1
|
Bavencoffe A, Lopez ER, Johnson KN, Tian J, Gorgun FM, Shen BQ, Domagala DM, Zhu MX, Dessauer CW, Walters ET. Widespread hyperexcitability of nociceptor somata outlasts enhanced avoidance behavior after incision injury. Pain 2025; 166:1088-1104. [PMID: 39432803 PMCID: PMC12003080 DOI: 10.1097/j.pain.0000000000003443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 09/05/2024] [Indexed: 10/23/2024]
Abstract
ABSTRACT Nociceptors with somata in dorsal root ganglia (DRGs) readily switch from an electrically silent state to a hyperactive state of tonic, nonaccommodating, low-frequency, irregular discharge of action potentials (APs). Spontaneous activity (SA) during this state is present in vivo in rats months after spinal cord injury (SCI) and has been causally linked to SCI pain. Intrinsically generated SA and, more generally, ongoing activity (OA) are induced by various neuropathic conditions in rats, mice, and humans and are retained in nociceptor somata after dissociation and culturing, providing a powerful tool for investigating its mechanisms and functions. The present study shows that long-lasting hyperexcitability that can generate OA during modest depolarization in probable nociceptors dissociated from DRGs of male and female rats is induced by plantar incision injury. OA occurred when the soma was artificially depolarized to a level within the normal range of membrane potentials where large, transient depolarizing spontaneous fluctuations (DSFs) can approach AP threshold. This hyperexcitability persisted for at least 3 weeks, whereas behavioral indicators of affective pain-hind paw guarding and increased avoidance of a noxious substrate in an operant conflict test-persisted for 1 week or less. The most consistent electrophysiological alteration associated with OA was enhancement of DSFs. An unexpected discovery after plantar incisions was hyperexcitability in neurons from thoracic DRGs that innervate dermatomes distant from the injured tissue. Potential in vivo functions of widespread, low-frequency nociceptor OA consistent with these and other findings are to contribute to hyperalgesic priming and to drive anxiety-related hypervigilance.
Collapse
Affiliation(s)
- Alexis Bavencoffe
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston
| | - Elia R. Lopez
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston
| | - Kayla N. Johnson
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston
| | - Jinbin Tian
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston
| | - Falih M. Gorgun
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston
| | - Breanna Q. Shen
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston
| | - Drue M. Domagala
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston
| | - Michael X. Zhu
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston
| | - Carmen W. Dessauer
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston
| | - Edgar T. Walters
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston
| |
Collapse
|
2
|
Mwirigi JM, Sankaranarayanan I, Tavares-Ferreira D, Gabriel KA, Palomino S, Li Y, Uhelski ML, Shiers S, Franco-Enzástiga Ú, Wangzhou A, Lesnak JB, Bandaru S, Shrivastava A, Inturi N, Albrecht PJ, Dockum M, Cervantes AM, Horton P, Funk G, North RY, Tatsui CE, Corrales G, Yousuf MS, Curatolo M, Gereau RW, Patwardhan A, Dussor G, Dougherty PM, Rice FL, Price TJ. Expansion of OSMR expression and signaling in the human dorsal root ganglion links OSM to neuropathic pain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.26.645611. [PMID: 40236060 PMCID: PMC11996445 DOI: 10.1101/2025.03.26.645611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
RNA sequencing studies on human dorsal root ganglion (hDRG) from patients suffering from neuropathic pain show upregulation of OSM, linking this IL-6 family cytokine to pain disorders. In mice, however, OSM signaling causes itch behaviors through a direct effect on its cognate receptor expressed uniquely by pruriceptive sensory neurons. We hypothesized that an expansion in function of OSM-OSM receptor (OSMR) in sensory disorders in humans could be explained by species differences in receptor expression and signaling. Our in situ hybridization and immunohistochemical findings demonstrate broad expression of OSMR in DRG nociceptors and afferent fibers innervating the superficial and deep skin of humans. In patch-clamp electrophysiology, OSM directly activates human sensory neurons engaging MAPK signaling to promote action potential firing. Using CRISPR editing we show that OSM activation of MAPK signaling is dependent on OSMR and not LIFR in hDRG. Bulk, single-nuclei, and single-cell RNA-seq of OSM-treated hDRG cultures reveal expansive similarities in the transcriptomic signature observed in pain DRGs from neuropathic patients, indicating that OSM alone can orchestrate transcriptomic signatures associated with pain. We conclude that OSM-OSMR signaling via MAPKs is a critical signaling factor for DRG plasticity that may underlie neuropathic pain in patients.
Collapse
|
3
|
Yi J, Yang L, Widman AJ, Toliver A, Bertels Z, Del Rosario JS, Slivicki RA, Payne M, Dourson AJ, Li JN, Kumar R, Gupta P, Mwirigi JM, Chamessian A, Lemen J, Copits BA, Gereau RW. Human sensory neurons exhibit cell-type-specific, pain-associated differences in intrinsic excitability and expression of SCN9A and SCN10A. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.25.645367. [PMID: 40196681 PMCID: PMC11974934 DOI: 10.1101/2025.03.25.645367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Despite the prevalence of chronic pain, the approval of novel, non-opioid therapeutics has been slow. A major translational challenge in analgesic development is the difference in gene expression and functional properties between human and rodent dorsal root ganglia (DRG) sensory neurons. Extensive work in rodents suggests that sensitization of nociceptors in the DRG is essential for the pathogenesis and persistence of pain; however, direct evidence demonstrating similar physiological sensitization in humans is limited. Here, we examine whether pain history is associated with nociceptor hyperexcitability in human DRG (hDRG). We identified three electrophysiologically distinct clusters (E-types) of hDRG neurons based on firing properties and membrane excitability. Combining electrophysiological recordings and single-cell RNA-sequencing ("Patch-seq"), we linked these E-types to specific transcriptionally defined nociceptor subpopulations. Comparing hDRG neurons from donors with and without evident pain history revealed cluster-specific, pain history-associated differences in hDRG excitability. Finally, we found that hDRG from donors with pain history express higher levels of transcripts encoding voltage-gated sodium channel 1.7 (NaV1.7) and 1.8 (NaV1.8) which specifically regulate nociceptor excitability. These findings suggest that donors with pain history exhibit distinct hDRG electrophysiological profiles compared to those without pain history and further validate NaV1.7 and 1.8 as targets for analgesic development.
Collapse
Affiliation(s)
- Jiwon Yi
- Department of Anesthesiology, Washington University Pain Center, Washington University School of Medicine, St. Louis, MO, United States
- Neuroscience Graduate Program, Division of Biology & Biomedical Sciences, Washington University School of Medicine, St. Louis, MO, United States
| | - Lite Yang
- Department of Anesthesiology, Washington University Pain Center, Washington University School of Medicine, St. Louis, MO, United States
- Neuroscience Graduate Program, Division of Biology & Biomedical Sciences, Washington University School of Medicine, St. Louis, MO, United States
| | - Allie J. Widman
- Department of Anesthesiology, Washington University Pain Center, Washington University School of Medicine, St. Louis, MO, United States
| | - Alexa Toliver
- Department of Anesthesiology, Washington University Pain Center, Washington University School of Medicine, St. Louis, MO, United States
| | - Zachariah Bertels
- Department of Anesthesiology, Washington University Pain Center, Washington University School of Medicine, St. Louis, MO, United States
| | - John Smith Del Rosario
- Department of Anesthesiology, Washington University Pain Center, Washington University School of Medicine, St. Louis, MO, United States
| | - Richard A. Slivicki
- Department of Anesthesiology, Washington University Pain Center, Washington University School of Medicine, St. Louis, MO, United States
| | - Maria Payne
- Department of Anesthesiology, Washington University Pain Center, Washington University School of Medicine, St. Louis, MO, United States
| | - Adam J. Dourson
- Department of Anesthesiology, Washington University Pain Center, Washington University School of Medicine, St. Louis, MO, United States
| | - Jun-Nan Li
- Department of Anesthesiology, Washington University Pain Center, Washington University School of Medicine, St. Louis, MO, United States
| | - Rakesh Kumar
- Department of Anesthesiology, Washington University Pain Center, Washington University School of Medicine, St. Louis, MO, United States
| | - Prashant Gupta
- Department of Anesthesiology, Washington University Pain Center, Washington University School of Medicine, St. Louis, MO, United States
| | - Juliet M. Mwirigi
- Department of Anesthesiology, Washington University Pain Center, Washington University School of Medicine, St. Louis, MO, United States
| | - Alexander Chamessian
- Department of Anesthesiology, Washington University Pain Center, Washington University School of Medicine, St. Louis, MO, United States
| | - John Lemen
- Mid-America Transplant, St. Louis, MO, United States
| | - Bryan A. Copits
- Department of Anesthesiology, Washington University Pain Center, Washington University School of Medicine, St. Louis, MO, United States
| | - Robert W. Gereau
- Department of Anesthesiology, Washington University Pain Center, Washington University School of Medicine, St. Louis, MO, United States
- Department of Neuroscience, Washington University, St. Louis, MO, United States
| |
Collapse
|
4
|
Hu J, Fan W, Xu Y, Li X, Zhang H, Li S, Xue L. Maladaptive changes in the homeostasis of AEA-TRPV1/CB1R induces pain-related hyperactivity of nociceptors after spinal cord injury. Cell Biosci 2025; 15:2. [PMID: 39789637 PMCID: PMC11720958 DOI: 10.1186/s13578-025-01345-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 01/02/2025] [Indexed: 01/12/2025] Open
Abstract
BACKGROUND Neuropathic pain resulting from spinal cord injury (SCI) is associated with persistent hyperactivity of primary nociceptors. Anandamide (AEA) has been reported to modulate neuronal excitability and synaptic transmission through activation of cannabinoid type-1 receptors (CB1Rs) and transient receptor potential vanilloid 1 (TRPV1). However, the role of AEA and these receptors in the hyperactivity of nociceptors after SCI remains unclear. RESULTS In this study, we investigated the effects of AEA and its receptors on the hyperexcitability of mouse dorsal root ganglion (DRG) neurons after SCI. Using a whole-cell patch-clamp technique, we found that the timing of SCI-induced hyperexcitability in nociceptors paralleled an increase in the endocannabinoid AEA content. The expression of TRPV1 and CB1R was also upregulated at different time points after SCI. High-dose extracellular administration of AEA increased the excitability of naive DRG neurons, leading to the transition from a rapidly accommodating (RA) hypoexcitable state to a highly excitable non-accommodating (NA) state. These AEA-induced transitions were facilitated by increased TRPV1 transcription. Pharmacological and Ca2+ imaging experiments revealed that AEA induced hyperexcitability in nociceptors after SCI via the AEA-TRPV1-Ca2+ pathway, whereas activation of CB1Rs reduced SCI-induced hyperexcitability and maintained cytosolic Ca2+ concentration ([Ca2+]cyto) at low levels in the early stages of SCI. As the AEA and TRPV1 levels increased after SCI, adaptive neuroprotection transitioned to a maladaptive hyperactive state, leading to sustained pain. CONCLUSIONS Taken together, this study provides new insights into how endocannabinoids regulate nociceptor activity after SCI, offering potential targets for the treatment of neuropathic pain.
Collapse
Affiliation(s)
- JiaQi Hu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200438, People's Republic of China
- Department of Physiology and Neurobiology, School of Life Sciences, Fudan University, Shanghai, 200438, People's Republic of China
- Center for Rehabilitation Medicine, Department of Pain Management, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, People's Republic of China
| | - WenYong Fan
- Department of Physiology and Neurobiology, School of Life Sciences, Fudan University, Shanghai, 200438, People's Republic of China
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Ministry of Education, Department of Orthopedics, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200092, People's Republic of China
| | - Yue Xu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200438, People's Republic of China
- Department of Physiology and Neurobiology, School of Life Sciences, Fudan University, Shanghai, 200438, People's Republic of China
| | - XiaoFei Li
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200438, People's Republic of China
- Department of Physiology and Neurobiology, School of Life Sciences, Fudan University, Shanghai, 200438, People's Republic of China
| | - HaoYang Zhang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200438, People's Republic of China
- Department of Physiology and Neurobiology, School of Life Sciences, Fudan University, Shanghai, 200438, People's Republic of China
| | - Shun Li
- Center for Rehabilitation Medicine, Department of Pain Management, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, People's Republic of China
| | - Lei Xue
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200438, People's Republic of China.
- Department of Physiology and Neurobiology, School of Life Sciences, Fudan University, Shanghai, 200438, People's Republic of China.
- Research Institute of Intelligent Complex Systems, Fudan University, Shanghai, 200433, People's Republic of China.
| |
Collapse
|
5
|
McIlvried LA, Del Rosario JS, Pullen MY, Wangzhou A, Sheahan TD, Shepherd AJ, Slivicki RA, Lemen JA, Price TJ, Copits BA, Gereau RW. Intrinsic adaptive plasticity in mouse and human sensory neurons. J Gen Physiol 2025; 157:e202313488. [PMID: 39688836 DOI: 10.1085/jgp.202313488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 06/07/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024] Open
Abstract
In response to changes in activity induced by environmental cues, neurons in the central nervous system undergo homeostatic plasticity to sustain overall network function during abrupt changes in synaptic strengths. Homeostatic plasticity involves changes in synaptic scaling and regulation of intrinsic excitability. Increases in spontaneous firing and excitability of sensory neurons are evident in some forms of chronic pain in animal models and human patients. However, whether mechanisms of homeostatic plasticity are engaged in sensory neurons of the peripheral nervous system (PNS) is unknown. Here, we show that sustained depolarization (induced by 24-h incubation in 30 mM KCl) induces compensatory changes that decrease the excitability of mouse and human sensory neurons without directly opposing membrane depolarization. Voltage-clamp recordings show that sustained depolarization produces no significant alteration in voltage-gated potassium currents, but a robust reduction in voltage-gated sodium currents, likely contributing to the overall decrease in neuronal excitability. The compensatory decrease in neuronal excitability and reduction in voltage-gated sodium currents reversed completely following a 24-h recovery period in a normal medium. Similar adaptive changes were not observed in response to 24 h of sustained action potential firing induced by optogenetic stimulation at 1 Hz, indicating the need for prolonged depolarization to drive engagement of this adaptive mechanism in sensory neurons. Our findings show that mouse and human sensory neurons are capable of engaging adaptive mechanisms to regulate intrinsic excitability in response to sustained depolarization in a manner similar to that described in neurons in the central nervous system.
Collapse
Affiliation(s)
- Lisa A McIlvried
- Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA
| | - John Smith Del Rosario
- Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Melanie Y Pullen
- Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Andi Wangzhou
- Department of Neuroscience and Center for Advanced Pain Studies, The University of Texas at Dallas, Dallas, TX, USA
| | - Tayler D Sheahan
- Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Andrew J Shepherd
- Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Richard A Slivicki
- Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA
| | | | - Theodore J Price
- Department of Neuroscience and Center for Advanced Pain Studies, The University of Texas at Dallas, Dallas, TX, USA
| | - Bryan A Copits
- Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Robert W Gereau
- Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Neuroscience and Department of Biomedical Engineering, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
6
|
Li Y, Uhelski ML, North RY, Farson LB, Bankston CB, Roland GH, Fan DH, Sheffield KN, Jia A, Orlando D, Heles M, Yaksh TL, Miller YI, Kosten TA, Dougherty PM. ApoA-I binding protein (AIBP) regulates transient receptor potential vanilloid 1 (TRPV1) activity in rat dorsal root ganglion neurons by selective disruption of toll-like receptor 4 (TLR4)-lipid rafts. Brain Behav Immun 2025; 123:644-655. [PMID: 39414176 DOI: 10.1016/j.bbi.2024.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 09/24/2024] [Accepted: 10/11/2024] [Indexed: 10/18/2024] Open
Abstract
Toll-like receptor 4 (TLR4) and the transient receptor potential vanilloid subtype 1 (TRPV1) are both upregulated and play key roles in the induction and expression of paclitaxel-related chemotherapy-induced peripheral neuropathy (CIPN). Using Apolipoprotein A-I binding protein, non-specific cholesterol depletion, TLR4 mis-sense rats and a TLR4 inhibitor, we demonstrate that co-localization of TRPV1 with TLR4 to cholesterol-rich lipid membrane rafts in nociceptors is essential for its normal activation as well as for its exaggerated activation that underlies the development and expression of CIPN. The findings suggest that TLR4-lipid rafts may have an essential role in numerous neuroinflammatory and neuropathic pain conditions. This mechanism is also generalized to female rats for the first time.
Collapse
Affiliation(s)
- Yan Li
- The Departments of Anesthesia and Pain Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, the United States of America
| | - Megan L Uhelski
- The Departments of Anesthesia and Pain Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, the United States of America
| | - Robert Y North
- Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, the United States of America
| | - Luke B Farson
- The University of Texas Health Science Center, Houston, TX 77030, the United States of America
| | - Christopher B Bankston
- The University of Texas Health Science Center, Houston, TX 77030, the United States of America
| | - Gavin H Roland
- The University of Texas Health Science Center, Houston, TX 77030, the United States of America
| | - Dwight H Fan
- The University of Texas Health Science Center, Houston, TX 77030, the United States of America
| | | | - Amy Jia
- Northwestern University, Evanston, IL 60208, the United States of America
| | - Dana Orlando
- The University of Texas Health Science Center, Houston, TX 77030, the United States of America
| | - Mario Heles
- The Departments of Anesthesia and Pain Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, the United States of America
| | - Tony L Yaksh
- The Department of Anesthesiology, the University of California San Diego, La Jolla, CA, 92093, the United States of America
| | - Yury I Miller
- Department of Medicine, the University of California San Diego, La Jolla, CA, 92093, the United States of America
| | - Therese A Kosten
- Department of Psychology, Health Building 1, 4349 Martin Luther King Blvd, Houston, TX 77204, the United States of America
| | - Patrick M Dougherty
- The Departments of Anesthesia and Pain Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, the United States of America.
| |
Collapse
|
7
|
Li J, Kang W, Wang X, Pan F. Progress in treatment of pathological neuropathic pain after spinal cord injury. Front Neurol 2024; 15:1430288. [PMID: 39606699 PMCID: PMC11600731 DOI: 10.3389/fneur.2024.1430288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 10/23/2024] [Indexed: 11/29/2024] Open
Abstract
Pathological neuropathic pain is a common complication following spinal cord injury. Due to its high incidence, prolonged duration, tenacity, and limited therapeutic efficacy, it has garnered increasing attention from both basic researchers and clinicians. The pathogenesis of neuropathic pain after spinal cord injury is multifaceted, involving factors such as structural and functional alterations of the central nervous system, pain signal transduction, and inflammatory effects, posing significant challenges to clinical management. Currently, drugs commonly employed in treating spinal cord injury induced neuropathic pain include analgesics, anticonvulsants, antidepressants, and antiepileptics. However, a subset of patients often experiences suboptimal therapeutic responses or severe adverse reactions. Therefore, emerging treatments are emphasizing a combination of pharmacological and non-pharmacological approaches to enhance neuropathic pain management. We provide a comprehensive review of past literature, which aims to aim both the mechanisms and clinical interventions for pathological neuropathic pain following spinal cord injury, offering novel insights for basic science research and clinical practice in spinal cord injury treatment.
Collapse
Affiliation(s)
- Jian Li
- Department of Orthopedics, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Xuanwu Jinan Hospital, Jinan, China
| | - Wenqing Kang
- Department of Neurology, Yidu Central Hospital of Weifang, Weifang, Shandong, China
| | - Xi Wang
- Department of Orthopedics, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Fang Pan
- Department of rehabilitation, Shandong Rehabilitation Hospital, Jinan, Shandong, China
| |
Collapse
|
8
|
Lacagnina MJ, Willcox KF, Boukelmoune N, Bavencoffe A, Sankaranarayanan I, Barratt DT, Zuberi YA, Dayani D, Chavez MV, Lu JT, Farinotti AB, Shiers S, Barry AM, Mwirigi JM, Tavares-Ferreira D, Funk GA, Cervantes AM, Svensson CI, Walters ET, Hutchinson MR, Heijnen CJ, Price TJ, Fiore NT, Grace PM. B cells drive neuropathic pain-related behaviors in mice through IgG-Fc gamma receptor signaling. Sci Transl Med 2024; 16:eadj1277. [PMID: 39321269 PMCID: PMC11479571 DOI: 10.1126/scitranslmed.adj1277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 03/06/2024] [Accepted: 09/03/2024] [Indexed: 09/27/2024]
Abstract
Neuroimmune interactions are essential for the development of neuropathic pain, yet the contributions of distinct immune cell populations have not been fully unraveled. Here, we demonstrate the critical role of B cells in promoting mechanical hypersensitivity (allodynia) after peripheral nerve injury in male and female mice. Depletion of B cells with a single injection of anti-CD20 monoclonal antibody at the time of injury prevented the development of allodynia. B cell-deficient (muMT) mice were similarly spared from allodynia. Nerve injury was associated with increased immunoglobulin G (IgG) accumulation in ipsilateral lumbar dorsal root ganglia (DRGs) and dorsal spinal cords. IgG was colocalized with sensory neurons and macrophages in DRGs and microglia in spinal cords. IgG also accumulated in DRG samples from human donors with chronic pain, colocalizing with a marker for macrophages and satellite glia. RNA sequencing revealed a B cell population in naive mouse and human DRGs. A B cell transcriptional signature was enriched in DRGs from human donors with neuropathic pain. Passive transfer of IgG from injured mice induced allodynia in injured muMT recipient mice. The pronociceptive effects of IgG are likely mediated through immune complexes interacting with Fc gamma receptors (FcγRs) expressed by sensory neurons, microglia, and macrophages, given that both mechanical allodynia and hyperexcitability of dissociated DRG neurons were abolished in nerve-injured FcγR-deficient mice. Consistently, the pronociceptive effects of IgG passive transfer were lost in FcγR-deficient mice. These data reveal that a B cell-IgG-FcγR axis is required for the development of neuropathic pain in mice.
Collapse
Affiliation(s)
- Michael J. Lacagnina
- Laboratories of Neuroimmunology, Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Kendal F. Willcox
- Laboratories of Neuroimmunology, Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Nabila Boukelmoune
- Laboratories of Neuroimmunology, Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Alexis Bavencoffe
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77225, USA
| | - Ishwarya Sankaranarayanan
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Daniel T. Barratt
- School of Biomedicine, University of Adelaide, Adelaide, SA 5005, Australia
- Davies Livestock Research Centre, University of Adelaide, Roseworthy, SA 5371, Australia
| | - Younus A. Zuberi
- Laboratories of Neuroimmunology, Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Dorsa Dayani
- Laboratories of Neuroimmunology, Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Melissa V. Chavez
- Laboratories of Neuroimmunology, Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jonathan T. Lu
- Laboratories of Neuroimmunology, Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | - Stephanie Shiers
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Allison M. Barry
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Juliet M. Mwirigi
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Diana Tavares-Ferreira
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX 75080, USA
| | | | | | - Camilla I. Svensson
- Department of Physiology and Pharmacology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Edgar T. Walters
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77225, USA
| | - Mark R. Hutchinson
- School of Biomedicine, University of Adelaide, Adelaide, SA 5005, Australia
- Davies Livestock Research Centre, University of Adelaide, Roseworthy, SA 5371, Australia
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, Adelaide, SA 5005, Australia
| | - Cobi J. Heijnen
- Department of Psychological Sciences, Rice University, Houston, TX 77005, USA
| | - Theodore J. Price
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Nathan T. Fiore
- Laboratories of Neuroimmunology, Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Peter M. Grace
- Laboratories of Neuroimmunology, Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
9
|
Garza-Carbajal A, Bavencoffe A, Herrera JJ, Johnson KN, Walters ET, Dessauer CW. Mechanism of gabapentinoid potentiation of opioid effects on cyclic AMP signaling in neuropathic pain. Proc Natl Acad Sci U S A 2024; 121:e2405465121. [PMID: 39145932 PMCID: PMC11348325 DOI: 10.1073/pnas.2405465121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 07/10/2024] [Indexed: 08/16/2024] Open
Abstract
Over half of spinal cord injury (SCI) patients develop opioid-resistant chronic neuropathic pain. Safer alternatives to opioids for treatment of neuropathic pain are gabapentinoids (e.g., pregabalin and gabapentin). Clinically, gabapentinoids appear to amplify opioid effects, increasing analgesia and overdose-related adverse outcomes, but in vitro proof of this amplification and its mechanism are lacking. We previously showed that after SCI, sensitivity to opioids is reduced by fourfold to sixfold in rat sensory neurons. Here, we demonstrate that after injury, gabapentinoids restore normal sensitivity of opioid inhibition of cyclic AMP (cAMP) generation, while reducing nociceptor hyperexcitability by inhibiting voltage-gated calcium channels (VGCCs). Increasing intracellular Ca2+ or activation of L-type VGCCs (L-VGCCs) suffices to mimic SCI effects on opioid sensitivity, in a manner dependent on the activity of the Raf1 proto-oncogene, serine/threonine-protein kinase C-Raf, but independent of neuronal depolarization. Together, our results provide a mechanism for potentiation of opioid effects by gabapentinoids after injury, via reduction of calcium influx through L-VGCCs, and suggest that other inhibitors targeting these channels may similarly enhance opioid treatment of neuropathic pain.
Collapse
Affiliation(s)
- Anibal Garza-Carbajal
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX77030
| | - Alexis Bavencoffe
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX77030
| | - Juan J. Herrera
- Department of Diagnostic and Interventional Imaging, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX77030
| | - Kayla N. Johnson
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX77030
| | - Edgar T. Walters
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX77030
| | - Carmen W. Dessauer
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX77030
| |
Collapse
|
10
|
Sankaranarayanan I, Kume M, Mohammed A, Mwirigi JM, Inturi NN, Munro G, Petersen KA, Tavares-Ferreira D, Price TJ. Persistent changes in nociceptor translatomes govern hyperalgesic priming in mouse models. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.07.606891. [PMID: 39149295 PMCID: PMC11326310 DOI: 10.1101/2024.08.07.606891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Hyperalgesic priming is a model system that has been widely used to understand plasticity in painful stimulus-detecting sensory neurons, called nociceptors. A key feature of this model system is that following priming, stimuli that do not normally cause hyperalgesia now readily provoke this state. We hypothesized that hyperalgesic priming occurs due to reorganization of translation of mRNA in nociceptors. To test this hypothesis, we used paclitaxel treatment as the priming stimulus and translating ribosome affinity purification (TRAP) to measure persistent changes in mRNA translation in Nav1.8+ nociceptors. TRAP sequencing revealed 161 genes with persistently altered mRNA translation in the primed state. We identified Gpr88 as upregulated and Metrn as downregulated. We confirmed a functional role for these genes, wherein a GPR88 agonist causes pain only in primed mice and established hyperalgesic priming is reversed by Meteorin. Our work demonstrates that altered nociceptor translatomes are causative in producing hyperalgesic priming.
Collapse
Affiliation(s)
- Ishwarya Sankaranarayanan
- Pain Neurobiology Research Group, Department of Neuroscience, Center for Advanced Pain Studies, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas
| | - Moeno Kume
- Pain Neurobiology Research Group, Department of Neuroscience, Center for Advanced Pain Studies, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas
| | - Ayaan Mohammed
- Pain Neurobiology Research Group, Department of Neuroscience, Center for Advanced Pain Studies, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas
| | - Juliet M Mwirigi
- Pain Neurobiology Research Group, Department of Neuroscience, Center for Advanced Pain Studies, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas
| | - Nikhil Nageswar Inturi
- Pain Neurobiology Research Group, Department of Neuroscience, Center for Advanced Pain Studies, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas
| | | | | | - Diana Tavares-Ferreira
- Pain Neurobiology Research Group, Department of Neuroscience, Center for Advanced Pain Studies, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas
| | - Theodore J Price
- Pain Neurobiology Research Group, Department of Neuroscience, Center for Advanced Pain Studies, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas
| |
Collapse
|
11
|
Bavencoffe A, Zhu MY, Neerukonda SV, Johnson KN, Dessauer CW, Walters ET. Induction of long-term hyperexcitability by memory-related cAMP signaling in isolated nociceptor cell bodies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.13.603393. [PMID: 39071414 PMCID: PMC11275899 DOI: 10.1101/2024.07.13.603393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Persistent hyperactivity of nociceptors is known to contribute significantly to long-lasting sensitization and ongoing pain in many clinical conditions. It is often assumed that nociceptor hyperactivity is mainly driven by continuing stimulation from inflammatory mediators. We have tested an additional possibility: that persistent increases in excitability promoting hyperactivity can be induced by a prototypical cellular signaling pathway long known to induce late-phase long-term potentiation (LTP) of synapses in brain regions involved in memory formation. This cAMP-PKA-CREB-gene transcription-protein synthesis pathway was tested using whole-cell current clamp methods on small dissociated sensory neurons (primarily nociceptors) from dorsal root ganglia (DRGs) excised from previously uninjured ("naïve") rats. Six-hour treatment with the specific Gαs-coupled 5-HT4 receptor agonist, prucalopride, or with the adenylyl cyclase activator, forskolin, induced long-term hyperexcitability (LTH) in DRG neurons that manifested 12-24 hours later as action potential (AP) discharge (ongoing activity, OA) during artificial depolarization to -45 mV, a membrane potential that is normally subthreshold for AP generation. Prucalopride treatment also induced significant long-lasting depolarization of resting membrane potential (from -69 to -66 mV), enhanced depolarizing spontaneous fluctuations (DSFs) of membrane potential, and indications of reduced AP threshold and rheobase. LTH was prevented by co-treatment of prucalopride with inhibitors of PKA, CREB, gene transcription, and protein synthesis. As in the induction of synaptic memory, many other cellular signals are likely to be involved. However, the discovery that this prototypical memory induction pathway can induce nociceptor LTH, along with reports that cAMP signaling and CREB activity in DRGs can induce hyperalgesic priming, suggest that early, temporary, cAMP-induced transcriptional and translational mechanisms can induce nociceptor LTH that might last for long periods. An interesting possibility is that these mechanisms can also be reactivated by re-exposure to inflammatory mediators such as serotonin during subsequent challenges to bodily integrity, "reconsolidating" the cellular memory and thereby extending the duration of persistent nociceptor hyperexcitability.
Collapse
Affiliation(s)
- Alexis Bavencoffe
- Department of Integrative Biology and Pharmacology, McGovern Medical School at UTHealth, Houston, Texas, USA 77030
| | - Michael Y. Zhu
- Department of Integrative Biology and Pharmacology, McGovern Medical School at UTHealth, Houston, Texas, USA 77030
| | - Sanjay V. Neerukonda
- Medical Scientist Training Program, McGovern Medical School at UTHealth, Houston, Texas, USA 77030
| | - Kayla N. Johnson
- Department of Integrative Biology and Pharmacology, McGovern Medical School at UTHealth, Houston, Texas, USA 77030
| | - Carmen W. Dessauer
- Department of Integrative Biology and Pharmacology, McGovern Medical School at UTHealth, Houston, Texas, USA 77030
| | - Edgar T. Walters
- Department of Integrative Biology and Pharmacology, McGovern Medical School at UTHealth, Houston, Texas, USA 77030
| |
Collapse
|
12
|
Bavencoffe A, Zhu MY, Neerukonda SV, Johnson KN, Dessauer CW, Walters ET. Induction of long-term hyperexcitability by memory-related cAMP signaling in isolated nociceptor cell bodies. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2024; 16:100166. [PMID: 39399224 PMCID: PMC11470187 DOI: 10.1016/j.ynpai.2024.100166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 10/15/2024]
Abstract
Persistent hyperactivity of nociceptors is known to contribute significantly to long-lasting sensitization and ongoing pain in many clinical conditions. It is often assumed that nociceptor hyperactivity is mainly driven by continuing stimulation from inflammatory mediators. We have tested an additional possibility: that persistent increases in excitability promoting hyperactivity can be induced by a prototypical cellular signaling pathway long known to induce late-phase long-term potentiation (LTP) of synapses in brain regions involved in memory formation. This cAMP-PKA-CREB-gene transcription-protein synthesis pathway was tested using whole-cell current clamp methods on small dissociated sensory neurons (primarily nociceptors) from dorsal root ganglia (DRGs) excised from previously uninjured ("naïve") male rats. Six-hour treatment with the specific Gαs-coupled 5-HT4 receptor agonist, prucalopride, or with the adenylyl cyclase activator forskolin induced long-term hyperexcitability (LTH) in DRG neurons that manifested 12-24 h later as action potential (AP) discharge (ongoing activity, OA) during artificial depolarization to -45 mV, a membrane potential that is normally subthreshold for AP generation. Prucalopride treatment also induced significant long-lasting depolarization of resting membrane potential (from -69 to -66 mV), enhanced depolarizing spontaneous fluctuations (DSFs) of membrane potential, and produced trends for reduced AP threshold and rheobase. LTH was prevented by co-treatment of prucalopride with inhibitors of PKA, CREB, gene transcription, or protein synthesis. As in the induction of synaptic memory, many other cellular signals are likely to be involved. However, the discovery that this prototypical memory induction pathway can induce nociceptor LTH, along with reports that cAMP signaling and CREB activity in DRGs can induce hyperalgesic priming, suggest that early, temporary, cAMP-induced transcriptional and translational mechanisms can induce nociceptor LTH that might last for long periods. The present results also raise the question of whether reactivation of primed signaling mechanisms by re-exposure to inflammatory mediators linked to cAMP synthesis during subsequent challenges to bodily integrity can "reconsolidate" nociceptor memory, extending the duration of persistent hyperexcitability.
Collapse
Affiliation(s)
- Alexis Bavencoffe
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| | - Michael Y. Zhu
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| | - Sanjay V. Neerukonda
- Medical Scientist Training Program, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Kayla N. Johnson
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| | - Carmen W. Dessauer
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| | - Edgar T. Walters
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| |
Collapse
|
13
|
Zhang M, Wang Z, Ding C. Pharmacotherapy for osteoarthritis-related pain: current and emerging therapies. Expert Opin Pharmacother 2024; 25:1209-1227. [PMID: 38938057 DOI: 10.1080/14656566.2024.2374464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 06/26/2024] [Indexed: 06/29/2024]
Abstract
INTRODUCTION Osteoarthritis (OA) related pain has affected millions of people worldwide. However, the current pharmacological options for managing OA-related pain have not achieved a satisfactory effect. AREAS COVERED This narrative review provides an overview of the current and emerging drugs for OA-related pain. It covers the drugs' mechanism of action, safety, efficacy, and limitations. The National Library of Medicine (PubMed) database was primarily searched from 2000 to 2024. EXPERT OPINION Current treatment options are limited and suboptimal for OA pain management. Topical nonsteroidal anti-inflammatory drugs (NSAIDs) are the recognized and first-line treatment in the management of OA-related pain, and other drugs are inconsistent recommendations by guidelines. Emerging treatment options are promising for OA-related pain, including nerve growth factor (NGF) inhibitors, ion channel inhibitors, and calcitonin gene-related peptide (CGRP) antagonists. Besides, drugs repurposing from antidepressants and antiepileptic analgesics are shedding light on the management of OA-related pain. The management of OA-related pain is challenging as pain is heterogeneous and subjective. A more comprehensive strategy combined with non-pharmacological therapy needs to be considered, and tailored management options to individualized patients.
Collapse
Affiliation(s)
- Mengdi Zhang
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhiqiang Wang
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Changhai Ding
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
14
|
Tian J, Bavencoffe AG, Zhu MX, Walters ET. Readiness of nociceptor cell bodies to generate spontaneous activity results from background activity of diverse ion channels and high input resistance. Pain 2024; 165:893-907. [PMID: 37862056 PMCID: PMC10950548 DOI: 10.1097/j.pain.0000000000003091] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 08/09/2023] [Indexed: 10/21/2023]
Abstract
ABSTRACT Nociceptor cell bodies generate "spontaneous" discharge that can promote ongoing pain in persistent pain conditions. Little is known about the underlying mechanisms. Recordings from nociceptor cell bodies (somata) dissociated from rodent and human dorsal root ganglia have shown that previous pain in vivo is associated with low-frequency discharge controlled by irregular depolarizing spontaneous fluctuations of membrane potential (DSFs), likely produced by transient inward currents across the somal input resistance. Using mouse nociceptors, we show that DSFs are associated with high somal input resistance over a wide range of membrane potentials, including depolarized levels where DSFs approach action potential (AP) threshold. Input resistance and both the amplitude and frequency of DSFs were increased in neurons exhibiting spontaneous activity. Ion substitution experiments indicated that the depolarizing phase of DSFs is generated by spontaneous opening of channels permeable to Na + or Ca 2+ and that Ca 2+ -permeable channels are especially important for larger DSFs. Partial reduction of the amplitude or frequency of DSFs by perfusion of pharmacological inhibitors indicated small but significant contributions from Nav1.7, Nav1.8, TRPV1, TRPA1, TRPM4, and N-type Ca 2+ channels. Less specific blockers suggested a contribution from NALCN channels, and global knockout suggested a role for Nav1.9. The combination of high somal input resistance plus background activity of diverse ion channels permeable to Na + or Ca 2+ produces DSFs that are poised to reach AP threshold if resting membrane potential depolarizes, AP threshold decreases, or DSFs become enhanced-all of which can occur under painful neuropathic and inflammatory conditions.
Collapse
Affiliation(s)
- Jinbin Tian
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston
| | - Alexis G. Bavencoffe
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston
| | - Michael X. Zhu
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston
| | - Edgar T. Walters
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston
| |
Collapse
|
15
|
Bavencoffe AG, Lopez ER, Johnson KN, Tian J, Gorgun FM, Shen BQ, Zhu MX, Dessauer CW, Walters ET. Widespread latent hyperactivity of nociceptors outlasts enhanced avoidance behavior following incision injury. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.30.578108. [PMID: 38352319 PMCID: PMC10862851 DOI: 10.1101/2024.01.30.578108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Nociceptors with somata in dorsal root ganglia (DRGs) exhibit an unusual readiness to switch from an electrically silent state to a hyperactive state of tonic, nonaccommodating, low-frequency, irregular discharge of action potentials (APs). Ongoing activity (OA) during this state is present in vivo in rats months after spinal cord injury (SCI), and has been causally linked to SCI pain. OA induced by various neuropathic conditions in rats, mice, and humans is retained in nociceptor somata after dissociation and culturing, providing a powerful tool for investigating its mechanisms and functions. An important question is whether similar nociceptor OA is induced by painful conditions other than neuropathy. The present study shows that probable nociceptors dissociated from DRGs of rats subjected to postsurgical pain (induced by plantar incision) exhibit OA. The OA was most apparent when the soma was artificially depolarized to a level within the normal range of membrane potentials where large, transient depolarizing spontaneous fluctuations (DSFs) can approach AP threshold. This latent hyperactivity persisted for at least 3 weeks, whereas behavioral indicators of affective pain - hindpaw guarding and increased avoidance of a noxious substrate in an operant conflict test - persisted for 1 week or less. An unexpected discovery was latent OA in neurons from thoracic DRGs that innervate dermatomes distant from the injured tissue. The most consistent electrophysiological alteration associated with OA was enhancement of DSFs. Potential in vivo functions of widespread, low-frequency nociceptor OA consistent with these and other findings are to amplify hyperalgesic priming and to drive anxiety-related hypervigilance.
Collapse
Affiliation(s)
- Alexis G. Bavencoffe
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston
| | - Elia R. Lopez
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston
| | - Kayla N. Johnson
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston
| | - Jinbin Tian
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston
| | - Falih M. Gorgun
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston
| | - Breanna Q. Shen
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston
| | - Michael X. Zhu
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston
| | - Carmen W. Dessauer
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston
| | - Edgar T. Walters
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston
| |
Collapse
|
16
|
Willits AB, Kader L, Eller O, Roberts E, Bye B, Strope T, Freudenthal BD, Umar S, Chintapalli S, Shankar K, Pei D, Christianson J, Baumbauer KM, Young EE. Spinal cord injury-induced neurogenic bowel: A role for host-microbiome interactions in bowel pain and dysfunction. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2024; 15:100156. [PMID: 38601267 PMCID: PMC11004406 DOI: 10.1016/j.ynpai.2024.100156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/04/2024] [Accepted: 04/04/2024] [Indexed: 04/12/2024]
Abstract
Background and aims Spinal cord injury (SCI) affects roughly 300,000 Americans with 17,000 new cases added annually. In addition to paralysis, 60% of people with SCI develop neurogenic bowel (NB), a syndrome characterized by slow colonic transit, constipation, and chronic abdominal pain. The knowledge gap surrounding NB mechanisms after SCI means that interventions are primarily symptom-focused and largely ineffective. The goal of the present studies was to identify mechanism(s) that initiate and maintain NB after SCI as a critical first step in the development of evidence-based, novel therapeutic treatment options. Methods Following spinal contusion injury at T9, we observed alterations in bowel structure and function reflecting key clinical features of NB. We then leveraged tissue-specific whole transcriptome analyses (RNAseq) and fecal 16S rRNA amplicon sequencing in combination with histological, molecular, and functional (Ca2+ imaging) approaches to identify potential mechanism(s) underlying the generation of the NB phenotype. Results In agreement with prior reports focused on SCI-induced changes in the skin, we observed a rapid and persistent increase in expression of calcitonin gene-related peptide (CGRP) expression in the colon. This is suggestive of a neurogenic inflammation-like process engaged by antidromic activity of below-level primary afferents following SCI. CGRP has been shown to disrupt colon homeostasis and negatively affect peristalsis and colon function. As predicted, contusion SCI resulted in increased colonic transit time, expansion of lymphatic nodules, colonic structural and genomic damage, and disruption of the inner, sterile intestinal mucus layer corresponding to increased CGRP expression in the colon. Gut microbiome colonization significantly shifted over 28 days leading to the increase in Anaeroplasma, a pathogenic, gram-negative microbe. Moreover, colon specific vagal afferents and enteric neurons were hyperresponsive after SCI to different agonists including fecal supernatants. Conclusions Our data suggest that SCI results in overexpression of colonic CGRP which could alter colon structure and function. Neurogenic inflammatory-like processes and gut microbiome dysbiosis can also sensitize vagal afferents, providing a mechanism for visceral pain despite the loss of normal sensation post-SCI. These data may shed light on novel therapeutic interventions targeting this process to prevent NB development in patients.
Collapse
Affiliation(s)
- Adam B. Willits
- Department of Anesthesiology, Pain and Perioperative Medicine, University of Kansas Medical Center, Kansas City, KS, United States
| | - Leena Kader
- Department of Anesthesiology, Pain and Perioperative Medicine, University of Kansas Medical Center, Kansas City, KS, United States
| | - Olivia Eller
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Emily Roberts
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Bailey Bye
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS
| | - Taylor Strope
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Bret D. Freudenthal
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Shahid Umar
- Department of Surgery, University of Kansas Medical Center, Kansas City, KS, United States
| | - Sree Chintapalli
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Kartik Shankar
- Department of Pediatrics, Section of Nutrition, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Dong Pei
- Department of Biostatistics & Data Science, University of Kansas Medical Center, Kansas City, KS, United States
| | - Julie Christianson
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Kyle M. Baumbauer
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Erin E. Young
- Department of Anesthesiology, Pain and Perioperative Medicine, University of Kansas Medical Center, Kansas City, KS, United States
| |
Collapse
|
17
|
Yi J, Bertels Z, Del Rosario JS, Widman AJ, Slivicki RA, Payne M, Susser HM, Copits BA, Gereau RW. Bradykinin receptor expression and bradykinin-mediated sensitization of human sensory neurons. Pain 2024; 165:202-215. [PMID: 37703419 PMCID: PMC10723647 DOI: 10.1097/j.pain.0000000000003013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/08/2023] [Accepted: 06/26/2023] [Indexed: 09/15/2023]
Abstract
ABSTRACT Bradykinin is a peptide implicated in inflammatory pain in both humans and rodents. In rodent sensory neurons, activation of B1 and B2 bradykinin receptors induces neuronal hyperexcitability. Recent evidence suggests that human and rodent dorsal root ganglia (DRG), which contain the cell bodies of sensory neurons, differ in the expression and function of key GPCRs and ion channels; whether bradykinin receptor expression and function are conserved across species has not been studied in depth. In this study, we used human DRG tissue from organ donors to provide a detailed characterization of bradykinin receptor expression and bradykinin-induced changes in the excitability of human sensory neurons. We found that B2 and, to a lesser extent, B1 receptors are expressed by human DRG neurons and satellite glial cells. B2 receptors were enriched in the nociceptor subpopulation. Using patch-clamp electrophysiology, we found that acute bradykinin increases the excitability of human sensory neurons, whereas prolonged exposure to bradykinin decreases neuronal excitability in a subpopulation of human DRG neurons. Finally, our analyses suggest that donor's history of chronic pain and age may be predictors of higher B1 receptor expression in human DRG neurons. Together, these results indicate that acute bradykinin-induced hyperexcitability, first identified in rodents, is conserved in humans and provide further evidence supporting bradykinin signaling as a potential therapeutic target for treating pain in humans.
Collapse
Affiliation(s)
- Jiwon Yi
- Department of Anesthesiology, Washington University Pain Center, Washington University School of Medicine, St. Louis, MO, United States
- Neuroscience Graduate Program, Division of Biology and Biomedical Sciences, Washington University School of Medicine, St. Louis, MO, United States
| | - Zachariah Bertels
- Department of Anesthesiology, Washington University Pain Center, Washington University School of Medicine, St. Louis, MO, United States
| | - John Smith Del Rosario
- Department of Anesthesiology, Washington University Pain Center, Washington University School of Medicine, St. Louis, MO, United States
| | - Allie J. Widman
- Department of Anesthesiology, Washington University Pain Center, Washington University School of Medicine, St. Louis, MO, United States
| | - Richard A. Slivicki
- Department of Anesthesiology, Washington University Pain Center, Washington University School of Medicine, St. Louis, MO, United States
| | - Maria Payne
- Department of Anesthesiology, Washington University Pain Center, Washington University School of Medicine, St. Louis, MO, United States
| | - Henry M. Susser
- Department of Anesthesiology, Washington University Pain Center, Washington University School of Medicine, St. Louis, MO, United States
| | - Bryan A. Copits
- Department of Anesthesiology, Washington University Pain Center, Washington University School of Medicine, St. Louis, MO, United States
| | - Robert W. Gereau
- Department of Anesthesiology, Washington University Pain Center, Washington University School of Medicine, St. Louis, MO, United States
- Department of Neuroscience, Washington University, St. Louis, MO, United States
- Department of Biomedical Engineering, Washington University, St. Louis, MO, United States
| |
Collapse
|
18
|
Karcz M, Gharibo C. Peripheral Nervous System Pain Modulation. Curr Neuropharmacol 2024; 22:65-71. [PMID: 37534790 PMCID: PMC10716886 DOI: 10.2174/1570159x21666230803100400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/09/2023] [Accepted: 04/26/2023] [Indexed: 08/04/2023] Open
Abstract
The percutaneous technique of electrode insertion in the vicinity of the greater occipital nerves to treat occipital neuralgia was first described in the 1990s by Weiner and Reed. This subsequently stimulated awareness of peripheral nerve stimulation (PNS). The more recent advent emergence of a minimally invasive percutaneous approach by way of using ultrasound has further increased the interest in PNS as a viable alternative to more invasive techniques. PNS has become more popular recently and is increasingly used to treat various pain conditions. Its foundation is fundamentally based on the gate control theory, although the precise mechanism underlying its analgesic effect is still indefinite. Studies have demonstrated the peripheral and central analgesic mechanisms of PNS by modulating the inflammatory pathways, the autonomic nervous system, the endogenous pain inhibition pathways, and the involvement of the cortical and subcortical areas. Peripheral nerve stimulation exhibits its neuromodulatory effect both peripherally and centrally. Further understanding of the modulation of PNS mechanisms can help guide stimulation approaches and parameters to optimize the use of PNS. his chapter aims to review the background and mechanisms of PNS modulation. PNS is becoming one of the most diverse therapies in neuromodulation due to rapid evolution and expansion. It is an attractive option for clinicians due to the simplicity and versatility of procedures that can be combined with other neuromodulation treatments or used alone. It has a distinct role in the modulation of functional conditions.
Collapse
Affiliation(s)
- Marcin Karcz
- Division of Pain Medicine, Department of Anesthesia, New York University Grossman School of Medicine, New York, NY, USA
| | - Christopher Gharibo
- Division of Pain Medicine, Department of Anesthesia, New York University Grossman School of Medicine, New York, NY, USA
| |
Collapse
|
19
|
Cassidy RM, Flores EM, Trinh Nguyen AK, Cheruvu SS, Uribe RA, Krachler AM, Odem MA. Systematic analysis of proximal midgut- and anorectal-originating contractions in larval zebrafish using event feature detection and supervised machine learning algorithms. Neurogastroenterol Motil 2023; 35:e14675. [PMID: 37743702 PMCID: PMC10841157 DOI: 10.1111/nmo.14675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 07/16/2023] [Accepted: 08/28/2023] [Indexed: 09/26/2023]
Abstract
BACKGROUND Zebrafish larvae are translucent, allowing in vivo analysis of gut development and physiology, including gut motility. While recent progress has been made in measuring gut motility in larvae, challenges remain which can influence results, such as how data are interpreted, opportunities for technical user error, and inconsistencies in methods. METHODS To overcome these challenges, we noninvasively introduced Nile Red fluorescent dye to fill the intraluminal gut space in zebrafish larvae and collected serial confocal microscopic images of gut fluorescence. We automated the detection of fluorescent-contrasted contraction events against the median-subtracted signal and compared it to manually annotated gut contraction events across anatomically defined gut regions. Supervised machine learning (multiple logistic regression) was then used to discriminate between true contraction events and noise. To demonstrate, we analyzed motility in larvae under control and reserpine-treated conditions. We also used automated event detection analysis to compare unfed and fed larvae. KEY RESULTS Automated analysis retained event features for proximal midgut-originating retrograde and anterograde contractions and anorectal-originating retrograde contractions. While manual annotation showed reserpine disrupted gut motility, machine learning only achieved equivalent contraction discrimination in controls and failed to accurately identify contractions after reserpine due to insufficient intraluminal fluorescence. Automated analysis also showed feeding had no effect on the frequency of anorectal-originating contractions. CONCLUSIONS & INFERENCES Automated event detection analysis rapidly and accurately annotated contraction events, including the previously neglected phenomenon of anorectal contractions. However, challenges remain to discriminate contraction events based on intraluminal fluorescence under treatment conditions that disrupt functional motility.
Collapse
Affiliation(s)
- Ryan M. Cassidy
- Brown Foundation Institute of Molecular Medicine, McGovern
Medical School at UTHealth, Houston, TX 77030, USA
| | - Erika M. Flores
- Department of Microbiology and Molecular Genetics, McGovern
Medical School at UTHealth, Houston, TX 77030, USA
| | - Anh K. Trinh Nguyen
- Department of Microbiology and Molecular Genetics, McGovern
Medical School at UTHealth, Houston, TX 77030, USA
| | - Sai S. Cheruvu
- Department of Integrative Biology and Pharmacology,
McGovern Medical School at UTHealth, Houston, TX 77030, USA
| | - Rosa A. Uribe
- Department of Biosciences, Rice University, Houston, TX
77005, USA
| | - Anne Marie Krachler
- Department of Microbiology and Molecular Genetics, McGovern
Medical School at UTHealth, Houston, TX 77030, USA
| | - Max A. Odem
- Department of Microbiology and Molecular Genetics, McGovern
Medical School at UTHealth, Houston, TX 77030, USA
| |
Collapse
|
20
|
Walters ET. Exaptation and Evolutionary Adaptation in Nociceptor Mechanisms Driving Persistent Pain. BRAIN, BEHAVIOR AND EVOLUTION 2023; 98:314-330. [PMID: 38035556 PMCID: PMC10922759 DOI: 10.1159/000535552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 11/23/2023] [Indexed: 12/02/2023]
Abstract
BACKGROUND Several evolutionary explanations have been proposed for why chronic pain is a major clinical problem. One is that some mechanisms important for driving chronic pain, while maladaptive for modern humans, were adaptive because they enhanced survival. Evidence is reviewed for persistent nociceptor hyperactivity (PNH), known to promote chronic pain in rodents and humans, being an evolutionarily adaptive response to significant bodily injury, and primitive molecular mechanisms related to cellular injury and stress being exapted (co-opted or repurposed) to drive PNH and consequent pain. SUMMARY PNH in a snail (Aplysia californica), squid (Doryteuthis pealeii), fruit fly (Drosophila melanogaster), mice, rats, and humans has been documented as long-lasting enhancement of action potential discharge evoked by peripheral stimuli, and in some of these species as persistent extrinsically driven ongoing activity and/or intrinsic spontaneous activity (OA and SA, respectively). In mammals, OA and SA are often initiated within the protected nociceptor soma long after an inducing injury. Generation of OA or SA in nociceptor somata may be very rare in invertebrates, but prolonged afterdischarge in nociceptor somata readily occurs in sensitized Aplysia. Evidence for the adaptiveness of injury-induced PNH has come from observations of decreased survival of injured squid exposed to predators when PNH is blocked, from plausible survival benefits of chronic sensitization after severe injuries such as amputation, and from the functional coherence and intricacy of mammalian PNH mechanisms. Major contributions of cAMP-PKA signaling (with associated calcium signaling) to the maintenance of PNH both in mammals and molluscs suggest that this ancient stress signaling system was exapted early during the evolution of nociceptors to drive hyperactivity following bodily injury. Vertebrates have retained core cAMP-PKA signaling modules for PNH while adding new extracellular modulators (e.g., opioids) and cAMP-regulated ion channels (e.g., TRPV1 and Nav1.8 channels). KEY MESSAGES Evidence from multiple phyla indicates that PNH is a physiological adaptation that decreases the risk of attacks on injured animals. Core cAMP-PKA signaling modules make major contributions to the maintenance of PNH in molluscs and mammals. This conserved signaling has been linked to ancient cellular responses to stress, which may have been exapted in early nociceptors to drive protective hyperactivity that can persist while bodily functions recover after significant injury.
Collapse
Affiliation(s)
- Edgar T Walters
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA
| |
Collapse
|
21
|
Liu H, Lauzadis J, Gunaratna K, Sipple E, Kaczocha M, Puopolo M. Inhibition of T-Type Calcium Channels With TTA-P2 Reduces Chronic Neuropathic Pain Following Spinal Cord Injury in Rats. THE JOURNAL OF PAIN 2023; 24:1681-1695. [PMID: 37169156 DOI: 10.1016/j.jpain.2023.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 04/03/2023] [Accepted: 05/02/2023] [Indexed: 05/13/2023]
Abstract
Spinal cord injury (SCI)-induced neuropathic pain (SCI-NP) develops in up to 60 to 70% of people affected by traumatic SCI, leading to a major decline in quality of life and increased risk for depression, anxiety, and addiction. Gabapentin and pregabalin, together with antidepressant drugs, are commonly prescribed to treat SCI-NP, but their efficacy is unsatisfactory. The limited efficacy of current pharmacological treatments for SCI-NP likely reflects our limited knowledge of the underlying mechanism(s) responsible for driving the maintenance of SCI-NP. The leading hypothesis in the field supports a major role for spontaneously active injured nociceptors in driving the maintenance of SCI-NP. Recent data from our laboratory provided additional support for this hypothesis and identified the T-type calcium channels as key players in driving the spontaneous activity of SCI-nociceptors, thus providing a rational pharmacological target to treat SCI-NP. To test whether T-type calcium channels contribute to the maintenance of SCI-NP, male and female SCI and sham rats were treated with TTA-P2 (a blocker of T-type calcium channels) to determine its effects on mechanical hypersensitivity (as measured with the von Frey filaments) and spontaneous ongoing pain (as measured with the conditioned place preference paradigm), and compared them to the effects of gabapentin, a blocker of high voltage-activated calcium channels. We found that both TTA-P2 and gabapentin reduced mechanical hypersensitivity in male and females SCI rats, but surprisingly only TTA-P2 reduced spontaneous ongoing pain in male SCI rats. PERSPECTIVES: SCI-induced neuropathic pain, and in particular the spontaneous ongoing pain component, is notoriously very difficult to treat. Our data provide evidence that inhibition of T-type calcium channels reduces spontaneous ongoing pain in SCI rats, supporting a clinically relevant role for T-type channels in the maintenance of SCI-induced neuropathic pain.
Collapse
Affiliation(s)
- Huilin Liu
- Department of Anesthesiology, Stony Brook Pain and Analgesia Research Center (SPARC), Health Sciences Center L4-072, Stony Brook Renaissance School of Medicine, Stony Brook, New York
| | - Justas Lauzadis
- Department of Anesthesiology, Stony Brook Pain and Analgesia Research Center (SPARC), Health Sciences Center L4-072, Stony Brook Renaissance School of Medicine, Stony Brook, New York
| | - Kavindu Gunaratna
- Department of Anesthesiology, Stony Brook Pain and Analgesia Research Center (SPARC), Health Sciences Center L4-072, Stony Brook Renaissance School of Medicine, Stony Brook, New York
| | - Erin Sipple
- Department of Anesthesiology, Stony Brook Pain and Analgesia Research Center (SPARC), Health Sciences Center L4-072, Stony Brook Renaissance School of Medicine, Stony Brook, New York
| | - Martin Kaczocha
- Department of Anesthesiology, Stony Brook Pain and Analgesia Research Center (SPARC), Health Sciences Center L4-072, Stony Brook Renaissance School of Medicine, Stony Brook, New York
| | - Michelino Puopolo
- Department of Anesthesiology, Stony Brook Pain and Analgesia Research Center (SPARC), Health Sciences Center L4-072, Stony Brook Renaissance School of Medicine, Stony Brook, New York.
| |
Collapse
|
22
|
Ding SL, Ji LF, Zhang MZ, Xiong W, Sun CY, Han ZY, Wang C. Safety and efficacy of intra-articular injection of platelet-rich plasma for the treatment of ankle osteoarthritis: a systematic review and meta-analysis. INTERNATIONAL ORTHOPAEDICS 2023; 47:1963-1974. [PMID: 36943456 DOI: 10.1007/s00264-023-05773-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 03/10/2023] [Indexed: 03/23/2023]
Abstract
PURPOSE To evaluate the safety and efficacy of platelet-rich plasma (PRP) intra-articular injective treatments for ankle osteoarthritis (OA). METHODS A systematic literature search was conducted following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines in PubMed, Scopus, Embase, Google Scholar, and the Cochrane library until May 2022. Both randomized and non-randomized studies were included with the assessment of the risk of bias. We recorded the participant's age, gender, type of PRP, injection volume, the kit used, and activating agent. We subsequently assessed the short-term and long-term efficacy of PRP using the functional scores and visual analog scale (VAS). RESULTS We included four studies with a total of 127 patients, with a mean age of 56.1 years. 47.2% were male (60/127), according to eligibility criteria. There were three cohort studies and one randomized controlled trial (RCT) study, and no study reported severe adverse events. All included studies used the Leukocyte-poor PRP. Short-term follow-up results suggested significant improvement of the American Orthopaedic Foot and Ankle Society (AOFAS) score in the PRP injection group compared to the control group (n = 87 patients; MD: 6.94 [95% CI: 3.59, 10.29]; P < 0.01). Consistently, there was a statistical difference in AOFAS score between PRP injection and control groups in the final follow-up (≥ 6 months) (n = 87 patients; MD: 9.63 [95% CI: 6.31, 12.94]; P < 0.01). Furthermore, we found a significant reduction in VAS scores in the PRP groups at both the short-term follow-up (n = 59 patients; MD, - 1.90 [95% CI, - 2.54, - 1.26]; P < 0.01) and the ≥ six months follow-up (n = 79 patients; MD, - 3.07 [95% CI, - 5.08, - 1.05]; P < 0.01). The improvement of AOFAS and VAS scores at ≥ six months follow-up reached the minimal clinically important difference (MCID). Nevertheless, the treatment effect of AOFAS and VAS scores offered by PRP at short-term follow-up did not exceed the MCID. Substantial heterogeneity was reported at the ≥ six months follow-up in VAS scores (I2: 93%, P < 0.01). CONCLUSION This meta-analysis supports the safety of PRP intra-articular injection for ankle OA. The improvements of AOFAS and VAS scores in the PRP group at short-term follow-up do not exceed the MCID to be clinically significant. PRP injection provides significant improvement of AOFAS score and reduced pain at ≥ six months follow-up. The efficacy of PRP should be interpreted with caution regarding the high heterogeneity and the scarcity of available literature, which urges large-scale RCTs with longer follow-up to confirm the potential efficacy of PRP injection for ankle OA.
Collapse
Affiliation(s)
- Sheng-Long Ding
- Department of Foot and Ankle Surgery, Beijing Tongren Hospital, Capital Medical University, No.1, Dong Jiao Min Lane, Dong Cheng District, Beijing, 100730, People's Republic of China
| | - Lin-Feng Ji
- Department of Foot and Ankle Surgery, Beijing Tongren Hospital, Capital Medical University, No.1, Dong Jiao Min Lane, Dong Cheng District, Beijing, 100730, People's Republic of China
| | - Ming-Zhu Zhang
- Department of Foot and Ankle Surgery, Beijing Tongren Hospital, Capital Medical University, No.1, Dong Jiao Min Lane, Dong Cheng District, Beijing, 100730, People's Republic of China.
| | - Wei Xiong
- Department of Foot and Ankle Surgery, Beijing Tongren Hospital, Capital Medical University, No.1, Dong Jiao Min Lane, Dong Cheng District, Beijing, 100730, People's Republic of China
| | - Cheng-Yi Sun
- Department of Foot and Ankle Surgery, Beijing Tongren Hospital, Capital Medical University, No.1, Dong Jiao Min Lane, Dong Cheng District, Beijing, 100730, People's Republic of China
| | - Ze-Yu Han
- Department of Foot and Ankle Surgery, Beijing Tongren Hospital, Capital Medical University, No.1, Dong Jiao Min Lane, Dong Cheng District, Beijing, 100730, People's Republic of China
| | - Chao Wang
- Department of Foot and Ankle Surgery, Beijing Tongren Hospital, Capital Medical University, No.1, Dong Jiao Min Lane, Dong Cheng District, Beijing, 100730, People's Republic of China
| |
Collapse
|
23
|
McIlvried LA, Del Rosario JS, Pullen MY, Wangzhou A, Sheahan TD, Shepherd AJ, Slivicki RA, Lemen JA, Price TJ, Copits BA, Gereau RW. Intrinsic Homeostatic Plasticity in Mouse and Human Sensory Neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.13.544829. [PMID: 37398430 PMCID: PMC10312743 DOI: 10.1101/2023.06.13.544829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
In response to changes in activity induced by environmental cues, neurons in the central nervous system undergo homeostatic plasticity to sustain overall network function during abrupt changes in synaptic strengths. Homeostatic plasticity involves changes in synaptic scaling and regulation of intrinsic excitability. Increases in spontaneous firing and excitability of sensory neurons are evident in some forms of chronic pain in animal models and human patients. However, whether mechanisms of homeostatic plasticity are engaged in sensory neurons under normal conditions or altered after chronic pain is unknown. Here, we showed that sustained depolarization induced by 30mM KCl induces a compensatory decrease in the excitability in mouse and human sensory neurons. Moreover, voltage-gated sodium currents are robustly reduced in mouse sensory neurons contributing to the overall decrease in neuronal excitability. Decreased efficacy of these homeostatic mechanisms could potentially contribute to the development of the pathophysiology of chronic pain.
Collapse
Affiliation(s)
- Lisa A. McIlvried
- Washington University Pain Center and Department of Anesthesiology; Washington University School of Medicine; St. Louis, MO, 63110; USA
- These authors contributed equally
| | - John Smith Del Rosario
- Washington University Pain Center and Department of Anesthesiology; Washington University School of Medicine; St. Louis, MO, 63110; USA
- These authors contributed equally
| | - Melanie Y. Pullen
- Washington University Pain Center and Department of Anesthesiology; Washington University School of Medicine; St. Louis, MO, 63110; USA
| | - Andi Wangzhou
- Department of Neuroscience and Center for Advanced Pain Studies; The University of Texas at Dallas; Dallas, TX, 75080; USA
| | - Tayler D. Sheahan
- Washington University Pain Center and Department of Anesthesiology; Washington University School of Medicine; St. Louis, MO, 63110; USA
| | - Andrew J. Shepherd
- Washington University Pain Center and Department of Anesthesiology; Washington University School of Medicine; St. Louis, MO, 63110; USA
| | - Richard A. Slivicki
- Washington University Pain Center and Department of Anesthesiology; Washington University School of Medicine; St. Louis, MO, 63110; USA
| | | | - Theodore J. Price
- Department of Neuroscience and Center for Advanced Pain Studies; The University of Texas at Dallas; Dallas, TX, 75080; USA
| | - Bryan A. Copits
- Washington University Pain Center and Department of Anesthesiology; Washington University School of Medicine; St. Louis, MO, 63110; USA
| | - Robert W. Gereau
- Washington University Pain Center and Department of Anesthesiology; Washington University School of Medicine; St. Louis, MO, 63110; USA
- Department of Neuroscience and Department of Biomedical Engineering; Washington University School of Medicine; St. Louis, MO, 63110; USA
- Lead contact
| |
Collapse
|
24
|
Cuevas-Diaz Duran R, Li Y, Garza Carbajal A, You Y, Dessauer CW, Wu J, Walters ET. Major Differences in Transcriptional Alterations in Dorsal Root Ganglia Between Spinal Cord Injury and Peripheral Neuropathic Pain Models. J Neurotrauma 2023; 40:883-900. [PMID: 36178348 PMCID: PMC10150729 DOI: 10.1089/neu.2022.0238] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Chronic, often intractable, pain is caused by neuropathic conditions such as traumatic peripheral nerve injury (PNI) and spinal cord injury (SCI). These conditions are associated with alterations in gene and protein expression correlated with functional changes in somatosensory neurons having cell bodies in dorsal root ganglia (DRGs). Most studies of DRG transcriptional alterations have utilized PNI models where axotomy-induced changes important for neural regeneration may overshadow changes that drive neuropathic pain. Both PNI and SCI produce DRG neuron hyperexcitability linked to pain, but contusive SCI produces little peripheral axotomy or peripheral nerve inflammation. Thus, comparison of transcriptional signatures of DRGs across PNI and SCI models may highlight pain-associated transcriptional alterations in sensory ganglia that do not depend on peripheral axotomy or associated effects such as peripheral Wallerian degeneration. Data from our rat thoracic SCI experiments were combined with meta-analysis of published whole-DRG RNA-seq datasets from prominent rat PNI models. Striking differences were found between transcriptional responses to PNI and SCI, especially in regeneration-associated genes (RAGs) and long noncoding RNAs (lncRNAs). Many transcriptomic changes after SCI also were found after corresponding sham surgery, indicating they were caused by injury to surrounding tissue, including bone and muscle, rather than to the spinal cord itself. Another unexpected finding was of few transcriptomic similarities between rat neuropathic pain models and the only reported transcriptional analysis of human DRGs linked to neuropathic pain. These findings show that DRGs exhibit complex transcriptional responses to central and peripheral neural injury and associated tissue damage. Although only a few genes in DRG cells exhibited similar changes in expression across all the painful conditions examined here, these genes may represent a core set whose transcription in various DRG cell types is sensitive to significant bodily injury, and which may play a fundamental role in promoting neuropathic pain.
Collapse
Affiliation(s)
- Raquel Cuevas-Diaz Duran
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, Nuevo Leon, Mexico
| | - Yong Li
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Anibal Garza Carbajal
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Yanan You
- Department of Neurosurgery, The University of Texas Health Science Center at Houston, Houston, Texas, USA
- Center for Stem Cell and Regenerative Medicine, UT Brown Foundation Institute of Molecular Medicine, Houston, Texas, USA
| | - Carmen W. Dessauer
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Jiaqian Wu
- Department of Neurosurgery, The University of Texas Health Science Center at Houston, Houston, Texas, USA
- Center for Stem Cell and Regenerative Medicine, UT Brown Foundation Institute of Molecular Medicine, Houston, Texas, USA
| | - Edgar T. Walters
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| |
Collapse
|
25
|
Yi J, Bertels Z, Del Rosario JS, Widman AJ, Slivicki RA, Payne M, Susser HM, Copits BA, Gereau RW. Bradykinin receptor expression and bradykinin-mediated sensitization of human sensory neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.31.534820. [PMID: 37034782 PMCID: PMC10081334 DOI: 10.1101/2023.03.31.534820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2023]
Abstract
Bradykinin is a peptide implicated in inflammatory pain in both humans and rodents. In rodent sensory neurons, activation of B1 and B2 bradykinin receptors induces neuronal hyperexcitability. Recent evidence suggests that human and rodent dorsal root ganglia (DRG), which contain the cell bodies of sensory neurons, differ in the expression and function of key GPCRs and ion channels; whether BK receptor expression and function are conserved across species has not been studied in depth. In this study, we used human DRG tissue from organ donors to provide a detailed characterization of bradykinin receptor expression and bradykinin-induced changes in the excitability of human sensory neurons. We found that B2 and, to a lesser extent, B1 receptors are expressed by human DRG neurons and satellite glial cells. B2 receptors were enriched in the nociceptor subpopulation. Using patch-clamp electrophysiology, we found that acute bradykinin increases the excitability of human sensory neurons, while prolonged exposure to bradykinin decreases neuronal excitability in a subpopulation of human DRG neurons. Finally, our analyses suggest that donor’s history of chronic pain and age may be predictors of higher B1 receptor expression in human DRG neurons. Together, these results indicate that acute BK-induced hyperexcitability, first identified in rodents, is conserved in humans and provide further evidence supporting BK signaling as a potential therapeutic target for treating pain in humans.
Collapse
Affiliation(s)
- Jiwon Yi
- Department of Anesthesiology, Washington University Pain Center, Washington University School of Medicine, St. Louis, MO, United States
- Neuroscience Graduate Program, Division of Biology & Biomedical Sciences, Washington University School of Medicine, St. Louis, MO, United States
| | - Zachariah Bertels
- Department of Anesthesiology, Washington University Pain Center, Washington University School of Medicine, St. Louis, MO, United States
| | - John Smith Del Rosario
- Department of Anesthesiology, Washington University Pain Center, Washington University School of Medicine, St. Louis, MO, United States
| | - Allie J. Widman
- Department of Anesthesiology, Washington University Pain Center, Washington University School of Medicine, St. Louis, MO, United States
| | - Richard A. Slivicki
- Department of Anesthesiology, Washington University Pain Center, Washington University School of Medicine, St. Louis, MO, United States
| | - Maria Payne
- Department of Anesthesiology, Washington University Pain Center, Washington University School of Medicine, St. Louis, MO, United States
| | - Henry M. Susser
- Department of Anesthesiology, Washington University Pain Center, Washington University School of Medicine, St. Louis, MO, United States
| | - Bryan A. Copits
- Department of Anesthesiology, Washington University Pain Center, Washington University School of Medicine, St. Louis, MO, United States
| | - Robert W. Gereau
- Department of Anesthesiology, Washington University Pain Center, Washington University School of Medicine, St. Louis, MO, United States
- Department of Neuroscience, Washington University, St. Louis, MO, United States
- Department of Biomedical Engineering, Washington University, St. Louis, MO, United States
| |
Collapse
|
26
|
Walters ET, Crook RJ, Neely GG, Price TJ, Smith ESJ. Persistent nociceptor hyperactivity as a painful evolutionary adaptation. Trends Neurosci 2023; 46:211-227. [PMID: 36610893 PMCID: PMC9974896 DOI: 10.1016/j.tins.2022.12.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/05/2022] [Accepted: 12/16/2022] [Indexed: 01/07/2023]
Abstract
Chronic pain caused by injury or disease of the nervous system (neuropathic pain) has been linked to persistent electrical hyperactivity of the sensory neurons (nociceptors) specialized to detect damaging stimuli and/or inflammation. This pain and hyperactivity are considered maladaptive because both can persist long after injured tissues have healed and inflammation has resolved. While the assumption of maladaptiveness is appropriate in many diseases, accumulating evidence from diverse species, including humans, challenges the assumption that neuropathic pain and persistent nociceptor hyperactivity are always maladaptive. We review studies indicating that persistent nociceptor hyperactivity has undergone evolutionary selection in widespread, albeit selected, animal groups as a physiological response that can increase survival long after bodily injury, using both highly conserved and divergent underlying mechanisms.
Collapse
Affiliation(s)
- Edgar T Walters
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA.
| | - Robyn J Crook
- Department of Biology, San Francisco State University, San Francisco, CA 94132, USA
| | - G Gregory Neely
- Charles Perkins Centre and School of Life and Environmental Sciences, The University of Sydney, NSW 2006, Australia
| | - Theodore J Price
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Ewan St John Smith
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, UK
| |
Collapse
|
27
|
The Efficiency and Safety of Platelet-Rich Plasma Dressing in the Treatment of Chronic Wounds: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. J Pers Med 2023; 13:jpm13030430. [PMID: 36983611 PMCID: PMC10053387 DOI: 10.3390/jpm13030430] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/13/2023] [Accepted: 02/22/2023] [Indexed: 03/04/2023] Open
Abstract
Recently, many clinical trials have applied platelet-rich plasma (PRP) dressings to treat wounds that have stopped healing, which are also called chronic wounds. However, the clinical efficiency of PRP dressings in treating chronic wounds is still controversial. Therefore, we conducted this study to compare PRP dressings with normal saline dressings in treating chronic wounds. Relevant randomized controlled trials focusing on utilizing PRP dressings in treating chronic wounds were extracted from bibliographic databases. Finally, 330 patients with chronic wounds, reported in eight randomized controlled trials, were included in this study. In total, 169 out of 330 (51.21%) were treated with PRP dressings, and 161 out of 330 (48.79%) were treated with normal saline dressings. The pooled results showed that the complete healing rate of the PRP group was significantly higher than that of saline group at 8 weeks and 12 weeks, respectively. In addition, there were no significant differences in wound infection and adverse events. Compared with normal saline dressing, the PRP dressing could effectively enhance the prognosis of chronic wounds. Furthermore, the PRP did not increase wound infection rate or occurrence of adverse events as an available treatment for chronic wounds.
Collapse
|
28
|
Ray PR, Shiers S, Caruso JP, Tavares-Ferreira D, Sankaranarayanan I, Uhelski ML, Li Y, North RY, Tatsui C, Dussor G, Burton MD, Dougherty PM, Price TJ. RNA profiling of human dorsal root ganglia reveals sex differences in mechanisms promoting neuropathic pain. Brain 2023; 146:749-766. [PMID: 35867896 PMCID: PMC10169414 DOI: 10.1093/brain/awac266] [Citation(s) in RCA: 78] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 05/16/2022] [Accepted: 06/22/2022] [Indexed: 11/12/2022] Open
Abstract
Neuropathic pain is a leading cause of high-impact pain, is often disabling and is poorly managed by current therapeutics. Here we focused on a unique group of neuropathic pain patients undergoing thoracic vertebrectomy where the dorsal root ganglia is removed as part of the surgery allowing for molecular characterization and identification of mechanistic drivers of neuropathic pain independently of preclinical models. Our goal was to quantify whole transcriptome RNA abundances using RNA-seq in pain-associated human dorsal root ganglia from these patients, allowing comprehensive identification of molecular changes in these samples by contrasting them with non-pain-associated dorsal root ganglia. We sequenced 70 human dorsal root ganglia, and among these 50 met inclusion criteria for sufficient neuronal mRNA signal for downstream analysis. Our expression analysis revealed profound sex differences in differentially expressed genes including increase of IL1B, TNF, CXCL14 and OSM in male and CCL1, CCL21, PENK and TLR3 in female dorsal root ganglia associated with neuropathic pain. Coexpression modules revealed enrichment in members of JUN-FOS signalling in males and centromere protein coding genes in females. Neuro-immune signalling pathways revealed distinct cytokine signalling pathways associated with neuropathic pain in males (OSM, LIF, SOCS1) and females (CCL1, CCL19, CCL21). We validated cellular expression profiles of a subset of these findings using RNAscope in situ hybridization. Our findings give direct support for sex differences in underlying mechanisms of neuropathic pain in patient populations.
Collapse
Affiliation(s)
- Pradipta R Ray
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX, USA
| | - Stephanie Shiers
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX, USA
| | - James P Caruso
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX, USA.,Department of Neurological Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Diana Tavares-Ferreira
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX, USA
| | - Ishwarya Sankaranarayanan
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX, USA
| | - Megan L Uhelski
- Department of Pain Medicine, Division of Anesthesiology, MD Anderson Cancer Center, Houston, TX, USA
| | - Yan Li
- Department of Pain Medicine, Division of Anesthesiology, MD Anderson Cancer Center, Houston, TX, USA
| | - Robert Y North
- Department of Neurosurgery, MD Anderson Cancer Center, Houston, TX, USA
| | - Claudio Tatsui
- Department of Neurosurgery, MD Anderson Cancer Center, Houston, TX, USA
| | - Gregory Dussor
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX, USA
| | - Michael D Burton
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX, USA
| | - Patrick M Dougherty
- Department of Pain Medicine, Division of Anesthesiology, MD Anderson Cancer Center, Houston, TX, USA
| | - Theodore J Price
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX, USA
| |
Collapse
|
29
|
Eller OC, Stair RN, Neal C, Rowe PS, Nelson-Brantley J, Young EE, Baumbauer KM. Comprehensive phenotyping of cutaneous afferents reveals early-onset alterations in nociceptor response properties, release of CGRP, and hindpaw edema following spinal cord injury. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2022; 12:100097. [PMID: 35756343 PMCID: PMC9218836 DOI: 10.1016/j.ynpai.2022.100097] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 11/30/2022]
Abstract
Spinal cord injury (SCI) is a complex syndrome that has profound effects on patient well-being, including the development of medically-resistant chronic pain. The mechanisms underlying SCI pain have been the subject of thorough investigation but remain poorly understood. While the majority of the research has focused on changes occurring within and surrounding the site of injury in the spinal cord, there is now a consensus that alterations within the peripheral nervous system, namely sensitization of nociceptors, contribute to the development and maintenance of chronic SCI pain. Using an ex vivo skin/nerve/DRG/spinal cord preparation to characterize afferent response properties following SCI, we found that SCI increased mechanical and thermal responding, as well as the incidence of spontaneous activity (SA) and afterdischarge (AD), in below-level C-fiber nociceptors 24 hr following injury relative to naïve controls. Interestingly, the distribution of nociceptors that exhibit SA and AD are not identical, and the development of SA was observed more frequently in nociceptors with low heat thresholds, while AD was found more frequently in nociceptors with high heat thresholds. We also found that SCI resulted in hindpaw edema and elevated cutaneous calcitonin gene-related peptide (CGRP) concentration that were not observed in naïve mice. These results suggest that SCI causes a rapidly developing nociceptor sensitization and peripheral inflammation that may contribute to the early emergence and persistence of chronic SCI pain.
Collapse
Affiliation(s)
- Olivia C. Eller
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Rena N. Stair
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Christopher Neal
- Kansas Intellectual and Developmental Disabilities Research Center, University of Kansas Medical Center, Kansas City, KS, United States
| | - Peter S.N. Rowe
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS, United States
- The Kidney Institute & Division of Nephrology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Jennifer Nelson-Brantley
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Erin E. Young
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, United States
- Department of Anesthesiology, University of Kansas Medical Center, Kansas City, KS, United States
- Center for Advancement in Managing Pain, School of Nursing, University of Connecticut, Storrs, CT, United States
- Department of Genetics and Genome Sciences, UConn Health, Farmington, CT, United States
- Department of Neuroscience, UConn Health, Farmington, CT, United States
| | - Kyle M. Baumbauer
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, United States
- Department of Anesthesiology, University of Kansas Medical Center, Kansas City, KS, United States
- Center for Advancement in Managing Pain, School of Nursing, University of Connecticut, Storrs, CT, United States
- Department of Neuroscience, UConn Health, Farmington, CT, United States
| |
Collapse
|
30
|
North RY, Odem MA, Li Y, Tatsui CE, Cassidy RM, Dougherty PM, Walters ET. Electrophysiological Alterations Driving Pain-Associated Spontaneous Activity in Human Sensory Neuron Somata Parallel Alterations Described in Spontaneously Active Rodent Nociceptors. THE JOURNAL OF PAIN 2022; 23:1343-1357. [PMID: 35292377 PMCID: PMC9357108 DOI: 10.1016/j.jpain.2022.02.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 02/21/2022] [Accepted: 02/24/2022] [Indexed: 06/10/2023]
Abstract
Neuropathic pain in rodents can be driven by ectopic spontaneous activity (SA) generated by sensory neurons in dorsal root ganglia (DRG). The recent demonstration that SA in dissociated human DRG neurons is associated with reported neuropathic pain in patients enables a detailed comparison of pain-linked electrophysiological alterations driving SA in human DRG neurons to alterations that distinguish SA in nociceptors from SA in low-threshold mechanoreceptors (LTMRs) in rodent neuropathy models. Analysis of recordings from dissociated somata of patient-derived DRG neurons showed that SA and corresponding pain in both sexes were significantly associated with the three functional electrophysiological alterations sufficient to generate SA in the absence of extrinsic depolarizing inputs. These include enhancement of depolarizing spontaneous fluctuations of membrane potential (DSFs), which were analyzed quantitatively for the first time in human DRG neurons. The functional alterations were indistinguishable from SA-driving alterations reported for nociceptors in rodent chronic pain models. Irregular, low-frequency DSFs in human DRG neurons closely resemble DSFs described in rodent nociceptors while differing substantially from the high-frequency sinusoidal oscillations described in rodent LTMRs. These findings suggest that conserved physiological mechanisms of SA in human nociceptor somata can drive neuropathic pain despite documented cellular differences between human and rodent DRG neurons. PERSPECTIVE: Electrophysiological alterations in human sensory neurons associated with patient-reported neuropathic pain include all three of the functional alterations that logically can promote spontaneous activity. The similarity of distinctively altered spontaneous depolarizations in human DRG neurons and rodent nociceptors suggests that spontaneously active human nociceptors can persistently promote neuropathic pain in patients.
Collapse
Affiliation(s)
- Robert Y North
- Department of Neurosurgery, The University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Max A Odem
- Department of Microbiology and Molecular Genetics, McGovern Medical School at UTHealth, Houston, Texas
| | - Yan Li
- Department of Anesthesia and Pain Medicine, The University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Claudio Esteves Tatsui
- Department of Neurosurgery, The University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Ryan M Cassidy
- M.D. Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, Texas
| | - Patrick M Dougherty
- Department of Anesthesia and Pain Medicine, The University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Edgar T Walters
- Department of Integrative Biology and Pharmacology, McGovern Medical School at UTHealth, Houston, Texas..
| |
Collapse
|
31
|
Bavencoffe A, Spence EA, Zhu MY, Garza-Carbajal A, Chu KE, Bloom OE, Dessauer CW, Walters ET. Macrophage Migration Inhibitory Factor (MIF) Makes Complex Contributions to Pain-Related Hyperactivity of Nociceptors after Spinal Cord Injury. J Neurosci 2022; 42:5463-5480. [PMID: 35610050 PMCID: PMC9270921 DOI: 10.1523/jneurosci.1133-21.2022] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/12/2022] [Accepted: 05/19/2022] [Indexed: 02/08/2023] Open
Abstract
Neuropathic pain is a major, inadequately treated challenge for people with spinal cord injury (SCI). While SCI pain mechanisms are often assumed to be in the CNS, rodent studies have revealed mechanistic contributions from primary nociceptors. These neurons become chronically hyperexcitable after SCI, generating ongoing electrical activity that promotes ongoing pain. A major question is whether extrinsic chemical signals help to drive ongoing electrical activity after SCI. People living with SCI exhibit acute and chronic elevation of circulating levels of macrophage migration inhibitory factor (MIF), a cytokine implicated in preclinical pain models. Probable nociceptors isolated from male rats and exposed to an MIF concentration reported in human plasma (1 ng/ml) showed hyperactivity similar to that induced by SCI, although, surprisingly, a 10-fold higher concentration failed to increase excitability. Conditioned behavioral aversion to a chamber associated with peripheral MIF injection suggested that MIF stimulates affective pain. A MIF inhibitor, Iso-1, reversed SCI-induced hyperexcitability. Unlike chronic SCI-induced hyperexcitability, acute MIF-induced hyperexcitability was only partially abrogated by inhibiting ERK signaling. Unexpectedly, MIF concentrations that induced hyperactivity in nociceptors from naive animals, after SCI induced a long-lasting conversion from a highly excitable nonaccommodating type to a rapidly accommodating, hypoexcitable type, possibly as a homeostatic response to prolonged depolarization. Treatment with conditioned medium from cultures of DRG cells obtained after SCI was sufficient to induce MIF-dependent hyperactivity in neurons from naive rats. Thus, changes in systemic and DRG levels of MIF may help to maintain SCI-induced nociceptor hyperactivity that persistently promotes pain.SIGNIFICANCE STATEMENT Chronic neuropathic pain is a major challenge for people with spinal cord injury (SCI). Pain can drastically impair quality of life, and produces substantial economic and social burdens. Available treatments, including opioids, remain inadequate. This study shows that the cytokine macrophage migration inhibitory factor (MIF) can induce pain-like behavior and plays an important role in driving persistent ongoing electrical activity in injury-detecting sensory neurons (nociceptors) in a rat SCI model. The results indicate that SCI produces an increase in MIF release within sensory ganglia. Low MIF levels potently excite nociceptors, but higher levels trigger a long-lasting hypoexcitable state. These findings suggest that therapeutic targeting of MIF in neuropathic pain states may reduce pain and sensory dysfunction by curbing nociceptor hyperactivity.
Collapse
Affiliation(s)
- Alexis Bavencoffe
- Department of Integrative Biology and Pharmacology, McGovern Medical School at UTHealth, Houston, Texas 77030
| | - Emily A Spence
- Department of Integrative Biology and Pharmacology, McGovern Medical School at UTHealth, Houston, Texas 77030
| | - Michael Y Zhu
- Department of Integrative Biology and Pharmacology, McGovern Medical School at UTHealth, Houston, Texas 77030
| | - Anibal Garza-Carbajal
- Department of Integrative Biology and Pharmacology, McGovern Medical School at UTHealth, Houston, Texas 77030
| | - Kerry E Chu
- Department of Integrative Biology and Pharmacology, McGovern Medical School at UTHealth, Houston, Texas 77030
| | - Ona E Bloom
- Laboratory of Spinal Cord Injury Research, Feinstein Institutes for Medical Research, Manhasset, New York 11030
| | - Carmen W Dessauer
- Department of Integrative Biology and Pharmacology, McGovern Medical School at UTHealth, Houston, Texas 77030
| | - Edgar T Walters
- Department of Integrative Biology and Pharmacology, McGovern Medical School at UTHealth, Houston, Texas 77030
| |
Collapse
|
32
|
Fadu head and neck squamous cell carcinoma induces hyperexcitability of primary sensory neurons in an in vitro coculture model. Pain Rep 2022; 7:e1012. [PMID: 35620249 PMCID: PMC9113206 DOI: 10.1097/pr9.0000000000001012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 04/08/2022] [Accepted: 04/14/2022] [Indexed: 11/03/2022] Open
Abstract
Supplemental Digital Content is Available in the Text. Squamouscell carcinoma cells promoted an inflammatory microenvironment and induced sensitization of both human and rat dorsal root ganglion neurons in patch clamp electrophysiology recordings. Introduction: Methods: Results: Conclusions:
Collapse
|
33
|
Zheng Q, Xie W, Lückemeyer DD, Lay M, Wang XW, Dong X, Limjunyawong N, Ye Y, Zhou FQ, Strong JA, Zhang JM, Dong X. Synchronized cluster firing, a distinct form of sensory neuron activation, drives spontaneous pain. Neuron 2022; 110:209-220.e6. [PMID: 34752775 PMCID: PMC8776619 DOI: 10.1016/j.neuron.2021.10.019] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 09/01/2021] [Accepted: 10/13/2021] [Indexed: 01/21/2023]
Abstract
Spontaneous pain refers to pain occurring without external stimuli. It is a primary complaint in chronic pain conditions and remains difficult to treat. Moreover, the mechanisms underlying spontaneous pain remain poorly understood. Here we employed in vivo imaging of dorsal root ganglion (DRG) neurons and discovered a distinct form of abnormal spontaneous activity following peripheral nerve injury: clusters of adjacent DRG neurons firing synchronously and sporadically. The level of cluster firing correlated directly with nerve injury-induced spontaneous pain behaviors. Furthermore, we demonstrated that cluster firing is triggered by activity of sympathetic nerves, which sprout into DRGs after injury, and identified norepinephrine as a key neurotransmitter mediating this unique firing. Chemogenetic and pharmacological manipulations of sympathetic activity and norepinephrine receptors suggest that they are necessary and sufficient for DRG cluster firing and spontaneous pain behavior. Therefore, blocking sympathetically mediated cluster firing may be a new paradigm for treating spontaneous pain.
Collapse
Affiliation(s)
- Qin Zheng
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21209, USA
| | - Wenrui Xie
- Pain Research Center, Department of Anesthesiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Debora D Lückemeyer
- Pain Research Center, Department of Anesthesiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Mark Lay
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21209, USA
| | - Xue-Wei Wang
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21209, USA
| | - Xintong Dong
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21209, USA
| | - Nathachit Limjunyawong
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21209, USA
| | - Yaqing Ye
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21209, USA
| | - Feng-Quan Zhou
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21209, USA
| | - Judith A Strong
- Pain Research Center, Department of Anesthesiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Jun-Ming Zhang
- Pain Research Center, Department of Anesthesiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA.
| | - Xinzhong Dong
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21209, USA; Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21209, USA.
| |
Collapse
|
34
|
Loken LS, Backlund Wasling H, Olausson H, McGlone F, Wessberg J. A topographical and physiological exploration of C-tactile afferents and their response to menthol and histamine. J Neurophysiol 2022; 127:463-473. [PMID: 35020516 PMCID: PMC9190740 DOI: 10.1152/jn.00310.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Unmyelinated tactile (C-tactile or CT) afferents are abundant in arm hairy skin and have been suggested to signal features of social affective touch. Here, we recorded from unmyelinated low-threshold mechanosensitive afferents in the peroneal and radial nerves. The most distal receptive fields were located on the proximal phalanx of the third finger for the superficial branch of the radial nerve and near the lateral malleolus for the peroneal nerve. We found that the physiological properties with regard to conduction velocity and mechanical threshold, as well as their tuning to brush velocity, were similar in CT units across the antebrachial (n = 27), radial (n = 8), and peroneal (n = 4) nerves. Moreover, we found that although CT afferents are readily found during microneurography of the arm nerves, they appear to be much more sparse in the lower leg compared with C-nociceptors. We continued to explore CT afferents with regard to their chemical sensitivity and found that they could not be activated by topical application to their receptive field of either the cooling agent menthol or the pruritogen histamine. In light of previous studies showing the combined effects that temperature and mechanical stimuli have on these neurons, these findings add to the growing body of research suggesting that CT afferents constitute a unique class of sensory afferents with highly specialized mechanisms for transducing gentle touch. NEW & NOTEWORHY Unmyelinated tactile (CT) afferents are abundant in arm hairy skin and are thought to signal features of social affective touch. We show that CTs are also present but are relatively sparse in the lower leg compared with C-nociceptors. CTs display similar physiological properties across the arm and leg nerves. Furthermore, CT afferents do not respond to the cooling agent menthol or the pruritogen histamine, and their mechanical response properties are not altered by these chemicals.
Collapse
Affiliation(s)
- Line Sofie Loken
- Department of Physiology, Institute of Neuroscience and Physiology, University of Gothenburg, Sweden
| | - Helena Backlund Wasling
- Department of Physiology, Institute of Neuroscience and Physiology, University of Gothenburg, Sweden
| | - Håkan Olausson
- Center for Social and Affective Neuroscience, Department of Biomedical and Clinical Sciences, Linköping University, Sweden
| | - Francis McGlone
- Research Centre for Brain and Behaviour, School of Natural Sciences and Psychology Liverpool John Moores University, Liverpool, United Kingdom
| | - Johan Wessberg
- Department of Physiology, Institute of Neuroscience and Physiology, University of Gothenburg, Sweden
| |
Collapse
|
35
|
Velasco E, Alvarez JL, Meseguer VM, Gallar J, Talavera K. Membrane potential instabilities in sensory neurons: mechanisms and pathophysiological relevance. Pain 2022; 163:64-74. [PMID: 34086629 DOI: 10.1097/j.pain.0000000000002289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 03/29/2021] [Indexed: 11/25/2022]
Abstract
ABSTRACT Peripheral sensory neurons transduce physicochemical stimuli affecting somatic tissues into the firing of action potentials that are conveyed to the central nervous system. This results in conscious perception, adaptation, and survival, but alterations of the firing patterns can result in pain and hypersensitivity conditions. Thus, understanding the molecular mechanisms underlying action potential firing in peripheral sensory neurons is essential in sensory biology and pathophysiology. Over the past 30 years, it has been consistently reported that these cells can display membrane potential instabilities (MPIs), in the form of subthreshold membrane potential oscillations or depolarizing spontaneous fluctuations. However, research on this subject remains sparse, without a clear conductive thread to be followed. To address this, we here provide a synthesis of the description, molecular bases, mathematical models, physiological roles, and pathophysiological implications of MPIs in peripheral sensory neurons. Membrane potential instabilities have been reported in trigeminal, dorsal root, and Mes-V ganglia, where they are believed to support repetitive firing. They are proposed to have roles also in intercellular communication, ectopic firing, and responses to tonic and slow natural stimuli. We highlight how MPIs are of great interest for the study of sensory transduction physiology and how they may represent therapeutic targets for many pathological conditions, such as acute and chronic pain, itch, and altered sensory perceptions. We identify future research directions, including the elucidation of the underlying molecular determinants and modulation mechanisms, their relation to the encoding of natural stimuli and their implication in pain and hypersensitivity conditions.
Collapse
Affiliation(s)
- Enrique Velasco
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, San Juan de Alicante, Spain
| | - Julio L Alvarez
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, VIB Center for Brain & Disease Research, Leuven, Belgium
| | - Victor M Meseguer
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, San Juan de Alicante, Spain
| | - Juana Gallar
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, San Juan de Alicante, Spain
- Instituto de Investigación Sanitaria y Biomédica de Alicante, San Juan de Alicante, Spain
| | - Karel Talavera
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, VIB Center for Brain & Disease Research, Leuven, Belgium
| |
Collapse
|
36
|
Chrysostomidou L, Cooper AH, Weir GA. Cellular models of pain: New technologies and their potential to progress preclinical research. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2021; 10:100063. [PMID: 34977426 PMCID: PMC8683679 DOI: 10.1016/j.ynpai.2021.100063] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/12/2021] [Accepted: 05/15/2021] [Indexed: 01/16/2023]
Abstract
Human sensory neurons can reduce the translational gap in analgesic development. Access to dorsal root ganglion (hDRG) neurons is increasing. Diverse sensory neuron subtypes can now be generated via stem cell technology. Advances of these technologies will improve our understanding of human nociception.
In vitro models fill a vital niche in preclinical pain research, allowing detailed study of molecular pathways, and in the case of humanised systems, providing a translational bridge between in vivo animal models and human patients. Significant advances in cellular technology available to basic pain researchers have occurred in the last decade, including developing protocols to differentiate sensory neuron-like cells from stem cells and greater access to human dorsal root ganglion tissue. In this review, we discuss the use of both models in preclinical pain research: What can a human sensory neuron in a dish tell us that rodent in vivo models cannot? How similar are these models to their endogenous counterparts, and how should we judge them? What limitations do we need to consider? How can we leverage cell models to improve translational success? In vitro human sensory neuron models equip pain researchers with a valuable tool to investigate human nociception. With continual development, consideration for their advantages and limitations, and effective integration with other experimental strategies, they could become a driving force for the pain field's advancement.
Collapse
Affiliation(s)
- Lina Chrysostomidou
- Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Andrew H Cooper
- Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Greg A Weir
- Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
37
|
Gregus AM, Levine IS, Eddinger KA, Yaksh TL, Buczynski MW. Sex differences in neuroimmune and glial mechanisms of pain. Pain 2021; 162:2186-2200. [PMID: 34256379 PMCID: PMC8277970 DOI: 10.1097/j.pain.0000000000002215] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 12/03/2020] [Indexed: 02/07/2023]
Abstract
ABSTRACT Pain is the primary motivation for seeking medical care. Although pain may subside as inflammation resolves or an injury heals, it is increasingly evident that persistency of the pain state can occur with significant regularity. Chronic pain requires aggressive management to minimize its physiological consequences and diminish its impact on quality of life. Although opioids commonly are prescribed for intractable pain, concerns regarding reduced efficacy, as well as risks of tolerance and dependence, misuse, diversion, and overdose mortality rates limit their utility. Advances in development of nonopioid interventions hinge on our appreciation of underlying mechanisms of pain hypersensitivity. For instance, the contributory role of immunity and the associated presence of autoimmune syndromes has become of particular interest. Males and females exhibit fundamental differences in innate and adaptive immune responses, some of which are present throughout life, whereas others manifest with reproductive maturation. In general, the incidence of chronic pain conditions, particularly those with likely autoimmune covariates, is significantly higher in women. Accordingly, evidence is now accruing in support of neuroimmune interactions driving sex differences in the development and maintenance of pain hypersensitivity and chronicity. This review highlights known sexual dimorphisms of neuroimmune signaling in pain states modeled in rodents, which may yield potential high-value sex-specific targets to inform future analgesic drug discovery efforts.
Collapse
Affiliation(s)
- Ann M. Gregus
- School of Neuroscience, Virginia Polytechnic and State University, 970 Washington Street SW, Blacksburg, VA 24061
| | - Ian S. Levine
- School of Neuroscience, Virginia Polytechnic and State University, 970 Washington Street SW, Blacksburg, VA 24061
| | - Kelly A. Eddinger
- Dept. of Anesthesiology, University of California San Diego, 9500 Gilman Dr., La Jolla, CA, USA 92093-0818
| | - Tony L. Yaksh
- Dept. of Anesthesiology, University of California San Diego, 9500 Gilman Dr., La Jolla, CA, USA 92093-0818
- Dept. of Pharmacology, University of California San Diego, 9500 Gilman Dr., La Jolla, CA, USA 92093-0601
| | - Matthew W. Buczynski
- School of Neuroscience, Virginia Polytechnic and State University, 970 Washington Street SW, Blacksburg, VA 24061
| |
Collapse
|
38
|
Middleton SJ, Barry AM, Comini M, Li Y, Ray PR, Shiers S, Themistocleous AC, Uhelski ML, Yang X, Dougherty PM, Price TJ, Bennett DL. Studying human nociceptors: from fundamentals to clinic. Brain 2021; 144:1312-1335. [PMID: 34128530 PMCID: PMC8219361 DOI: 10.1093/brain/awab048] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/26/2020] [Accepted: 12/08/2020] [Indexed: 12/14/2022] Open
Abstract
Chronic pain affects one in five of the general population and is the third most important cause of disability-adjusted life-years globally. Unfortunately, treatment remains inadequate due to poor efficacy and tolerability. There has been a failure in translating promising preclinical drug targets into clinic use. This reflects challenges across the whole drug development pathway, from preclinical models to trial design. Nociceptors remain an attractive therapeutic target: their sensitization makes an important contribution to many chronic pain states, they are located outside the blood-brain barrier, and they are relatively specific. The past decade has seen significant advances in the techniques available to study human nociceptors, including: the use of corneal confocal microscopy and biopsy samples to observe nociceptor morphology, the culture of human nociceptors (either from surgical or post-mortem tissue or using human induced pluripotent stem cell derived nociceptors), the application of high throughput technologies such as transcriptomics, the in vitro and in vivo electrophysiological characterization through microneurography, and the correlation with pain percepts provided by quantitative sensory testing. Genome editing in human induced pluripotent stem cell-derived nociceptors enables the interrogation of the causal role of genes in the regulation of nociceptor function. Both human and rodent nociceptors are more heterogeneous at a molecular level than previously appreciated, and while we find that there are broad similarities between human and rodent nociceptors there are also important differences involving ion channel function, expression, and cellular excitability. These technological advances have emphasized the maladaptive plastic changes occurring in human nociceptors following injury that contribute to chronic pain. Studying human nociceptors has revealed new therapeutic targets for the suppression of chronic pain and enhanced repair. Cellular models of human nociceptors have enabled the screening of small molecule and gene therapy approaches on nociceptor function, and in some cases have enabled correlation with clinical outcomes. Undoubtedly, challenges remain. Many of these techniques are difficult to implement at scale, current induced pluripotent stem cell differentiation protocols do not generate the full diversity of nociceptor populations, and we still have a relatively poor understanding of inter-individual variation in nociceptors due to factors such as age, sex, or ethnicity. We hope our ability to directly investigate human nociceptors will not only aid our understanding of the fundamental neurobiology underlying acute and chronic pain but also help bridge the translational gap.
Collapse
Affiliation(s)
- Steven J Middleton
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | - Allison M Barry
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | - Maddalena Comini
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | - Yan Li
- Department of Anesthesia and Pain Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Pradipta R Ray
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Stephanie Shiers
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Andreas C Themistocleous
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK.,Brain Function Research Group, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2000, South Africa
| | - Megan L Uhelski
- Department of Anesthesia and Pain Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xun Yang
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | - Patrick M Dougherty
- Brain Function Research Group, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2000, South Africa
| | - Theodore J Price
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX 75080, USA
| | - David L Bennett
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| |
Collapse
|
39
|
Martínez-Rojas VA, Salinas-Abarca AB, Gómez-Víquez NL, Granados-Soto V, Mercado F, Murbartián J. Interaction of NHE1 and TRPA1 Activity in DRG Neurons Isolated from Adult Rats and its Role in Inflammatory Nociception. Neuroscience 2021; 465:154-165. [PMID: 33957206 DOI: 10.1016/j.neuroscience.2021.04.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 04/01/2021] [Accepted: 04/21/2021] [Indexed: 01/07/2023]
Abstract
Transient receptor potential ankyrin 1 (TRPA1) channel is expressed in a subset of nociceptive neurons. This channel integrates several nociceptive signals. Particularly, it is modulated by intracellular pH (pHi). Na+/H+ exchanger 1 (NHE1) contributes to the maintenance of pHi in nociceptors. However, it is currently unknown whether the interaction between TRPA1 and NHE1 contributes to the nociceptive processing. Thus, the purpose of this study was to assess the functional interaction between NHE1 and TRPA1 in small dorsal root ganglion (DRG) neurons from primary culture obtained from adult rats. Moreover, we also evaluated their possible interaction in acute and inflammatory pain. Zoniporide (selective NHE1 inhibitor) reduced pHi and increased intracellular calcium in a concentration-dependent fashion in DRG neurons. Zoniporide and allyl isothiocyanate (AITC, TRPA1 agonist) increased calcium transients in the same DRG neuron, whereas that A-967079 (TRPA1 antagonist) prevented the effect of zoniporide in DRG neurons. Repeated AITC induced TRPA1 desensitization and this effect was prevented by zoniporide. Both NHE1 and TRPA1 were localized at the membrane surface of DRG neurons in culture. Local peripheral zoniporide enhanced AITC-induced pronociception and this effect was prevented by A-967079. Likewise, zoniporide potentiated Complete Freund's Adjuvant (CFA)-induced hypersensitivity, effect which was prevented by A-967079 in vivo. CFA paw injection increased TRPA1 and decresed NHE1 protein expression in DRG. These results suggest a functional interaction between NHE1 and TRPA1 in DRG neurons in vitro. Moreover, data suggest that this interaction participates in acute and inflamatory pain conditions in vivo.
Collapse
Affiliation(s)
| | - Ana B Salinas-Abarca
- Neurobiology of Pain Laboratory, Departamento de Farmacobiología, Cinvestav, South Campus, Mexico City, Mexico
| | | | - Vinicio Granados-Soto
- Neurobiology of Pain Laboratory, Departamento de Farmacobiología, Cinvestav, South Campus, Mexico City, Mexico
| | - Francisco Mercado
- Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City, Mexico
| | - Janet Murbartián
- Departamento de Farmacobiología, Cinvestav, South Campus, Mexico City, Mexico.
| |
Collapse
|
40
|
Interleukin-10 resolves pain hypersensitivity induced by cisplatin by reversing sensory neuron hyperexcitability. Pain 2021; 161:2344-2352. [PMID: 32427749 DOI: 10.1097/j.pain.0000000000001921] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Understanding the mechanisms that drive transition from acute to chronic pain is essential to identify new therapeutic targets. The importance of endogenous resolution pathways acting as a "brake" to prevent development of chronic pain has been largely ignored. We examined the role of interleukin-10 (IL-10) in resolution of neuropathic pain induced by cisplatin. In search of an underlying mechanism, we studied the effect of cisplatin and IL-10 on spontaneous activity (SA) in dorsal root ganglia neurons. Cisplatin (2 mg/kg daily for 3 days) induced mechanical hypersensitivity that resolved within 3 weeks. In both sexes, resolution of mechanical hypersensitivity was delayed in Il10 mice, in WT mice treated intrathecally with neutralizing anti-IL-10 antibody, and in mice with cell-targeted deletion of IL-10R1 on advillin-positive sensory neurons. Electrophysiologically, small- to medium-sized dorsal root ganglia neurons from cisplatin-treated mice displayed an increase in the incidence of SA. Cisplatin treatment also depolarized the resting membrane potential, and decreased action potential voltage threshold and rheobase, while increasing ongoing activity at -45 mV and the amplitude of depolarizing spontaneous fluctuations. In vitro addition of IL-10 (10 ng/mL) reversed the effect of cisplatin on SA and on the depolarizing spontaneous fluctuation amplitudes, but unexpectedly had little effect on the other electrophysiological parameters affected by cisplatin. Collectively, our findings challenge the prevailing concept that IL-10 resolves pain solely by dampening neuroinflammation and demonstrate in a model of chemotherapy-induced neuropathic pain that endogenous IL-10 prevents transition to chronic pain by binding to IL-10 receptors on sensory neurons to regulate their activity.
Collapse
|
41
|
Everts PA, van Erp A, DeSimone A, Cohen DS, Gardner RD. Platelet Rich Plasma in Orthopedic Surgical Medicine. Platelets 2021; 32:163-174. [PMID: 33400591 DOI: 10.1080/09537104.2020.1869717] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
There is a global interest in optimizing post-surgical tissue repair strategies, leading to better patient outcomes and fewer complications, most ideally with reduced overall cost. In this regard, in recent years, the interest in autologous biological treatments in orthopedic surgery and sports medicine has increased greatly, and the addition of platelet-rich plasma (PRP) to the surgical armamentarium is of particular note. Unfortunately, the number of PRP preparation devices has also grown immensely over the recent decades, raising meaningful concern for the considerable variation in the qualities of currently available PRP preparations. The lack of consensus on the standardization of PRP preparation and of agreement on condition specific PRP formulations is largely responsible for the sometimes contradictory outcomes in the literature. Furthermore, the full potential of PRP technology, the concept of individualized treatment protocols based on bioformulation options, and platelet dosing, angiogenesis, and antimicrobial and painkilling effects of PRP relevant to orthopedic surgery have rarely been addressed. In this review, we will discuss recent developments regarding PRP preparations and potential therapeutic effects. Additionally, we present a synopsis of several published data regarding PRP applications in orthopedic surgery for treating tendon injuries, inducing bone repair, strengthening spinal fusion outcomes, and supporting major joint replacements.
Collapse
Affiliation(s)
- Peter A Everts
- Science and Research Department, Gulf Coast Biologics, Fort Myers, FL, USA
| | | | | | - Dan S Cohen
- Spine Care Institute of Miami Beach, Mt. Sinai Medical Center, Miami Beach, FL, USA
| | | |
Collapse
|
42
|
Li Y, Marri T, North RY, Rhodes HR, Uhelski ML, Tatsui CE, Rhines LD, Rao G, Corrales G, Abercrombie TJ, Johansson CA, Dougherty PM. Chemotherapy-induced peripheral neuropathy in a dish: dorsal root ganglion cells treated in vitro with paclitaxel show biochemical and physiological responses parallel to that seen in vivo. Pain 2021; 162:84-96. [PMID: 32694383 PMCID: PMC7744394 DOI: 10.1097/j.pain.0000000000002005] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 07/07/2020] [Indexed: 11/26/2022]
Abstract
The mechanisms underlying chemotherapy-induced peripheral neuropathy have yet to be fully elucidated, but primary afferent neurons have emerged as an especially vulnerable initiating pathophysiological target. An important recent study has also shown that the initial toxicity produced by paclitaxel in patients was highly predictive of long-term outcome. In this study, we therefore focused on defining the mechanisms of acute toxicity produced by paclitaxel treatment on primary sensory neurons under in vitro conditions. In primary rat dorsal root ganglion (DRG) culture with paclitaxel, an increase of pERK and pp38 was observed at 2 hours, and this was accompanied by an increase in expression and release of C-C chemokine ligand 2 (CCL2). There was no change in pJNK. The increase in pERK was sustained at 48 hours of exposure when the expression of TLR4, MyD88, and IL-6 was also increased. IL-6 and CCL2 were colocalized to TLR4-positive cells, and all these responses were prevented by coincubation with a TLR4 antagonist (LPS-RS). Whole-cell patch-clamp recordings revealed that DRG neurons developed spontaneous depolarizing fluctuations (DSFs) in membrane potential and hyperexcitability to current injection but no ectopic action potential activity at 24 and 48 hours of paclitaxel incubation. However, CCL2 applied to cultured neurons not only induced DSFs but also evoked action potentials. Evidence of oxidative stress and mitotoxicity was observed at 48 hours of exposure. These results closely parallel the responses measured in the DRG with paclitaxel exposure in vivo and so indicate that acute toxicity of paclitaxel on the DRG can be modelled using an in vitro approach.
Collapse
Affiliation(s)
- Yan Li
- Department of Anesthesia and Pain Medicine Research, the
University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Tejaswi Marri
- The University of Texas Health Science Center, Houston,
Texas 77030
| | - Robert Y. North
- Department of Neurosurgery, Baylor College of Medicine,
Houston, Texas, 77030
| | - Haley Raquel Rhodes
- Department of Psychology and Behavioral Neuroscience, St.
Edward’s University, Austin, TX 78704
| | - Megan L. Uhelski
- Department of Anesthesia and Pain Medicine Research, the
University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | | | - Laurence D. Rhines
- Neurosurgery, the University of Texas MD Anderson Cancer
Center, Houston, Texas 77030
| | - Ganesh Rao
- Neurosurgery, the University of Texas MD Anderson Cancer
Center, Houston, Texas 77030
| | - German Corrales
- Anesthesiology & Perioperative Medicine Research, the
University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | | | - Caj A. Johansson
- The University of Texas Health Science Center, Houston,
Texas 77030
| | - Patrick M. Dougherty
- Department of Anesthesia and Pain Medicine Research, the
University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| |
Collapse
|
43
|
Bernal L, Cisneros E, Roza C. Activation of the regeneration-associated gene STAT3 and functional changes in intact nociceptors after peripheral nerve damage in mice. Eur J Pain 2021; 25:886-901. [PMID: 33345380 DOI: 10.1002/ejp.1718] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 12/16/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND In the context of neuropathic pain, the contribution of regeneration to the development of positive symptoms is not completely understood. Several efforts have been done to described changes in axotomized neurons, however, there is scarce data on changes occurring in intact neurons, despite experimental evidence of functional changes. To address this issue, we analysed by immunohistochemistry the presence of phosphorylated signal transducer and activator of transcription 3 (pSTAT3), an accepted marker of regeneration, within DRGs where axotomized neurons were retrogradely labelled following peripheral nerve injury. Likewise, we have characterized abnormal electrophysiological properties in intact fibres after partial nerve injury. METHODS/RESULTS We showed that induction of pSTAT3 in sensory neurons was similar after partial or total transection of the sciatic nerve and to the same extent within axotomized and non-axotomized neurons. We also examined pSTAT3 presence on non-peptidergic and peptidergic nociceptors. Whereas the percentage of neurons marked by IB4 decrease after injury, the proportion of CGRP neurons did not change, but its expression switched from small- to large-diameter neurons. Besides, the percentage of CGRP+ neurons expressing pSTAT3 increased significantly 2.5-folds after axotomy, preferentially in neurons with large diameters. Electrophysiological recordings showed that after nerve damage, most of the neurons with ectopic spontaneous activity (39/46) were non-axotomized C-fibres with functional receptive fields in the skin far beyond the site of damage. CONCLUSIONS Neuronal regeneration after nerve injury, likely triggered from the site of injury, may explain the abnormal functional properties gained by intact neurons, reinforcing their role in neuropathic pain. SIGNIFICANCE Positive symptoms in patients with peripheral neuropathies correlate to abnormal functioning of different subpopulations of primary afferents. Peripheral nerve damage triggers regenerating programs in the cell bodies of axotomized but also in non-axotomized nociceptors which is in turn, develop abnormal spontaneous and evoked discharges. Therefore, intact nociceptors have a significant role in the development of neuropathic pain due to their hyperexcitable peripheral terminals. Therapeutical targets should focus on inhibiting peripheral hyperexcitability in an attempt to limit peripheral and central sensitization.
Collapse
Affiliation(s)
- Laura Bernal
- Department of System's Biology, Medical School, University of Alcala, Alcalá de Henares, Spain
| | - Elsa Cisneros
- Department of System's Biology, Medical School, University of Alcala, Alcalá de Henares, Spain.,Health Sciences School, Centro Universitario Internacional de Madrid (CUNIMAD), Madrid, Spain.,Health Sciences School, Universidad Internacional de La Rioja (UNIR), Logroño, Spain
| | - Carolina Roza
- Department of System's Biology, Medical School, University of Alcala, Alcalá de Henares, Spain
| |
Collapse
|
44
|
Lopez ER, Carbajal AG, Tian JB, Bavencoffe A, Zhu MX, Dessauer CW, Walters ET. Serotonin enhances depolarizing spontaneous fluctuations, excitability, and ongoing activity in isolated rat DRG neurons via 5-HT 4 receptors and cAMP-dependent mechanisms. Neuropharmacology 2020; 184:108408. [PMID: 33220305 DOI: 10.1016/j.neuropharm.2020.108408] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/10/2020] [Accepted: 11/16/2020] [Indexed: 12/18/2022]
Abstract
Ongoing activity in nociceptors, a driver of spontaneous pain, can be generated in dorsal root ganglion neurons in the absence of sensory generator potentials if one or more of three neurophysiological alterations occur - prolonged depolarization of resting membrane potential (RMP), hyperpolarization of action potential (AP) threshold, and/or increased amplitude of depolarizing spontaneous fluctuations of membrane potential (DSFs) to bridge the gap between RMP and AP threshold. Previous work showed that acute, sustained exposure to serotonin (5-HT) hyperpolarized AP threshold and potentiated DSFs, leading to ongoing activity if a separate source of maintained depolarization was present. Cellular signaling pathways that increase DSF amplitude and promote ongoing activity acutely in nociceptors are not known for any neuromodulator. Here, isolated DRG neurons from male rats were used to define the pathway by which low concentrations of 5-HT enhance DSFs, hyperpolarize AP threshold, and promote ongoing activity. A selective 5-HT4 receptor antagonist blocked these 5-HT-induced hyperexcitable effects, while a selective 5-HT4 agonist mimicked the effects of 5-HT. Inhibition of cAMP effectors, protein kinase A (PKA) and exchange protein activated by cAMP (EPAC), attenuated 5-HT's hyperexcitable effects, but a blocker of hyperpolarization-activated cyclic nucleotide-gated (HCN) channels had no significant effect. 5-HT4-dependent PKA activation was specific to DRG neurons that bind isolectin B4 (a nonpeptidergic nociceptor marker). 5-HT's effects on AP threshold, DSFs, and ongoing activity were mimicked by a cAMP analog. Sustained exposure to 5-HT promotes ongoing activity in nonpeptidergic nociceptors through the Gs-coupled 5-HT4 receptor and downstream cAMP signaling involving both PKA and EPAC.
Collapse
Affiliation(s)
- Elia R Lopez
- Department of Integrative Biology and Pharmacology, McGovern Medical School at UT Health, Houston, TX, 77030, USA.
| | - Anibal Garza Carbajal
- Department of Integrative Biology and Pharmacology, McGovern Medical School at UT Health, Houston, TX, 77030, USA.
| | - Jin Bin Tian
- Department of Integrative Biology and Pharmacology, McGovern Medical School at UT Health, Houston, TX, 77030, USA.
| | - Alexis Bavencoffe
- Department of Integrative Biology and Pharmacology, McGovern Medical School at UT Health, Houston, TX, 77030, USA.
| | - Michael X Zhu
- Department of Integrative Biology and Pharmacology, McGovern Medical School at UT Health, Houston, TX, 77030, USA.
| | - Carmen W Dessauer
- Department of Integrative Biology and Pharmacology, McGovern Medical School at UT Health, Houston, TX, 77030, USA.
| | - Edgar T Walters
- Department of Integrative Biology and Pharmacology, McGovern Medical School at UT Health, Houston, TX, 77030, USA.
| |
Collapse
|
45
|
Platelet-Rich Plasma: New Performance Understandings and Therapeutic Considerations in 2020. Int J Mol Sci 2020. [DOI: 10.3390/ijms21207794 waitfor delay '0:0:5'-- wvzy] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Emerging autologous cellular therapies that utilize platelet-rich plasma (PRP) applications have the potential to play adjunctive roles in a variety of regenerative medicine treatment plans. There is a global unmet need for tissue repair strategies to treat musculoskeletal (MSK) and spinal disorders, osteoarthritis (OA), and patients with chronic complex and recalcitrant wounds. PRP therapy is based on the fact that platelet growth factors (PGFs) support the three phases of wound healing and repair cascade (inflammation, proliferation, remodeling). Many different PRP formulations have been evaluated, originating from human, in vitro, and animal studies. However, recommendations from in vitro and animal research often lead to different clinical outcomes because it is difficult to translate non-clinical study outcomes and methodology recommendations to human clinical treatment protocols. In recent years, progress has been made in understanding PRP technology and the concepts for bioformulation, and new research directives and new indications have been suggested. In this review, we will discuss recent developments regarding PRP preparation and composition regarding platelet dosing, leukocyte activities concerning innate and adaptive immunomodulation, serotonin (5-HT) effects, and pain killing. Furthermore, we discuss PRP mechanisms related to inflammation and angiogenesis in tissue repair and regenerative processes. Lastly, we will review the effect of certain drugs on PRP activity, and the combination of PRP and rehabilitation protocols.
Collapse
|
46
|
Platelet-Rich Plasma: New Performance Understandings and Therapeutic Considerations in 2020. Int J Mol Sci 2020. [DOI: 10.3390/ijms21207794 union all select null,null-- rqgz] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Emerging autologous cellular therapies that utilize platelet-rich plasma (PRP) applications have the potential to play adjunctive roles in a variety of regenerative medicine treatment plans. There is a global unmet need for tissue repair strategies to treat musculoskeletal (MSK) and spinal disorders, osteoarthritis (OA), and patients with chronic complex and recalcitrant wounds. PRP therapy is based on the fact that platelet growth factors (PGFs) support the three phases of wound healing and repair cascade (inflammation, proliferation, remodeling). Many different PRP formulations have been evaluated, originating from human, in vitro, and animal studies. However, recommendations from in vitro and animal research often lead to different clinical outcomes because it is difficult to translate non-clinical study outcomes and methodology recommendations to human clinical treatment protocols. In recent years, progress has been made in understanding PRP technology and the concepts for bioformulation, and new research directives and new indications have been suggested. In this review, we will discuss recent developments regarding PRP preparation and composition regarding platelet dosing, leukocyte activities concerning innate and adaptive immunomodulation, serotonin (5-HT) effects, and pain killing. Furthermore, we discuss PRP mechanisms related to inflammation and angiogenesis in tissue repair and regenerative processes. Lastly, we will review the effect of certain drugs on PRP activity, and the combination of PRP and rehabilitation protocols.
Collapse
|
47
|
Abstract
Emerging autologous cellular therapies that utilize platelet-rich plasma (PRP) applications have the potential to play adjunctive roles in a variety of regenerative medicine treatment plans. There is a global unmet need for tissue repair strategies to treat musculoskeletal (MSK) and spinal disorders, osteoarthritis (OA), and patients with chronic complex and recalcitrant wounds. PRP therapy is based on the fact that platelet growth factors (PGFs) support the three phases of wound healing and repair cascade (inflammation, proliferation, remodeling). Many different PRP formulations have been evaluated, originating from human, in vitro, and animal studies. However, recommendations from in vitro and animal research often lead to different clinical outcomes because it is difficult to translate non-clinical study outcomes and methodology recommendations to human clinical treatment protocols. In recent years, progress has been made in understanding PRP technology and the concepts for bioformulation, and new research directives and new indications have been suggested. In this review, we will discuss recent developments regarding PRP preparation and composition regarding platelet dosing, leukocyte activities concerning innate and adaptive immunomodulation, serotonin (5-HT) effects, and pain killing. Furthermore, we discuss PRP mechanisms related to inflammation and angiogenesis in tissue repair and regenerative processes. Lastly, we will review the effect of certain drugs on PRP activity, and the combination of PRP and rehabilitation protocols.
Collapse
|
48
|
Platelet-Rich Plasma: New Performance Understandings and Therapeutic Considerations in 2020. Int J Mol Sci 2020. [DOI: 10.3390/ijms21207794 union all select null,null,null,null,null,null,null,null,null-- tbwa] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Emerging autologous cellular therapies that utilize platelet-rich plasma (PRP) applications have the potential to play adjunctive roles in a variety of regenerative medicine treatment plans. There is a global unmet need for tissue repair strategies to treat musculoskeletal (MSK) and spinal disorders, osteoarthritis (OA), and patients with chronic complex and recalcitrant wounds. PRP therapy is based on the fact that platelet growth factors (PGFs) support the three phases of wound healing and repair cascade (inflammation, proliferation, remodeling). Many different PRP formulations have been evaluated, originating from human, in vitro, and animal studies. However, recommendations from in vitro and animal research often lead to different clinical outcomes because it is difficult to translate non-clinical study outcomes and methodology recommendations to human clinical treatment protocols. In recent years, progress has been made in understanding PRP technology and the concepts for bioformulation, and new research directives and new indications have been suggested. In this review, we will discuss recent developments regarding PRP preparation and composition regarding platelet dosing, leukocyte activities concerning innate and adaptive immunomodulation, serotonin (5-HT) effects, and pain killing. Furthermore, we discuss PRP mechanisms related to inflammation and angiogenesis in tissue repair and regenerative processes. Lastly, we will review the effect of certain drugs on PRP activity, and the combination of PRP and rehabilitation protocols.
Collapse
|
49
|
Platelet-Rich Plasma: New Performance Understandings and Therapeutic Considerations in 2020. Int J Mol Sci 2020. [DOI: 10.3390/ijms21207794 and sleep(5)-- larb] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Emerging autologous cellular therapies that utilize platelet-rich plasma (PRP) applications have the potential to play adjunctive roles in a variety of regenerative medicine treatment plans. There is a global unmet need for tissue repair strategies to treat musculoskeletal (MSK) and spinal disorders, osteoarthritis (OA), and patients with chronic complex and recalcitrant wounds. PRP therapy is based on the fact that platelet growth factors (PGFs) support the three phases of wound healing and repair cascade (inflammation, proliferation, remodeling). Many different PRP formulations have been evaluated, originating from human, in vitro, and animal studies. However, recommendations from in vitro and animal research often lead to different clinical outcomes because it is difficult to translate non-clinical study outcomes and methodology recommendations to human clinical treatment protocols. In recent years, progress has been made in understanding PRP technology and the concepts for bioformulation, and new research directives and new indications have been suggested. In this review, we will discuss recent developments regarding PRP preparation and composition regarding platelet dosing, leukocyte activities concerning innate and adaptive immunomodulation, serotonin (5-HT) effects, and pain killing. Furthermore, we discuss PRP mechanisms related to inflammation and angiogenesis in tissue repair and regenerative processes. Lastly, we will review the effect of certain drugs on PRP activity, and the combination of PRP and rehabilitation protocols.
Collapse
|
50
|
Abstract
Emerging autologous cellular therapies that utilize platelet-rich plasma (PRP) applications have the potential to play adjunctive roles in a variety of regenerative medicine treatment plans. There is a global unmet need for tissue repair strategies to treat musculoskeletal (MSK) and spinal disorders, osteoarthritis (OA), and patients with chronic complex and recalcitrant wounds. PRP therapy is based on the fact that platelet growth factors (PGFs) support the three phases of wound healing and repair cascade (inflammation, proliferation, remodeling). Many different PRP formulations have been evaluated, originating from human, in vitro, and animal studies. However, recommendations from in vitro and animal research often lead to different clinical outcomes because it is difficult to translate non-clinical study outcomes and methodology recommendations to human clinical treatment protocols. In recent years, progress has been made in understanding PRP technology and the concepts for bioformulation, and new research directives and new indications have been suggested. In this review, we will discuss recent developments regarding PRP preparation and composition regarding platelet dosing, leukocyte activities concerning innate and adaptive immunomodulation, serotonin (5-HT) effects, and pain killing. Furthermore, we discuss PRP mechanisms related to inflammation and angiogenesis in tissue repair and regenerative processes. Lastly, we will review the effect of certain drugs on PRP activity, and the combination of PRP and rehabilitation protocols.
Collapse
|