1
|
Hua L, Gao X, Zhan J, Wu X, Liu H. Prostatitis and male infertility. Aging Male 2025; 28:2494550. [PMID: 40270187 DOI: 10.1080/13685538.2025.2494550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 04/09/2025] [Accepted: 04/12/2025] [Indexed: 04/25/2025] Open
Abstract
Infertility is a pressing reproductive health issue in modern society, with male factors accounting for approximately 50% of all cases. However, most research on male infertility has primarily focused on the testis, often ignoring the critical role of the prostate. As the largest male reproductive gland, the prostate plays a vital role in semen quality. Prostatic fluid, a major component of semen, significantly influences sperm function and overall male fertility. Prostatitis, the most common prostate disorder among men, particularly with advancing age, can severely impair reproductive health. This article aims to explore the fundamental physiological functions of the prostate, the etiology of prostatitis, and its impact on sperm health. It also discusses potential treatment strategies for prostatitis. Through this review, we hope to deepen understanding of the prostate's crucial role in male infertility.
Collapse
Affiliation(s)
- Lin Hua
- Department of Andrology, Sir Run Run Shaw Hospital, Affiliated with the Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Department of Urology, Sir Run Run Shaw Hospital, Affiliated with the Zhejiang University School of Medicine, Hangzhou, Zhejiang, China affiliated with the
| | - Xintao Gao
- Department of Urology, Sir Run Run Shaw Hospital, Affiliated with the Zhejiang University School of Medicine, Hangzhou, Zhejiang, China affiliated with the
| | - Junfeng Zhan
- Department of Andrology, Sir Run Run Shaw Hospital, Affiliated with the Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Department of Urology, Sir Run Run Shaw Hospital, Affiliated with the Zhejiang University School of Medicine, Hangzhou, Zhejiang, China affiliated with the
| | - Xiaolong Wu
- Department of Andrology, Sir Run Run Shaw Hospital, Affiliated with the Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Department of Urology, Sir Run Run Shaw Hospital, Affiliated with the Zhejiang University School of Medicine, Hangzhou, Zhejiang, China affiliated with the
| | - Hanchao Liu
- Department of Andrology, Sir Run Run Shaw Hospital, Affiliated with the Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Department of Urology, Sir Run Run Shaw Hospital, Affiliated with the Zhejiang University School of Medicine, Hangzhou, Zhejiang, China affiliated with the
| |
Collapse
|
2
|
Chen L, Chen Z, Chen J, Du H, Chen X, Chen J, Wang H, Liang C. CXCL10 Promotes Spinal Macrophage Recruitment via the JAK/STAT3 Pathway to Induce Pain in Experimental Autoimmune Prostatitis. Cell Prolif 2025; 58:e13784. [PMID: 39718951 PMCID: PMC11969258 DOI: 10.1111/cpr.13784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/28/2024] [Accepted: 11/18/2024] [Indexed: 12/26/2024] Open
Abstract
The aim is to explore the mechanisms underlying pain development in chronic prostatitis and identify therapeutic targets for pain management in patients with chronic prostatitis. RNA sequence of the spinal cord dorsal horns and proteomic analysis of spinal macrophages of experimental autoimmune prostatitis (EAP) mice were conducted to identify pain-related genes, proteins and signalling pathways. The clodronate liposome, CXCR3 and P-STAT3 inhibitors, NGF antibody and cromolyn sodium were used to investigate the roles of the CXCL10/CXCR3, JAK/STAT3 and NGF/TrKA pathways in spinal macrophage recruitment and pain response. Finally, prostate tissues from benign prostate hyperplasia (BPH) patients were collected to validate the aforementioned results. Neuron and astrocyte-derived CXCL10 was associated with spinal macrophage recruitment, and CXCL10/CXCR3 axis could regulate the chemotaxis of macrophage to the spinal cord in EAP mice. Results of proteomic analysis found that CXCL10 could regulate the JAK/STAT3 pathway to mediate neuroinflammation in EAP, which was validated in vivo and in vitro experiments. The number of mast cells and expressions of NGF, TrKA and PGP9.5 increased in the prostates of EAP mice and BPH patients, and targeting NGF could reduce spinal macrophage recruitment and pain response. NGF was the triggering factor to induce chemotaxis of spinal macrophages and neuroinflammation, and the CXCL10/CXCR3 axis and JAK/STAT3 pathway was involved in spinal macrophage recruitment and infiltration, which provided therapeutic targets for pain management.
Collapse
Affiliation(s)
- Lei Chen
- Department of UrologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiAnhuiChina
- Institute of UrologyAnhui Medical UniversityHefeiAnhuiChina
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical TransformationHefeiAnhuiChina
| | - Ziqi Chen
- Department of UrologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiAnhuiChina
- Institute of UrologyAnhui Medical UniversityHefeiAnhuiChina
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical TransformationHefeiAnhuiChina
| | - Jia Chen
- Department of UrologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiAnhuiChina
- Institute of UrologyAnhui Medical UniversityHefeiAnhuiChina
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical TransformationHefeiAnhuiChina
| | - Hexi Du
- Department of UrologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiAnhuiChina
- Institute of UrologyAnhui Medical UniversityHefeiAnhuiChina
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical TransformationHefeiAnhuiChina
| | - Xianguo Chen
- Department of UrologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiAnhuiChina
- Institute of UrologyAnhui Medical UniversityHefeiAnhuiChina
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical TransformationHefeiAnhuiChina
| | - Jing Chen
- Department of UrologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiAnhuiChina
- Institute of UrologyAnhui Medical UniversityHefeiAnhuiChina
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical TransformationHefeiAnhuiChina
| | - Hui Wang
- Department of UrologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiAnhuiChina
- Institute of UrologyAnhui Medical UniversityHefeiAnhuiChina
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical TransformationHefeiAnhuiChina
| | - Chaozhao Liang
- Department of UrologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiAnhuiChina
- Institute of UrologyAnhui Medical UniversityHefeiAnhuiChina
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical TransformationHefeiAnhuiChina
| |
Collapse
|
3
|
Luo X, Yang J, Zhao Y, Nagayasu T, Chen J, Hu P, He Z, Li Z, Wu J, Zhao Z, Duan G, Sun X, Zhao L, Pan Y, Wang X. Engineering spatially-confined conduits to tune nerve self-organization and allodynic responses via YAP-mediated mechanotransduction. Nat Commun 2025; 16:66. [PMID: 39746959 PMCID: PMC11695937 DOI: 10.1038/s41467-024-55118-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 12/02/2024] [Indexed: 01/04/2025] Open
Abstract
Chronic allodynia stemming from peripheral stump neuromas can persist for extended periods, significantly compromising patients' quality of life. Conventional managements for nerve stumps have demonstrated limited effectiveness in ensuring their orderly termination. In this study, we present a spatially confined conduit strategy, designed to enhance the self-organization of regenerating nerves after truncation. This innovative approach elegantly enables the autonomous slowing of axonal outgrowth in response to the gradually constricting space, concurrently suppressing neuroinflammation through YAP-mediated mechanotransduction activation. Meanwhile, the decelerating axons exhibit excellent alignment and remyelination, thereby helping to prevent failure modes in nerve self-organization, such as axonal twisting in congested regions and overgrowth beyond the conduit's capacity. Additionally, proteins associated with mechanical allodynia, including TRPA1 and CGRP, exhibit a gradual reduction in expression as spatial constraints tighten, a trend inversely validated by the administration of the YAP-targeted inhibitor Verteporfin. This spatially confined conduit strategy significantly alleviates allodynia, thus preventing autotomy behavior and reducing pain-induced gait alterations.
Collapse
Affiliation(s)
- Xiaobin Luo
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
- Department of Orthopedics, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, 102218, China
| | - Jia Yang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Yonggang Zhao
- State Key Laboratory for Performance and Structure Safety of Petroleum Tubular Goods and Equipment Materials, Tubular Goods Research Institute of CNPC, Xi'an, 710077, China
| | - Toshitatsu Nagayasu
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Junlin Chen
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Peilun Hu
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
- Department of Orthopedics, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, 102218, China
| | - Zhi He
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Zifan Li
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Jun Wu
- Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, 100094, China
| | - Zhe Zhao
- Department of Orthopedics, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, 102218, China
| | - Guman Duan
- Department of Orthopedics, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, 102218, China
| | - Xiaodan Sun
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Lingyun Zhao
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Yongwei Pan
- Department of Orthopedics, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, 102218, China.
| | - Xiumei Wang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
4
|
Tang W, Li X, Liu H, Xu C, Deng S. The role of macrophages in chronic pain. Cytokine 2025; 185:156813. [PMID: 39577336 DOI: 10.1016/j.cyto.2024.156813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/10/2024] [Accepted: 11/12/2024] [Indexed: 11/24/2024]
Abstract
Chronic pain typically lasts or recurs for more than three months and is an unpleasant sensory and emotional experience, including neuropathic pain, long-term tissue damage, tumors, and viral or bacterial infections.The unpleasantness associated with pain affects the basic life of patients and has become a truly global problem. Macrophages, a powerful immune effector cell whose functional plasticity leads to polarization into different subtypes and opposite effects in different environments, are also indispensable in the development of pain.In recent years, there has been an increasing number of studies on the effects of macrophages on pain, and there are multiple pathways that regulate macrophage polarization, including lipopolysaccharide induction and IL-4/IL-13 stimulation.In addition, pathways involving macrophages and macrophage polarization have been found to have an exacerbating or mitigating role in the progression of chronic pain, with M1 macrophages generally exacerbating pain progression and M2 macrophages mitigating pain progression.Therefore, modulating macrophage polarization holds great promise as an intervention in chronic pain. In this paper, we synthesize multiple macrophage pathways as well as mechanisms affecting their pain processes in the context of different types of chronic pain, providing new avenues for chronic pain relief.
Collapse
Affiliation(s)
- Weikang Tang
- School of Medicine, Tarim University, Alaer, 843300 Xinjiang, China
| | - Xuan Li
- School of Medicine, Tarim University, Alaer, 843300 Xinjiang, China
| | - Huixia Liu
- School of Medicine, Tarim University, Alaer, 843300 Xinjiang, China
| | - Chunyan Xu
- School of Medicine, Tarim University, Alaer, 843300 Xinjiang, China
| | - Siyao Deng
- School of Medicine, Tarim University, Alaer, 843300 Xinjiang, China..
| |
Collapse
|
5
|
Wang YR, Feng B, Qi WB, Gong YW, Kong XB, Cheng H, Dong ZL, Tian JQ, Wang ZP. Safety of low-intensity extracorporeal shock wave therapy in prostate disorders: in vitro and in vivo evidence. Asian J Androl 2024; 26:535-543. [PMID: 39107962 PMCID: PMC11449405 DOI: 10.4103/aja202448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 05/21/2024] [Indexed: 09/03/2024] Open
Abstract
ABSTRACT Recent evidence suggests that low-intensity extracorporeal shock wave therapy (Li-ESWT) is a promising treatment for chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS); however, its safety in pelvic organs, particularly prostate tissues and cells, remains unclear. The current study evaluates the risks of prostate cell damage or oncogenesis following the administration of Li-ESWT for prostatitis. To this end, a robust in vitro model (Cell Counting Kit-8 [CCK-8] assay, clone formation assay, cell scratch assay, lactate dehydrogenase [LDH] release assay, flow cytometry, and immunoblotting assay) was designed to examine the effects of Li-ESWT on cell proliferation, clonogenicity, migration, membrane integrity, and DNA damage. Exome sequencing of Li-ESWT-treated cells was performed to determine the risk of carcinogenesis. Furthermore, an in vivo rat model ( n = 20) was employed to assess the effects of Li-ESWT on cancer biomarkers (carcinoembryonic antigen [CEA], Ki67, proliferating cell nuclear antigen [PCNA], and gamma-H2A histone family member X, phosphorylation of the H2AX Ser-139 [ γ -H2AX]) in prostate tissue. Based on our findings, Li-ESWT promotes cellular growth and motility without inducing significant cell membrane or DNA damage or alterations. Genetic analyses did not demonstrate an increase in mutations, and no damage to prostate tissue or upregulation of cancer biomarkers was detected in vivo. This comprehensive in vitro and in vivo assessment confirms the safety of Li-ESWT in managing prostate disorders.
Collapse
Affiliation(s)
- Yi-Ran Wang
- Institute of Urology, Gansu Province Clinical Research Center for Urinary System Disease, The Second Hospital and Clinical Medical School, Lanzhou University, Lanzhou 730000, China
| | - Bin Feng
- Department of Urology, Gansu Provincial Hospital, Lanzhou 730000, China
| | - Wen-Bo Qi
- Department of Radiotherapy, First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Yu-Wen Gong
- Institute of Urology, Gansu Province Clinical Research Center for Urinary System Disease, The Second Hospital and Clinical Medical School, Lanzhou University, Lanzhou 730000, China
| | - Xiang-Bin Kong
- Institute of Urology, Gansu Province Clinical Research Center for Urinary System Disease, The Second Hospital and Clinical Medical School, Lanzhou University, Lanzhou 730000, China
| | - Hui Cheng
- Department of Urology, Gansu Provincial Second People’s Hospital, Lanzhou 730000, China
| | - Zhi-Long Dong
- Institute of Urology, Gansu Province Clinical Research Center for Urinary System Disease, The Second Hospital and Clinical Medical School, Lanzhou University, Lanzhou 730000, China
| | - Jun-Qiang Tian
- Institute of Urology, Gansu Province Clinical Research Center for Urinary System Disease, The Second Hospital and Clinical Medical School, Lanzhou University, Lanzhou 730000, China
| | - Zhi-Ping Wang
- Institute of Urology, Gansu Province Clinical Research Center for Urinary System Disease, The Second Hospital and Clinical Medical School, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
6
|
Chen J, Ma W, Yue S, Li D, Chen L, Zhang C, Guan Y, Li C, Jiang C, Liao G, Liang C, Wang H, Tai S. Dual deficiency of melatonin and dihydrotestosterone promotes stromal cell damage and mediates prostatitis via the cGAS-STING pathway in sleep-deprived mice. Cell Commun Signal 2024; 22:183. [PMID: 38491517 PMCID: PMC10941623 DOI: 10.1186/s12964-024-01554-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 03/02/2024] [Indexed: 03/18/2024] Open
Abstract
PURPOSE Prostatitis is a highly prevalent condition that seriously affects men's physical and mental health. Although epidemiological investigations have provided evidence of a correlation between insufficient sleep and prostatitis, the pathogenesis of prostatitis remains unclear. We sought to identify the underlying mechanism involved and identify a promising therapeutic target. METHODS Sleep deprivation (SD) was utilized to establish a mouse model of insufficient sleep in a special device. Prostatitis was observed at different time points post-SD. The degree of prostatitis was evaluated by pathological section and behavioural tests. Using immunofluorescence, western blot, and proteomic analyses, the underlying mechanism of SD-related prostatitis was investigated, and the development and therapeutic target of prostatitis were elucidated. RESULTS SD, as an initial pathological trigger, resulted in a reduction in dihydrotestosterone and melatonin levels. Proteomic analysis revealed that the cGAS-STING pathway may play a significant role in inducing prostatitis. The subsequent results illustrated that the dual reduction in dihydrotestosterone and melatonin led to an accumulation of reactive oxygen species and the release of mitochondrial DNA (mt-DNA). The accumulation of mt-DNA activated the cGAS-STING pathway, which recruited inflammatory cells into the prostatic stroma through the secretion of interferon-β. Consequently, an inflammatory microenvironment was formed, ultimately promoting the development of prostatitis. Notably, mice with SD-induced prostatitis gradually recovered to a normal state within 7 days of recovery sleep. However, after being subjected to SD again, these mice tended to have a more pronounced manifestation of prostatitis within a shorter timeframe, which suggested that prostatitis is prone to relapse. CONCLUSIONS The cGAS-STING pathway activated by dual deficiency of dihydrotestosterone and melatonin plays a comprehensive inflammatory role in SD-related prostatitis. This research provides valuable insights into the pathogenesis, therapeutic targets, and prevention strategies of prostatitis.
Collapse
Affiliation(s)
- Jia Chen
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Institute of Urology, Anhui Medical University, Anhui Province Key Laboratory of Genitourinary Diseases, Hefei, 230022, P.R. China
| | - Wenming Ma
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Institute of Urology, Anhui Medical University, Anhui Province Key Laboratory of Genitourinary Diseases, Hefei, 230022, P.R. China
| | - Shaoyu Yue
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Institute of Urology, Anhui Medical University, Anhui Province Key Laboratory of Genitourinary Diseases, Hefei, 230022, P.R. China
| | - Dongsheng Li
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Institute of Urology, Anhui Medical University, Anhui Province Key Laboratory of Genitourinary Diseases, Hefei, 230022, P.R. China
| | - Lei Chen
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Institute of Urology, Anhui Medical University, Anhui Province Key Laboratory of Genitourinary Diseases, Hefei, 230022, P.R. China
| | - Cheng Zhang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Institute of Urology, Anhui Medical University, Anhui Province Key Laboratory of Genitourinary Diseases, Hefei, 230022, P.R. China
| | - Yu Guan
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Institute of Urology, Anhui Medical University, Anhui Province Key Laboratory of Genitourinary Diseases, Hefei, 230022, P.R. China
| | - Chun Li
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Institute of Urology, Anhui Medical University, Anhui Province Key Laboratory of Genitourinary Diseases, Hefei, 230022, P.R. China
| | - Changqin Jiang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Institute of Urology, Anhui Medical University, Anhui Province Key Laboratory of Genitourinary Diseases, Hefei, 230022, P.R. China
| | - Guiyi Liao
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Institute of Urology, Anhui Medical University, Anhui Province Key Laboratory of Genitourinary Diseases, Hefei, 230022, P.R. China
| | - Chaozhao Liang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Institute of Urology, Anhui Medical University, Anhui Province Key Laboratory of Genitourinary Diseases, Hefei, 230022, P.R. China.
| | - Hui Wang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Institute of Urology, Anhui Medical University, Anhui Province Key Laboratory of Genitourinary Diseases, Hefei, 230022, P.R. China.
| | - Sheng Tai
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Institute of Urology, Anhui Medical University, Anhui Province Key Laboratory of Genitourinary Diseases, Hefei, 230022, P.R. China.
| |
Collapse
|
7
|
He H, Luo H, Qian B, Xu H, Zhang G, Zou X, Zou J. Autonomic Nervous System Dysfunction Is Related to Chronic Prostatitis/Chronic Pelvic Pain Syndrome. World J Mens Health 2024; 42:1-28. [PMID: 37118962 PMCID: PMC10782122 DOI: 10.5534/wjmh.220248] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/09/2023] [Accepted: 02/14/2023] [Indexed: 04/30/2023] Open
Abstract
Chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS) is a common and non-lethal urological condition with painful symptoms. The complexity of CP/CPPS's pathogenesis and lack of efficient etiological diagnosis results in incomplete treatment and recurrent episodes, causing long-term mental and psychological suffering in patients. Recent findings indicate that the autonomic nervous system involves in CP/CPPS, including sensory, sympathetic, parasympathetic, and central nervous systems. Neuro-inflammation and sensitization of sensory nerves lead to persistent inflammation and pain. Sympathetic and parasympathetic alterations affect the cardiovascular and reproductive systems and the development of prostatitis. Central sensitization lowers pain thresholds and increases pelvic pain perception in chronic prostatitis. Therefore, this review summarized the detailed processes and mechanisms of the critical role of the autonomic nervous system in developing CP/CPPS. Furthermore, it describes the neurologically relevant substances and channels or receptors involved in this process, which provides new perspectives for new therapeutic approaches to CP/CPPS.
Collapse
Affiliation(s)
- Hailan He
- Department of Graduate, First Clinical Colledge, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, the First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Hui Luo
- Department of Graduate, First Clinical Colledge, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, the First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Biao Qian
- Department of Urology, the First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Institute of Urology, the First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Jiangxi Engineering Technology Research Center of Calculi Prevention, Ganzhou, Jiangxi, China
| | - Hui Xu
- Department of Urology, the First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Institute of Urology, the First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Jiangxi Engineering Technology Research Center of Calculi Prevention, Ganzhou, Jiangxi, China
| | - Guoxi Zhang
- Department of Urology, the First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Institute of Urology, the First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Jiangxi Engineering Technology Research Center of Calculi Prevention, Ganzhou, Jiangxi, China
| | - Xiaofeng Zou
- Department of Urology, the First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Institute of Urology, the First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Jiangxi Engineering Technology Research Center of Calculi Prevention, Ganzhou, Jiangxi, China
| | - Junrong Zou
- Department of Urology, the First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Institute of Urology, the First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Jiangxi Engineering Technology Research Center of Calculi Prevention, Ganzhou, Jiangxi, China.
| |
Collapse
|
8
|
Liu YF, Xie WJ, Xi P, Zhang ZC, Chen R, Fu SQ, Lei KY, Liu J, Cheng XF, Nie YC, Yang XR, Ma M, Sun T, Gong BB. Astaxanthin alleviates chronic prostatitis/chronic pelvic pain syndrome by increasing colonization of Akkermansia muciniphila in the intestine. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 123:155249. [PMID: 38056144 DOI: 10.1016/j.phymed.2023.155249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/12/2023] [Accepted: 11/24/2023] [Indexed: 12/08/2023]
Abstract
BACKGROUND Astaxanthin (AST) is a natural compound with anti-inflammatory/immunomodulatory properties that has been found to have probiotic properties. However, the role and mechanism of AST in chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS) are still not fully understood. PURPOSE The aim of this study was to evaluate the effect of AST on CP/CPPS and elucidate the mediating role of the gut microbiota. MATERIALS AND METHODS An experimental autoimmune prostatitis (EAP) mouse model was utilized to test the potential role of AST on CP/CPPS. Antibiotic cocktail (ABX) treatment and fecal microbiota transplantation (FMT) were used to elucidate the gut microbiota-mediated effects on AST. In addition, 16S rRNA gene sequencing and qRT-PCR analyses were used to analyze changes in the gut microbiota of EAP mice and CP/CPPS patients. Finally, the mechanism by which AST exerts a protective effect on CP/CPPS was explored by untargeted metabolomics and gut barrier function assays. RESULTS Oral administration of AST reduced prostate inflammation scores, alleviated tactile sensitization of the pelvic region in EAP mice, reduced CD4+ T cell and CD68+ macrophage infiltration in the prostatic interstitium, and inhibited the up-regulation of systemic and localized pain/pro-inflammatory mediators in the prostate. After ABX, the protective effect of AST against CP/CPPS was attenuated, whereas colonization with fecal bacteria from AST-treated EAP mice alleviated CP/CPPS. 16S rRNA gene sequencing and qRT-PCR analyses showed that Akkermansia muciniphila in the feces of EAP mice and CP/CPPS patients showed a trend toward a decrease, which was associated with poor progression of CP/CPPS. In contrast, oral administration of AST increased the relative abundance of A. muciniphila, and oral supplementation with A. muciniphila also alleviated inflammation and pain in EAP mice. Finally, we demonstrated that both AST and A. muciniphila interventions increased serum levels of SCFAs acetate, up-regulated expression of colonic tight junction markers, and decreased serum lipopolysaccharide levels in EAP mice. CONCLUSION Our results showed that AST improved CP/CPPS by up-regulating A. muciniphila, which provides new potentially effective strategies and ideas for CP/CPPS management.
Collapse
Affiliation(s)
- Yi-Fu Liu
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang 330000, Jiangxi Province, China; Jiangxi Institute of Urology, Nanchang 330000, Jiangxi Province, China
| | - Wen-Jie Xie
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang 330000, Jiangxi Province, China; Jiangxi Institute of Urology, Nanchang 330000, Jiangxi Province, China
| | - Ping Xi
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang 330000, Jiangxi Province, China; Jiangxi Institute of Urology, Nanchang 330000, Jiangxi Province, China
| | - Zhi-Cheng Zhang
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang 330000, Jiangxi Province, China; Jiangxi Institute of Urology, Nanchang 330000, Jiangxi Province, China
| | - Ru Chen
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang 330000, Jiangxi Province, China; Jiangxi Institute of Urology, Nanchang 330000, Jiangxi Province, China
| | - Sheng-Qiang Fu
- Department of Proctology, The First Affiliated Hospital of Nanchang University, Nanchang 330000, Jiangxi Province, China
| | - Kun-Yang Lei
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang 330000, Jiangxi Province, China; Jiangxi Institute of Urology, Nanchang 330000, Jiangxi Province, China
| | - Ji Liu
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang 330000, Jiangxi Province, China; Jiangxi Institute of Urology, Nanchang 330000, Jiangxi Province, China
| | - Xiao-Feng Cheng
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang 330000, Jiangxi Province, China; Jiangxi Institute of Urology, Nanchang 330000, Jiangxi Province, China
| | - Ye-Chen Nie
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang 330000, Jiangxi Province, China; Jiangxi Institute of Urology, Nanchang 330000, Jiangxi Province, China
| | - Xiao-Rong Yang
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang 330000, Jiangxi Province, China; Jiangxi Institute of Urology, Nanchang 330000, Jiangxi Province, China
| | - Ming Ma
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang 330000, Jiangxi Province, China; Jiangxi Institute of Urology, Nanchang 330000, Jiangxi Province, China
| | - Ting Sun
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang 330000, Jiangxi Province, China; Jiangxi Institute of Urology, Nanchang 330000, Jiangxi Province, China.
| | - Bin-Bin Gong
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang 330000, Jiangxi Province, China; Jiangxi Institute of Urology, Nanchang 330000, Jiangxi Province, China.
| |
Collapse
|
9
|
Wang Y, Dang Z, Wang X, Chen Y, Dong P, Liu G, Tan W, Gui Z, Bu F, Lin F, Liang C. Obacunone alleviates chronic pelvic pain and pro-inflammatory depolarization of macrophage induced by experimental autoimmune prostatitis in mice. Biochem Biophys Rep 2023; 36:101565. [PMID: 37965064 PMCID: PMC10641089 DOI: 10.1016/j.bbrep.2023.101565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/09/2023] [Accepted: 10/23/2023] [Indexed: 11/16/2023] Open
Abstract
Chronic pelvic pain syndrome (CPPS) is a common complication of prostatitis, which was associated with the pathological depolarization of macrophage and the neuroinflammation. However, its underlying reason is far from clear and few effective treatments is applicable. In this study, we tested the effect of obacunone (Oba), a highly oxygenated triterpenoid, on CPPS. The experimental autoimmune prostatitis (EAP) was induced by subcutaneous injection of heterologous prostate homogenate in mice. We found that EAP led to prostatodynia, neuronal activation of spinal dorsal horn, and the pro-inflammatory depolarization of macrophage within prostate, which was significantly alleviated by oral administration of Oba in a dose-dependent manner. Mechanistically, EAP-induced production of IL-6 on prostatic macrophage was suppressed by Oba. Moreover, co-administration of Oba and MIF inhibitor ISO-1 did not lead to additive effect when compared with either alone. In summary, we conclude that Oba prevents the production of macrophage-derived pro-inflammatory factors by inhibiting MIF, which eventually alleviates CPPS after prostatitis.
Collapse
Affiliation(s)
- Yadong Wang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
- Department of Urology, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, 518033, China
| | - Zhaohui Dang
- Department of Neurology & Psychology, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, 518033, China
| | - Xu Wang
- Department of Neurology & Psychology, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, 518033, China
| | - Yuanyuan Chen
- Department of Neurology & Psychology, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, 518033, China
| | - Peng Dong
- Department of Neurosurgery, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, 518033, China
| | - Gang Liu
- Department of Neurosurgery, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, 518033, China
| | - Weibin Tan
- Department of Neurosurgery, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, 518033, China
| | - Zhong Gui
- Department of Neurosurgery, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, 518033, China
| | - Fan Bu
- Department of Neurology & Psychology, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, 518033, China
| | - Feng Lin
- Department of Urology, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, 518033, China
| | - Chaozhao Liang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
| |
Collapse
|
10
|
Lao Y, Li Z, Bai Y, Li W, Wang J, Wang Y, Li Q, Dong Z. Glial Cells of the Central Nervous System: A Potential Target in Chronic Prostatitis/Chronic Pelvic Pain Syndrome. Pain Res Manag 2023; 2023:2061632. [PMID: 38023826 PMCID: PMC10661872 DOI: 10.1155/2023/2061632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/24/2023] [Accepted: 11/07/2023] [Indexed: 12/01/2023]
Abstract
Chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS) is one of the most common diseases of the male urological system while the etiology and treatment of CP/CPPS remain a thorny issue. Cumulative research suggested a potentially important role of glial cells in CP/CPPS. This narrative review retrospected literature and grasped the research process about glial cells and CP/CPPS. Three types of glial cells showed a crucial connection with general pain and psychosocial symptoms. Microglia might also be involved in lower urinary tract symptoms. Only microglia and astrocytes have been studied in the animal model of CP/CPPS. Activated microglia and reactive astrocytes were found to be involved in both pain and psychosocial symptoms of CP/CPPS. The possible mechanism might be to mediate the production of some inflammatory mediators and their interaction with neurons. Glial cells provide a new insight to understand the cause of complex symptoms of CP/CPPS and might become a novel target to develop new treatment options. However, the activation and action mechanism of glial cells in CP/CPPS needs to be further explored.
Collapse
Affiliation(s)
- Yongfeng Lao
- Second Clinical Medical College, Lanzhou University, Lanzhou, China
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, China
| | - Zewen Li
- Second Clinical Medical College, Lanzhou University, Lanzhou, China
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, China
| | - Yanan Bai
- Second Clinical Medical College, Lanzhou University, Lanzhou, China
- Laboratory Medicine Center, Lanzhou University Second Hospital, Lanzhou, China
| | - Weijia Li
- Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Jian Wang
- Second Clinical Medical College, Lanzhou University, Lanzhou, China
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, China
| | - Yanan Wang
- Second Clinical Medical College, Lanzhou University, Lanzhou, China
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, China
| | - Qingchao Li
- Second Clinical Medical College, Lanzhou University, Lanzhou, China
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, China
| | - Zhilong Dong
- Second Clinical Medical College, Lanzhou University, Lanzhou, China
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, China
| |
Collapse
|
11
|
Pattabiraman G, Liu Z, Paul M, Schaeffer AJ, Thumbikat P. mMCP7, a Mouse Ortholog of δ Tryptase, Mediates Pelvic Tactile Allodynia in a Model of Chronic Pelvic Pain. FRONTIERS IN PAIN RESEARCH 2022; 2:805136. [PMID: 35295515 PMCID: PMC8915762 DOI: 10.3389/fpain.2021.805136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/16/2021] [Indexed: 11/13/2022] Open
Abstract
Chronic prostatitis/Chronic pelvic pain syndrome (CP/CPPS) is a condition that affects a large number of men and has unknown etiology. We have previously demonstrated the presence of elevated levels of mast cell tryptase in expressed prostatic secretions (EPS) of CP/CPPS patients. In a murine model of CP/CPPS, we showed tryptase and its cognate receptor PAR2 as critical to the development of pelvic pain and lower urinary tract symptoms. Here, we extend these observations to demonstrate that an isoform of tryptase called delta (δ)-tryptase, is elevated in the EPS of patients with CP/CPPS and is correlated with pelvic pain symptoms. Using an Escherichia coli (CP1) -induced murine model of CP/CPPS, we demonstrated a differential response in C57BL/6J and NOD/ShiLtJ mice, with C57BL6/J mice being resistant to an increase in pelvic tactile allodynia, despite having equivalent levels of activated mast cells in the prostate. Activated tryptase+ve mast cells were observed to be in closer apposition to PGP9.5+ve nerve fibers in the prostate stroma of NOD/ShiLtJ in comparison to C57BL/6J mice. The mouse ortholog of δ-tryptase, mouse mast cell protease 7 (mMCP7) has been reported to be unexpressed in C57BL/6J mice. We confirmed the absence of mMCP7 in the prostates of C57BL/6J and its presence in NOD/ShiLtJ mice. To evaluate a role for mMCP7 in the differential allodynia responses, we performed direct intra-urethral instillations of mMCP7 and the beta (β)-tryptase isoform ortholog, mMCP6 in the CP1-infection model. mMCP7, but not mMCP6 was able to induce an acute pelvic allodynia response in C57BL/6J mice. In-vitro studies with mMCP7 on cultured mast cells as well as dissociated primary neurons demonstrated the ability to induce differential activation of pain and inflammation associated molecules compared to mMCP6. We conclude that mMCP7, and possibility its human ortholog δ-tryptase, may play an important role in mediating the development of pelvic tactile allodynia in the mouse model of pelvic pain and in patients with CP/CPPS.
Collapse
Affiliation(s)
| | | | | | | | - Praveen Thumbikat
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
12
|
Liu H, Zhu X, Cao X, Chi A, Dai J, Wang Z, Deng C, Zhang M. IL-1β-primed mesenchymal stromal cells exert enhanced therapeutic effects to alleviate Chronic Prostatitis/Chronic Pelvic Pain Syndrome through systemic immunity. Stem Cell Res Ther 2021; 12:514. [PMID: 34563249 PMCID: PMC8466748 DOI: 10.1186/s13287-021-02579-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 09/04/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS) seriously affects patient health. Despite the elusiveness of innate therapeutic effects, mesenchymal stromal cells (MSCs) hold great promise for inflammation-related diseases. Recent evidence indicates that disease-specific inflammatory cytokines could enhance the therapeutic effects of MSCs. METHODS By establishing a CP/CPPS mouse model and pretreating MSCs with the cytokine interleukin-1β (IL-1β), we studied the IL-1β-primed MSC immunoregulatory ability and targeted migration ability in vitro and in CP/CPPS mice. RESULTS IL-1β levels significantly increased in the prostate tissue and serum of experimental autoimmune prostatitis (EAP) mice. Pretreatment with IL-1β enhanced the immunomodulatory potential and targeted migration of MSCs in vitro. Furthermore, intravenous infusion of IL-1β-primed MSCs dampened inflammation in prostate tissues and alleviated hyperalgesia in EAP mice. The infused MSCs inhibited monocyte infiltration and promoted regulatory T lymphocyte formation in prostate tissue, thus remodeling the local environment. Surprisingly, IL-1β-primed MSCs exhibited improved accumulation in the spleen but not in prostate tissue. Accordingly, infused MSCs reshaped systemic immunity by reducing the proportion of Ly6ChighCD11b+ monocytes and boosting the proportion of CD4+Foxp3+ regulatory T lymphocytes in the spleen and lung. Inflammatory chemokine (C-C motif) ligand 2 (CCL2) decreased through the downregulation of the NF-κB and JNK/MAPK pathways by inflammatory resolution via MSCs infusion to alleviate pain. CONCLUSION In summary, IL-1β-primed MSCs restored systemic immunologic homeostasis to alleviate CP/CPPS by modulating systemic immunity. These findings provide a novel strategy to boost the therapeutic effects of MSC-based therapy for CP/CPPS and reveal the essential role of systematic immunity in the treatment of CP/CPPS with MSC infusion.
Collapse
Affiliation(s)
- Hanchao Liu
- Department of Andrology, The First Affiliated Hospital of Sun Yat-Sen University, No. 58 Zhongshan Second Road, Guangzhou, China
| | - Xinning Zhu
- Reproductive Medicine Research Center, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Xiaohui Cao
- Hubei Key Laboratory for Kidney Disease Pathogenesis and Intervention, School of Medicine, Hubei Polytechnic University, 16 North Guilin Road, Huangshi, 435003, Hubei, China
| | - Ani Chi
- Department of Andrology, The First Affiliated Hospital of Sun Yat-Sen University, No. 58 Zhongshan Second Road, Guangzhou, China
| | - Jian Dai
- Department of Andrology, The First Affiliated Hospital of Sun Yat-Sen University, No. 58 Zhongshan Second Road, Guangzhou, China.,Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 51008, China
| | - Zhenqing Wang
- Department of Andrology, The First Affiliated Hospital of Sun Yat-Sen University, No. 58 Zhongshan Second Road, Guangzhou, China
| | - Chunhua Deng
- Department of Andrology, The First Affiliated Hospital of Sun Yat-Sen University, No. 58 Zhongshan Second Road, Guangzhou, China.
| | - Min Zhang
- Department of Andrology, The First Affiliated Hospital of Sun Yat-Sen University, No. 58 Zhongshan Second Road, Guangzhou, China.
| |
Collapse
|