial cell and macrophage of DRG were analyzed. The expression of STING, IFN-a, P-P65, iNOS, TNF-α, IL-1β and IL-6 in DRG was evaluated. RESULTS The activation of STING-IFN-I pathway can reduce the mechanical hyperalgesia, thermal hyperalgesia, down-regulate the expression of P-P65, iNOS, TNF-α, IL-1β and IL-6, and inhibit the activation of satellite glial cell and macrophage in DRG. CONCLUSIONS The activation of STING-IFN-I pathway can alleviate incision induced acute postoperative pain by inhibiting the activation of satellite glial cell and macrophage, which reducing the corresponding neuroinflammation in DRG.
Collapse
Affiliation(s)
- Lulin Ma
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Daling Deng
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Tianhao Zhang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Wenjing Zhao
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Chengxi Liu
- Department of Anesthesiology, The Second Affiliated Hospital of University of South China, Hengyang, China
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Shiqian Huang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Feng Xu
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Yafeng Wang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Shuai Zhao
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Department of Pain Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yuanyuan Ding
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Yan Huang
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Department of Anesthesiology, The First People's Hospital of Jiangxia District, Wuhan, China
| | - Kaixin Wang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Yanyan Zhang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Xinxin Yang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Song Cao
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Department of Pain Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Xiangdong Chen
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
10
|
Liu J, Wong SSC. Molecular Mechanisms and Pathophysiological Pathways of High-Fat Diets and Caloric Restriction Dietary Patterns on Pain. Anesth Analg 2023; 137:137-152. [PMID: 36729981 DOI: 10.1213/ane.0000000000006289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Pain perception provides evolutionary advantages by enhancing the probability of survival, but chronic pain continues to be a significant global health concern in modern society. Various factors are associated with pain alteration. Accumulating evidence has revealed that obesity correlates with enhanced pain perception, especially in chronic pain individuals. Existing dietary patterns related to obesity are primarily high-fat diets (HFD) and calorie restriction (CR) diets, which induce or alleviate obesity separately. HFD has been shown to enhance nociception while CR tends to alleviate pain when measuring pain outcomes. Herein, this review mainly summarizes the current knowledge of the effects of HFD and CR on pain responses and underlying molecular mechanisms of the immunological factors, metabolic regulation, inflammatory processes, Schwann cell (SC) autophagy, gut microbiome, and other pathophysiological signaling pathways involved. This review would help to provide insights on potential nonpharmacological strategies of dietary patterns in relieving pain.
Collapse
Affiliation(s)
- Jingjing Liu
- From the Department of Anesthesiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine
- Laboratory and Clinical Research Institute for Pain, Department of Anesthesiology, The University of Hong Kong, Hong Kong SAR, P.R.C
| | - Stanley Sau Ching Wong
- From the Department of Anesthesiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine
- Laboratory and Clinical Research Institute for Pain, Department of Anesthesiology, The University of Hong Kong, Hong Kong SAR, P.R.C
| |
Collapse
|
11
|
Zhang DH, Fan YH, Zhang YQ, Cao H. Neuroendocrine and neuroimmune mechanisms underlying comorbidity of pain and obesity. Life Sci 2023; 322:121669. [PMID: 37023950 DOI: 10.1016/j.lfs.2023.121669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/23/2023] [Accepted: 04/03/2023] [Indexed: 04/08/2023]
Abstract
Pain and obesity, as well as their associated impairments, are major health concerns. Understanding the relationship between the two is the focus of a growing body of research. However, early researches attribute increased mechanical stress from excessive weight as the main factor of obesity-related pain, which not only over-simplify the association, but also fail to explain some controversial outcomes arising from clinical investigations. This review focuses on neuroendocrine and neuroimmune modulators importantly involved in both pain and obesity, analyzing nociceptive and anti-nociceptive mechanisms based on neuroendocrine pathways including galanin, ghrelin, leptin and their interactions with other neuropeptides and hormone systems which have been reported to play roles in pain and obesity. Mechanisms of immune activities and metabolic alterations are also discussed, due to their intense interactions with neuroendocrine system and crucial roles in the development and maintenance of inflammatory and neuropathic pain. These findings have implications for health given rising rates of obesity and pain-related diagnoses, by providing novel weight-control and analgesic therapies targeted on specific pathways.
Collapse
Affiliation(s)
- Dao-Han Zhang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Ying-Hui Fan
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China
| | - Yu-Qiu Zhang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Hong Cao
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China.
| |
Collapse
|
12
|
High-fat diet causes mechanical allodynia in the absence of injury or diabetic pathology. Sci Rep 2022; 12:14840. [PMID: 36050326 PMCID: PMC9437006 DOI: 10.1038/s41598-022-18281-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 08/09/2022] [Indexed: 12/04/2022] Open
Abstract
Understanding the interactions between diet, obesity, and diabetes is important to tease out mechanisms in painful pathology. Western diet is rich in fats, producing high amounts of circulating bioactive metabolites. However, no research has assessed how a high-fat diet (HFD) alone may sensitize an individual to non-painful stimuli in the absence of obesity or diabetic pathology. To investigate this, we tested the ability of a HFD to stimulate diet-induced hyperalgesic priming, or diet sensitization in male and female mice. Our results revealed that 8 weeks of HFD did not alter baseline pain sensitivity, but both male and female HFD-fed animals exhibited robust mechanical allodynia when exposed to a subthreshold dose of intraplantar Prostaglandin E2 (PGE2) compared to mice on chow diet. Furthermore, calcium imaging in isolated primary sensory neurons of both sexes revealed HFD induced an increased percentage of capsaicin-responsive neurons compared to their chow counterparts. Immunohistochemistry (IHC) showed a HFD-induced upregulation of ATF3, a neuronal marker of injury, in lumbar dorsal root ganglia (DRG). This suggests that a HFD induces allodynia in the absence of a pre-existing condition or injury via dietary components. With this new understanding of how a HFD can contribute to the onset of pain, we can understand the dissociation behind the comorbidities associated with obesity and diabetes to develop pharmacological interventions to treat them more efficiently.
Collapse
|
13
|
Lian N, Luo K, Xie H, Kang Y, Tang K, Lu P, Li T. Obesity by High-Fat Diet Increases Pain Sensitivity by Reprogramming Branched-Chain Amino Acid Catabolism in Dorsal Root Ganglia. Front Nutr 2022; 9:902635. [PMID: 35634382 PMCID: PMC9133809 DOI: 10.3389/fnut.2022.902635] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 04/26/2022] [Indexed: 11/13/2022] Open
Abstract
Obesity is a significant health concern as a result of poor-quality diet, for example, high-fat diet (HFD). Although multiple biological and molecular changes have been identified to contribute to HFD-induced pain susceptibility, the mechanisms are not fully understood. Here, we show that mice under 8 weeks of HFD were sensitive to mechanical and thermal stimuli, which was coupled with an accumulation of branched-chain amino acids (BCAAs) in lumbar dorsal root ganglia (DRG) due to local BCAA catabolism deficiency. This HFD-induced hyperalgesic phenotype could be exacerbated by supply of excessive BCAAs or mitigated by promotion of BCAA catabolism via BT2 treatment. In addition, our results suggested that HFD-related pain hypersensitivity was associated with a pro-inflammatory status in DRG, which could be regulated by BCAA abundance. Therefore, our study demonstrates that defective BCAA catabolism in DRG facilitates HFD-induced pain hypersensitivity by triggering inflammation. These findings not only reveal metabolic underpinnings for the pathogenesis of HFD-related hyperalgesia but also offer potential targets for developing diet-based therapy of chronic pain.
Collapse
Affiliation(s)
- Nan Lian
- Department of Anesthesiology, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital of Sichuan University, Chengdu, China
- Laboratory of Mitochondria and Metabolism, West China Hospital of Sichuan University, Chengdu, China
- Department of Radiology, Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
| | - Kaiteng Luo
- Department of Anesthesiology, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital of Sichuan University, Chengdu, China
- Laboratory of Mitochondria and Metabolism, West China Hospital of Sichuan University, Chengdu, China
| | - Huijing Xie
- Department of Anesthesiology, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital of Sichuan University, Chengdu, China
- Laboratory of Mitochondria and Metabolism, West China Hospital of Sichuan University, Chengdu, China
| | - Yi Kang
- Department of Anesthesiology, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital of Sichuan University, Chengdu, China
- Laboratory of Mitochondria and Metabolism, West China Hospital of Sichuan University, Chengdu, China
| | - Kuo Tang
- Department of Anesthesiology, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital of Sichuan University, Chengdu, China
- Laboratory of Mitochondria and Metabolism, West China Hospital of Sichuan University, Chengdu, China
| | - Peilin Lu
- Department of Anesthesiology, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital of Sichuan University, Chengdu, China
- Laboratory of Mitochondria and Metabolism, West China Hospital of Sichuan University, Chengdu, China
- Peilin Lu,
| | - Tao Li
- Department of Anesthesiology, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital of Sichuan University, Chengdu, China
- Laboratory of Mitochondria and Metabolism, West China Hospital of Sichuan University, Chengdu, China
- *Correspondence: Tao Li,
| |
Collapse
|
14
|
Wang W, Liu WZ, Wang ZL, Duan DX, Wang XY, Liu SJ, Wang ZJ, Xing GG, Xing Y. Spinal microglial activation promotes perioperative social defeat stress-induced prolonged postoperative pain in a sex-dependent manner. Brain Behav Immun 2022; 100:88-104. [PMID: 34808295 DOI: 10.1016/j.bbi.2021.11.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 11/08/2021] [Accepted: 11/13/2021] [Indexed: 11/25/2022] Open
Abstract
Prolonged postsurgical pain, which is associated with multiple risk factors in the perioperative stage, is a common medical and social problem worldwide. Suitable animal models should be established to elucidate the mechanisms underlying the perioperative prolonged postsurgical pain. In this study, standard and modified social defeat stress mice models, including chronic social defeat stress (CSDS), chronic nondiscriminatory social defeat stress (CNSDS) and vicarious social defeat stress (VSDS), were applied to explore the effect of perioperative social defeat stress on postsurgical pain in male and female mice. Our results showed that exposure to preoperative CSDS could induce prolonged postsurgical pain in defeated mice regardless of susceptibility or resilience differentiated by the social interaction test. Similar prolongation of incision-induced mechanical hypersensitivity was also observed in both sexes upon exposing to CNSDS or VSDS in the preoperative period. Moreover, we found that using the modified CNSDS or VSDS models at different recovery stages after surgery could still promote abnormal pain without sex differences. Further studies revealed the key role of spinal microglial activation in the stress-induced transition from acute to prolonged postoperative pain in male but not female mice. Together, these data indicate that perioperative social defeat stress is a vital risk factor for developing prolonged postoperative pain in both sexes, but the promotion of stress-induced prolonged postoperative pain by spinal microglial activation is sexually dimorphic in mice.
Collapse
Affiliation(s)
- Wang Wang
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China; The Academy of Medical Sciences of Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Wei-Zhen Liu
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China; The Academy of Medical Sciences of Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Zi-Liang Wang
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China; The Academy of Medical Sciences of Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Dong-Xiao Duan
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Xue-Yun Wang
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China; The Academy of Medical Sciences of Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Shi-Jin Liu
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China; The Academy of Medical Sciences of Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Zhi-Ju Wang
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Guo-Gang Xing
- Department of Neurobiology, School of Basic Medical Sciences and Neuroscience Research Institute, Peking University, Beijing 100191, China.
| | - Ying Xing
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China.
| |
Collapse
|
15
|
Velichkova AN, Coleman SE, Torsney C. Postoperative pain facilitates rat C-fibre activity-dependent slowing and induces thermal hypersensitivity in a sex-dependent manner. Br J Anaesth 2022; 128:718-733. [DOI: 10.1016/j.bja.2021.10.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 10/05/2021] [Accepted: 10/26/2021] [Indexed: 11/02/2022] Open
|
16
|
Li JS, Su SL, Xu Z, Zhao LH, Fan RY, Guo JM, Qian DW, Duan JA. Potential roles of gut microbiota and microbial metabolites in chronic inflammatory pain and the mechanisms of therapy drugs. Ther Adv Chronic Dis 2022; 13:20406223221091177. [PMID: 35924009 PMCID: PMC9340317 DOI: 10.1177/20406223221091177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 03/15/2022] [Indexed: 01/21/2023] Open
Abstract
Observational findings achieved that gut microbes mediate human metabolic health
and disease risk. The types of intestinal microorganisms depend on the intake of
food and drugs and are also related to their metabolic level and genetic
factors. Recent studies have shown that chronic inflammatory pain is closely
related to intestinal microbial homeostasis. Compared with the normal intestinal
flora, the composition of intestinal flora in patients with chronic inflammatory
pain had significant changes in Actinomycetes,
Firmicutes, Bacteroidetes, etc. At the
same time, short-chain fatty acids and amino acids, the metabolites of
intestinal microorganisms, can regulate neural signal molecules and signaling
pathways, thus affecting the development trend of chronic inflammatory pain.
Glucocorticoids and non-steroidal anti-inflammatory drugs in the treatment of
chronic inflammatory pain, the main mechanism is to affect the secretion of
inflammatory factors and the abundance of intestinal bacteria. This article
reviews the relationship between intestinal microorganisms and their metabolites
on chronic inflammatory pain and the possible mechanism.
Collapse
Affiliation(s)
- Jia-Shang Li
- Jiangsu Collaborative Innovation Center of
Chinese Medicinal Resources Industrialization, National and Local
Collaborative Engineering Center of Chinese Medicinal Resources
Industrialization and Formulae Innovative Medicine, and Jiangsu Key
Laboratory for High Technology Research of TCM Formulae, Nanjing University
of Chinese Medicine, Nanjing, P.R. China
| | | | - Zhuo Xu
- Jiangsu Collaborative Innovation Center of
Chinese Medicinal Resources Industrialization, National and Local
Collaborative Engineering Center of Chinese Medicinal Resources
Industrialization and Formulae Innovative Medicine, and Jiangsu Key
Laboratory for High Technology Research of TCM Formulae, Nanjing University
of Chinese Medicine, Nanjing, P.R. China
| | - Li-Hui Zhao
- Jiangsu Collaborative Innovation Center of
Chinese Medicinal Resources Industrialization, National and Local
Collaborative Engineering Center of Chinese Medicinal Resources
Industrialization and Formulae Innovative Medicine, and Jiangsu Key
Laboratory for High Technology Research of TCM Formulae, Nanjing University
of Chinese Medicine, Nanjing, P.R. China
| | - Ruo-Ying Fan
- Jiangsu Collaborative Innovation Center of
Chinese Medicinal Resources Industrialization, National and Local
Collaborative Engineering Center of Chinese Medicinal Resources
Industrialization and Formulae Innovative Medicine, and Jiangsu Key
Laboratory for High Technology Research of TCM Formulae, Nanjing University
of Chinese Medicine, Nanjing, P.R. China
| | - Jian-Ming Guo
- Jiangsu Collaborative Innovation Center of
Chinese Medicinal Resources Industrialization, National and Local
Collaborative Engineering Center of Chinese Medicinal Resources
Industrialization and Formulae Innovative Medicine, and Jiangsu Key
Laboratory for High Technology Research of TCM Formulae, Nanjing University
of Chinese Medicine, Nanjing, P.R. China
| | - Da-Wei Qian
- Jiangsu Collaborative Innovation Center of
Chinese Medicinal Resources Industrialization, National and Local
Collaborative Engineering Center of Chinese Medicinal Resources
Industrialization and Formulae Innovative Medicine, and Jiangsu Key
Laboratory for High Technology Research of TCM Formulae, Nanjing University
of Chinese Medicine, Nanjing, P.R. China
| | - Jin-Ao Duan
- Jiangsu Collaborative Innovation Center of
Chinese Medicinal Resources Industrialization, National and Local
Collaborative Engineering Center of Chinese Medicinal Resources
Industrialization and Formulae Innovative Medicine, and Jiangsu Key
Laboratory for High Technology Research of TCM Formulae, Nanjing University
of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, P.R. China
| |
Collapse
|
17
|
McSwan J, Gudin J, Song XJ, Grinberg Plapler P, Betteridge NJ, Kechemir H, Igracki-Turudic I, Pickering G. Self-Healing: A Concept for Musculoskeletal Body Pain Management - Scientific Evidence and Mode of Action. J Pain Res 2021; 14:2943-2958. [PMID: 34584448 PMCID: PMC8464648 DOI: 10.2147/jpr.s321037] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 08/21/2021] [Indexed: 12/16/2022] Open
Abstract
Traditionally, musculoskeletal pain management has focused on the use of conventional treatments to relieve pain. However, multi-modal integrative medicine including alternative/complementary treatments is becoming more widely used and integrated into treatment guidelines around the world. The uptake of this approach varies according to country, with generally a higher uptake in developed countries and in females aged more than 40 years. Integral to the concept described here, is that the body has an innate ability to self-heal, which can be optimized by the use of integrative medical strategies. Stress triggers for acute or recurring musculoskeletal pain are diverse and can range from physical to psychological. The mechanism by which the body responds to triggers and initiates the self-healing processes is complex, but five body networks or processes are thought to be integral: the nervous system, microcirculation/vasodilation, immune modulation, muscular relaxation/contraction and psychological balance. Multi-modal integrative medicine approaches include nutritional/dietary modification, postural/muscular training exercises, and cognitive behavioral mind/body techniques. This article will review the self-healing concept and provide plausible scientific evidence where available.
Collapse
Affiliation(s)
- Joyce McSwan
- GCPHN Persistent Pain Program, PainWISE, Gold Coast, QLD, Australia
| | - Jeffrey Gudin
- Department of Anesthesiology, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Xue-Jun Song
- SUSTech Center of Pain Medicine, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, People’s Republic of China
| | - Perola Grinberg Plapler
- Division of Physical Medicine, Institute of Orthopedics and Traumatology, Hospital das Clínicas, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | | | - Hayet Kechemir
- Consumer Healthcare Medical Affairs Department, Sanofi CHC, Paris, France
| | - Iva Igracki-Turudic
- Consumer Healthcare Medical Affairs Department, Sanofi CHC, Frankfurt, Germany
| | - Gisele Pickering
- Clinical Investigation Center CIC Inserm 1405, University Hospital Clermont-Ferrand, Clermont-Ferrand, France
| |
Collapse
|
18
|
Rhon DI, Fritz JM, Greenlee TA, Dry KE, Mayhew RJ, Laugesen MC, Dragusin E, Teyhen DS. Move to health-a holistic approach to the management of chronic low back pain: an intervention and implementation protocol developed for a pragmatic clinical trial. J Transl Med 2021; 19:357. [PMID: 34407840 PMCID: PMC8371880 DOI: 10.1186/s12967-021-03013-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 07/25/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND The prevalence of chronic pain conditions is growing. Low back pain was the primary cause of disability worldwide out of 156 conditions assessed between 1990 and 2016, according to the Global Burden of Disease Study. Conventional medical approaches have failed to identify effective and long-lasting approaches for the management of chronic pain, and often fail to consider the multiple domains that influence overall health and can contribute to the pain experience. Leading international organizations that focus on pain research have stated the importance of considering these other domains within holistic and multidisciplinary frameworks for treating pain. While the research behind the theoretical link between these domains and chronic pain outcomes has expanded greatly over the last decade, there have been few practical and feasible methods to implement this type of care in normal clinical practice. METHODS The purpose of this manuscript is to describe an implementation protocol that is being used to deliver a complex holistic health intervention at multiple sites within a large government health system, as part of a larger multisite trial for patients with chronic low back pain. The Move to Health program developed by the US Army Medical Command was tailored for specific application to patients with low back pain and begins by providing an empirical link between eight different health domains (that include physical, emotional, social, and psychological constructs) and chronic low back pain. Through a six-step process, a health coach leverages motivational interviewing and information from a personal health inventory to guide the patient through a series of conversations about behavioral lifestyle choices. The patient chooses which domains they want to prioritize, and the health coach helps implement the plan with the use of SMART (Specific, Measurable, Attainable, Realistic, Time-bound) goals and a series of resources for every domain, triaged from self-management to specialist referral. DISCUSSION Complex interventions described in clinical trials are often challenging to implement because they lack sufficient details. Implementation protocols can improve the ability to properly deliver trial interventions into regular clinical practice with increased fidelity. TRIAL REGISTRATION Implementation of this intervention protocol was developed for a clinical trial that was registered a priori (clinicaltrials.gov #NCT04172038).
Collapse
Affiliation(s)
- Daniel I Rhon
- Department of Rehabilitation Medicine, Brooke Army Medical Center, JBSA Fort Sam Houston, 3551 Roger Brooke Drive, San Antonio, TX, 78234, USA.
- Department of Rehabilitation Medicine, Uniformed Services University of Health Sciences, Bethesda, MD, USA.
| | | | - Tina A Greenlee
- Department of Rehabilitation Medicine, Brooke Army Medical Center, JBSA Fort Sam Houston, 3551 Roger Brooke Drive, San Antonio, TX, 78234, USA
| | - Katie E Dry
- Department of Rehabilitation Medicine, Brooke Army Medical Center, JBSA Fort Sam Houston, 3551 Roger Brooke Drive, San Antonio, TX, 78234, USA
| | - Rachel J Mayhew
- Department of Rehabilitation Medicine, Brooke Army Medical Center, JBSA Fort Sam Houston, 3551 Roger Brooke Drive, San Antonio, TX, 78234, USA
| | - Mary C Laugesen
- Department of Rehabilitation Medicine, Brooke Army Medical Center, JBSA Fort Sam Houston, 3551 Roger Brooke Drive, San Antonio, TX, 78234, USA
| | - Edita Dragusin
- Department of Rehabilitation Medicine, Brooke Army Medical Center, JBSA Fort Sam Houston, 3551 Roger Brooke Drive, San Antonio, TX, 78234, USA
| | - Deydre S Teyhen
- Walter Reed Army Institute of Research, Silver Spring, MD, USA
| |
Collapse
|
19
|
Li AL, Crystal JD, Lai YY, Sajdyk TJ, Renbarger JL, Hohmann AG. An adolescent rat model of vincristine-induced peripheral neuropathy. NEUROBIOLOGY OF PAIN 2021; 10:100077. [PMID: 34841128 PMCID: PMC8605395 DOI: 10.1016/j.ynpai.2021.100077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 11/04/2021] [Accepted: 11/08/2021] [Indexed: 11/17/2022]
Abstract
Vincristine treatment in adolescent rat induces significant mechanical and cold allodynia and muscle weakness. Voluntary exercise prevents vincristine-induced peripheral neuropathy. Vincristine treatment during early adolescence produces more severe peripheral neuropathy than treatment during late adolescence. Peripheral neuropathy induced by vincristine during adolescence persists into early adulthood.
Childhood acute lymphoblastic leukemia (ALL) is a significant clinical problem that can be effectively treated with vincristine, a vinca alkaloid-based chemotherapeutic agent. However, nearly all children receiving vincristine treatment develop vincristine-induced peripheral neuropathy (VIPN). The impact of adolescent vincristine treatment across the lifespan remains poorly understood. We, consequently, developed an adolescent rodent model of VIPN which can be utilized to study possible long term consequences of vincristine treatment in the developing rat. We also evaluated the therapeutic efficacy of voluntary exercise and potential impact of obesity as a genetic risk factor in this model on the development and maintenance of VIPN. Out of all the dosing regimens we evaluated, the most potent VIPN was produced by fifteen consecutive daily intraperitoneal (i.p.) vincristine injections at 100 µg/kg/day, throughout the critical period of adolescence from postnatal day 35 to 49. With this treatment, vincristine-treated animals developed hypersensitivity to mechanical and cold stimulation of the plantar hind paw surface, which outlasted the period of vincristine treatment and resolved within two weeks following the cessation of vincristine injection. By contrast, impairment in grip strength gain was delayed by vincristine treatment, emerging shortly following the termination of vincristine dosing, and persisted into early adulthood without diminishing. Interestingly, voluntary wheel running exercise prevented the development of vincristine-induced hypersensitivities to mechanical and cold stimulation. However, Zucker fa/fa obese animals did not exhibit higher risk of developing VIPN compared to lean rats. Our studies identify sensory and motor impairments produced by vincristine in adolescent animals and support the therapeutic efficacy of voluntary exercise for suppressing VIPN in developing rats.
Collapse
Affiliation(s)
- Ai-Ling Li
- Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Jonathon D. Crystal
- Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
- Program in Neuroscience, Indiana University, Bloomington, IN, USA
| | - Yvonne Y. Lai
- Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Tammy J. Sajdyk
- Department of Pediatrics, School of Medicine, Indiana University, Indianapolis, IN, USA
| | - Jamie L. Renbarger
- Department of Pediatrics, School of Medicine, Indiana University, Indianapolis, IN, USA
| | - Andrea G. Hohmann
- Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
- Gill Center for Biomolecular Science, Indiana University, Bloomington, IN, USA
- Program in Neuroscience, Indiana University, Bloomington, IN, USA
- Corresponding author at: Department of Psychological and Brain Sciences, Indiana University, 1101 E 10 Street, Bloomington, IN 47405-7007, USA.
| |
Collapse
|
20
|
Marques Miranda C, de Lima Campos M, Leite-Almeida H. Diet, body weight and pain susceptibility - A systematic review of preclinical studies. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2021; 10:100066. [PMID: 34195483 PMCID: PMC8237587 DOI: 10.1016/j.ynpai.2021.100066] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/26/2021] [Accepted: 06/11/2021] [Indexed: 02/07/2023]
Abstract
Obesity has been associated with increased chronic pain susceptibility but causes are unclear. In this review, we systematize and analyze pain outcomes in rodent models of obesity as these can be important tools for mechanistic studies. Studies were identified using MEDLINE/PubMed and Scopus databases using the following search query: (((pain) OR (nociception)) AND (obesity)) AND (rat OR (mouse) OR (rodent))). From each eligible record we extracted the following data: species, strain, sex, pain/obesity model and main behavioral readouts. Out of 695 records 33 were selected for inclusion. 27 studies assessed nociception/acute pain and 17 studies assessed subacute or chronic pain. Overall genetic and dietary models overlapped in pain-related outcomes. Most acute pain studies reported either decreased or unaltered responses to noxious painful stimuli. However, decreased thresholds to mechanical innocuous stimuli, i.e. allodynia, were frequently reported. In most studies using subacute and chronic pain models, namely of subcutaneous inflammation, arthritis and perineural inflammation, decreased thresholds and/or prolonged pain manifestations were reported in obesity models. Strain comparisons and longitudinal observations indicate that genetic factors and the time course of the pathology might account for some of the discrepancies observed across studies. Two studies reported increased pain in animals subjected to high fat diet in the absence of weight gain. Pain-related outcomes in experimental models and clinical obesity are aligned indicating that the rodent can be an useful tool to study the interplay between diet, obesity and pain. In both cases weight gain might represent only a minor contribution to abnormal pain manifestation.
Collapse
Affiliation(s)
- Carolina Marques Miranda
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal
- ICVS/3B’s - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Mariana de Lima Campos
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal
- ICVS/3B’s - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Hugo Leite-Almeida
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal
- ICVS/3B’s - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
21
|
The Role of Dietary Nutrients in Peripheral Nerve Regeneration. Int J Mol Sci 2021; 22:ijms22147417. [PMID: 34299037 PMCID: PMC8303934 DOI: 10.3390/ijms22147417] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 07/07/2021] [Indexed: 12/16/2022] Open
Abstract
Peripheral nerves are highly susceptible to injuries induced from everyday activities such as falling or work and sport accidents as well as more severe incidents such as car and motorcycle accidents. Many efforts have been made to improve nerve regeneration, but a satisfactory outcome is still unachieved, highlighting the need for easy to apply supportive strategies for stimulating nerve growth and functional recovery. Recent focus has been made on the effect of the consumed diet and its relation to healthy and well-functioning body systems. Normally, a balanced, healthy daily diet should provide our body with all the needed nutritional elements for maintaining correct function. The health of the central and peripheral nervous system is largely dependent on balanced nutrients supply. While already addressed in many reviews with different focus, we comprehensively review here the possible role of different nutrients in maintaining a healthy peripheral nervous system and their possible role in supporting the process of peripheral nerve regeneration. In fact, many dietary supplements have already demonstrated an important role in peripheral nerve development and regeneration; thus, a tailored dietary plan supplied to a patient following nerve injury could play a non-negotiable role in accelerating and promoting the process of nerve regeneration.
Collapse
|
22
|
Elma Ö, Lebuf E, Marnef AQ, Tümkaya Yilmaz S, Coppieters I, Clarys P, Nijs J, Malfliet A, Deliens T. Diet can exert both analgesic and pronociceptive effects in acute and chronic pain models: a systematic review of preclinical studies. Nutr Neurosci 2021; 25:2195-2217. [PMID: 34096825 DOI: 10.1080/1028415x.2021.1934956] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Although diet is an essential aspect of human health, the link between diet and pain is still not well understood. Preclinical animal research provides information to understand underlying mechanisms that allow identifying the needs for human research. OBJECTIVES This study aims to give a systematic overview of the current evidence from preclinical studies regarding the analgesic and pronociceptive effects of various diets in non-neuropathic, non-cancer, or non-visceral acute and chronic pain models. STUDY DESIGN A systematic Review. SETTING This study examined studies that investigate the analgesic and pronociceptive effects of various diets in non-neuropathic, non-cancer, or non-visceral acute and chronic pain models. METHODS This review was conducted following the PRISMA guidelines and was registered in PROSPERO with the registration number CRD42019133473. The certainty of evidence was examined by a modified GRADE approach. RESULTS After the screening process twenty-four eligible papers were included in this review. Nineteen studies examined acute pain, nine studies chronic inflammatory pain, and four studies assessed both acute and chronic pain models. LIMITATIONS Due to the heterogeneity of the included studies, a meta-analysis was not included in this study. CONCLUSIONS In animal models, excessive saturated, monounsaturated or omega-6 polyunsaturated fat ingestion and diets rich in fats and carbohydrates can decrease pain sensitivity in acute nociceptive pain, whereas it can induce mechanical allodynia and heat hyperalgesia in chronic inflammatory pain. Additionally, diets rich in anti-inflammatory ingredients, as well as a calorie-restricted diet can promote recovery from primary mechanical allodynia and heat hyperalgesia in chronic inflammatory pain.
Collapse
Affiliation(s)
- Ömer Elma
- Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education & Physiotherapy, Pain in Motion international research group, Vrije Universiteit Brussel, Brussels, Belgium
| | - Elien Lebuf
- Department of Rehabilitation Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Arturo Quiroz Marnef
- Department of Rehabilitation Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Sevilay Tümkaya Yilmaz
- Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education & Physiotherapy, Pain in Motion international research group, Vrije Universiteit Brussel, Brussels, Belgium
| | - Iris Coppieters
- Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education & Physiotherapy, Pain in Motion international research group, Vrije Universiteit Brussel, Brussels, Belgium.,Department of Physical Medicine and Physiotherapy, University Hospital Brussels, Brussels, Belgium.,Department of Rehabilitation Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Peter Clarys
- Department of Movement and Sport Sciences, Faculty of Physical Education and Physiotherapy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Jo Nijs
- Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education & Physiotherapy, Pain in Motion international research group, Vrije Universiteit Brussel, Brussels, Belgium.,Department of Physical Medicine and Physiotherapy, University Hospital Brussels, Brussels, Belgium.,Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| | - Anneleen Malfliet
- Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education & Physiotherapy, Pain in Motion international research group, Vrije Universiteit Brussel, Brussels, Belgium.,Department of Physical Medicine and Physiotherapy, University Hospital Brussels, Brussels, Belgium
| | - Tom Deliens
- Department of Movement and Sport Sciences, Faculty of Physical Education and Physiotherapy, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
23
|
Jacenik D, Bagüés A, López-Gómez L, López-Tofiño Y, Iriondo-DeHond A, Serra C, Banovcanová L, Gálvez-Robleño C, Fichna J, del Castillo MD, Uranga JA, Abalo R. Changes in Fatty Acid Dietary Profile Affect the Brain-Gut Axis Functions of Healthy Young Adult Rats in a Sex-Dependent Manner. Nutrients 2021; 13:1864. [PMID: 34070787 PMCID: PMC8228732 DOI: 10.3390/nu13061864] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/15/2021] [Accepted: 05/27/2021] [Indexed: 12/12/2022] Open
Abstract
Dietary modifications, including those affecting dietary fat and its fatty acid (FA) composition, may be involved in the development of brain-gut axis disorders, with different manifestations in males and females. Our aim was to evaluate the impact of three purified diets with different FA composition on the brain-gut axis in rats of both sexes. Male and female Wistar rats fed a cereal-based standard diet from weaning were used. At young adult age (2-3 months old), animals were divided into three groups and treated each with a different refined diet for 6 weeks: a control group fed on AIN-93G diet containing 7% soy oil (SOY), and two groups fed on AIN-93G modified diets with 3.5% soy oil replaced by 3.5% coconut oil (COCO) or 3.5% evening primrose oil (EP). Different brain-gut axis parameters were evaluated during 4-6 weeks of dietary intervention. Compared with SOY diet (14% saturated FAs, and 58% polyunsaturated FAs), COCO diet (52.2% saturated FAs and 30% polyunsaturated FAs) produced no changes in brain functions and minor gastrointestinal modifications, whereas EP diet (11.1% saturated FAs and 70.56% polyunsaturated FAs) tended to decrease self-care behavior and colonic propulsion in males, and significantly increased exploratory behavior, accelerated gastrointestinal transit, and decreased cecum and fecal pellet density in females. Changes in FA composition, particularly an increase in ω-6 polyunsaturated FAs, seem to facilitate the development of brain-gut axis alterations in a sex-dependent manner, with a relatively higher risk in females.
Collapse
Affiliation(s)
- Damian Jacenik
- Department of Cytobiochemistry, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland;
| | - Ana Bagüés
- Department of Basic Health Sciences, Faculty of Health Sciences, University Rey Juan Carlos (URJC), 28922 Alcorcón, Spain; (A.B.); (L.L.-G.); (Y.L.-T.); (C.S.); (L.B.); (C.G.-R.); (J.A.U.)
- High Performance Research Group in Experimental Pharmacology (PHARMAKOM-URJC), URJC, 28922 Alcorcón, Spain
- Associated I+D+i Unit to the Institute of Medicinal Chemistry (IQM), Scientific Research Superior Council (CSIC), 28006 Madrid, Spain
| | - Laura López-Gómez
- Department of Basic Health Sciences, Faculty of Health Sciences, University Rey Juan Carlos (URJC), 28922 Alcorcón, Spain; (A.B.); (L.L.-G.); (Y.L.-T.); (C.S.); (L.B.); (C.G.-R.); (J.A.U.)
- High Performance Research Group in Physiopathology and Pharmacology of the Digestive System (NeuGut-URJC), URJC, 28922 Alcorcón, Spain
| | - Yolanda López-Tofiño
- Department of Basic Health Sciences, Faculty of Health Sciences, University Rey Juan Carlos (URJC), 28922 Alcorcón, Spain; (A.B.); (L.L.-G.); (Y.L.-T.); (C.S.); (L.B.); (C.G.-R.); (J.A.U.)
- High Performance Research Group in Physiopathology and Pharmacology of the Digestive System (NeuGut-URJC), URJC, 28922 Alcorcón, Spain
| | - Amaia Iriondo-DeHond
- Food Bioscience Group, Department of Bioactivity and Food Analysis, Instituto de Investigación en Ciencias de la Alimentación (CIAL) (CSIC-UAM), Calle Nicolás Cabrera, 9, 28049 Madrid, Spain; (A.I.-D.); (M.D.d.C.)
| | - Cristina Serra
- Department of Basic Health Sciences, Faculty of Health Sciences, University Rey Juan Carlos (URJC), 28922 Alcorcón, Spain; (A.B.); (L.L.-G.); (Y.L.-T.); (C.S.); (L.B.); (C.G.-R.); (J.A.U.)
| | - Laura Banovcanová
- Department of Basic Health Sciences, Faculty of Health Sciences, University Rey Juan Carlos (URJC), 28922 Alcorcón, Spain; (A.B.); (L.L.-G.); (Y.L.-T.); (C.S.); (L.B.); (C.G.-R.); (J.A.U.)
| | - Carlos Gálvez-Robleño
- Department of Basic Health Sciences, Faculty of Health Sciences, University Rey Juan Carlos (URJC), 28922 Alcorcón, Spain; (A.B.); (L.L.-G.); (Y.L.-T.); (C.S.); (L.B.); (C.G.-R.); (J.A.U.)
- High Performance Research Group in Physiopathology and Pharmacology of the Digestive System (NeuGut-URJC), URJC, 28922 Alcorcón, Spain
| | - Jakub Fichna
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, 92-215 Lodz, Poland;
| | - Maria Dolores del Castillo
- Food Bioscience Group, Department of Bioactivity and Food Analysis, Instituto de Investigación en Ciencias de la Alimentación (CIAL) (CSIC-UAM), Calle Nicolás Cabrera, 9, 28049 Madrid, Spain; (A.I.-D.); (M.D.d.C.)
| | - José Antonio Uranga
- Department of Basic Health Sciences, Faculty of Health Sciences, University Rey Juan Carlos (URJC), 28922 Alcorcón, Spain; (A.B.); (L.L.-G.); (Y.L.-T.); (C.S.); (L.B.); (C.G.-R.); (J.A.U.)
- High Performance Research Group in Physiopathology and Pharmacology of the Digestive System (NeuGut-URJC), URJC, 28922 Alcorcón, Spain
| | - Raquel Abalo
- Department of Basic Health Sciences, Faculty of Health Sciences, University Rey Juan Carlos (URJC), 28922 Alcorcón, Spain; (A.B.); (L.L.-G.); (Y.L.-T.); (C.S.); (L.B.); (C.G.-R.); (J.A.U.)
- Associated I+D+i Unit to the Institute of Medicinal Chemistry (IQM), Scientific Research Superior Council (CSIC), 28006 Madrid, Spain
- High Performance Research Group in Physiopathology and Pharmacology of the Digestive System (NeuGut-URJC), URJC, 28922 Alcorcón, Spain
- Working Group of Basic Sciences in Pain and Analgesia of the Spanish Pain Society (Grupo de Trabajo de Ciencias Básicas en Dolor y Analgesia de la Sociedad Española del Dolor), 28046 Madrid, Spain
| |
Collapse
|
24
|
Salberg S, Yamakawa GR, Griep Y, Bain J, Beveridge JK, Sun M, McDonald SJ, Shultz SR, Brady RD, Wright DK, Noel M, Mychasiuk R. Pain in the Developing Brain: Early Life Factors Alter Nociception and Neurobiological Function in Adolescent Rats. Cereb Cortex Commun 2021; 2:tgab014. [PMID: 34296160 PMCID: PMC8152853 DOI: 10.1093/texcom/tgab014] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 02/15/2021] [Accepted: 02/18/2021] [Indexed: 01/09/2023] Open
Abstract
Although adverse early experiences prime individuals to be at increased risk for chronic pain, little research has examined the trauma–pain relationship in early life or the underlying mechanisms that drive pathology over time. Given that early experiences can potentiate the nociceptive response, this study aimed to examine the effects of a high-fat, high-sugar (HFHS) diet and early life stress (maternal separation [MS]) on pain outcomes in male and female adolescent rats. Half of the rats also underwent a plantar-incision surgery to investigate how the pain system responded to a mildly painful stimuli in adolescence. Compared with controls, animals that were on the HFHS diet, experienced MS, or had exposure to both, exhibited increased anxiety-like behavior and altered thermal and mechanical nociception at baseline and following the surgery. Advanced magnetic resonance imaging demonstrated that the HFHS diet and MS altered the maturation of the brain, leading to changes in brain volume and diffusivity within the anterior cingulate, amygdala, corpus callosum, nucleus accumbens, and thalamus, while also modifying the integrity of the corticospinal tracts. The effects of MS and HFHS diet were often cumulative, producing exacerbated pain sensitivity and increased neurobiological change. As early experiences are modifiable, understanding their role in pain may provide targets for early intervention/prevention.
Collapse
Affiliation(s)
- Sabrina Salberg
- Department of Neuroscience, Monash University, Melbourne 3004, Australia
| | - Glenn R Yamakawa
- Department of Neuroscience, Monash University, Melbourne 3004, Australia
| | - Yannick Griep
- Behavioural Science Institute, Radboud University, Nijmegen 6525 GD, the Netherlands.,Division of Epidemiology, Stress Research Institute, Stockholm University, Stockholm 114 19, Sweden
| | - Jesse Bain
- Department of Neuroscience, Monash University, Melbourne 3004, Australia
| | - Jaimie K Beveridge
- Department of Psychology, University of Calgary, Calgary T2N 1N4, Canada
| | - Mujun Sun
- Department of Neuroscience, Monash University, Melbourne 3004, Australia
| | - Stuart J McDonald
- Department of Neuroscience, Monash University, Melbourne 3004, Australia.,Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne 3086, Australia
| | - Sandy R Shultz
- Department of Neuroscience, Monash University, Melbourne 3004, Australia
| | - Rhys D Brady
- Department of Neuroscience, Monash University, Melbourne 3004, Australia
| | - David K Wright
- Department of Neuroscience, Monash University, Melbourne 3004, Australia
| | - Melanie Noel
- Department of Psychology, University of Calgary, Calgary T2N 1N4, Canada
| | - Richelle Mychasiuk
- Department of Neuroscience, Monash University, Melbourne 3004, Australia.,Department of Psychology, University of Calgary, Calgary T2N 1N4, Canada
| |
Collapse
|
25
|
Wu G, Shi Y, Han L, Feng C, Ge Y, Yu Y, Tang X, Cheng X, Sun J, Le GW. Dietary Methionine Restriction Ameliorated Fat Accumulation, Systemic Inflammation, and Increased Energy Metabolism by Altering Gut Microbiota in Middle-Aged Mice Administered Different Fat Diets. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:7745-7756. [PMID: 32597175 DOI: 10.1021/acs.jafc.0c02965] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Diet greatly influences gut microbiota. Dietary methionine restriction (MR) prevents and ameliorates age-related or high-fat-induced diseases and prolongs life span. This study aimed to reveal the impact of MR on gut microbiota in middle-aged mice with low-, medium-, high-fat diets. C57BL/6J mice were randomly divided into six groups with different MR and fat-content diets. Multiple indicators of intestinal function, fat accumulation, energy consumption, and inflammation were measured. 16S rRNA gene sequencing was used to analyze cecal microbiota. Our results indicated that MR considerably reduced the concentrations of lipopolysaccharide (LPS) and increased short-chain fatty acids (SCFAs) by upregulating the abundance of Corynebacterium and SCFA-producing bacteria Bacteroides, Faecalibaculum, and Roseburia and downregulating the LPS-producing or proinflammatory bacteria Desulfovibrio and Escherichia-Shigella. The effect of MR on LPS and SCFAs further reduced fat accumulation and systemic inflammation, enhanced heat production, and mediated the LPS/LBP/CD14/ TLR4 pathway to strength the intestinal mucosal immunity barrier in middle-aged mice.
Collapse
Affiliation(s)
- Guoqing Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Center for Food Nutrition and Functional Food Engineering, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yonghui Shi
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Center for Food Nutrition and Functional Food Engineering, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Le Han
- Center for Food Nutrition and Functional Food Engineering, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Chuanxing Feng
- Center for Food Nutrition and Functional Food Engineering, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yueting Ge
- Center for Food Nutrition and Functional Food Engineering, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yihao Yu
- Center for Food Nutrition and Functional Food Engineering, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xue Tang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Center for Food Nutrition and Functional Food Engineering, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xiangrong Cheng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Center for Food Nutrition and Functional Food Engineering, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jin Sun
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Institute of Nutrition and Health, Qingdao University, Qingdao 266021, China
| | - Guo-Wei Le
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Center for Food Nutrition and Functional Food Engineering, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
26
|
Nijs J, Tumkaya Yilmaz S, Elma Ö, Tatta J, Mullie P, Vanderweeën L, Clarys P, Deliens T, Coppieters I, Weltens N, Van Oudenhove L, Huysmans E, Malfliet A. Nutritional intervention in chronic pain: an innovative way of targeting central nervous system sensitization? Expert Opin Ther Targets 2020; 24:793-803. [PMID: 32567396 DOI: 10.1080/14728222.2020.1784142] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Few treatment programs for chronic pain nowadays take a dietary pattern or adipose status into account. AREAS COVERED An important role of neuroinflammation in chronic pain is now well established, at least in part due to increased central nervous system glial activation. Based on preclinical studies, it is postulated that the interaction between nutrition and central sensitization is mediated via bidirectional gut-brain interactions. This model of diet-induced neuroinflammation and consequent central sensitization generates a rationale for developing innovative treatments for patients with chronic pain. Methods: An umbrella approach to cover the authors' expert opinion within an evidence-based viewpoint. EXPERT OPINION A low-saturated fat and low-added sugar dietary pattern potentially decreases oxidative stress, preventing Toll-like receptor activation and subsequent glial activation. A low-saturated fat and low-added sugar diet might also prevent afferent vagal nerve fibers sensing the pro-inflammatory mediators that come along with a high-(saturated) fat or energy-dense dietary pattern, thereby preventing them to signal peripheral inflammatory status to the brain. In addition, the gut microbiota produces polyamines, which hold the capacity to excite N-methyl-D-aspartate receptors, an essential component of the central nervous system sensitization. Hence, a diet reducing polyamine production by the gut microbiota requires exploration as a therapeutic target for cancer-related and non-cancer chronic pain.
Collapse
Affiliation(s)
- Jo Nijs
- Pain in Motion International Research Group, Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education & Physiotherapy, Vrije Universiteit Brussel , Brussels, Belgium.,Chronic Pain Rehabilitation, Department of Physical Medicine and Physiotherapy, University Hospital Brussels , Brussels, Belgium.,Institute of Neuroscience and Physiology, University of Gothenburg , Gothenburg, Sweden
| | - Sevilay Tumkaya Yilmaz
- Pain in Motion International Research Group, Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education & Physiotherapy, Vrije Universiteit Brussel , Brussels, Belgium.,Physical Activity, Nutrition and Health Research Group, Faculty of Physical Education & Physiotherapy, Vrije Universiteit Brussel , Brussels, Belgium
| | - Ömer Elma
- Pain in Motion International Research Group, Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education & Physiotherapy, Vrije Universiteit Brussel , Brussels, Belgium.,Physical Activity, Nutrition and Health Research Group, Faculty of Physical Education & Physiotherapy, Vrije Universiteit Brussel , Brussels, Belgium
| | - Joe Tatta
- Integrative Pain Science Institute , USA
| | - Patrick Mullie
- Physical Activity, Nutrition and Health Research Group, Faculty of Physical Education & Physiotherapy, Vrije Universiteit Brussel , Brussels, Belgium
| | - Luc Vanderweeën
- Pain in Motion International Research Group, Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education & Physiotherapy, Vrije Universiteit Brussel , Brussels, Belgium.,Private Practice for Spinal Manual Therapy, Schepdaal-Dilbeek, Belgium
| | - Peter Clarys
- Physical Activity, Nutrition and Health Research Group, Faculty of Physical Education & Physiotherapy, Vrije Universiteit Brussel , Brussels, Belgium
| | - Tom Deliens
- Physical Activity, Nutrition and Health Research Group, Faculty of Physical Education & Physiotherapy, Vrije Universiteit Brussel , Brussels, Belgium
| | - Iris Coppieters
- Pain in Motion International Research Group, Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education & Physiotherapy, Vrije Universiteit Brussel , Brussels, Belgium.,Chronic Pain Rehabilitation, Department of Physical Medicine and Physiotherapy, University Hospital Brussels , Brussels, Belgium.,Department of Rehabilitation Sciences, Faculty of Medicine and Health Sciences, Ghent University , Ghent, Belgium
| | - Nathalie Weltens
- Department of Chronic Diseases, Laboratory for Brain-Gut Axis Studies, Translational Research Center for Gastrointestinal Disorders , Leuven, Belgium
| | - Lukas Van Oudenhove
- Department of Chronic Diseases, Laboratory for Brain-Gut Axis Studies, Translational Research Center for Gastrointestinal Disorders , Leuven, Belgium
| | - Eva Huysmans
- Pain in Motion International Research Group, Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education & Physiotherapy, Vrije Universiteit Brussel , Brussels, Belgium.,Chronic Pain Rehabilitation, Department of Physical Medicine and Physiotherapy, University Hospital Brussels , Brussels, Belgium.,Research Foundation - Flanders (FWO) , Brussels, Belgium.,Department of Public Health (GEWE), Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel , Brussels, Belgium
| | - Anneleen Malfliet
- Pain in Motion International Research Group, Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education & Physiotherapy, Vrije Universiteit Brussel , Brussels, Belgium.,Chronic Pain Rehabilitation, Department of Physical Medicine and Physiotherapy, University Hospital Brussels , Brussels, Belgium.,Research Foundation - Flanders (FWO) , Brussels, Belgium
| |
Collapse
|
27
|
Qualitative sex differences in pain processing: emerging evidence of a biased literature. Nat Rev Neurosci 2020; 21:353-365. [PMID: 32440016 DOI: 10.1038/s41583-020-0310-6] [Citation(s) in RCA: 389] [Impact Index Per Article: 77.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/15/2020] [Indexed: 02/07/2023]
Abstract
Although most patients with chronic pain are women, the preclinical literature regarding pain processing and the pathophysiology of chronic pain has historically been derived overwhelmingly from the study of male rodents. This Review describes how the recent adoption by a number of funding agencies of policies mandating the incorporation of sex as a biological variable into preclinical research has correlated with an increase in the number of studies investigating sex differences in pain and analgesia. Trends in the field are analysed, with a focus on newly published findings of qualitative sex differences: that is, those findings that are suggestive of differential processing mechanisms in each sex. It is becoming increasingly clear that robust differences exist in the genetic, molecular, cellular and systems-level mechanisms of acute and chronic pain processing in male and female rodents and humans.
Collapse
|
28
|
Wu G, Han L, Shi Y, Feng C, Yan B, Sun J, Tang X, Le G. Effect of different levels of dietary methionine restriction on relieving oxidative stress and behavioral deficits in middle-aged mice fed low-, medium-, or high-fat diet. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.103782] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
29
|
Segelcke D, Pogatzki-Zahn EM. Pathophysiology of Postoperative Pain. THE SENSES: A COMPREHENSIVE REFERENCE 2020:604-627. [DOI: 10.1016/b978-0-12-809324-5.24249-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
30
|
Lee S, Jo S, Talbot S, Zhang HXB, Kotoda M, Andrews NA, Puopolo M, Liu PW, Jacquemont T, Pascal M, Heckman LM, Jain A, Lee J, Woolf CJ, Bean BP. Novel charged sodium and calcium channel inhibitor active against neurogenic inflammation. eLife 2019; 8:48118. [PMID: 31765298 PMCID: PMC6877086 DOI: 10.7554/elife.48118] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 11/13/2019] [Indexed: 12/12/2022] Open
Abstract
Voltage-dependent sodium and calcium channels in pain-initiating nociceptor neurons are attractive targets for new analgesics. We made a permanently charged cationic derivative of an N-type calcium channel-inhibitor. Unlike cationic derivatives of local anesthetic sodium channel blockers like QX-314, this cationic compound inhibited N-type calcium channels more effectively with extracellular than intracellular application. Surprisingly, the compound is also a highly effective sodium channel inhibitor when applied extracellularly, producing more potent inhibition than lidocaine or bupivacaine. The charged inhibitor produced potent and long-lasting analgesia in mouse models of incisional wound and inflammatory pain, inhibited release of the neuropeptide calcitonin gene-related peptide (CGRP) from dorsal root ganglion neurons, and reduced inflammation in a mouse model of allergic asthma, which has a strong neurogenic component. The results show that some cationic molecules applied extracellularly can powerfully inhibit both sodium channels and calcium channels, thereby blocking both nociceptor excitability and pro-inflammatory peptide release.
Collapse
Affiliation(s)
- Seungkyu Lee
- FM Kirby Neurobiology Research Center, Boston Children's Hospital, Boston, United States
| | - Sooyeon Jo
- Department of Neurobiology, Harvard Medical School, Boston, United States
| | - Sébastien Talbot
- Département de Pharmacologie et Physiologie, Université de Montréal, Montréal, Canada
| | | | - Masakazu Kotoda
- FM Kirby Neurobiology Research Center, Boston Children's Hospital, Boston, United States
| | - Nick A Andrews
- FM Kirby Neurobiology Research Center, Boston Children's Hospital, Boston, United States
| | - Michelino Puopolo
- Department of Anesthesiology, Renaissance School of Medicine at Stony Brook University, Stony Brook, United States
| | - Pin W Liu
- Department of Neurobiology, Harvard Medical School, Boston, United States
| | - Thomas Jacquemont
- FM Kirby Neurobiology Research Center, Boston Children's Hospital, Boston, United States
| | - Maud Pascal
- FM Kirby Neurobiology Research Center, Boston Children's Hospital, Boston, United States
| | - Laurel M Heckman
- FM Kirby Neurobiology Research Center, Boston Children's Hospital, Boston, United States
| | - Aakanksha Jain
- FM Kirby Neurobiology Research Center, Boston Children's Hospital, Boston, United States
| | - Jinbo Lee
- Sage Partner International, Andover, United States
| | - Clifford J Woolf
- FM Kirby Neurobiology Research Center, Boston Children's Hospital, Boston, United States.,Department of Neurobiology, Harvard Medical School, Boston, United States
| | - Bruce P Bean
- Department of Neurobiology, Harvard Medical School, Boston, United States
| |
Collapse
|
31
|
Advances in assessment of pain behaviors and mechanisms of post-operative pain models. CURRENT OPINION IN PHYSIOLOGY 2019. [DOI: 10.1016/j.cophys.2019.07.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
32
|
Liang YJ, Feng SY, Qi YP, Li K, Jin ZR, Jing HB, Liu LY, Cai J, Xing GG, Fu KY. Contribution of microglial reaction to increased nociceptive responses in high-fat-diet (HFD)-induced obesity in male mice. Brain Behav Immun 2019; 80:777-792. [PMID: 31108168 DOI: 10.1016/j.bbi.2019.05.026] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 05/11/2019] [Accepted: 05/16/2019] [Indexed: 12/27/2022] Open
Abstract
The progressive increase in the prevalence of obesity in the population can result in increased healthcare costs and demands. Recent studies have revealed a positive correlation between pain and obesity, although the underlying mechanisms still remain unknown. Here, we aimed to clarify the role of microglia in altered pain behaviors induced by high-fat diet (HFD) in male mice. We found that C57BL/6CR mice on HFD exhibited enhanced spinal microglial reaction (increased cell number and up-regulated expression of p-p38 and CD16/32), increased tumor necrosis factor-α (TNF-α) mRNA and brain-derived neurotrophic factor (BDNF) protein expression as well as a polarization of spinal microglial toward a pro-inflammatory phenotype. Moreover, we found that using PLX3397 (a selective colony-stimulating factor-1 receptor (CSF1R) kinase inhibitor) to eliminate microglia in HFD-induced obesity mice, inflammation in the spinal cord was rescued, as was abnormal pain hypersensitivity. Intrathecal injection of Mac-1-saporin (a saporin-conjugated anti-mac1 antibody) resulted in a decreased number of microglia and attenuated both mechanical allodynia and thermal hyperalgesia in HFD-fed mice. These results indicate that the pro-inflammatory functions of spinal microglia have a special relevance to abnormal pain hypersensitivity in HFD-induced obesity mice. In conclusion, our data suggest that HFD induces a classical reaction of microglia, characterized by an enhanced phosphorylation of p-38 and increased CD16/32 expression, which may in part contribute to increased nociceptive responses in HFD-induced obesity mice.
Collapse
Affiliation(s)
- Ya-Jing Liang
- Center for TMD and Orofacial Pain, Peking University School and Hospital of Stomatology, Beijing 100081, China
| | - Shi-Yang Feng
- Center for TMD and Orofacial Pain, Peking University School and Hospital of Stomatology, Beijing 100081, China
| | - Ya-Ping Qi
- Center for TMD and Orofacial Pain, Peking University School and Hospital of Stomatology, Beijing 100081, China
| | - Kai Li
- Center for TMD and Orofacial Pain, Peking University School and Hospital of Stomatology, Beijing 100081, China
| | - Zi-Run Jin
- Department of Neurobiology, School of Basic Medical Sciences and Neuroscience Research Institute, Peking University, Beijing 100083, China
| | - Hong-Bo Jing
- Department of Neurobiology, School of Basic Medical Sciences and Neuroscience Research Institute, Peking University, Beijing 100083, China
| | - Ling-Yu Liu
- Department of Neurobiology, School of Basic Medical Sciences and Neuroscience Research Institute, Peking University, Beijing 100083, China
| | - Jie Cai
- Department of Neurobiology, School of Basic Medical Sciences and Neuroscience Research Institute, Peking University, Beijing 100083, China
| | - Guo-Gang Xing
- Department of Neurobiology, School of Basic Medical Sciences and Neuroscience Research Institute, Peking University, Beijing 100083, China; Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing 100083, China.
| | - Kai-Yuan Fu
- Center for TMD and Orofacial Pain, Peking University School and Hospital of Stomatology, Beijing 100081, China; Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing 100083, China.
| |
Collapse
|
33
|
Price TJ, Ray PR. Recent advances toward understanding the mysteries of the acute to chronic pain transition. CURRENT OPINION IN PHYSIOLOGY 2019; 11:42-50. [PMID: 32322780 DOI: 10.1016/j.cophys.2019.05.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Chronic pain affects up to a third of the population. Ongoing epidemiology studies suggest that the impact of chronic pain on the population is accelerating [1]. While advances have been made in understanding how chronic pain develops, there are still many important mysteries about how acute pain transitions to a chronic state. In this review, I summarize recent developments in the field with a focus on several areas of emerging research that are likely to have an important impact on the field. These include mechanisms of cellular plasticity that drive chronic pain, evidence of pervasive sex differential mechanisms in chronic pain and the profound impact that next generation sequencing technologies are having on this area of research.
Collapse
Affiliation(s)
- Theodore J Price
- University of Texas at Dallas, School of Behavioral and Brain Sciences and Center for Advanced Pain Studies
| | - Pradipta R Ray
- University of Texas at Dallas, School of Behavioral and Brain Sciences and Center for Advanced Pain Studies
| |
Collapse
|
34
|
O'Loughlin I, Newton-John TRO. 'Dis-comfort eating': An investigation into the use of food as a coping strategy for the management of chronic pain. Appetite 2019; 140:288-297. [PMID: 31145944 DOI: 10.1016/j.appet.2019.05.027] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 04/18/2019] [Accepted: 05/21/2019] [Indexed: 12/18/2022]
Abstract
OBJECTIVES Chronic pain and obesity are major public health concerns. Animal and human models have demonstrated that eating high-sugar nutrient-dense foods confers analgesic effects. Moreover, recent research suggests that people with chronic pain may "comfort eat" to cope with their pain. Given the harmful impact of obesity on chronic pain, it is critical to determine whether pain elicits comfort eating amongst individuals with chronic pain to ensure that this potentially maladaptive pain coping strategy is not overlooked in chronic pain treatment. Therefore, this study aimed to: determine whether chronic pain intensity predicts pain-induced comfort eating and identify mediators of this relationship; to determine whether pain-induced comfort eating predicts elevated BMI; and to establish whether BMI predicts chronic pain interference. METHODS This study utilised a cross-sectional online survey design and a sample of 151 adults with chronic pain. RESULTS Over three-quarters of this chronic pain sample reported engaging in pain-induced comfort eating. Chronic pain intensity did not significantly predict pain-induced comfort eating. However, there was a significant indirect effect of chronic pain intensity on pain-induced comfort eating through stress-but not experiential avoidance or pain catastrophising. As predicted, pain-induced comfort eating significantly predicted increased BMI, and BMI in turn significantly predicted greater chronic pain interference. DISCUSSION This study indicates that pain-induced comfort eating is both common and harmful amongst individuals with chronic pain, across the entire BMI spectrum. Pain-induced comfort eating and stress have emerged as promising chronic pain treatment targets. The findings are discussed and interpreted in light of extant research and theory, as well as limitations of the current study. Future research directions and clinical implications are also considered.
Collapse
Affiliation(s)
- Imogen O'Loughlin
- Graduate School of Health, University of Technology Sydney, Australia
| | | |
Collapse
|
35
|
Buyukdere Y, Gulec A, Akyol A. Cafeteria diet increased adiposity in comparison to high fat diet in young male rats. PeerJ 2019; 7:e6656. [PMID: 30984479 PMCID: PMC6452846 DOI: 10.7717/peerj.6656] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 02/21/2019] [Indexed: 12/18/2022] Open
Abstract
Background Dietary intervention studies in animal models of obesity are crucial to elucidate the mechanistic effects of specific nutrients and diets. Although several models of diet induced obesity have been examined in rodents to assess obesity, there are few studies that have researched influence of different high fat and/or westernized diets. The aim of this study was to compare a high fat diet and a cafeteria diet on obesity related biochemical and physiological parameters in young male rats. Methods Five week old Wistar male rats were fed a control chow diet (C), butter-based high fat diet (HF) or cafeteria diet (CAF) for twelve weeks. In HF, 40% of energy came from fat and this ratio was 46% in CAF. CAF composed of highly energetic and palatable human foods along with chow diet. At the end of the feeding protocol all animals were culled using CO2 asphyxia and cervical dislocation after an overnight fasting. Results Total energy and fat intake of CAF was significantly higher than C and HF. CAF was more effective in inducing obesity, as demonstrated by increased weight gain, Lee index, fat depot weights and total body fat in comparison to C and HF. Despite increased adiposity in CAF, plasma glucose, insulin and HOMA-IR levels were similar between the groups. Plasma leptin and cholesterol levels were markedly higher in CAF than C and HF. Discussion We have demonstrated that there are differential effects of high fat diet and cafeteria diet upon obesity and obesity-related parameters, with CAF leading to a more pronounced adiposity in comparison to high fat diet in young male rats. Future studies should consider the varied outcomes of different diet induced obesity models and development of a standardized approach in similar research practices.
Collapse
Affiliation(s)
- Yucel Buyukdere
- Department of Nutrition and Dietetics, Hacettepe University, Ankara, Turkey
| | - Atila Gulec
- Department of Nutrition and Dietetics, Hacettepe University, Ankara, Turkey
| | - Asli Akyol
- Department of Nutrition and Dietetics, Hacettepe University, Ankara, Turkey
| |
Collapse
|
36
|
High-fat diet and post-operative pain: Why the hospital cafeteria may matter. Brain Behav Immun 2018; 74:45-46. [PMID: 30130582 PMCID: PMC6314184 DOI: 10.1016/j.bbi.2018.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 08/16/2018] [Indexed: 11/24/2022] Open
|