1
|
Saffar Kohneh Quchan AH, Kordi MR, Mohammadi G, Amiri Raeez R, Choobineh S. Strength training attenuates neuropathic pain by Preventing dendritic Spine dysgenesis through Suppressing Rac1 and inflammation in experimental autoimmune encephalomyelitis. Mult Scler Relat Disord 2025; 93:106192. [PMID: 39616773 DOI: 10.1016/j.msard.2024.106192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/16/2024] [Accepted: 11/26/2024] [Indexed: 01/31/2025]
Abstract
Chronic pain is a challenge and major health problem to basic science and clinical practice. Pain is one of the worst symptoms of multiple sclerosis (MS), which has a significant impact on their quality of life. Rac1 is an important intracellular signaling molecule involved in spinal dendritic spine pathology and activation of IL-1β and TNF-α that are associated with chronic neuropathic pain. As a result, targeting Rac1 presents a promising approach to managing neuropathic pain. Clinical studies have demonstrated that physical exercise is a non-pharmacological strategy that positively influences disease progression in individuals with MS, but underlying mechanism of exercise on Rac1- induced neuropathic pain is not well understood. This study examined the effects of a 4-week strength training on Rac1 expression, IL-1B, TNF-α, TGF-β1 levels, MDA concentrations, SOD activity, dendritic spine abnormalities in the dorsal horn of the spinal cord, as well as nociceptive behaviors (formalin test) and motor function (Rotarod test) during the chronic phase of experimental autoimmune encephalomyelitis (EAE). The findings indicated that strength training increased TGF-β1 expression and SOD activity while decreasing the expression of Rac1, IL-1β, TNF-α, and MDA and reducing dendritic spine dysgenesis in the dorsal horn of the spinal cord. We observed strength training effectively reduced nociceptive behaviors and improved motor function in mice with EAE. In summary, regular physical exercise may modulate neuropathic pain through inhibition of dendritic spine dysgenesis, inflammation and oxidative stress in the dorsal horn of the spinal cord.
Collapse
MESH Headings
- Animals
- rac1 GTP-Binding Protein/metabolism
- Neuralgia/metabolism
- Neuralgia/etiology
- Neuralgia/therapy
- Neuralgia/pathology
- Mice
- Dendritic Spines/pathology
- Dendritic Spines/metabolism
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Encephalomyelitis, Autoimmune, Experimental/complications
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Encephalomyelitis, Autoimmune, Experimental/therapy
- Resistance Training
- Female
- Mice, Inbred C57BL
- Physical Conditioning, Animal/physiology
- Inflammation/metabolism
- Neuropeptides/metabolism
Collapse
Affiliation(s)
| | - Mohammad Reza Kordi
- Department of Exercise Physiology, Faculty of Sport Sciences and Health, University of Tehran, Tehran, Iran.
| | - Golrokh Mohammadi
- Department of Exercise Physiology, Faculty of Sport Sciences and Health, University of Tehran, Tehran, Iran
| | - Raheleh Amiri Raeez
- Department of Exercise Physiology, Faculty of Sport Sciences and Health, University of Tehran, Tehran, Iran
| | - Siroos Choobineh
- Department of Exercise Physiology, Faculty of Sport Sciences and Health, University of Tehran, Tehran, Iran
| |
Collapse
|
2
|
Friedman TN, La Caprara O, Zhang C, Lee K, May J, Faig CA, Baldwin T, Plemel JR, Taylor AMW, Kerr BJ. Sex differences in peripheral immune cell activation: Implications for pain and pain resolution. Brain Behav Immun 2023; 114:80-93. [PMID: 37544463 DOI: 10.1016/j.bbi.2023.07.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 07/28/2023] [Accepted: 07/30/2023] [Indexed: 08/08/2023] Open
Abstract
Decades of research into chronic pain has deepened our understanding of the cellular mechanisms behind this process. However, a failure to consider the biological variable of sex has limited the application of these breakthroughs into clinical application. In the present study, we investigate fundamental differences in chronic pain between male and female mice resulting from inflammatory activation of the innate immune system. We provide evidence that female mice are more sensitive to the effects of macrophages. Injecting small volumes of media conditioned by either unstimulated macrophages or macrophages stimulated by the inflammatory molecule TNFα lead to increased pain sensitivity only in females. Interestingly, we find that TNFα conditioned media leads to a more rapid resolution of mechanical hypersensitivity and altered immune cell recruitment to sites of injury. Furthermore, male and female macrophages exhibit differential polarization characteristics and motility after TNFα stimulation, as well as a different profile of cytokine secretions. Finally, we find that the X-linked gene Tlr7 is critical in the facilitating the adaptive resolution of pain in models of acute and chronic inflammation in both sexes. Altogether, these findings suggest that although the cellular mechanisms of pain resolution may differ between the sexes, the study of these differences may yield more targeted approaches with clinical applications.
Collapse
Affiliation(s)
- Timothy N Friedman
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Olivia La Caprara
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Celine Zhang
- Department of Pharmacology, University of Alberta, Edmonton, AB T6E 2H7, Canada
| | - Kelly Lee
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Julia May
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB T6G 2S2, Canada
| | - Christian A Faig
- Department of Pharmacology, University of Alberta, Edmonton, AB T6E 2H7, Canada
| | - Troy Baldwin
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB T6G 2S2, Canada
| | - Jason R Plemel
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Anna M W Taylor
- Department of Pharmacology, University of Alberta, Edmonton, AB T6E 2H7, Canada; Department of Anesthesiology and Pain Medicine, University of Alberta, Edmonton, AB T6G 2G3, Canada
| | - Bradley J Kerr
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2E1, Canada; Department of Pharmacology, University of Alberta, Edmonton, AB T6E 2H7, Canada; Department of Psychiatry (NRU), University of Alberta, Edmonton, AB T6G 2B7, Canada; Department of Anesthesiology and Pain Medicine, University of Alberta, Edmonton, AB T6G 2G3, Canada.
| |
Collapse
|
3
|
Alvarez-Sanchez N, Dunn SE. Potential biological contributers to the sex difference in multiple sclerosis progression. Front Immunol 2023; 14:1175874. [PMID: 37122747 PMCID: PMC10140530 DOI: 10.3389/fimmu.2023.1175874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/03/2023] [Indexed: 05/02/2023] Open
Abstract
Multiple sclerosis (MS) is an immune-mediated disease that targets the myelin sheath of central nervous system (CNS) neurons leading to axon injury, neuronal death, and neurological progression. Though women are more highly susceptible to developing MS, men that develop this disease exhibit greater cognitive impairment and accumulate disability more rapidly than women. Magnetic resonance imaging and pathology studies have revealed that the greater neurological progression seen in males correlates with chronic immune activation and increased iron accumulation at the rims of chronic white matter lesions as well as more intensive whole brain and grey matter atrophy and axon loss. Studies in humans and in animal models of MS suggest that male aged microglia do not have a higher propensity for inflammation, but may become more re-active at the rim of white matter lesions as a result of the presence of pro-inflammatory T cells, greater astrocyte activation or iron release from oligodendrocytes in the males. There is also evidence that remyelination is more efficient in aged female than aged male rodents and that male neurons are more susceptible to oxidative and nitrosative stress. Both sex chromosome complement and sex hormones contribute to these sex differences in biology.
Collapse
Affiliation(s)
- Nuria Alvarez-Sanchez
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON, Canada
- Department of Immunology, 1 King’s College Circle, Toronto, ON, Canada
| | - Shannon E. Dunn
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON, Canada
- Department of Immunology, 1 King’s College Circle, Toronto, ON, Canada
- Women's College Research Institute, Women's College Hospital, Toronto, ON, Canada
- *Correspondence: Shannon E. Dunn,
| |
Collapse
|
4
|
Maguire AD, Friedman TN, Villarreal Andrade DN, Haq F, Dunn J, Pfeifle K, Tenorio G, Buro K, Plemel JR, Kerr BJ. Sex differences in the inflammatory response of the mouse DRG and its connection to pain in experimental autoimmune encephalomyelitis. Sci Rep 2022; 12:20995. [PMID: 36470947 PMCID: PMC9722825 DOI: 10.1038/s41598-022-25295-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022] Open
Abstract
Multiple Sclerosis (MS) is an autoimmune disease with notable sex differences. Women are not only more likely to develop MS but are also more likely than men to experience neuropathic pain in the disease. It has been postulated that neuropathic pain in MS can originate in the peripheral nervous system at the level of the dorsal root ganglia (DRG), which houses primary pain sensing neurons (nociceptors). These nociceptors become hyperexcitable in response to inflammation, leading to peripheral sensitization and eventually central sensitization, which maintains pain long-term. The mouse model experimental autoimmune encephalomyelitis (EAE) is a good model for human MS as it replicates classic MS symptoms including pain. Using EAE mice as well as naïve primary mouse DRG neurons cultured in vitro, we sought to characterize sex differences, specifically in peripheral sensory neurons. We found sex differences in the inflammatory profile of the EAE DRG, and in the TNFα downstream signaling pathways activated intracellularly in cultured nociceptors. We also found increased cell death with TNFα treatment. Given that TNFα signaling has been shown to initiate intrinsic apoptosis through mitochondrial disruption, this led us to investigate sex differences in the mitochondria's response to TNFα. Our results demonstrate that male sensory neurons are more sensitive to mitochondrial stress, making them prone to neuronal injury. In contrast, female sensory neurons appear to be more resistant to mitochondrial stress and exhibit an inflammatory and regenerative phenotype that may underlie greater nociceptor hyperexcitability and pain. Understanding these sex differences at the level of the primary sensory neuron is an important first step in our eventual goal of developing sex-specific treatments to halt pain development in the periphery before central sensitization is established.
Collapse
Affiliation(s)
- Aislinn D. Maguire
- grid.17089.370000 0001 2190 316XNeuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2E1 Canada
| | - Timothy N. Friedman
- grid.17089.370000 0001 2190 316XNeuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2E1 Canada
| | - Dania N. Villarreal Andrade
- grid.17089.370000 0001 2190 316XNeuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2E1 Canada
| | - Fajr Haq
- grid.17089.370000 0001 2190 316XDepartment of Anesthesiology and Pain Medicine, University of Alberta, Clinical Sciences Building, 2-150, Edmonton, AB T6G 2G3 Canada
| | - Jacob Dunn
- grid.17089.370000 0001 2190 316XNeuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2E1 Canada
| | - Keiana Pfeifle
- grid.17089.370000 0001 2190 316XNeuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2E1 Canada
| | - Gustavo Tenorio
- grid.17089.370000 0001 2190 316XDepartment of Anesthesiology and Pain Medicine, University of Alberta, Clinical Sciences Building, 2-150, Edmonton, AB T6G 2G3 Canada
| | - Karen Buro
- grid.418296.00000 0004 0398 5853Department of Mathematics and Statistics, MacEwan University, Edmonton, AB T5J 2P2 Canada
| | - Jason R. Plemel
- grid.17089.370000 0001 2190 316XNeuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2E1 Canada
| | - Bradley J. Kerr
- grid.17089.370000 0001 2190 316XNeuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2E1 Canada ,grid.17089.370000 0001 2190 316XDepartment of Pharmacology, University of Alberta, Edmonton, AB T6E 2H7 Canada ,grid.17089.370000 0001 2190 316XDepartment of Anesthesiology and Pain Medicine, University of Alberta, Clinical Sciences Building, 2-150, Edmonton, AB T6G 2G3 Canada
| |
Collapse
|
5
|
McCombe PA, Greer JM. Effects of biological sex and pregnancy in experimental autoimmune encephalomyelitis: It's complicated. Front Immunol 2022; 13:1059833. [PMID: 36518769 PMCID: PMC9742606 DOI: 10.3389/fimmu.2022.1059833] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 11/03/2022] [Indexed: 11/29/2022] Open
Abstract
Experimental autoimmune encephalomyelitis (EAE) can be induced in many animal strains by inoculation with central nervous system antigens and adjuvant or by the passive transfer of lymphocytes reactive with these antigens and is widely used as an animal model for multiple sclerosis (MS). There are reports that female sex and pregnancy affect EAE. Here we review the effects of biological sex and the effects of pregnancy on the clinical features (including disease susceptibility) and pathophysiology of EAE. We also review reports of the possible mechanisms underlying these differences. These include sex-related differences in the immune system and in the central nervous system, the effects of hormones and the sex chromosomes and molecules unique to pregnancy. We also review sex differences in the response to factors that can modify the course of EAE. Our conclusion is that the effects of biological sex in EAE vary amongst animal models and should not be widely extrapolated. In EAE, it is therefore essential that studies looking at the effects of biological sex or pregnancy give full information about the model that is used (i.e. animal strain, sex, the inducing antigen, timing of EAE induction in relation to pregnancy, etc.). In addition, it would be preferable if more than one EAE model were used, to show if any observed effects are generalizable. This is clearly a field that requires further work. However, understanding of the mechanisms of sex differences could lead to greater understanding of EAE, and suggest possible therapies for MS.
Collapse
Affiliation(s)
| | - Judith M. Greer
- UQ Centre for Clinical Research, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
6
|
Immune Cell Contributors to the Female Sex Bias in Multiple Sclerosis and Experimental Autoimmune Encephalomyelitis. Curr Top Behav Neurosci 2022; 62:333-373. [PMID: 35467295 DOI: 10.1007/7854_2022_324] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Multiple sclerosis (MS) is a chronic, autoimmune, demyelinating disease of the central nervous system (CNS) that leads to axonal damage and accumulation of disability. Relapsing-remitting MS (RR-MS) is the most frequent presentation of MS and this form of MS is three times more prevalent in females than in males. This female bias in MS is apparent only after puberty, suggesting a role for sex hormones in this regulation; however, very little is known of the biological mechanisms that underpin the sex difference in MS onset. Experimental autoimmune encephalomyelitis (EAE) is an animal model of RR-MS that presents more severely in females in certain mouse strains and thus has been useful to study sex differences in CNS autoimmunity. Here, we overview the immunopathogenesis of MS and EAE and how immune mechanisms in these diseases differ between a male and female. We further describe how females exhibit more robust myelin-specific T helper (Th) 1 immunity in MS and EAE and how this sex bias in Th cells is conveyed by sex hormone effects on the T cells, antigen presenting cells, regulatory T cells, and innate lymphoid cell populations.
Collapse
|
7
|
Presto P, Mazzitelli M, Junell R, Griffin Z, Neugebauer V. Sex differences in pain along the neuraxis. Neuropharmacology 2022; 210:109030. [DOI: 10.1016/j.neuropharm.2022.109030] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/24/2022] [Accepted: 03/12/2022] [Indexed: 12/30/2022]
|
8
|
Dworsky-Fried Z, Faig CA, Vogel HA, Kerr BJ, Taylor AMW. Central amygdala inflammation drives pain hypersensitivity and attenuates morphine analgesia in experimental autoimmune encephalomyelitis. Pain 2022; 163:e49-e61. [PMID: 33863858 DOI: 10.1097/j.pain.0000000000002307] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 03/23/2021] [Indexed: 11/25/2022]
Abstract
ABSTRACT Chronic pain is a highly prevalent symptom associated with the autoimmune disorder multiple sclerosis (MS). The central nucleus of the amygdala plays a critical role in pain processing and modulation. Neuropathic pain alters nociceptive signaling in the central amygdala, contributing to pain chronicity and opioid tolerance. Here, we demonstrate that activated microglia within the central amygdala disrupt nociceptive sensory processing and contribute to pain hypersensitivity in experimental autoimmune encephalomyelitis (EAE), the most frequently used animal model of MS. Male and female mice with EAE exhibited differences in microglial morphology in the central amygdala, which was associated with heat hyperalgesia, impaired morphine reward, and reduced morphine antinociception in females. Animals with EAE displayed a lack of morphine-evoked activity in cells expressing somatostatin within the central amygdala, which drive antinociception. Induction of focal microglial activation in naïve mice via injection of lipopolysaccharide into the central amygdala produced a loss of morphine analgesia in females, similar to as observed in EAE animals. Our data indicate that activated microglia within the central amygdala may contribute to the sexually dimorphic effects of morphine and may drive neuronal adaptations that lead to pain hypersensitivity in EAE. Our results provide a possible mechanism underlying the decreased efficacy of opioid analgesics in the management of MS-related pain, identifying microglial activation as a potential therapeutic target for pain symptoms in this patient population.
Collapse
Affiliation(s)
- Zoë Dworsky-Fried
- Department of Pharmacology, University of Alberta, Edmonton, AB, Canada
| | - Christian A Faig
- Department of Pharmacology, University of Alberta, Edmonton, AB, Canada
| | - Holly A Vogel
- Department of Pharmacology, University of Alberta, Edmonton, AB, Canada
| | - Bradley J Kerr
- Department of Pharmacology, University of Alberta, Edmonton, AB, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
- Department of Anesthesiology and Pain Medicine, University of Alberta, Edmonton, AB, Canada
| | - Anna M W Taylor
- Department of Pharmacology, University of Alberta, Edmonton, AB, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
- Department of Anesthesiology and Pain Medicine, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
9
|
Segal JP, Phillips S, Dubois RM, Silva JR, Haird CM, Gale D, Hopman WM, Gallivan J, Gilron I, Ghasemlou N. Weight bearing as a measure of disease progression in experimental autoimmune encephalomyelitis. J Neuroimmunol 2021; 361:577730. [PMID: 34628133 DOI: 10.1016/j.jneuroim.2021.577730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/21/2021] [Accepted: 09/27/2021] [Indexed: 11/13/2022]
Abstract
Motor disability in multiple sclerosis is often modeled using experimental autoimmune encephalomyelitis (EAE) and assessed using the clinical score (CS), an observer-dependent tool that can lead to potential bias. The Advanced Dynamic Weight Bearing (ADWB) system was evaluated as an observer-independent measurement of EAE symptoms. ADWB detected weight shifts onto the front paws as mice develop hindlimb motor disability. CS and ADWB were strongly correlated, indicated that these measures are comparable and suggesting that ADWB may be an appropriate observer-independent tool for the assessment of EAE progression.
Collapse
Affiliation(s)
- Julia P Segal
- Department of Biomedical & Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Sarah Phillips
- Department of Biomedical & Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Rosalin M Dubois
- Department of Biomedical & Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Jaqueline R Silva
- Department of Biomedical & Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Cortney M Haird
- Department of Biomedical & Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Daniel Gale
- Department of Biomedical & Molecular Sciences, Queen's University, Kingston, Ontario, Canada; Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada
| | - Wilma M Hopman
- Clinical Research Centre, Kingston Health Sciences Centre, Kingston, Ontario, Canada
| | - Jason Gallivan
- Department of Biomedical & Molecular Sciences, Queen's University, Kingston, Ontario, Canada; Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada; Department of Psychology, Queen's University, Kingston, Ontario, Canada
| | - Ian Gilron
- Department of Biomedical & Molecular Sciences, Queen's University, Kingston, Ontario, Canada; Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada; Department of Anesthesiology & Perioperative Medicine, Kingston Health Sciences Centre, Kingston, Ontario, Canada
| | - Nader Ghasemlou
- Department of Biomedical & Molecular Sciences, Queen's University, Kingston, Ontario, Canada; Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada; Department of Anesthesiology & Perioperative Medicine, Kingston Health Sciences Centre, Kingston, Ontario, Canada.
| |
Collapse
|
10
|
Dalrymple AN, Ting JE, Bose R, Trevathan JK, Nieuwoudt S, Lempka SF, Franke M, Ludwig KA, Shoffstall AJ, Fisher LE, Weber DJ. Stimulation of the dorsal root ganglion using an Injectrode ®. J Neural Eng 2021; 18. [PMID: 34650008 DOI: 10.1088/1741-2552/ac2ffb] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 10/14/2021] [Indexed: 01/15/2023]
Abstract
Objective. The goal of this work was to compare afferent fiber recruitment by dorsal root ganglion (DRG) stimulation using an injectable polymer electrode (Injectrode®) and a more traditional cylindrical metal electrode.Approach. We exposed the L6 and L7 DRG in four cats via a partial laminectomy or burr hole. We stimulated the DRG using an Injectrode or a stainless steel (SS) electrode using biphasic pulses at three different pulse widths (80, 150, 300μs) and pulse amplitudes spanning the range used for clinical DRG stimulation. We recorded antidromic evoked compound action potentials (ECAPs) in the sciatic, tibial, and common peroneal nerves using nerve cuffs. We calculated the conduction velocity of the ECAPs and determined the charge-thresholds and recruitment rates for ECAPs from Aα, Aβ, and Aδfibers. We also performed electrochemical impedance spectroscopy measurements for both electrode types.Main results. The ECAP thresholds for the Injectrode did not differ from the SS electrode across all primary afferents (Aα, Aβ, Aδ) and pulse widths; charge-thresholds increased with wider pulse widths. Thresholds for generating ECAPs from Aβfibers were 100.0 ± 32.3 nC using the SS electrode, and 90.9 ± 42.9 nC using the Injectrode. The ECAP thresholds from the Injectrode were consistent over several hours of stimulation. The rate of recruitment was similar between the Injectrodes and SS electrode and decreased with wider pulse widths.Significance. The Injectrode can effectively excite primary afferents when used for DRG stimulation within the range of parameters used for clinical DRG stimulation. The Injectrode can be implanted through minimally invasive techniques while achieving similar neural activation to conventional electrodes, making it an excellent candidate for future DRG stimulation and neuroprosthetic applications.
Collapse
Affiliation(s)
- Ashley N Dalrymple
- Department of Mechanical Engineering, Carnegie Mellon University, 5000 Forbes Ave, Wean 1323, Pittsburgh, PA 15217, United States of America.,Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, 15217, United States of America
| | - Jordyn E Ting
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, 15217, United States of America.,Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States of America.,Center for Neural Basis of Cognition, Pittsburgh, PA, 15217, United States of America
| | - Rohit Bose
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, 15217, United States of America.,Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States of America.,Center for Neural Basis of Cognition, Pittsburgh, PA, 15217, United States of America
| | - James K Trevathan
- Departments of Biomedical Engineering and Neurological Surgery, University of Wisconsin-Madison, Madison, WI, United States of America
| | | | - Scott F Lempka
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States of America
| | | | - Kip A Ludwig
- Departments of Biomedical Engineering and Neurological Surgery, University of Wisconsin-Madison, Madison, WI, United States of America.,Neuronoff Inc., Cleveland, OH, United States of America.,Wisconsin Institute for Translational Neuroengineering (WITNe), Madison, WI, United States of America
| | - Andrew J Shoffstall
- Neuronoff Inc., Cleveland, OH, United States of America.,Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States of America
| | - Lee E Fisher
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, 15217, United States of America.,Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States of America.,Center for Neural Basis of Cognition, Pittsburgh, PA, 15217, United States of America.,Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Douglas J Weber
- Department of Mechanical Engineering, Carnegie Mellon University, 5000 Forbes Ave, Wean 1323, Pittsburgh, PA 15217, United States of America.,Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, 15217, United States of America.,Center for Neural Basis of Cognition, Pittsburgh, PA, 15217, United States of America.,Neuroscience Institute, Carnegie Mellon University, 5000 Forbes Ave, Wean 1323, Pittsburgh, PA 15217, United States of America
| |
Collapse
|
11
|
Glover K, Mishra D, Singh TRR. Epidemiology of Ocular Manifestations in Autoimmune Disease. Front Immunol 2021; 12:744396. [PMID: 34795665 PMCID: PMC8593335 DOI: 10.3389/fimmu.2021.744396] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 10/14/2021] [Indexed: 01/19/2023] Open
Abstract
The global prevalence of autoimmune diseases is increasing. As a result, ocular complications, ranging from minor symptoms to sight-threatening scenarios, associated with autoimmune diseases have also risen. These ocular manifestations can result from the disease itself or treatments used to combat the primary autoimmune disease. This review provides detailed insights into the epidemiological factors affecting the increasing prevalence of ocular complications associated with several autoimmune disorders.
Collapse
Affiliation(s)
| | | | - Thakur Raghu Raj Singh
- School of Pharmacy, Medical Biology Centre, Queen’s University Belfast, Belfast, United Kingdom
| |
Collapse
|
12
|
Dworsky-Fried Z, Chadwick CI, Kerr BJ, Taylor AMW. Multiple Sclerosis and the Endogenous Opioid System. Front Neurosci 2021; 15:741503. [PMID: 34602975 PMCID: PMC8484329 DOI: 10.3389/fnins.2021.741503] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 08/26/2021] [Indexed: 01/10/2023] Open
Abstract
Multiple sclerosis (MS) is an autoimmune disease characterized by chronic inflammation, neuronal degeneration and demyelinating lesions within the central nervous system. The mechanisms that underlie the pathogenesis and progression of MS are not fully known and current therapies have limited efficacy. Preclinical investigations using the murine experimental autoimmune encephalomyelitis (EAE) model of MS, as well as clinical observations in patients with MS, provide converging lines of evidence implicating the endogenous opioid system in the pathogenesis of this disease. In recent years, it has become increasingly clear that endogenous opioid peptides, binding μ- (MOR), κ- (KOR) and δ-opioid receptors (DOR), function as immunomodulatory molecules within both the immune and nervous systems. The endogenous opioid system is also well known to play a role in the development of chronic pain and negative affect, both of which are common comorbidities in MS. As such, dysregulation of the opioid system may be a mechanism that contributes to the pathogenesis of MS and associated symptoms. Here, we review the evidence for a connection between the endogenous opioid system and MS. We further explore the mechanisms by which opioidergic signaling might contribute to the pathophysiology and symptomatology of MS.
Collapse
Affiliation(s)
- Zoë Dworsky-Fried
- Department of Pharmacology, University of Alberta, Edmonton, AB, Canada
| | - Caylin I. Chadwick
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Bradley J. Kerr
- Department of Pharmacology, University of Alberta, Edmonton, AB, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
- Department of Anesthesiology and Pain Medicine, University of Alberta, Edmonton, AB, Canada
| | - Anna M. W. Taylor
- Department of Pharmacology, University of Alberta, Edmonton, AB, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
- Department of Anesthesiology and Pain Medicine, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
13
|
Yang Y, Sheng Q, Nie Z, Liu L, Zhang W, Chen G, Ye F, Shi L, Lv Z, Xie J, Wang D. Daphnetin inhibits spinal glial activation via Nrf2/HO-1/NF-κB signaling pathway and attenuates CFA-induced inflammatory pain. Int Immunopharmacol 2021; 98:107882. [PMID: 34182245 DOI: 10.1016/j.intimp.2021.107882] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Daphnetin (7, 8-dihydroxycoumarin, DAPH), a coumarin derivative isolated from Daphne odora var., recently draws much more attention as a promising drug candidate to treat neuroinflammatory diseases due to its protective effects against neuroinflammation. However, itscontribution to chronic inflammatory pain is largely unknown. In the current work, we investigated the effects of DAPH in a murine model of inflammatory pain induced by complete Freund's adjuvant (CFA) and its possible underlying mechanisms. Our results showed that DAPH treatment significantly attenuated mechanical allodynia provoked by CFA. A profound inhibition of spinal glial activation, followed by attenuated expression levels of spinal pro-inflammatory cytokines, was observed in DAPH-treated inflammatory pain mice. Further study demonstrated that DAPH mediated negative regulation of spinal NF-κB pathway, as well as its preferential activation of Nrf2/HO-1 signaling pathway in inflammatory pain mice. This study, for the first time, indicated that DAPH might preventthe development of mechanical allodynia in mice with inflammatory pain. And more importantly, these data provide evidence for the potential application of DAPH in the treatment of chronic inflammatory pain.
Collapse
Affiliation(s)
- Yifan Yang
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Qing Sheng
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Zuoming Nie
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Lili Liu
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Wenping Zhang
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Guiqian Chen
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Fei Ye
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Liyun Shi
- Department of Immunology and Medical Microbiology, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zhengbing Lv
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Junjing Xie
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Dan Wang
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| |
Collapse
|
14
|
Kwilasz AJ, Green Fulgham SM, Duran-Malle JC, Schrama AEW, Mitten EH, Todd LS, Patel HP, Larson TA, Clements MA, Harris KM, Litwiler ST, Harvey LO, Maier SF, Chavez RA, Rice KC, Van Dam AM, Watkins LR. Toll-like receptor 2 and 4 antagonism for the treatment of experimental autoimmune encephalomyelitis (EAE)-related pain. Brain Behav Immun 2021; 93:80-95. [PMID: 33358978 PMCID: PMC8475740 DOI: 10.1016/j.bbi.2020.12.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 12/07/2020] [Accepted: 12/16/2020] [Indexed: 12/26/2022] Open
Abstract
Neuropathic pain is a major symptom of multiple sclerosis (MS) with up to 92% of patients reporting bodily pain, and 85% reporting pain severe enough to cause functional disability. None of the available therapeutics target MS pain. Toll-like receptors 2 and 4 (TLR2/TLR4) have emerged as targets for treating a wide array of autoimmune disorders, including MS, as well as having demonstrated success at suppressing pain in diverse animal models. The current series of studies tested systemic TLR2/TLR4 antagonists in males and females in a low-dose Myelin oligodendrocyte glycoprotein (MOG) experimental autoimmune encephalomyelitis (EAE) model, with reduced motor dysfunction to allow unconfounded testing of allodynia through 50+ days post-MOG. The data demonstrated that blocking TLR2/TLR4 suppressed EAE-related pain, equally in males and females; upregulation of dorsal spinal cord proinflammatory gene expression for TLR2, TLR4, NLRP3, interleukin-1β, IkBα, TNF-α and interleukin-17; and upregulation of dorsal spinal cord expression of glial immunoreactivity markers. In support of these results, intrathecal interleukin-1 receptor antagonist reversed EAE-induced allodynia, both early and late after EAE induction. In contrast, blocking TLR2/TLR4 did not suppress EAE-induced motor disturbances induced by a higher MOG dose. These data suggest that blocking TLR2/TLR4 prevents the production of proinflammatory factors involved in low dose EAE pathology. Moreover, in this EAE model, TLR2/TLR4 antagonists were highly effective in reducing pain, whereas motor impairment, as seen in high dose MOG EAE, is not affected.
Collapse
Affiliation(s)
- Andrew J Kwilasz
- Department of Psychology and Neuroscience, University of Colorado, Boulder, CO, United States; The Center for Neuroscience, University of Colorado, Boulder, CO, United States.
| | - Suzanne M Green Fulgham
- Department of Psychology and Neuroscience, University of Colorado, Boulder, CO, United States; The Center for Neuroscience, University of Colorado, Boulder, CO, United States
| | - Julissa Chante Duran-Malle
- Department of Psychology and Neuroscience, University of Colorado, Boulder, CO, United States; The Center for Neuroscience, University of Colorado, Boulder, CO, United States
| | - Anouk E W Schrama
- Department of Psychology and Neuroscience, University of Colorado, Boulder, CO, United States; The Center for Neuroscience, University of Colorado, Boulder, CO, United States
| | - Eric H Mitten
- Department of Psychology and Neuroscience, University of Colorado, Boulder, CO, United States; The Center for Neuroscience, University of Colorado, Boulder, CO, United States
| | - Laurel S Todd
- Department of Psychology and Neuroscience, University of Colorado, Boulder, CO, United States; The Center for Neuroscience, University of Colorado, Boulder, CO, United States
| | - Hardik P Patel
- Department of Psychology and Neuroscience, University of Colorado, Boulder, CO, United States; The Center for Neuroscience, University of Colorado, Boulder, CO, United States
| | - Tracey A Larson
- Department of Psychology and Neuroscience, University of Colorado, Boulder, CO, United States; The Center for Neuroscience, University of Colorado, Boulder, CO, United States
| | - Madison A Clements
- Department of Psychology and Neuroscience, University of Colorado, Boulder, CO, United States; The Center for Neuroscience, University of Colorado, Boulder, CO, United States
| | - Kevin M Harris
- Department of Psychology and Neuroscience, University of Colorado, Boulder, CO, United States; The Center for Neuroscience, University of Colorado, Boulder, CO, United States
| | - Scott T Litwiler
- Department of Psychology and Neuroscience, University of Colorado, Boulder, CO, United States; The Center for Neuroscience, University of Colorado, Boulder, CO, United States
| | - Lewis O Harvey
- Department of Psychology and Neuroscience, University of Colorado, Boulder, CO, United States; The Center for Neuroscience, University of Colorado, Boulder, CO, United States
| | - Steven F Maier
- Department of Psychology and Neuroscience, University of Colorado, Boulder, CO, United States; The Center for Neuroscience, University of Colorado, Boulder, CO, United States
| | | | - Kenner C Rice
- Drug Design and Synthesis Section, National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, United States
| | - Anne-Marie Van Dam
- Department of Anatomy and Neuroscience, Amsterdam UMC, Vrije Universiteit, Amsterdam, Netherlands
| | - Linda R Watkins
- Department of Psychology and Neuroscience, University of Colorado, Boulder, CO, United States; The Center for Neuroscience, University of Colorado, Boulder, CO, United States
| |
Collapse
|
15
|
Ferguson M, Svendrovski A, Katz J. Association Between Multimorbid Disease Patterns and Pain Outcomes Among a Complex Chronic Care Population in Canada. J Pain Res 2020; 13:3045-3057. [PMID: 33244262 PMCID: PMC7685348 DOI: 10.2147/jpr.s269648] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 10/08/2020] [Indexed: 01/15/2023] Open
Abstract
PURPOSE Disease multimorbidity and pain is a complex, yet common, problem for the aging population, and a significant burden on the health-care systems around the world. Despite this, disease comorbidity and the association with pain in a complex chronic care population is not well understood. This study examined the most prevalent disease combinations and their association with pain. PATIENTS AND METHODS The study initially included 139,920 residents, aged 18-101 years, admitted to publicly funded hospital facilities for complex chronic care in Canada between the years 2006 and 2016. Data were acquired through the Canadian Institute for Health Information (CIHI) Facility-Based Continuing Care Reporting System (CCRS). Descriptive and chi-square statistics were used to summarize and compare the sample characteristics. Binary logistic regression analyses were used to examine the association between multimorbid disease categories and pain outcomes. RESULTS The sample consisted of 139,573 residents (57% female), mostly older (mean age = 77.32 years), married (40%), or widowed (36%). Residents took an average of 11.9 medications and 77% were using analgesic medications. On average, residents had diagnoses from 3.06 disease categories (SD = 1.43). Heart/circulation diseases were the most prevalent among the sample (73%), with neurological second (46%) and musculoskeletal third (44%). Overall, 73% of residents reported pain, with 43% reporting moderate pain severity. Residents with multiple disease categories were more likely to report the presence of pain (OR = 1.08, 95% CI: 1.07-1.08, p < 0.001), with each additional disease category associated with an 8% increase in the odds of reporting pain. CONCLUSION The findings from this study help identify common comorbid disease patterns related to pain in an institutionalized, complex chronic care population. This information contributes to both the pain and multimorbidity literature, and is invaluable for creating care plans to meet the demands of a challenging population.
Collapse
Affiliation(s)
- Meaghan Ferguson
- Department of Psychology, Faculty of Health, York University, Toronto, Ontario, Canada
| | - Anton Svendrovski
- Department of Psychology, UZIK Consulting Inc, Toronto, Ontario, Canada
| | - Joel Katz
- Department of Psychology, Faculty of Health, York University, Toronto, Ontario, Canada
| |
Collapse
|
16
|
Mesenchymal Stem Cells in Multiple Sclerosis: Recent Evidence from Pre-Clinical to Clinical Studies. Int J Mol Sci 2020; 21:ijms21228662. [PMID: 33212873 PMCID: PMC7698327 DOI: 10.3390/ijms21228662] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/13/2020] [Accepted: 11/15/2020] [Indexed: 02/07/2023] Open
Abstract
Multiple sclerosis (MS) is an autoimmune, demyelinating disease of the central nervous system. Nowadays, available therapies for MS can help to manage MS course and symptoms, but new therapeutic approaches are required. Stem cell therapy using mesenchymal stem cells (MSCs) appeared promising in different neurodegenerative conditions, thanks to their beneficial capacities, including the immunomodulation ability, and to their secretome. The secretome is represented by growth factors, cytokines, and extracellular vesicles (EVs) released by MSCs. In this review, we focused on studies performed on in vivo MS models involving the administration of MSCs and on clinical trials evaluating MSCs administration. Experimental models of MS evidenced that MSCs were able to reduce inflammatory cell infiltration and disease score. Moreover, MSCs engineered to express different genes, preconditioned with different compounds, differentiated or in combination with other compounds also exerted beneficial actions in MS models, in some cases also superior to native MSCs. Secretome, both conditioned medium and EVs, also showed protective effects in MS models and appeared promising to develop new approaches. Clinical trials highlighted the safety and feasibility of MSC administration and reported some improvements, but other trials using larger cohorts of patients are needed.
Collapse
|
17
|
Segal JP, Bannerman CA, Silva JR, Haird CM, Baharnoori M, Gilron I, Ghasemlou N. Chronic mechanical hypersensitivity in experimental autoimmune encephalomyelitis is regulated by disease severity and neuroinflammation. Brain Behav Immun 2020; 89:314-325. [PMID: 32688029 DOI: 10.1016/j.bbi.2020.07.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/05/2020] [Accepted: 07/10/2020] [Indexed: 11/19/2022] Open
Abstract
Chronic pain severely affects quality of life in more than half of people living with multiple sclerosis (MS). A commonly-used model of MS, experimental autoimmune encephalomyelitis (EAE), typically presents with hindlimb paralysis, neuroinflammation and neurodegeneration. However, this paralysis may hinder the use of pain behavior tests, with no apparent hypersensitivity observed post-peak disease. We sought to adapt the classic actively-induced EAE model to optimize its pain phenotype. EAE was induced with MOG35-55/CFA and 100-600 ng pertussis toxin (PTX), and mice were assessed for mechanical, cold and thermal sensitivity over a 28-day period. Spinal cord tissue was collected at 14 and 28 days post-injection to assess demyelination and neuroinflammation. Only mice treated with 100 ng PTX exhibited mechanical hypersensitivity. Hallmarks of disease pathology, including demyelination, immune cell recruitment, cytokine expression, glial activation, and neuronal damage were higher in EAE mice induced with moderate (200 ng) doses of pertussis toxin, compared to those treated with low (100 ng) levels. Immunostaining demonstrated activated astrocytes and myeloid/microglial cells in both EAE groups. These results indicate that a lower severity of EAE disease may allow for the study of pain behaviors while still presenting with disease pathology. By using this modified model, researchers may better study the mechanisms underlying pain.
Collapse
Affiliation(s)
- Julia P Segal
- Department of Biomedical & Molecular Sciences, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Courtney A Bannerman
- Department of Biomedical & Molecular Sciences, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Jaqueline R Silva
- Department of Biomedical & Molecular Sciences, Queen's University, Kingston, Ontario K7L 3N6, Canada; Department of Anesthesiology & Perioperative Medicine, Kingston Health Sciences Centre, Kingston, Ontario K7L 2V7, Canada
| | - Cortney M Haird
- Department of Biomedical & Molecular Sciences, Queen's University, Kingston, Ontario K7L 3N6, Canada; Department of Anesthesiology & Perioperative Medicine, Kingston Health Sciences Centre, Kingston, Ontario K7L 2V7, Canada
| | - Moogeh Baharnoori
- Department of Medicine, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Ian Gilron
- Department of Biomedical & Molecular Sciences, Queen's University, Kingston, Ontario K7L 3N6, Canada; Department of Anesthesiology & Perioperative Medicine, Kingston Health Sciences Centre, Kingston, Ontario K7L 2V7, Canada; Centre for Neuroscience Studies, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Nader Ghasemlou
- Department of Biomedical & Molecular Sciences, Queen's University, Kingston, Ontario K7L 3N6, Canada; Department of Anesthesiology & Perioperative Medicine, Kingston Health Sciences Centre, Kingston, Ontario K7L 2V7, Canada; Centre for Neuroscience Studies, Queen's University, Kingston, Ontario K7L 3N6, Canada.
| |
Collapse
|
18
|
Qualitative sex differences in pain processing: emerging evidence of a biased literature. Nat Rev Neurosci 2020; 21:353-365. [PMID: 32440016 DOI: 10.1038/s41583-020-0310-6] [Citation(s) in RCA: 389] [Impact Index Per Article: 77.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/15/2020] [Indexed: 02/07/2023]
Abstract
Although most patients with chronic pain are women, the preclinical literature regarding pain processing and the pathophysiology of chronic pain has historically been derived overwhelmingly from the study of male rodents. This Review describes how the recent adoption by a number of funding agencies of policies mandating the incorporation of sex as a biological variable into preclinical research has correlated with an increase in the number of studies investigating sex differences in pain and analgesia. Trends in the field are analysed, with a focus on newly published findings of qualitative sex differences: that is, those findings that are suggestive of differential processing mechanisms in each sex. It is becoming increasingly clear that robust differences exist in the genetic, molecular, cellular and systems-level mechanisms of acute and chronic pain processing in male and female rodents and humans.
Collapse
|
19
|
Friedman TN, Yousuf MS, Catuneanu A, Desai M, Juźwik CA, Fournier AE, Kerr BJ. Profiling the microRNA signature of the peripheral sensory ganglia in experimental autoimmune encephalomyelitis (EAE). J Neuroinflammation 2019; 16:223. [PMID: 31729981 PMCID: PMC6858636 DOI: 10.1186/s12974-019-1600-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 09/24/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Multiple sclerosis is an autoimmune disease with a distinct female bias, as well as a high prevalence of neuropathic pain in both sexes. The dorsal root ganglia (DRG) contain the primary sensory neurons that give rise to pain, and damage to these neurons may lead to neuropathic pain. Here, we investigate the sex differences of the DRG transcriptome in a mouse model of MS. METHODS Next-generation sequencing was used to establish RNA and microRNA profiles from the DRG of mice with MOG35-55-induced EAE, a model of CNS inflammation that mimics aspects of MS. Differential expression and multiple meta-analytic approaches were used to compare expression profiles in immunized female and male mice. Differential expression of relevant genes and microRNAs were confirmed by qPCR. RESULTS Three thousand five hundred twenty genes and 29 microRNAs were differentially expressed in the DRG of female mice with MOG35-55-EAE, while only 189 genes and 3 microRNAs were differentially expressed in males with MOG35-55-EAE. Genes related to the immune system were uniquely regulated in immunized female mice. Direct comparison of sex within disease indicates significant differences in interferon and phagosomal pathways between the sexes. miR-21a-5p is the primary dysregulated microRNA in both sexes, with females having additional dysregulated microRNAs, including miR-122-5p. CONCLUSIONS This study provides evidence that females are uniquely affected by MOG35-55-EAE and that this difference may result from additional signaling not present in the male. The altered transcriptome of females correlates with other studies finding hyperactivity of pain-sensing neurons and suggests underlying sex-specific pathways for neuropathic pain.
Collapse
Affiliation(s)
- Timothy N Friedman
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, T6G 2E1, Canada
| | - Muhammad Saad Yousuf
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, T6G 2E1, Canada
| | - Ana Catuneanu
- Department of Pharmacology, University of Alberta, Edmonton, Alberta, T6E 2H7, Canada
| | - Mansi Desai
- Department of Pharmacology, University of Alberta, Edmonton, Alberta, T6E 2H7, Canada
| | - Camille A Juźwik
- Montreal Neurological Institute, McGill University, Montreal, Quebec, H3A 2B4, Canada
| | - Alyson E Fournier
- Montreal Neurological Institute, McGill University, Montreal, Quebec, H3A 2B4, Canada
| | - Bradley J Kerr
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, T6G 2E1, Canada. .,Department of Pharmacology, University of Alberta, Edmonton, Alberta, T6E 2H7, Canada. .,Department of Psychiatry (NRU), University of Alberta, Edmonton, Alberta, T6G 2B7, Canada. .,Department of Anesthesiology and Pain Medicine, University of Alberta, Clinical Sciences Building, 2-150, Edmonton, Alberta, T6G 2G3, Canada.
| |
Collapse
|
20
|
High Speed Ventral Plane Videography as a Convenient Tool to Quantify Motor Deficits during Pre-Clinical Experimental Autoimmune Encephalomyelitis. Cells 2019; 8:cells8111439. [PMID: 31739589 PMCID: PMC6912314 DOI: 10.3390/cells8111439] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 11/04/2019] [Accepted: 11/11/2019] [Indexed: 01/21/2023] Open
Abstract
Experimental autoimmune encephalomyelitis (EAE) is the most commonly used multiple sclerosis animal model. EAE mice typically develop motor deficits in a caudal-to-rostral pattern when inflammatory lesions have already developed. However, to monitor more subtle behavioral deficits during lesion development (i.e., pre-clinical phase), more sophisticated methods are needed. Here, we investigated whether high speed ventral plane videography can be applied to monitor early motor deficits during ‘pre-clinical’ EAE. For this purpose, EAE was induced in C57BL/6 mice and gait abnormalities were quantified using the DigiGait™ apparatus. Gait deficits were related to histopathological changes. 10 out of 10 control (100%), and 14 out of 18 (77.8%) pre-clinical EAE mice could be evaluated using DigiGait™. EAE severity was not influenced by DigiGait™-related mice handlings. Most gait parameters recorded from day 6 post-immunization until the end of the experiment were found to be stable in control mice. During the pre-clinical phase, when conventional EAE scorings failed to detect any functional impairment, EAE mice showed an increased Swing Time, increased %Swing Stride, decreased %Stance Stride, decreased Stance/Swing, and an increased Absolute Paw Angle. In summary, DigiGait™ is more sensitive than conventional scoring approaches to study motor deficits during the EAE pre-clinical phase.
Collapse
|
21
|
Fischer R, Padutsch T, Bracchi-Ricard V, Murphy KL, Martinez GF, Delguercio N, Elmer N, Sendetski M, Diem R, Eisel ULM, Smeyne RJ, Kontermann RE, Pfizenmaier K, Bethea JR. Exogenous activation of tumor necrosis factor receptor 2 promotes recovery from sensory and motor disease in a model of multiple sclerosis. Brain Behav Immun 2019; 81:247-259. [PMID: 31220564 PMCID: PMC6754799 DOI: 10.1016/j.bbi.2019.06.021] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 06/12/2019] [Accepted: 06/15/2019] [Indexed: 01/03/2023] Open
Abstract
Tumor necrosis factor receptor 2 (TNFR2) is a transmembrane receptor that promotes immune modulation and tissue regeneration and is recognized as a potential therapeutic target for multiple sclerosis (MS). However, TNFR2 also contributes to T effector cell function and macrophage-TNFR2 recently was shown to promote disease development in the experimental autoimmune encephalomyelitis (EAE) model of MS. We here demonstrate that systemic administration of a TNFR2 agonist alleviates peripheral and central inflammation, and reduces demyelination and neurodegeneration, indicating that protective signals induced by TNFR2 exceed potential pathogenic TNFR2-dependent responses. Our behavioral data show that systemic treatment of female EAE mice with a TNFR2 agonist is therapeutic on motor symptoms and promotes long-term recovery from neuropathic pain. Mechanistically, our data indicate that TNFR2 agonist treatment follows a dual mode of action and promotes both suppression of CNS autoimmunity and remyelination. Strategies based on the concept of exogenous activation of TNFR2 therefore hold great promise as a new therapeutic approach to treat motor and sensory disease in MS as well as other inflammatory diseases or neuropathic pain conditions.
Collapse
MESH Headings
- Animals
- Autoimmunity/immunology
- Demyelinating Diseases/metabolism
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Female
- Inflammation/pathology
- Macrophages/pathology
- Mice
- Mice, Inbred C57BL
- Multiple Sclerosis/metabolism
- Multiple Sclerosis/pathology
- Neuralgia/pathology
- Neurodegenerative Diseases/metabolism
- Receptors, Tumor Necrosis Factor, Type II/agonists
- Receptors, Tumor Necrosis Factor, Type II/metabolism
- Spinal Cord/pathology
- T-Lymphocytes, Regulatory/drug effects
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- Tumor Necrosis Factor-alpha/immunology
Collapse
Affiliation(s)
- Roman Fischer
- Department of Biology, Drexel University, Philadelphia, PA 19104, United States.
| | - Tanja Padutsch
- Department of Biology, Drexel University, Philadelphia, PA 19104, United States
| | | | - Kayla L Murphy
- Department of Biology, Drexel University, Philadelphia, PA 19104, United States
| | - George F Martinez
- Department of Biology, Drexel University, Philadelphia, PA 19104, United States
| | - Niky Delguercio
- Department of Biology, Drexel University, Philadelphia, PA 19104, United States
| | - Nicholas Elmer
- Department of Biology, Drexel University, Philadelphia, PA 19104, United States
| | - Maksim Sendetski
- Department of Biology, Drexel University, Philadelphia, PA 19104, United States
| | - Ricarda Diem
- Department of Neurology, University Clinic Heidelberg, 69120 Heidelberg, Germany; CCU Neurooncoloy, German Cancer Consortium (DKTK), German Cancer Research Center, Heidelberg, Germany
| | - Ulrich L M Eisel
- Department of Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences, Faculty of Science and Engineering, University of Groningen, 9747 AG Groningen, Netherlands
| | - Richard J Smeyne
- Department of Neurosciences, Jefferson Hospital for Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107, United States
| | - Roland E Kontermann
- Institute of Cell Biology and Immunology, University of Stuttgart, 70569 Stuttgart, Germany; Stuttgart Research Center Systems Biology, University of Stuttgart, 70569 Stuttgart, Germany
| | - Klaus Pfizenmaier
- Institute of Cell Biology and Immunology, University of Stuttgart, 70569 Stuttgart, Germany; Stuttgart Research Center Systems Biology, University of Stuttgart, 70569 Stuttgart, Germany
| | - John R Bethea
- Department of Biology, Drexel University, Philadelphia, PA 19104, United States.
| |
Collapse
|
22
|
Synaptic alterations and immune response are sexually dimorphic in a non-pertussis toxin model of experimental autoimmune encephalomyelitis. Exp Neurol 2019; 323:113061. [PMID: 31499065 DOI: 10.1016/j.expneurol.2019.113061] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 08/16/2019] [Accepted: 09/05/2019] [Indexed: 12/30/2022]
Abstract
Multiple sclerosis is an autoimmune disorder of the central nervous system (CNS) characterized by locomotor impairments, cognitive deficits, affective disorders, and chronic pain. Females are predominately affected by MS compared to males and develop motor symptoms earlier. However, key symptoms affect all patients regardless of sex. Previous studies have shown that demyelination and axonal damage play key roles in symptom development, but it is unclear why sex differences exist in MS onset, and effective symptom treatment is still lacking. We here used a non-pertussis toxin (nPTX) experimental autoimmune encephalomyelitis (EAE) model in C57BL/6 mice, to explore chronic symptoms and sex differences in CNS autoimmunity. We observed that, like in humans, female mice developed motor disease earlier than males. Further, changes in pre- and post-synaptic protein expression levels were observed in a sexually dimorphic manner with an overall shift towards excitatory signaling. Our data suggest that this shift towards excitatory signaling is achieved through different mechanisms in males and females. Altogether, our study helps to better understand sex-specific disease mechanisms to ultimately develop better diagnostic and treatment tools.
Collapse
|