1
|
Ni WH, Wang K, Wang Y, Lu J, Lu CT, Rong W, Gu YF, Qian WJ, Zhang HL. Long-term folic acid treatment relieves chronic inflammatory pain and pain-induced anxiety by reducing MMP2 expression in rats. Neuropharmacology 2025; 269:110352. [PMID: 39938859 DOI: 10.1016/j.neuropharm.2025.110352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 02/04/2025] [Accepted: 02/08/2025] [Indexed: 02/14/2025]
Abstract
Chronic inflammatory pain is a top priority for arthritis patients seeking medical care. Despite the availability of NSAIDs and glucocorticoids, pain management becomes increasingly challenging due to central and peripheral sensitization. Previous studies have shown that Matrix metalloproteinase 2 (MMP2) promotes neuroinflammation by cleaving extracellular matrix proteins and activating pro-inflammatory cytokines. Folic acid acts as a promising candidate for the treatment of neuroinflammatory diseases due to its neuroprotective effects. However, the role of folic acid in inflammatory pain remains unclear. This study investigated the analgesic mechanisms of folic acid in inflammatory pain. Adult rats underwent inflammatory pain by injecting complete freund's adjuvant (CFA) into the right hindpaw. Behavioral tests were used to assess the paw withdrawal threshold (PWT) and paw withdrawal latency (PWL). The results demonstrated that CFA injection induced abnormal mechanical and thermal pain and increased MMP2 expression in L3-L5 DRG and SDH of CFA rats. MMP2 was mainly expressed in neurons rather than glial cells in L3-L5 DRG of CFA rats. We further discovered that MMP2 inhibitor auraptene or knockdown alleviated inflammatory pain in CFA rats. Interestingly, we observed that long-term folic acid treatment reversed MMP2 overexpression, resulting in sustained relief of chronic inflammatory pain. Consistently, long-term folic acid treatment also relieved pain-induced anxiety. These results indicated that folic acid had a protective role in chronic inflammatory pain and pain-induced anxiety by repressing MMP2 expression. Folic acid or auraptene might be promising therapeutic options for the treatment of chronic inflammatory pain.
Collapse
Affiliation(s)
- Wen-Hui Ni
- Center for Translational Medicine, Department of Renal Medicine, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou Medical College of Soochow University, Suzhou, 215600, China
| | - Ke Wang
- Department of Pain, Suzhou Wuzhong People's Hospital, Suzhou, 215128, China
| | - Yun Wang
- Center for Translational Medicine, Department of Renal Medicine, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou Medical College of Soochow University, Suzhou, 215600, China
| | - Jia Lu
- Center for Translational Medicine, Department of Renal Medicine, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou Medical College of Soochow University, Suzhou, 215600, China
| | - Chun-Ting Lu
- Department of Pain, Suzhou Wuzhong People's Hospital, Suzhou, 215128, China
| | - Wen Rong
- Department of Pain, Suzhou Wuzhong People's Hospital, Suzhou, 215128, China
| | - Yi-Feng Gu
- Center for Translational Medicine, Department of Renal Medicine, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou Medical College of Soochow University, Suzhou, 215600, China
| | - Wen-Juan Qian
- Center for Translational Medicine, Department of Renal Medicine, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou Medical College of Soochow University, Suzhou, 215600, China.
| | - Hai-Long Zhang
- Center of Translational Medicine and Clinical Laboratory, The Fourth Affiliated Hospital of Soochow University, Medical Center of Soochow University, Suzhou Medical College of Soochow University, Suzhou, 215123, China.
| |
Collapse
|
2
|
Zhou F, Engel P, Ruth P, Lukowski R, Schmidtko A, Lu R. Slack potassium channels in spinal dorsal horn neurons control neuropathic pain and acute itch. Pain 2025; 166:858-867. [PMID: 39382315 DOI: 10.1097/j.pain.0000000000003427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 08/27/2024] [Indexed: 10/10/2024]
Abstract
ABSTRACT The sodium-activated potassium channel Slack (K Na 1.1, Kcnt1) plays a critical role in tuning neuronal excitability. Previous studies have revealed that Slack is expressed in neurons of the superficial dorsal horn of the spinal cord. However, the precise role of Slack in spinal dorsal horn neurons is unclear. In this study, we used mice in which Slack is conditionally ablated in spinal dorsal horn neurons (Lbx1-Slack -/- mice) and analyzed their behaviors in various models of pain and itch. Lbx1-Slack -/- mice exhibited increased neuropathic pain behavior after peripheral nerve injury but normal responses in a model of inflammatory pain. Unexpectedly, Lbx1-Slack -/- mice demonstrated increased scratching after intradermal injection of chloroquine, LY344864, and histamine. Moreover, neuromedin B receptors are coexpressed with Slack in the dorsal horn, and scratching after intrathecal delivery of neuromedin B was increased in Lbx1-Slack -/- mice. Our study provides in vivo evidence that Slack expressed in spinal dorsal horn neurons inhibits nerve injury-induced allodynia and acute itch induced by various pruritogens.
Collapse
Affiliation(s)
- Fangyuan Zhou
- Institute of Pharmacology and Clinical Pharmacy, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Patrick Engel
- Institute of Pharmacology and Clinical Pharmacy, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Peter Ruth
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tuebingen, Tuebingen, Germany
| | - Robert Lukowski
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tuebingen, Tuebingen, Germany
| | - Achim Schmidtko
- Institute of Pharmacology and Clinical Pharmacy, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Ruirui Lu
- Institute of Pharmacology and Clinical Pharmacy, Goethe University Frankfurt, Frankfurt am Main, Germany
| |
Collapse
|
3
|
Wu J, Kuang W, Zhu Z, Dou J, Yao J, Cao J, Zhang F, Xu G. Upregulation of NR2B Subunits of NMDA Receptors in the Lateral Parabrachial Nucleus Contributes to Chronic Pancreatitis Pain. CNS Neurosci Ther 2025; 31:e70313. [PMID: 40022510 PMCID: PMC11871393 DOI: 10.1111/cns.70313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 02/05/2025] [Accepted: 02/18/2025] [Indexed: 03/03/2025] Open
Abstract
AIMS Chronic pancreatitis (CP) is a localized or diffuse chronic progressive inflammation of the pancreas that can be caused by a variety of factors and is characterized by abdominal pain. However, the underlying mechanisms are poorly understood. Increasing evidence suggests that central sensitization plays a crucial role in the development of visceral pain, but the precise mechanisms of central neural processing remain unclear. METHODS CP was induced using repeated intraperitoneal injections of caerulein in mice. Neurospecific anterograde tracing was achieved using herpes simplex virus type 1 (HSV-1). Fiber photometry was used to assess neuronal activity. Optogenetic, chemogenetic, or pharmacological approaches were applied to manipulate the lateral parabrachial nucleus (LPB) glutamatergic neurons. The abdominal withdrawal threshold (AWT) was measured to evaluate the CP pain. A glutamate sensor was used to detect glutamate release in the LPB. RESULTS In the present study, we demonstrated that glutamatergic neurons in the LPB are activated in CP mice, leading to the development of CP pain. Notably, glutamatergic release is increased in the LPB, and the increased release primarily mediates CP pain by binding to the N-methyl-D-aspartate (NMDA) receptor rather than α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors. Specifically, this process involves the binding of the N-Methyl-D-Aspartate Receptor Subunit 2B (NR2B) in the LPB, leading to the development of CP pain. CONCLUSIONS This study identified the NR2B subunits of NMDA receptors in the LPB as playing a critical role in the regulation of CP pain.
Collapse
Affiliation(s)
- Jing‐Lai Wu
- Clinical Research Center of Neurological DiseaseThe Second Affiliated Hospital of Soochow University, Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow UniversitySuzhouChina
| | - Wen‐Qiong Kuang
- Clinical Research Center of Neurological DiseaseThe Second Affiliated Hospital of Soochow University, Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow UniversitySuzhouChina
| | - Zheng‐Yan Zhu
- Clinical Research Center of Neurological DiseaseThe Second Affiliated Hospital of Soochow University, Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow UniversitySuzhouChina
| | - Jing‐Heng Dou
- Clinical Research Center of Neurological DiseaseThe Second Affiliated Hospital of Soochow University, Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow UniversitySuzhouChina
| | - Jia‐He Yao
- Clinical Research Center of Neurological DiseaseThe Second Affiliated Hospital of Soochow University, Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow UniversitySuzhouChina
| | - Jing Cao
- Department of AnatomySchool of Basic Medical Sciences, Zhengzhou UniversityZhengzhouHenanChina
| | - Fu‐Chao Zhang
- Clinical Research Center of Neurological DiseaseThe Second Affiliated Hospital of Soochow University, Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow UniversitySuzhouChina
| | - Guang‐Yin Xu
- Clinical Research Center of Neurological DiseaseThe Second Affiliated Hospital of Soochow University, Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow UniversitySuzhouChina
| |
Collapse
|
4
|
Zhang R, Lin J, Wang S, Yang C, Zhou C, Yang Y, Liu J, Jin X, Zhang L, Ma Y. Astragalin relieves inflammatory pain and negative mood in CFA mice by down-regulating mGluR5 signaling pathway. Sci Rep 2025; 15:5774. [PMID: 39962225 PMCID: PMC11832914 DOI: 10.1038/s41598-025-90279-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 02/11/2025] [Indexed: 02/20/2025] Open
Abstract
As a flavonoid compound, astragalin (AST) is found in a variety of medicinal plants. In clinical studies, AST has anti-inflammatory and analgesia effects on rheumatoid arthritis, bronchopneumonia diseases and so on, but its specific role and mechanism is still not clear. This study aimed to investigate the effect and molecular mechanism of AST on inflammatory pain and pain-related emotions in complete Freund's adjuvant (CFA) mice. In this study, we observed that AST significantly alleviated CFA-induced inflammatory pain and associated emotional disturbances in mice. The mechanism may be related to down-regulating mGluR5-mediated PKCλ-ERK1/2-FOXO6 signaling pathway in CFA mice. Treatment with the mGluR5-specific inhibitor MTEP resulted in the downregulation of proteins associated with the PKCλ-ERK1/2-FOXO6 pathway, similar to the effects observed with AST administration. These results suggested that AST might play a crucial role in the management of inflammatory pain and related emotions, shedding light on its underlying mechanism for treating such conditions.
Collapse
Affiliation(s)
- Runheng Zhang
- Department of Anatomy, School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jiahong Lin
- Department of Anatomy, School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou, China
| | - Shuhan Wang
- Department of Anatomy, School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou, China
| | - Cuizhu Yang
- Department of Anatomy, School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou, China
| | - Chang Zhou
- Department of Anatomy, School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yaqi Yang
- Department of Anatomy, School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jing Liu
- Department of Anatomy, School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xiaobao Jin
- Guangdong Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, China
| | - Li Zhang
- Department of Anatomy, School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou, China.
| | - Yuxin Ma
- Department of Anatomy, School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou, China.
- Guangdong Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, China.
| |
Collapse
|
5
|
Sun Z, Han W, Dou Z, Lu N, Wang X, Wang F, Ma S, Tian Z, Xian H, Liu W, Liu Y, Wu W, Chu W, Guo H, Wang F, Ding H, Liu Y, Tao H, Freichel M, Birnbaumer L, Li Z, Xie R, Wu S, Luo C. TRPC3/6 Channels Mediate Mechanical Pain Hypersensitivity via Enhancement of Nociceptor Excitability and of Spinal Synaptic Transmission. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404342. [PMID: 39340833 PMCID: PMC11600220 DOI: 10.1002/advs.202404342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 09/11/2024] [Indexed: 09/30/2024]
Abstract
Patients with tissue inflammation or injury often experience aberrant mechanical pain hypersensitivity, one of leading symptoms in clinic. Despite this, the molecular mechanisms underlying mechanical distortion are poorly understood. Canonical transient receptor potential (TRPC) channels confer sensitivity to mechanical stimulation. TRPC3 and TRPC6 proteins, coassembling as heterotetrameric channels, are highly expressed in sensory neurons. However, how these channels mediate mechanical pain hypersensitivity has remained elusive. It is shown that in mice and human, TRPC3 and TRPC6 are upregulated in DRG and spinal dorsal horn under pathological states. Double knockout of TRPC3/6 blunts mechanical pain hypersensitivity, largely by decreasing nociceptor hyperexcitability and spinal synaptic potentiation via presynaptic mechanism. In corroboration with this, nociceptor-specific ablation of TRPC3/6 produces comparable pain relief. Mechanistic analysis reveals that upon peripheral inflammation, TRPC3/6 in primary sensory neurons get recruited via released bradykinin acting on B1/B2 receptors, facilitating BDNF secretion from spinal nociceptor terminals, which in turn potentiates synaptic transmission through TRPC3/6 and eventually results in mechanical pain hypersensitivity. Antagonizing TRPC3/6 in DRG relieves mechanical pain hypersensitivity in mice and nociceptor hyperexcitability in human. Thus, TRPC3/6 in nociceptors is crucially involved in pain plasticity and constitutes a promising therapeutic target against mechanical pain hypersensitivity with minor side effects.
Collapse
Affiliation(s)
- Zhi‐Chuan Sun
- Department of NeurobiologySchool of Basic MedicineFourth Military Medical UniversityXi'an710032China
- Department of NeurosurgeryXi'an Daxing HospitalXi'an710016China
| | - Wen‐Juan Han
- Department of NeurobiologySchool of Basic MedicineFourth Military Medical UniversityXi'an710032China
| | - Zhi‐Wei Dou
- Department of NeurobiologySchool of Basic MedicineFourth Military Medical UniversityXi'an710032China
| | - Na Lu
- Department of NeurobiologySchool of Basic MedicineFourth Military Medical UniversityXi'an710032China
- The Assisted Reproduction CenterNorthwest Women and Children's HospitalXi'an710000China
| | - Xu Wang
- Department of NeurobiologySchool of Basic MedicineFourth Military Medical UniversityXi'an710032China
| | - Fu‐Dong Wang
- Department of NeurobiologySchool of Basic MedicineFourth Military Medical UniversityXi'an710032China
| | - Sui‐Bin Ma
- Department of NeurobiologySchool of Basic MedicineFourth Military Medical UniversityXi'an710032China
| | - Zhi‐Cheng Tian
- Department of NeurobiologySchool of Basic MedicineFourth Military Medical UniversityXi'an710032China
| | - Hang Xian
- Department of NeurobiologySchool of Basic MedicineFourth Military Medical UniversityXi'an710032China
- Department of OrthopedicsXijing HospitalFourth Military Medical UniversityXi'an710032China
| | - Wan‐Neng Liu
- Department of NeurobiologySchool of Basic MedicineFourth Military Medical UniversityXi'an710032China
| | - Ying‐Ying Liu
- Department of NeurobiologySchool of Basic MedicineFourth Military Medical UniversityXi'an710032China
| | - Wen‐Bin Wu
- Department of NeurobiologySchool of Basic MedicineFourth Military Medical UniversityXi'an710032China
| | - Wen‐Guang Chu
- Department of NeurobiologySchool of Basic MedicineFourth Military Medical UniversityXi'an710032China
| | - Huan Guo
- Department of NeurobiologySchool of Basic MedicineFourth Military Medical UniversityXi'an710032China
| | - Fei Wang
- Department of NeurobiologySchool of Basic MedicineFourth Military Medical UniversityXi'an710032China
| | - Hui Ding
- Department of NeurobiologySchool of Basic MedicineFourth Military Medical UniversityXi'an710032China
| | - Yuan‐Ying Liu
- Department of NeurobiologySchool of Basic MedicineFourth Military Medical UniversityXi'an710032China
| | - Hui‐Ren Tao
- Department of Orthopedic SurgeryThe University of Hong Kong‐Shenzhen HospitalShenzhenGuangdong518053China
| | - Marc Freichel
- Institute of PharmacologyHeidelberg University69120HeidelbergGermany
| | - Lutz Birnbaumer
- Institute of Biomedical Research (BIOMED)Catholic University of ArgentinaBuenos AiresC1107AVVArgentina
- Signal Transduction LaboratoryNational institute of Environmental Health SciencesResearch Triangle ParkNC27709United States
| | - Zhen‐Zhen Li
- Department of NeurobiologySchool of Basic MedicineFourth Military Medical UniversityXi'an710032China
| | - Rou‐Gang Xie
- Department of NeurobiologySchool of Basic MedicineFourth Military Medical UniversityXi'an710032China
| | - Sheng‐Xi Wu
- Department of NeurobiologySchool of Basic MedicineFourth Military Medical UniversityXi'an710032China
| | - Ceng Luo
- Department of NeurobiologySchool of Basic MedicineFourth Military Medical UniversityXi'an710032China
- Innovation Research InstituteXijing HospitalFourth Military Medical UniversityXi'an710032China
| |
Collapse
|
6
|
Wang C, Lin J, Xie H, Chen L, Chen P, Wu L, Gong Q, Xia D, Wang X. Study on analgesic effect of Shentong Zhuyu Decoction in neuropathic pain rats by network pharmacology and RNA-Seq. JOURNAL OF ETHNOPHARMACOLOGY 2024; 330:118189. [PMID: 38615700 DOI: 10.1016/j.jep.2024.118189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/23/2024] [Accepted: 04/10/2024] [Indexed: 04/16/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Shentong Zhuyu Decoction (STZYD) is a traditional prescription for promoting the flow of Qi and Blood which is often used in the treatment of low back and leg pain clinicall with unclear mechanism. Neuropathic pain (NP) is caused by disease or injury affecting the somatosensory system. LncRNAs may play a key role in NP by regulating the expression of pain-related genes through binding mRNAs or miRNAs sponge mechanisms. AIM OF THE STUDY To investigate the effect and potential mechanism of STZYD on neuropathic pain. METHODS Chronic constriction injury (CCI) rats, a commonly used animal model, were used in this study. The target of STZYD in NP was analyzed by network pharmacology, and the analgesic effect of STZYD in different doses (H-STZYD, M-STZYD, L-STZYD) on CCI rats was evaluated by Mechanical withdrawal thresholds (MWT) and thermal withdrawal latency (TWL). Meanwhile, RNA-seq assay was used to detect the changed mRNAs and lncRNAs in CCI rats after STZYD intervention. GO analysis, KEGG pathway analysis, and IPA analysis were used to find key target genes and pathways, verified by qPCR and Western Blot. The regulatory effect of lncRNAs on target genes was predicted by co-expression analysis and ceRNA network construction. RESULTS We found that STZYD can improve hyperalgesia in CCI rats, and H-STZYD has the best analgesic effect. The results of network pharmacological analysis showed that STZYD could play an analgesic role in CCI rats through the MAPK/ERK/c-FOS pathway. By mRNA-seq and lncRNA-seq, we found that STZYD could regulate the expression of Cnr1, Cacng5, Gucy1a3, Kitlg, Npy2r, and Grm8, and inhibited the phosphorylation level of ERK in the spinal cord of CCI rats. A total of 27 lncRNAs were associated with the target genes and 30 lncRNAs, 83 miRNAs and 5 mRNAs participated in the ceRNA network. CONCLUSION STZYD has the effect of improving hyperalgesia in CCI rats through the MAPK/ERK/c-FOS pathway, which is related to the regulation of lncRNAs to Cnr1 and other key targets.
Collapse
Affiliation(s)
- Chen Wang
- Department of Traditional Chinese Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, Guangdong, China; Department of Neurosurgery, Neuroscience Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Jian Lin
- The Third Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Huiling Xie
- Department of Traditional Chinese Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Lukui Chen
- Department of Neurosurgery, Neuroscience Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Peng Chen
- Basic Medical School, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Lulu Wu
- The Third Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qian Gong
- The Third Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Dongbin Xia
- Department of Traditional Chinese Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, Guangdong, China.
| | - Xilong Wang
- Department of Traditional Chinese Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, Guangdong, China.
| |
Collapse
|
7
|
Niu Z, Qu ST, Zhang L, Dai JH, Wang K, Liu Y, Chen L, Song Y, Sun R, Xu ZH, Zhang HL. Trim14-IκBα Signaling Regulates Chronic Inflammatory Pain in Rats and Osteoarthritis Patients. Neuroscience 2024; 548:39-49. [PMID: 38697463 DOI: 10.1016/j.neuroscience.2024.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/10/2024] [Accepted: 04/26/2024] [Indexed: 05/05/2024]
Abstract
Chronic inflammatory pain is the highest priority for people with osteoarthritis when seeking medical attention. Despite the availability of NSAIDs and glucocorticoids, central sensitization and peripheral sensitization make pain increasingly difficult to control. Previous studies have identified the ubiquitination system as an important role in the chronic inflammatory pain. Our study displayed that the E3 ubiquitin ligase tripartite motif-containing 14 (Trim14) was abnormally elevated in the serum of patients with osteoarthritis and pain, and the degree of pain was positively correlated with the degree of Trim14 elevation. Furthermore, CFA-induced inflammatory pain rat model showed that Trim14 was significantly increased in the L3-5 spinal dorsal horn (SDH) and dorsal root ganglion (DRG), and in turn the inhibitor of nuclear factor Kappa-B isoform α (IκBα) was decreased after Trim14 elevation. After intrathecal injection of Trim14 siRNA to inhibit Trim14 expression, IκBα expression was reversed and increased, and the pain behaviors and anxiety behaviors of rats were significantly relieved. Overall, these findings suggested that Trim14 may contribute to chronic inflammatory pain by degrading IκBα, and that Trim14 may become a novel therapeutic target for chronic inflammatory pain.
Collapse
Affiliation(s)
- Zheng Niu
- Center for Translational Medicine, Department of Anesthesiology, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou Medical College of Soochow University, Suzhou 215600, China
| | - Shu-Ting Qu
- Center for Translational Medicine, Department of Anesthesiology, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou Medical College of Soochow University, Suzhou 215600, China
| | - Ling Zhang
- Center for Translational Medicine, Department of Anesthesiology, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou Medical College of Soochow University, Suzhou 215600, China
| | - Jia-Hao Dai
- Center for Translational Medicine, Department of Anesthesiology, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou Medical College of Soochow University, Suzhou 215600, China
| | - Ke Wang
- Department of Pain, Suzhou Wuzhong People's Hospital, Suzhou 215128, China
| | - Yun Liu
- Center for Translational Medicine, Department of Anesthesiology, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou Medical College of Soochow University, Suzhou 215600, China
| | - Long Chen
- Center for Translational Medicine, Department of Anesthesiology, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou Medical College of Soochow University, Suzhou 215600, China
| | - Yu Song
- Center for Translational Medicine, Department of Anesthesiology, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou Medical College of Soochow University, Suzhou 215600, China
| | - Ren Sun
- Center for Translational Medicine, Department of Anesthesiology, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou Medical College of Soochow University, Suzhou 215600, China
| | - Zhen-Hua Xu
- Center for Translational Medicine, Department of Anesthesiology, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou Medical College of Soochow University, Suzhou 215600, China.
| | - Hai-Long Zhang
- Center of Translational Medicine and Clinical Laboratory, The Fourth Affiliated Hospital of Soochow University, Medical Center of Soochow University, Suzhou Medical College of Soochow University, Suzhou 215123, China.
| |
Collapse
|
8
|
Gladwin MT, Gordeuk VR, Desai PC, Minniti C, Novelli EM, Morris CR, Ataga KI, De Castro L, Curtis SA, El Rassi F, Ford HJ, Harrington T, Klings ES, Lanzkron S, Liles D, Little J, Nero A, Smith W, Taylor JG, Baptiste A, Hagar W, Kanter J, Kinzie A, Martin T, Rafique A, Telen MJ, Lalama CM, Kato GJ, Abebe KZ. Riociguat in patients with sickle cell disease and hypertension or proteinuria (STERIO-SCD): a randomised, double-blind, placebo controlled, phase 1-2 trial. Lancet Haematol 2024; 11:e345-e357. [PMID: 38554715 DOI: 10.1016/s2352-3026(24)00045-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 04/02/2024]
Abstract
BACKGROUND Although nitric oxide based therapeutics have been shown in preclinical models to reduce vaso-occlusive events and improve cardiovascular function, a clinical trial of a phosphodiesterase 5 inhibitor increased rates of admission to hospital for pain. We aimed to examine if riociguat, a direct stimulator of the nitric oxide receptor soluble guanylate cyclase, causes similar increases in vaso-occlusive events. METHODS This was a phase 1-2, randomised, double blind, placebo-controlled trial. Eligible patients were 18 years or older, had confirmed sickle cell disease documented by haemoglobin electrophoresis or HPLC fractionation (haemoglobin SS, SC, Sβ-thalassemia, SD, or SO-Arab), and stage 1 hypertension or proteinuria. Participants were randomly assigned 1:1 to receive either riociguat or matching placebo via a web-based system to maintain allocation concealment. Both treatments were administered orally starting at 1·0 mg three times a day up to 2·5 mg three times a day (highest tolerated dose) for 12 weeks. Dose escalation by 0·5 mg was considered every 2 weeks if systolic blood pressure was greater than 95 mm Hg and the participant had no signs of hypotension; otherwise, the last dose was maintained. The primary outcome was the proportion of participants who had at least one adjudicated treatment-emergent serious adverse event. The analysis was performed by the intention-to-treat. This trial is registered with ClinicalTrials.gov (NCT02633397) and was completed. FINDINGS Between April 11, 2017, and Dec 31, 2021, 165 participants were screened and consented to be enrolled into the study. Of these, 130 participants were randomly assigned to either riociguat (n=66) or placebo (n=64). The proportion of participants with at least one treatment-emergent serious adverse event was 22·7% (n=15) in the riociguat group and 31·3% (n=20) in the placebo group (difference -8·5% [90% CI -21·4 to 4·5]; p=0·19). A similar pattern emerged in other key safety outcomes, sickle cell related vaso-occlusive events (16·7 [n=11] vs 21·9% [n=14]; difference -5·2% [-17·2 to 6·5]; p=0·42), mean pain severity (3·18 vs 3·32; adjusted mean difference -0·14 [-0·70 to 0·42]; p=0·69), and pain interference (3·15 vs 3·12; 0·04 [-0·62 to 0·69]; p=0·93) at 12 weeks were similar between groups. Regarding the key clinical efficacy endpoints, participants taking riociguat had a blood pressure of -8·20 mm Hg (-10·48 to -5·91) compared with -1·24 (-3·58 to 1·10) in those taking placebo (-6·96 mm Hg (90% CI -10·22 to -3·69; p<0·001). INTERPRETATION Riociguat was safe and had a significant haemodynamic effect on systemic blood pressure. The results of this study provide measures of effect and variability that will inform power calculations for future trials. FUNDING Bayer Pharmaceuticals.
Collapse
Affiliation(s)
- Mark T Gladwin
- University of Maryland School of Medicine, Baltimore, MD, USA.
| | - Victor R Gordeuk
- Division of Hematology and Oncology, Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Payal C Desai
- Levine Cancer Institute, Atrium Health, Wake Forest School of Medicine, Charlotte, NC, USA
| | | | - Enrico M Novelli
- Department of Medicine, Division of Hematology and Oncology, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Claudia R Morris
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA; Department of Pediatric Emergency Medicine, Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Kenneth I Ataga
- Department of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Laura De Castro
- Department of Medicine, Division of Hematology and Oncology, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Fuad El Rassi
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA; Georgia Comprehensive Sickle Cell Clinic at Grady Health System, Atlanta, GA, USA
| | - Hubert James Ford
- Pulmonary Hypertension Program, Division of Pulmonary and Critical Care Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Thomas Harrington
- Division of Hematology, Department of Medicine, University of Miami, Miami, FL, USA
| | - Elizabeth S Klings
- The Pulmonary Center, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
| | - Sophie Lanzkron
- Sickle Cell Center for Adults, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Darla Liles
- Brody School of Medicine East Carolina University, Greenville, NC, USA
| | - Jane Little
- University of North Carolina Comprehensive Sickle Cell Disease Program and Division of Hematology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Alecia Nero
- University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Wally Smith
- Division of General Internal Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - James G Taylor
- Center for Sickle Cell Disease, Departments of Medicine (Hematology and Oncology) and Microbiology and Immunology, Howard University College of Medicine, Washington, DC, USA; Department of Food and Human Nutrition Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Ayanna Baptiste
- Department of Medicine, New York-Presbyterian Brooklyn Methodist Hospital, Brooklyn, NY, USA
| | - Ward Hagar
- Internal Medicine, Department of Pediatrics, University of California San Francisco, Benioff Children's Hospital Oakland, Oakland, CA, USA
| | - Julie Kanter
- Hematology Oncology, Department of Internal Medicine, University of Alabama Birmingham, Birmingham, AL, USA
| | - Amy Kinzie
- Sickle Cell Center of Southern Louisiana, Tulane University School of Medicine, New Orleans, LA, USA
| | - Temeia Martin
- Medical University of South Carolina, Charleston, SC, USA
| | - Amina Rafique
- Sickle Cell Center of Southern Louisiana, Tulane University School of Medicine, New Orleans, LA, USA
| | - Marilyn J Telen
- Division of Hematology, Department of Medicine, Duke University School of Medicine, and Duke Comprehensive Sickle Cell Center, Durham, NC, USA
| | - Christina M Lalama
- Division of General Internal Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Center for Clinical Trials & Data Coordination, Division of General Internal Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Gregory J Kato
- Department of Medicine, Division of Hematology and Oncology, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kaleab Z Abebe
- Division of General Internal Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Center for Clinical Trials & Data Coordination, Division of General Internal Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
9
|
Lu W, Yang X, Zhong W, Chen G, Guo X, Ye Q, Xu Y, Qi Z, Ye Y, Zhang J, Wang Y, Wang X, Wang S, Zhao Q, Zeng W, Huang J, Ma H, Xie J. METTL14-mediated m6A epitranscriptomic modification contributes to chemotherapy-induced neuropathic pain by stabilizing GluN2A expression via IGF2BP2. J Clin Invest 2024; 134:e174847. [PMID: 38319733 PMCID: PMC10940092 DOI: 10.1172/jci174847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 01/23/2024] [Indexed: 02/08/2024] Open
Abstract
Epigenetics is a biological process that modifies and regulates gene expression, affects neuronal function, and contributes to pain. However, the mechanism by which epigenetics facilitates and maintains chronic pain is poorly understood. We aimed to determine whether N6-methyladenosine (m6A) specifically modified by methyltransferase-like 14 (METTL14) alters neuronal activity and governs pain by sensitizing the GluN2A subunit of the N-methyl-d-aspartate receptor (NMDAR) in the dorsal root ganglion (DRG) neurons in a model of chemotherapy-induced neuropathic pain (CINP). Using dot blotting, immunofluorescence, gain/loss-of-function, and behavioral assays, we found that m6A levels were upregulated in L4-L6 DRG neurons in CINP in a DBP/METTL14-dependent manner, which was also confirmed in human DRGs. Blocking METTL14 reduced m6A methylation and attenuated pain hypersensitivity. Mechanistically, METTL14-mediated m6A modification facilitated the synaptic plasticity of DRG neurons by enhancing the GluN2A subunit of NMDAR, and inhibiting METTL14 blocked this effect. In contrast, overexpression of METTL14 upregulated m6A modifications, enhanced presynaptic NMDAR activity in DRG neurons, and facilitated pain sensation. Our findings reveal a previously unrecognized mechanism of METTL14-mediated m6A modification in DRG neurons to maintain neuropathic pain. Targeting these molecules may provide a new strategy for pain treatment.
Collapse
Affiliation(s)
- Weicheng Lu
- Department of Anesthesiology, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Xiaohua Yang
- Department of Anesthesiology, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Weiqiang Zhong
- Department of Anesthesiology, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Guojun Chen
- Department of Anesthesiology, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Xinqi Guo
- Department of Physiology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Qingqing Ye
- Department of Anesthesiology, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Yixin Xu
- Department of Anesthesiology, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Zhenhua Qi
- Department of Anesthesiology, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Yaqi Ye
- Department of Anesthesiology, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Jingyun Zhang
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yuge Wang
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xintong Wang
- Department of Anesthesiology, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Shu Wang
- Department of Anesthesiology, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Qiyue Zhao
- Department of Physiology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Weian Zeng
- Department of Anesthesiology, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Junting Huang
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Huijie Ma
- Department of Physiology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Jingdun Xie
- Department of Anesthesiology, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| |
Collapse
|
10
|
Anand S, Rajagopal S. A Comprehensive Review on the Regulatory Action of TRP Channels: A Potential Therapeutic Target for Nociceptive Pain. Neurosci Insights 2023; 18:26331055231220340. [PMID: 38146332 PMCID: PMC10749524 DOI: 10.1177/26331055231220340] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 11/28/2023] [Indexed: 12/27/2023] Open
Abstract
The transient receptor potential (TRP) superfamily of ion channels in humans comprises voltage-gated, non-selective cation channels expressed both in excitable as well as non-excitable cells. Four TRP channel subunits associate to create functional homo- or heterotetramers that allow the influx of calcium, sodium, and/or potassium. These channels are highly abundant in the brain and kidney and are important mediators of diverse biological functions including thermosensation, vascular tone, flow sensing in the kidney and irritant stimuli sensing. Inherited or acquired dysfunction of TRP channels influences cellular functions and signaling pathways resulting in multifaceted disorders affecting skeletal, renal, cardiovascular, and nervous systems. Studies have demonstrated the involvement of these channels in the generation and transduction of pain. Based on the multifaceted role orchestrated by these TRP channels, modulation of the activity of these channels presents an important strategy to influence cellular function by regulating intracellular calcium levels as well as membrane excitability. Therefore, there has been a remarkable pharmaceutical inclination toward TRP channels as therapeutic interventions. Several candidate drugs influencing the activity of these channels are already in the clinical trials pipeline. The present review encompasses the current understanding of TRP channels and TRP modulators in pain and pain management.
Collapse
Affiliation(s)
- Santosh Anand
- Department of Biotechnology, School of Applied Sciences, REVA University, Bengaluru, Karnataka, India
| | - Senthilkumar Rajagopal
- Department of Biotechnology, School of Applied Sciences, REVA University, Bengaluru, Karnataka, India
| |
Collapse
|
11
|
Xian H, Guo H, Liu YY, Zhang JL, Hu WC, Yu MJ, Zhao R, Xie RG, Zhang H, Cong R. Peripheral BDNF Regulates Somatosensory-Sympathetic Coupling in Brachial Plexus Avulsion-Induced Neuropathic Pain. Neurosci Bull 2023; 39:1789-1806. [PMID: 37335428 PMCID: PMC10661543 DOI: 10.1007/s12264-023-01075-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 03/19/2023] [Indexed: 06/21/2023] Open
Abstract
Brachial plexus avulsion (BPA) is a combined injury involving the central and peripheral nervous systems. Patients with BPA often experience severe neuropathic pain (NP) in the affected limb. NP is insensitive to the existing treatments, which makes it a challenge to researchers and clinicians. Accumulated evidence shows that a BPA-induced pain state is often accompanied by sympathetic nervous dysfunction, which suggests that the excitation state of the sympathetic nervous system is correlated with the existence of NP. However, the mechanism of how somatosensory neural crosstalk with the sympathetic nerve at the peripheral level remains unclear. In this study, through using a novel BPA C7 root avulsion mouse model, we found that the expression of BDNF and its receptor TrκB in the DRGs of the BPA mice increased, and the markers of sympathetic nervous system activity including α1 and α2 adrenergic receptors (α1-AR and α2-AR) also increased after BPA. The phenomenon of superexcitation of the sympathetic nervous system, including hypothermia and edema of the affected extremity, was also observed in BPA mice by using CatWalk gait analysis, an infrared thermometer, and an edema evaluation. Genetic knockdown of BDNF in DRGs not only reversed the mechanical allodynia but also alleviated the hypothermia and edema of the affected extremity in BPA mice. Further, intraperitoneal injection of adrenergic receptor inhibitors decreased neuronal excitability in patch clamp recording and reversed the mechanical allodynia of BPA mice. In another branch experiment, we also found the elevated expression of BDNF, TrκB, TH, α1-AR, and α2-AR in DRG tissues from BPA patients compared with normal human DRGs through western blot and immunohistochemistry. Our results revealed that peripheral BDNF is a key molecule in the regulation of somatosensory-sympathetic coupling in BPA-induced NP. This study also opens a novel analgesic target (BDNF) in the treatment of this pain with fewer complications, which has great potential for clinical transformation.
Collapse
Affiliation(s)
- Hang Xian
- Department of Orthopedics, Xijing Hospital, The Air Force Medical University, Xi'an, 710032, China
| | - Huan Guo
- Pain and Related Diseases Research Laboratory, Medical College of Shantou University, Shantou, 515041, China
- Department of Neurobiology, School of Basic Medicine, The Air Force Medical University, Xi'an, 710032, China
| | - Yuan-Ying Liu
- School of Life Science and Research Center for Resource Peptide Drugs, Shaanxi Engineering and Technological Research Center for Conversation and Utilization of Regional Biological Resources, Yanan University, Yanan, 716000, China
- Department of Neurobiology, School of Basic Medicine, The Air Force Medical University, Xi'an, 710032, China
| | - Jian-Lei Zhang
- Department of Orthopedics, Xijing Hospital, The Air Force Medical University, Xi'an, 710032, China
| | - Wen-Chao Hu
- Department of Neurobiology, School of Basic Medicine, The Air Force Medical University, Xi'an, 710032, China
- The Sixth Regiment, School of Basic Medicine, The Air Force Medical University, Xi'an, 710032, China
| | - Ming-Jun Yu
- The Tenth Squadron of the Third Regiment, School of Basic Medicine, The Air Force Medical University, Xi'an, 710032, China
| | - Rui Zhao
- Department of Orthopedics, Xijing Hospital, The Air Force Medical University, Xi'an, 710032, China
| | - Rou-Gang Xie
- Department of Neurobiology, School of Basic Medicine, The Air Force Medical University, Xi'an, 710032, China.
| | - Hang Zhang
- Department of Orthopedics, Xijing Hospital, The Air Force Medical University, Xi'an, 710032, China.
| | - Rui Cong
- Department of Orthopedics, Xijing Hospital, The Air Force Medical University, Xi'an, 710032, China.
| |
Collapse
|
12
|
Wang TZ, Wang F, Tian ZC, Li ZZ, Liu WN, Ding H, Xie TT, Cao ZX, Li HT, Sun ZC, Xie RG, Wu SX, Pan ZX, Luo C. Cingulate cGMP-dependent protein kinase I facilitates chronic pain and pain-related anxiety and depression. Pain 2023; 164:2447-2462. [PMID: 37326662 DOI: 10.1097/j.pain.0000000000002952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 04/25/2023] [Indexed: 06/17/2023]
Abstract
ABSTRACT Patients with chronic pain often experience exaggerated pain response and aversive emotion, such as anxiety and depression. Central plasticity in the anterior cingulate cortex (ACC) is assumed to be a critical interface for pain perception and emotion, which has been reported to involve activation of NMDA receptors. Numerous studies have documented the key significance of cGMP-dependent protein kinase I (PKG-I) as a crucial downstream target for the NMDA receptor-NO-cGMP signaling cascade in regulating neuronal plasticity and pain hypersensitivity in specific regions of pain pathway, ie, dorsal root ganglion or spinal dorsal horn. Despite this, whether and how PKG-I in the ACC contributes to cingulate plasticity and comorbidity of chronic pain and aversive emotion has remained elusive. Here, we uncovered a crucial role of cingulate PKG-I in chronic pain and comorbid anxiety and depression. Chronic pain caused by tissue inflammation or nerve injury led to upregulation of PKG-I expression at both mRNA and protein levels in the ACC. Knockdown of ACC-PKG-I relieved pain hypersensitivity as well as pain-associated anxiety and depression. Further mechanistic analysis revealed that PKG-I might act to phosphorylate TRPC3 and TRPC6, leading to enhancement of calcium influx and neuronal hyperexcitability as well as synaptic potentiation, which results in the exaggerated pain response and comorbid anxiety and depression. We believe this study sheds new light on the functional capability of ACC-PKG-I in modulating chronic pain as well as pain-associated anxiety and depression. Hence, cingulate PKG-I may represent a new therapeutic target against chronic pain and pain-related anxiety and depression.
Collapse
Affiliation(s)
- Tao-Zhi Wang
- Department of Anesthesiology, The Second Hospital of Jilin University, Jilin University, Changchun, China
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Fei Wang
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
- Medical Experiment Center, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Zhi-Cheng Tian
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Zhen-Zhen Li
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Wan-Neng Liu
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
- College of Life Sciences, Northwest University, Xi'an, China
| | - Hui Ding
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Ting-Ting Xie
- Department of Anesthesiology, The Second Hospital of Jilin University, Jilin University, Changchun, China
| | - Zi-Xuan Cao
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
- The Twenty-second Squadron of the Sixth Regiment, School of Basal Medicine, Fourth Military Medical University, Xi'an, China
| | - Hai-Tao Li
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
- The Fourteenth Squadron of the Fourth Regiment, School of Basal Medicine, Fourth Military Medical University, Xi'an, China
| | - Zhi-Chuan Sun
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
- Department of Neurosurgery, Xi'an Daxing Hospital, Xi'an, China
| | - Rou-Gang Xie
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Sheng-Xi Wu
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Zhen-Xiang Pan
- Department of Anesthesiology, The Second Hospital of Jilin University, Jilin University, Changchun, China
| | - Ceng Luo
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
13
|
Zhang H, Li A, Liu YF, Sun ZM, Jin BX, Lin JP, Yang Y, Yao YX. Spinal TAOK2 contributes to neuropathic pain via cGAS-STING activation in rats. iScience 2023; 26:107792. [PMID: 37720090 PMCID: PMC10502416 DOI: 10.1016/j.isci.2023.107792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 05/25/2023] [Accepted: 08/29/2023] [Indexed: 09/19/2023] Open
Abstract
Thousand and one amino acid kinase 2 (TAOK2) is a member of the mammalian sterile 20 kinase family and is implicated in neurodevelopmental disorders; however, its role in neuropathic pain remains unknown. Here, we found that TAOK2 was enriched and activated after chronic constriction injury (CCI) in the rat spinal dorsal horn. Meanwhile, cyclic guanosine monophosphate-adenosine monophosphate synthase (cGAS)-stimulator of interferon genes (STING) signaling was also activated with hyperalgesia. Silencing TAOK2 reversed hyperalgesia and suppressed the activation of cGAS-STING signaling induced by CCI, while pharmacological activation of TAOK2 induced pain hypersensitivity and upregulation of cGAS-STING signaling in naive rats. Furthermore, pharmacological inhibition or gene silencing of cGAS-STING signaling attenuated CCI-induced hyperalgesia. Taken together, these data demonstrate that the activation of spinal TAOK2 contributes to CCI-induced hyperalgesia via cGAS-STING signaling activation, providing new molecular targets for the treatment of neuropathic pain.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Anesthesia, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China
| | - Ang Li
- Department of Anesthesia, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China
- Department of Anesthesia, People’s Hospital of Guizhou Province, Guiyang, Guizhou 550025, China
| | - Yu-Fan Liu
- Department of Anesthesia, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China
| | - Zhong-Ming Sun
- Department of Anesthesia, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China
| | - Bing-Xin Jin
- Department of Anesthesia, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China
| | - Jia-Piao Lin
- Department of Anesthesia, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China
| | - Yan Yang
- Department of Neurobiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310020, China
- Centre for Neuroscience, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Yong-Xing Yao
- Department of Anesthesia, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China
| |
Collapse
|
14
|
Li L, Liu Y, Hu W, Yang J, Ma S, Tian Z, Cao Z, Pan K, Jiang M, Liu X, Wu S, Luo C, Xie RG. Peripheral CCL2 induces inflammatory pain via regulation of Ih currents in small diameter DRG neurons. Front Mol Neurosci 2023; 16:1144614. [PMID: 37860084 PMCID: PMC10582564 DOI: 10.3389/fnmol.2023.1144614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 09/14/2023] [Indexed: 10/21/2023] Open
Abstract
The C-C motif chemokine ligand 2 (CCL2) has been implicated in chronic pain, but its exact mechanism of peripheral sensitization is unknown. In this study, we aimed to clarify the mechanism of CCL2 regulation of ion channels. Our behavioral experiments revealed that ZD7288, a blocker of Ih current, can inhibit CFA and CCL2-mediated mechanical and thermal nociceptive sensitization. Furthermore, patch clamp studies demonstrated that CFA-induced peripheral sensitization primarily affects the excitability of small-diameter DRG neurons. Further studies revealed that inflammatory pain caused by CFA or incubation of DRG with CCL2 mainly affected Ih currents in small-diameter DRG neurons, which were blocked by co-incubation CCR2 antagonist INCB3344 or adenylate cyclase inhibitor SQ22536. Immunohistochemical staining showed that both intraplantar injection of CFA as well as DRG injection of CCL2 resulted in significant upregulation of CCR2+/HCN2+ expression. In conclusion, we suggest in the inflammatory pain state, CCL2 can act on small-diameter DRG neurons, leading to upregulation of HCN2 expression and consequently Ih, which in turn leads to neuronal hyperexcitability.
Collapse
Affiliation(s)
- Lamei Li
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi’an, China
- School of Life Sciences & Research Center for Resource Peptide Drugs, Shaanxi Engineering & Technological Research Center for Conversation & Utilization of Regional Biological Resources, Yan’an University, Yan’an, China
| | - Yuanying Liu
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi’an, China
- School of Life Sciences & Research Center for Resource Peptide Drugs, Shaanxi Engineering & Technological Research Center for Conversation & Utilization of Regional Biological Resources, Yan’an University, Yan’an, China
| | - Wenchao Hu
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi’an, China
| | - Jing Yang
- Heart Hospital, Xi’an International Medical Center Hospital, Xi’an, China
| | - Suibin Ma
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi’an, China
| | - Zhicheng Tian
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi’an, China
| | - Zixuan Cao
- No.6 Cadet Regiment, School of Basic Medical Sciences, Fourth Military Medical University, Xi’an, China
| | - Kunqing Pan
- No.19 Cadet Regiment, School of Basic Medical Sciences, Fourth Military Medical University, Xi’an, China
| | - Ming Jiang
- School of Life Sciences & Research Center for Resource Peptide Drugs, Shaanxi Engineering & Technological Research Center for Conversation & Utilization of Regional Biological Resources, Yan’an University, Yan’an, China
| | - Xia Liu
- School of Life Sciences & Research Center for Resource Peptide Drugs, Shaanxi Engineering & Technological Research Center for Conversation & Utilization of Regional Biological Resources, Yan’an University, Yan’an, China
| | - Shengxi Wu
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi’an, China
| | - Ceng Luo
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi’an, China
| | - Rou-Gang Xie
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi’an, China
| |
Collapse
|
15
|
Andrassy B, Mukhdomi T. Examining a novel marker of central sensitization in chronic pain. Pain 2023; 164:2130. [PMID: 37595111 DOI: 10.1097/j.pain.0000000000002987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2023]
|
16
|
Iwasaki R, Miki T, Miyazaki M, Kanetaka C, Mitsuyama T, Ota K. Neuropathic Pain Was Associated with Central Sensitivity Syndrome in Patients with Preoperative Lumbar Spinal Stenosis Using the painDETECT and Central Sensitization Inventory Questionnaires: A Cross-Sectional Study. Pain Res Manag 2023; 2023:9963627. [PMID: 37207128 PMCID: PMC10191751 DOI: 10.1155/2023/9963627] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/21/2023]
Abstract
Background Lumbar spinal stenosis (LSS) patients have been reported to have neuropathic pain and central sensitivity syndrome (CSS). These associations have been reported in other diseases but are unknown in preoperative LSS patients. We aimed to investigate the association between neuropathic pain and CSS in preoperative LSS patients using the painDETECT and the Central Sensitization Inventory (CSI) questionnaires. Methods This cross-sectional study was conducted from November 2021 to March 2022. The data were collected regarding demographics and pain, including neuropathic pain, numbness, LSS severity, physical function, quality of life, and CSS. Patients were divided into two groups, patients with acute and chronic pain, and further classified into three categories based on the clinical phenotype of patients in each group. Independent variables included age, gender, type of LSS (bilateral or unilateral symptoms), Numerical Rating Scale of leg pain, CSI, and the Zurich Claudication Questionnaire (ZCQ) for symptom severity and physical function. The dependent variable was painDETECT. Multiple regression analysis using the forced entry method examined the association between painDETECT and CSI. Results Of the 119 patients with preoperative LSS, 106 were included. The mean age of the participants was 69.9 years, and 45.3% were female. Neuropathic pain was present in 19.8%, and CSS was present in 10.4%. The CSI (β = 0.468, p < 0.001) and ZCQ for symptom severity (β = 0.304, p < 0.01) were significantly associated with the painDETECT, explaining 47.8% of the variance in the painDETECT score. Conclusions There is an association between neuropathic pain and CSS in patients with preoperative LSS using the painDETECT and CSI questionnaires.
Collapse
Affiliation(s)
- Rintaro Iwasaki
- Department of Rehabilitation, Shisyokai Hakusan Clinic, Tokyo, Japan
| | - Takahiro Miki
- Department of Rehabilitation, Sapporo Maruyama Orthopedic Hospital, Sapporo, Hokkaido, Japan
- Faculty of Health Sciences, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Mizuki Miyazaki
- Department of Rehabilitation, Shinagawa Shisyokai Hospital, Tokyo, Japan
| | - Chifumi Kanetaka
- Department of Rehabilitation, Shinagawa Shisyokai Hospital, Tokyo, Japan
| | | | - Kaiji Ota
- Department of Orthopedic Surgery, Shinagawa Shisyokai Hospital, Tokyo, Japan
| |
Collapse
|
17
|
Zheng HL, Sun SY, Jin T, Zhang M, Zeng Y, Liu Q, Yang K, Wei R, Pan Z, Lin F. Transcription factor ETS proto-oncogene 1 contributes to neuropathic pain by regulating histone deacetylase 1 in primary afferent neurons. Mol Pain 2023; 19:17448069231152125. [PMID: 36604795 PMCID: PMC9909074 DOI: 10.1177/17448069231152125] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/04/2023] [Accepted: 01/04/2023] [Indexed: 01/07/2023] Open
Abstract
Nerve injury can induce aberrant changes in ion channels, enzymes, and cytokines/chemokines in the dorsal root ganglia (DRGs); these changes are due to or at least partly governed by transcription factors that contribute to the genesis of neuropathic pain. However, the involvement of transcription factors in neuropathic pain is poorly understood. In this study, we report that transcription factor (TF) ETS proto-oncogene 1 (ETS1) is required for the initiation and development of neuropathic pain. Sciatic nerve chronic constrictive injury (CCI, a clinical neuropathic pain model) increases ETS1 expression in the injured male mouse DRG. Blocking this upregulation alleviated CCI-induced mechanical allodynia and thermal hyperalgesia, with no apparent effect on locomotor function. Mimicking this upregulation results in the genesis of nociception hypersensitivity; mechanistically, nerve injury-induced ETS1 upregulation promotes the expression of histone deacetylase 1 (HDAC1, a key initiator of pain) via enhancing its binding activity to the HDAC1 promotor, leading to the elevation of spinal central sensitization, as evidenced by increased expression of p-ERK1/2 and GFAP in the dorsal spinal horn. It appears that the ETS1/HDAC1 axis in DRG may have a critical role in the development and maintenance of neuropathic pain, and ETS1 is a potential therapeutic target in neuropathic pain.
Collapse
Affiliation(s)
- Hong-Li Zheng
- Graduate School, Wannan Medical College, Wuhu, China
- Department of Pain, Shanghai Tenth People’s Hospital, Tongji University, Shanghai, China
| | - Shi-Yu Sun
- Department of Pain, Shanghai Tenth People’s Hospital, Tongji University, Shanghai, China
| | - Tong Jin
- Department of Pain, Shanghai Tenth People’s Hospital, Tongji University, Shanghai, China
| | - Ming Zhang
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
| | - Ying Zeng
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
| | - Qiaoqiao Liu
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
| | - Kehui Yang
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
| | - Runa Wei
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
| | - Zhiqiang Pan
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
| | - Fuqing Lin
- Graduate School, Wannan Medical College, Wuhu, China
- Department of Pain, Shanghai Tenth People’s Hospital, Tongji University, Shanghai, China
| |
Collapse
|
18
|
Abstract
PURPOSE OF REVIEW To review advances in the diagnostic evaluation and management of traumatic peripheral nerve injuries. RECENT FINDINGS Serial multimodal assessment of peripheral nerve injuries facilitates assessment of spontaneous axonal regeneration and selection of appropriate patients for early surgical intervention. Novel surgical and rehabilitative approaches have been developed to complement established strategies, particularly in the area of nerve grafting, targeted rehabilitation strategies and interventions to promote nerve regeneration. However, several management challenges remain, including incomplete reinnervation, traumatic neuroma development, maladaptive central remodeling and management of fatigue, which compromise functional recovery. SUMMARY Innovative approaches to the assessment and treatment of peripheral nerve injuries hold promise in improving the degree of functional recovery; however, this remains a complex and evolving area.
Collapse
|
19
|
Cao J, Liu X, Liu JX, Zhao S, Guo YX, Wang GY, Wang XL. Inhibition of glutamatergic neurons in layer II/III of the medial prefrontal cortex alleviates paclitaxel-induced neuropathic pain and anxiety. Eur J Pharmacol 2022; 936:175351. [DOI: 10.1016/j.ejphar.2022.175351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 10/14/2022] [Accepted: 10/21/2022] [Indexed: 11/29/2022]
|
20
|
Li Z, Xu C, Fu J, Zulipikaer M, Deng T, Chen J. Scientific Knowledge Graph and Trend Analysis of Central Sensitization: A Bibliometric Analysis. J Pain Res 2022; 15:561-575. [PMID: 35237073 PMCID: PMC8885163 DOI: 10.2147/jpr.s348946] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 01/28/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Central sensitization refers to a state of hypersensitivity in the central nervous system and is associated with the development and maintenance of chronic pain. Central sensitization plays an essential role in various diseases. Nevertheless, there has been no bibliometric analysis before in this field. The purpose of this study was to provide critical themes and trends in the area of central sensitization, to build a network of knowledge, and to facilitate the future development of relevant basic and clinical research. METHODS Publications on central sensitization were extracted from the Science Citation Index-Expanded. We used R software to systematically analyze the countries, institutions, authors, journals, references, and keywords of the publications. Besides, conceptual structure, intellectual structure, and social structure were constructed. RESULTS A total of 4466 publications were included. Research in the field of central sensitization generally showed a steady upward trend. The three structural networks showed that the United States is the leading country in this field. Arendt-Nielsen L and Woolf CJ were the most productive and influential authors, respectively. "Pain" was the journal with the most studies. Most journals that published and cited articles about central sensitization were academically influential. Cluster analysis revealed that research in central sensitization contains three main conceptual clusters, and the themes of research evolve frequently. Current research focuses on the pathogenesis of central sensitization in neuropathic pain, the role of central sensitization in different diseases, and related clinical double-blind trials. CONCLUSION Central sensitization received widespread attention. The United States led the way in academic activity. In this field, the current situation of cooperation and communication between different countries and institutions is positive. The present research hotspots were the pathogenesis of central sensitization in neuropathic pain, the role of central sensitization in different diseases, and related clinical double-blind trials.
Collapse
Affiliation(s)
- Zhuo Li
- School of Medicine, Nankai University, Tianjin, People’s Republic of China
- Department of Orthopedic Surgery, Chinese PLA General Hospital, Beijing, People’s Republic of China
| | - Chi Xu
- Department of Orthopedic Surgery, Chinese PLA General Hospital, Beijing, People’s Republic of China
| | - Jun Fu
- Department of Orthopedic Surgery, Chinese PLA General Hospital, Beijing, People’s Republic of China
| | - Maimaiti Zulipikaer
- Department of Orthopedic Surgery, Chinese PLA General Hospital, Beijing, People’s Republic of China
| | - Tao Deng
- Department of Orthopedic Surgery, Chinese PLA General Hospital, Beijing, People’s Republic of China
| | - Jiying Chen
- Department of Orthopedic Surgery, Chinese PLA General Hospital, Beijing, People’s Republic of China
| |
Collapse
|
21
|
Li Y, Yin K, Diao Y, Fang M, Yang J, Zhang J, Cao H, Liu X, Jiang J. A biopolymer-gated ionotronic junctionless oxide transistor array for spatiotemporal pain-perception emulation in nociceptor network. NANOSCALE 2022; 14:2316-2326. [PMID: 35084010 DOI: 10.1039/d1nr07896h] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Capable of reflecting the location and intensity of external harmful stimuli, a nociceptor network is of great importance for receiving pain-perception information. However, the hardware-based implementation of a nociceptor network through the use of a transistor array remains a great challenge in the area of brain-inspired neuromorphic applications. Herein, a simple ionotronic junctionless oxide transistor array with pain-perception abilities is successfully realized due to a coplanar-gate proton-coupling effect in sodium alginate biopolymer electrolyte. Several important pain-perception characteristics of nociceptors are emulated, such as a pain threshold, the memory of prior injury, and sensitization behavior due to pathway alterations. In particular, a good graded pain-perception network system has been successfully established through coplanar capacitance and resistance. More importantly, clear polarity reversal of Lorentz-type spatiotemporal pain-perception emulation can be finally realized in our projection-dependent nociceptor network. This work may provide new avenues for bionic medical machines and humanoid robots based on these intriguing pain-perception abilities.
Collapse
Affiliation(s)
- Yanran Li
- Hunan Key Laboratory of Nanophotonics and Devices, School of Physics and Electronics, Central South University, 932 South Lushan Road, Changsha, Hunan 410083, P. R. China.
| | - Kai Yin
- Hunan Key Laboratory of Nanophotonics and Devices, School of Physics and Electronics, Central South University, 932 South Lushan Road, Changsha, Hunan 410083, P. R. China.
| | - Yu Diao
- Hunan Key Laboratory of Nanophotonics and Devices, School of Physics and Electronics, Central South University, 932 South Lushan Road, Changsha, Hunan 410083, P. R. China.
| | - Mei Fang
- Hunan Key Laboratory of Nanophotonics and Devices, School of Physics and Electronics, Central South University, 932 South Lushan Road, Changsha, Hunan 410083, P. R. China.
| | - Junliang Yang
- Hunan Key Laboratory of Nanophotonics and Devices, School of Physics and Electronics, Central South University, 932 South Lushan Road, Changsha, Hunan 410083, P. R. China.
| | - Jian Zhang
- School of Material Science and Engineering, Guilin University of Electronic Technology, Guilin, 541004, P. R. China
| | - Hongtao Cao
- Laboratory of Advanced Nano Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China
| | - Xiaoliang Liu
- Hunan Key Laboratory of Nanophotonics and Devices, School of Physics and Electronics, Central South University, 932 South Lushan Road, Changsha, Hunan 410083, P. R. China.
| | - Jie Jiang
- Hunan Key Laboratory of Nanophotonics and Devices, School of Physics and Electronics, Central South University, 932 South Lushan Road, Changsha, Hunan 410083, P. R. China.
| |
Collapse
|
22
|
Xie RG, Chu WG, Liu DL, Wang X, Ma SB, Wang F, Wang FD, Lin Z, Wu WB, Lu N, Liu YY, Han WJ, Zhang H, Bai ZT, Hu SJ, Tao HR, Kuner T, Zhang X, Kuner R, Wu SX, Luo C. Presynaptic NMDARs on spinal nociceptor terminals state-dependently modulate synaptic transmission and pain. Nat Commun 2022; 13:728. [PMID: 35132099 PMCID: PMC8821657 DOI: 10.1038/s41467-022-28429-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 01/21/2022] [Indexed: 12/24/2022] Open
Abstract
Postsynaptic NMDARs at spinal synapses are required for postsynaptic long-term potentiation and chronic pain. However, how presynaptic NMDARs (PreNMDARs) in spinal nociceptor terminals control presynaptic plasticity and pain hypersensitivity has remained unclear. Here we report that PreNMDARs in spinal nociceptor terminals modulate synaptic transmission in a nociceptive tone-dependent manner. PreNMDARs depresses presynaptic transmission in basal state, while paradoxically causing presynaptic potentiation upon injury. This state-dependent modulation is dependent on Ca2+ influx via PreNMDARs. Small conductance Ca2+-activated K+ (SK) channels are responsible for PreNMDARs-mediated synaptic depression. Rather, tissue inflammation induces PreNMDARs-PKG-I-dependent BDNF secretion from spinal nociceptor terminals, leading to SK channels downregulation, which in turn converts presynaptic depression to potentiation. Our findings shed light on the state-dependent characteristics of PreNMDARs in spinal nociceptor terminals on modulating nociceptive transmission and revealed a mechanism underlying state-dependent transition. Moreover, we identify PreNMDARs in spinal nociceptor terminals as key constituents of activity-dependent pain sensitization. Postsynaptic NMDARs at spinal synapses are required for postsynaptic long-term potentiation and chronic pain. Here, the authors show that also presynaptic NMDARs in spinal nociceptor terminals modulate synaptic transmission in a nociceptive tone-dependent manner.
Collapse
|
23
|
Li ZZ, Han WJ, Sun ZC, Chen Y, Sun JY, Cai GH, Liu WN, Wang TZ, Xie YD, Mao HH, Wang F, Ma SB, Wang FD, Xie RG, Wu SX, Luo C. Extracellular matrix protein laminin β1 regulates pain sensitivity and anxiodepression-like behaviors in mice. J Clin Invest 2021; 131:e146323. [PMID: 34156983 DOI: 10.1172/jci146323] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 06/16/2021] [Indexed: 01/11/2023] Open
Abstract
Patients with neuropathic pain often experience comorbid psychiatric disorders. Cellular plasticity in the anterior cingulate cortex (ACC) is assumed to be a critical interface for pain perception and emotion. However, substantial efforts have thus far been focused on the intracellular mechanisms of plasticity rather than the extracellular alterations that might trigger and facilitate intracellular changes. Laminin, a key element of the extracellular matrix (ECM), consists of one α-, one β-, and one γ-chain and is implicated in several pathophysiological processes. Here, we showed in mice that laminin β1 (LAMB1) in the ACC was significantly downregulated upon peripheral neuropathy. Knockdown of LAMB1 in the ACC exacerbated pain sensitivity and induced anxiety and depression. Mechanistic analysis revealed that loss of LAMB1 caused actin dysregulation via interaction with integrin β1 and the subsequent Src-dependent RhoA/LIMK/cofilin pathway, leading to increased presynaptic transmitter release probability and abnormal postsynaptic spine remodeling, which in turn orchestrated the structural and functional plasticity of pyramidal neurons and eventually resulted in pain hypersensitivity and anxiodepression. This study sheds new light on the functional capability of ECM LAMB1 in modulating pain plasticity and identifies a mechanism that conveys extracellular alterations to intracellular plasticity. Moreover, we identified cingulate LAMB1/integrin β1 signaling as a promising therapeutic target for the treatment of neuropathic pain and associated anxiodepression.
Collapse
Affiliation(s)
- Zhen-Zhen Li
- Department of Neurobiology, School of Basic Medicine.,Department of Neurosurgery, Xijing Hospital, and
| | - Wen-Juan Han
- Department of Neurobiology, School of Basic Medicine
| | - Zhi-Chuan Sun
- Department of Neurobiology, School of Basic Medicine
| | - Yun Chen
- The Second Regiment, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Jun-Yi Sun
- The Second Regiment, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Guo-Hong Cai
- Department of Neurobiology, School of Basic Medicine
| | - Wan-Neng Liu
- Department of Neurobiology, School of Basic Medicine.,College of Life Sciences, Northwest University, Xi'an, China
| | - Tao-Zhi Wang
- Department of Neurobiology, School of Basic Medicine.,Department of Anesthesiology, The Second Hospital of Jilin University, Changchun, China
| | - Yang-Dan Xie
- The Second Regiment, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Hong-Hui Mao
- Department of Neurobiology, School of Basic Medicine
| | - Fei Wang
- Department of Neurobiology, School of Basic Medicine.,Medical Experiment Center, Shaanxi University of Chinese Medicine, China
| | - Sui-Bin Ma
- Department of Neurobiology, School of Basic Medicine
| | - Fu-Dong Wang
- Department of Neurobiology, School of Basic Medicine
| | - Rou-Gang Xie
- Department of Neurobiology, School of Basic Medicine
| | - Sheng-Xi Wu
- Department of Neurobiology, School of Basic Medicine
| | - Ceng Luo
- Department of Neurobiology, School of Basic Medicine
| |
Collapse
|
24
|
Global Research on Neuropathic Pain Rehabilitation over the Last 20 Years. Neural Plast 2021; 2021:5594512. [PMID: 34306062 PMCID: PMC8282394 DOI: 10.1155/2021/5594512] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/25/2021] [Accepted: 06/25/2021] [Indexed: 01/19/2023] Open
Abstract
Background Neuropathic pain has long been a very popular and productive field of clinical research. Neuropathic pain is difficult to cure radically because of its complicated etiology and uncertain pathogenesis. As pain worsens and persists, pain recovery techniques become more important, and medication alone is insufficient. No summary of bibliometric studies on neuropathic pain rehabilitation is yet available. The purpose of the present study is to analyze in a systematic manner the trends of neuropathic pain rehabilitation research over the period of 2000–2019. Methods Studies related to neuropathic pain rehabilitation and published between January 2000 and December 2019 were obtained from the Science Citation Index-Expanded of Web of Science. No restrictions on language, literature type, or species were established. CiteSpace V and Microsoft Excel were used to capture basic information and highlights in the field. Results Linear regression analysis showed that the number of publications on neuropathic pain rehabilitation significantly increased over time (P < 0.001). The United States showed absolute strength in terms of number of papers published, influence, and cooperation with other countries. Based on the subject categories of the Web of Science, “Rehabilitation” had the highest number of published papers (446), the highest number of citations (10,954), and the highest number of open-access papers (151); moreover, this category and “Clinical Neurology” had the same H-index (i.e., 52). “Randomized Controlled Trials” revealed the largest cluster in the cocitation map of references. The latest burst keywords included “Exercise” (2014–2019), “Functional Recovery” (2015–2019), and “Questionnaire” (2015–2019). Conclusion This study provides valuable information for neuropathic pain rehabilitation researchers seeking fresh viewpoints related to collaborators, cooperative institutions, and popular topics in this field. Some new research trends are also highlighted.
Collapse
|
25
|
Lee SW, Han HC. Methylene Blue Application to Lessen Pain: Its Analgesic Effect and Mechanism. Front Neurosci 2021; 15:663650. [PMID: 34079436 PMCID: PMC8165385 DOI: 10.3389/fnins.2021.663650] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 04/16/2021] [Indexed: 12/12/2022] Open
Abstract
Methylene blue (MB) is a cationic thiazine dye, widely used as a biological stain and chemical indicator. Growing evidence have revealed that MB functions to restore abnormal vasodilation and notably it is implicated even in pain relief. Physicians began to inject MB into degenerated disks to relieve pain in patients with chronic discogenic low back pain (CDLBP), and some of them achieved remarkable outcomes. For osteoarthritis and colitis, MB abates inflammation by suppressing nitric oxide production, and ultimately relieves pain. However, despite this clinical efficacy, MB has not attracted much public attention in terms of pain relief. Accordingly, this review focuses on how MB lessens pain, noting three major actions of this dye: anti-inflammation, sodium current reduction, and denervation. Moreover, we showed controversies over the efficacy of MB on CDLBP and raised also toxicity issues to look into the limitation of MB application. This analysis is the first attempt to illustrate its analgesic effects, which may offer a novel insight into MB as a pain-relief dye.
Collapse
Affiliation(s)
- Seung Won Lee
- Good Doctor Research Institute, College of Medicine, Korea University, Seoul, South Korea
| | - Hee Chul Han
- Department of Physiology, College of Medicine and Neuroscience Research Institute, Korea University, Seoul, South Korea
| |
Collapse
|
26
|
Schmidt H, Böttcher A, Gross T, Schmidtko A. cGMP signalling in dorsal root ganglia and the spinal cord: Various functions in development and adulthood. Br J Pharmacol 2021; 179:2361-2377. [PMID: 33939841 DOI: 10.1111/bph.15514] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 03/12/2021] [Accepted: 03/31/2021] [Indexed: 12/27/2022] Open
Abstract
Cyclic GMP (cGMP) is a second messenger that regulates numerous physiological and pathophysiological processes. In recent years, more and more studies have uncovered multiple roles of cGMP signalling pathways in the somatosensory system. Accumulating evidence suggests that cGMP regulates different cellular processes from embryonic development through to adulthood. During embryonic development, a cGMP-dependent signalling cascade in the trunk sensory system is essential for axon bifurcation, a specific form of branching of somatosensory axons. In adulthood, various cGMP signalling pathways in distinct cell populations of sensory neurons and dorsal horn neurons in the spinal cord play an important role in the processing of pain and itch. Some of the involved enzymes might serve as a target for future therapies. In this review, we summarise the knowledge regarding cGMP-dependent signalling pathways in dorsal root ganglia and the spinal cord during embryonic development and adulthood, and the potential of targeting these pathways.
Collapse
Affiliation(s)
- Hannes Schmidt
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Alexandra Böttcher
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Tilman Gross
- Institute of Pharmacology and Clinical Pharmacy, Goethe University, Frankfurt am Main, Germany
| | - Achim Schmidtko
- Institute of Pharmacology and Clinical Pharmacy, Goethe University, Frankfurt am Main, Germany
| |
Collapse
|
27
|
Hsieh MC, Ho YC, Lai CY, Wang HH, Yang PS, Cheng JK, Chen GD, Ng SC, Lee AS, Tseng KW, Lin TB, Peng HY. Blocking the Spinal Fbxo3/CARM1/K + Channel Epigenetic Silencing Pathway as a Strategy for Neuropathic Pain Relief. Neurotherapeutics 2021; 18:1295-1315. [PMID: 33415686 PMCID: PMC8423947 DOI: 10.1007/s13311-020-00977-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/18/2020] [Indexed: 11/29/2022] Open
Abstract
Many epigenetic regulators are involved in pain-associated spinal plasticity. Coactivator-associated arginine methyltransferase 1 (CARM1), an epigenetic regulator of histone arginine methylation, is a highly interesting target in neuroplasticity. However, its potential contribution to spinal plasticity-associated neuropathic pain development remains poorly explored. Here, we report that nerve injury decreased the expression of spinal CARM1 and induced allodynia. Moreover, decreasing spinal CARM1 expression by Fbxo3-mediated CARM1 ubiquitination promoted H3R17me2 decrement at the K+ channel promoter, thereby causing K+ channel epigenetic silencing and the development of neuropathic pain. Remarkably, in naïve rats, decreasing spinal CARM1 using CARM1 siRNA or a CARM1 inhibitor resulted in similar epigenetic signaling and allodynia. Furthermore, intrathecal administration of BC-1215 (a novel Fbxo3 inhibitor) prevented CARM1 ubiquitination to block K+ channel gene silencing and ameliorate allodynia after nerve injury. Collectively, the results reveal that this newly identified spinal Fbxo3-CARM1-K+ channel gene functional axis promotes neuropathic pain. These findings provide essential insights that will aid in the development of more efficient and specific therapies against neuropathic pain.
Collapse
Affiliation(s)
- Ming-Chun Hsieh
- Department of Medicine, Mackay Medical College, No.46, Sec. 3, Zhongzheng Rd, Sanzhi Dist, New Taipei, 25245, Taiwan
| | - Yu-Cheng Ho
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung City, Taiwan
| | - Cheng-Yuan Lai
- Department of Medicine, Mackay Medical College, No.46, Sec. 3, Zhongzheng Rd, Sanzhi Dist, New Taipei, 25245, Taiwan
| | - Hsueh-Hsiao Wang
- Department of Medicine, Mackay Medical College, No.46, Sec. 3, Zhongzheng Rd, Sanzhi Dist, New Taipei, 25245, Taiwan
| | - Po-Sheng Yang
- Department of Medicine, Mackay Medical College, No.46, Sec. 3, Zhongzheng Rd, Sanzhi Dist, New Taipei, 25245, Taiwan
- Department of Surgery, Mackay Memorial Hospital, Taipei, Taiwan
| | - Jen-Kun Cheng
- Department of Medicine, Mackay Medical College, No.46, Sec. 3, Zhongzheng Rd, Sanzhi Dist, New Taipei, 25245, Taiwan
- Department of Anesthesiology, Mackay Memorial Hospital, Taipei, Taiwan
| | - Gin-Den Chen
- Department of Obstetrics and Gynecology, Chung Shan Medical University Hospital, Chung Shan Medical University, Taichung, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Soo-Cheen Ng
- Department of Obstetrics and Gynecology, Chung Shan Medical University Hospital, Chung Shan Medical University, Taichung, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - An-Sheng Lee
- Department of Medicine, Mackay Medical College, No.46, Sec. 3, Zhongzheng Rd, Sanzhi Dist, New Taipei, 25245, Taiwan
| | - Kuang-Wen Tseng
- Department of Medicine, Mackay Medical College, No.46, Sec. 3, Zhongzheng Rd, Sanzhi Dist, New Taipei, 25245, Taiwan
| | - Tzer-Bin Lin
- Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan
- Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, 11689, Taiwan
- Department of Biotechnology, College of Medical and Health Science, Asia University, Taichung, 41354, Taiwan
| | - Hsien-Yu Peng
- Department of Medicine, Mackay Medical College, No.46, Sec. 3, Zhongzheng Rd, Sanzhi Dist, New Taipei, 25245, Taiwan.
| |
Collapse
|
28
|
Ma SB, Xian H, Wu WB, Ma SY, Liu YK, Liang YT, Guo H, Kang JJ, Liu YY, Zhang H, Wu SX, Luo C, Xie RG. CCL2 facilitates spinal synaptic transmission and pain via interaction with presynaptic CCR2 in spinal nociceptor terminals. Mol Brain 2020; 13:161. [PMID: 33228784 PMCID: PMC7685578 DOI: 10.1186/s13041-020-00701-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 11/17/2020] [Indexed: 12/19/2022] Open
Abstract
Previous studies have shown that CCL2 may cause chronic pain, but the exact mechanism of central sensitization is unclear. In this article, we further explore the presynaptic role of CCL2. Behavioral experiments show that intervertebral foramen injection CCR2 antagonists into dorsal root ganglion (DRG) can inhibit the inflammatory pain caused by CCL2 in spinal cord. We raised the question of the role of presynaptic CCR2 in the spinal dorsal horn. Subsequent electron microscopy experiments showed that CCR2 was expressed in the presynaptic CGRP terminal in the spinal dorsal horn. CCL2 can enhance presynaptic calcium signal. Whole-cell patch-clamp recordings showed that CCL2 can enhance NMDAR-eEPSCs through presynaptic effects, and further application of glutamate sensor method proved that CCL2 can act on presynaptic CCR2 to increase the release of presynaptic glutamate. In conclusion, we suggest that CCL2 can directly act on the CCR2 on presynaptic terminals of sensory neurons in the spinal dorsal horn, leading to an increase in the release of presynaptic glutamate and participate in the formation of central sensitization.
Collapse
Affiliation(s)
- Sui-Bin Ma
- Department of Neurobiology, Fourth Military Medical University, Xi'an, 710032, China
| | - Hang Xian
- Department of Neurobiology, Fourth Military Medical University, Xi'an, 710032, China.,Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Wen-Bin Wu
- The Fourth Regiment, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Shuo-Yao Ma
- The Sixth Regiment, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Yu-Ke Liu
- The Second Regiment, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Yu-Tong Liang
- The Second Regiment, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Huan Guo
- Department of Neurobiology, Fourth Military Medical University, Xi'an, 710032, China.,Pain and Related Diseases Research Laboratory, Medical College of Shantou University, Shantou, 515041, China
| | - Jun-Jun Kang
- Department of Neurobiology, Fourth Military Medical University, Xi'an, 710032, China
| | - Ying-Ying Liu
- Department of Neurobiology, Fourth Military Medical University, Xi'an, 710032, China
| | - Hui Zhang
- Department of Neurobiology, Fourth Military Medical University, Xi'an, 710032, China.,Department of Health Statistics, Fourth Military Medical University, Xi'an, 710032, China
| | - Sheng-Xi Wu
- Department of Neurobiology, Fourth Military Medical University, Xi'an, 710032, China
| | - Ceng Luo
- Department of Neurobiology, Fourth Military Medical University, Xi'an, 710032, China.
| | - Rou-Gang Xie
- Department of Neurobiology, Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|