1
|
Reddy P, Narayan Prajapati J, Chaterji S, Varughese A, Chaudhary Y, Sathyamurthy A, Barik A. Converging inputs compete at the lateral parabrachial nuclei to dictate the affective-motivational responses to cold pain. Pain 2025; 166:1105-1117. [PMID: 39715193 DOI: 10.1097/j.pain.0000000000003468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 09/05/2024] [Indexed: 12/25/2024]
Abstract
ABSTRACT The neural mechanisms of the affective-motivational symptoms of chronic pain are poorly understood. In chronic pain, our innate coping mechanisms fail to provide relief. Hence, these behaviors are manifested at higher frequencies. In laboratory animals, such as mice and rats, licking the affected areas is a behavioral coping mechanism and it is sensitized in chronic pain. Hence, we have focused on delineating the brain circuits mediating licking in mice with chemotherapy-induced peripheral neuropathy (CIPN). Mice with CIPN develop intense cold hypersensitivity and lick their paws upon contact with cold stimuli. We studied how the lateral parabrachial nucleus (LPBN) neurons facilitate licking behavior when mice are exposed to noxious thermal stimuli. Taking advantage of transsynaptic viral, optogenetic, and chemogenetic strategies, we observed that the LPBN neurons become hypersensitive to cold in mice with CIPN and facilitate licks. Furthermore, we found that the expression of licks depends on competing excitatory and inhibitory inputs from the spinal cord and lateral hypothalamus (LHA), respectively. We anatomically traced the postsynaptic targets of the spinal cord and LHA in the LPBN and found that they synapse onto overlapping populations. Activation of this LPBN population was sufficient to promote licking due to cold allodynia. In sum, our data indicate that the nociceptive inputs from the spinal cord and information on brain states from the hypothalamus impinge on overlapping LPBN populations to modulate their activity and, in turn, regulate the elevated affective-motivational responses in CIPN.
Collapse
Affiliation(s)
- Prannay Reddy
- Center for Neuroscience, Indian Institute of Science, Bengaluru, Karnataka, India
| | | | | | | | | | | | | |
Collapse
|
2
|
Upadhyay A, Gradwell MA, Vajtay TJ, Conner J, Sanyal AA, Azadegan C, Patel KR, Thackray JK, Bohic M, Imai F, Ogundare SO, Yoshida Y, Abdus-Saboor I, Azim E, Abraira VE. The dorsal column nuclei scale mechanical sensitivity in naive and neuropathic pain states. Cell Rep 2025; 44:115556. [PMID: 40202848 DOI: 10.1016/j.celrep.2025.115556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 12/18/2024] [Accepted: 03/21/2025] [Indexed: 04/11/2025] Open
Abstract
During pathological conditions, tactile stimuli can aberrantly engage nociceptive pathways leading to the perception of touch as pain, known as mechanical allodynia. The brain stem dorsal column nuclei integrate tactile inputs, yet their role in mediating tactile sensitivity and allodynia remains understudied. We found that gracile nucleus (Gr) inhibitory interneurons and thalamus-projecting neurons are differentially innervated by primary afferents and spinal inputs. Functional manipulations of these distinct Gr neuronal populations bidirectionally shifted tactile sensitivity but did not affect noxious mechanical or thermal sensitivity. During neuropathic pain, Gr neurons exhibited increased sensory-evoked activity and asynchronous excitatory drive from primary afferents. Silencing Gr projection neurons or activating Gr inhibitory neurons in neuropathic mice reduced tactile hypersensitivity, and enhancing inhibition ameliorated paw-withdrawal signatures of neuropathic pain and induced conditioned place preference. These results suggest that Gr activity contributes to tactile sensitivity and affective, pain-associated phenotypes of mechanical allodynia.
Collapse
Affiliation(s)
- Aman Upadhyay
- W.M. Keck Center for Collaborative Neuroscience, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA; Department of Cell Biology and Neuroscience, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA; Brain Health Institute, Rutgers University, Piscataway, NJ, USA; Graduate Program in Neuroscience, Rutgers Robert Wood Johnson Medical School, Rutgers University, The State University of New Jersey, Piscataway, NJ, USA
| | - Mark A Gradwell
- W.M. Keck Center for Collaborative Neuroscience, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA; Department of Cell Biology and Neuroscience, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA; Brain Health Institute, Rutgers University, Piscataway, NJ, USA
| | - Thomas J Vajtay
- W.M. Keck Center for Collaborative Neuroscience, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA; Department of Cell Biology and Neuroscience, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA
| | - James Conner
- Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Arnab A Sanyal
- W.M. Keck Center for Collaborative Neuroscience, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA; Department of Cell Biology and Neuroscience, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA
| | - Chloe Azadegan
- W.M. Keck Center for Collaborative Neuroscience, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA; Department of Cell Biology and Neuroscience, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA
| | - Komal R Patel
- W.M. Keck Center for Collaborative Neuroscience, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA; Department of Cell Biology and Neuroscience, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA
| | - Joshua K Thackray
- Human Genetics Institute of New Jersey, Rutgers University, The State University of New Jersey, Piscataway, NJ, USA
| | - Manon Bohic
- W.M. Keck Center for Collaborative Neuroscience, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA; Department of Cell Biology and Neuroscience, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA; Brain Health Institute, Rutgers University, Piscataway, NJ, USA
| | - Fumiyasu Imai
- Burke Neurological Institute, White Plains, NY, USA; Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Simon O Ogundare
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Yutaka Yoshida
- Burke Neurological Institute, White Plains, NY, USA; Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Ishmail Abdus-Saboor
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA; Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Eiman Azim
- Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Victoria E Abraira
- W.M. Keck Center for Collaborative Neuroscience, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA; Department of Cell Biology and Neuroscience, Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA; Brain Health Institute, Rutgers University, Piscataway, NJ, USA.
| |
Collapse
|
3
|
Ding WQ, Song W, Shi X, Feng Z, Chen X, Xie T, Liu Y, Zhou J, Chen Y, Lin JK, Wang QM, Zhou H, Liang TY, Jiang T, Ren B, Yao H, Li YQ, Evrard HC, Poo MM, Li H, Li X, Gong H, Todd AJ, Li A, Wang X, Deng J, Sun YG. Single-neuron projectome reveals organization of somatosensory ascending pathways in the mouse brain. Neuron 2025:S0896-6273(25)00179-5. [PMID: 40209714 DOI: 10.1016/j.neuron.2025.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 10/08/2024] [Accepted: 03/03/2025] [Indexed: 04/12/2025]
Abstract
Relay of multimodal somatosensory information from the spinal cord to the brain is critical for sensory perception, but the underlying circuit organization remains unclear. We have reconstructed mouse cervical spinal projection neurons at single-cell resolution and identified 19 projectome-defined subtypes exhibiting diverse projection patterns. We also reconstructed the brain-wide axonal projections of central relay neurons that receive direct spinal inputs at the single-cell resolution. We discovered parallel, divergent, and convergent projection patterns for spinal projection neurons and central relay neurons. Our results revealed the diverse pathways channeling spinal information to the cortex. Furthermore, we identified parallel lateral and medial spinal-superior colliculus-brainstem pathways, which could be involved in orienting and defensive behaviors, respectively. These data allowed us to construct a wiring diagram for ascending somatosensory pathways with projectome-defined subtype resolution. Our single-cell projectome analysis provided a new framework for understanding the complex neural circuitry underlying coordinated processing of diverse somatosensory modalities.
Collapse
Affiliation(s)
- Wen-Qun Ding
- Institute of Neuroscience, State Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Song
- Institute of Neuroscience, State Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; University of the Chinese Academy of Sciences, Beijing 100049, China; School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoxue Shi
- Institute of Neuroscience, State Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Zhao Feng
- HUST-Suzhou Institute for Brainsmatics, JITRI, Suzhou 215123, China
| | - Xu Chen
- Lingang Laboratory, Shanghai 200031, China
| | - Taorong Xie
- Institute of Neuroscience, State Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yuan Liu
- Institute of Neuroscience, State Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jiandong Zhou
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yu Chen
- Institute of Neuroscience, State Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jun-Kai Lin
- Institute of Neuroscience, State Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Qiu-Miao Wang
- Institute of Neuroscience, State Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Hua Zhou
- Institute of Neuroscience, State Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Tong-Yu Liang
- Institute of Neuroscience, State Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Tao Jiang
- HUST-Suzhou Institute for Brainsmatics, JITRI, Suzhou 215123, China
| | - Biyu Ren
- Institute of Neuroscience, State Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Haishan Yao
- Institute of Neuroscience, State Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yun-Qing Li
- Department of Anatomy, Histology and Embryology, K.K. Leung Brain Research Centre, the Fourth Military Medical University, Xi'an 710032, China
| | - Henry C Evrard
- International Center for Primate Brain Research, Center for Excellence in Brain Science and Intelligence, Institute of Neuroscience, Chinese Academy of Sciences, Songjiang, Shanghai, China; Werner Reichardt Center for Integrative Neuroscience, Karl Eberhard University of Tübingen, Tübingen, Germany; Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Mu-Ming Poo
- Institute of Neuroscience, State Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Hui Li
- Department of Anatomy, Histology and Embryology, K.K. Leung Brain Research Centre, the Fourth Military Medical University, Xi'an 710032, China
| | - Xiangning Li
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan 430074, China; State Key Laboratory of Digital Medical Engineering, Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Sanya 572025, China
| | - Hui Gong
- HUST-Suzhou Institute for Brainsmatics, JITRI, Suzhou 215123, China; Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Andrew J Todd
- School of Psychology and Neuroscience, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Anan Li
- HUST-Suzhou Institute for Brainsmatics, JITRI, Suzhou 215123, China; Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan 430074, China; State Key Laboratory of Digital Medical Engineering, Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Sanya 572025, China.
| | - Xiaofei Wang
- Institute of Neuroscience, State Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China.
| | - Juan Deng
- Department of Anesthesiology, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200032, China.
| | - Yan-Gang Sun
- Institute of Neuroscience, State Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China.
| |
Collapse
|
4
|
Rivera-Arconada I, Baccei ML, López-García JA, Bardoni R. An electrophysiologist's guide to dorsal horn excitability and pain. Front Cell Neurosci 2025; 19:1548252. [PMID: 40241846 PMCID: PMC12001243 DOI: 10.3389/fncel.2025.1548252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 03/13/2025] [Indexed: 04/18/2025] Open
Abstract
The dorsal horn of the spinal cord represents the first site in the central nervous system (CNS) where nociceptive signals are integrated. As a result, there has been a rapid growth in the number of studies investigating the ionic mechanisms regulating the excitability of dorsal horn neurons under normal and pathological conditions. We believe that it is time to look back and to critically examine what picture emerges from this wealth of studies. What are the actual types of neurons described in the literature based on electrophysiological criteria? Are these electrophysiologically-defined subpopulations strongly linked to specific morphological, functional, or molecular traits? Are these electrophysiological properties stable, or can they change during development or in response to peripheral injury? Here we provide an in-depth overview of both early and recent publications that explore the factors influencing dorsal horn neuronal excitability (including intrinsic membrane properties and synaptic transmission), how these factors vary across distinct subtypes of dorsal horn neurons, and how such factors are altered by peripheral nerve or tissue damage. The meta-research presented below leads to the conclusion that the dorsal horn is comprised of highly heterogeneous subpopulations in which the observed electrophysiological properties of a given neuron often fail to easily predict other properties such as biochemical phenotype or morphology. This highlights the need for future studies which can more fully interrogate the properties of dorsal horn neurons in a multi-modal manner.
Collapse
Affiliation(s)
| | - Mark L. Baccei
- Department of Anesthesiology, Pain Research Center, University of Cincinnati, Cincinnati, OH, United States
| | | | - Rita Bardoni
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
5
|
Maric S, Hasan M, Pounder ML, Graham BA, Browne TJ. A Viral Labelling Study of Spinal Trigeminal Nucleus Caudalis Projection Neurons Targeting the Parabrachial Nucleus. J Neurochem 2025; 169:e70028. [PMID: 40050251 PMCID: PMC11885192 DOI: 10.1111/jnc.70028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 02/12/2025] [Accepted: 02/13/2025] [Indexed: 03/09/2025]
Abstract
Projection neurons (PNs) in the Spinal Trigeminal Nucleus Caudalis (Sp5C) relay orofacial nociceptive information to higher brain regions such as the thalamus and the parabrachial nucleus (PBN). Our understanding of Sp5C PN organisation and function has advanced less than the parallel spinal cord output system despite their corresponding roles for transmission of nociceptive signals from the orofacial region and body respectively. Viral vectors are an established approach for studying circuit connectivity in the nervous system, but different serotypes are known to produce variable results across circuits. As such, we sought to validate the utility of two common viral serotypes in spinal PN research: retrograde adeno-associated virus serotype 2 (rgAAV) and adeno-associated virus serotype 9 (AAV9), for identifying and analysing Sp5C PNs that project to the PBN. Following unilateral injections of either viral serotype into the PBN, many Sp5C projection neurons were retrogradely labelled. For both serotypes, these injections labelled Sp5C PNs bilaterally with a strong bias to the ipsilateral Sp5C. Within Sp5C, similar levels of PN labelling were present in both superficial and deep regions, contrasting previous work in spinal PNs that showed greater labelling by AAV9 versus rgAAV. Comparisons of the age dependence of labelling showed greater retrograde labelling of Sp5C projection neurons when injections were made in young adult animals. Finally, we demonstrate successful Cre-dependent recombination to selectively express channelrhodopsin-2 in Sp5C projection neurons. Together, these experiments show that rgAAV and AAV9 produce strong Sp5C PN transduction and provide a basis for future study of the afferent and efferent functions of the Sp5C PN population in health and disease.
Collapse
Affiliation(s)
- Sophie Maric
- School of Biomedical Sciences & Pharmacy, Faculty of HealthUniversity of NewcastleCallaghanAustralia
- Hunter Medical Research Institute (HMRI)New Lambton HeightsNewcastleNew South WalesAustralia
| | - Mehedi Hasan
- School of Biomedical Sciences & Pharmacy, Faculty of HealthUniversity of NewcastleCallaghanAustralia
- Hunter Medical Research Institute (HMRI)New Lambton HeightsNewcastleNew South WalesAustralia
| | - Madison L. Pounder
- School of Biomedical Sciences & Pharmacy, Faculty of HealthUniversity of NewcastleCallaghanAustralia
- Hunter Medical Research Institute (HMRI)New Lambton HeightsNewcastleNew South WalesAustralia
| | - Brett A. Graham
- School of Biomedical Sciences & Pharmacy, Faculty of HealthUniversity of NewcastleCallaghanAustralia
- Hunter Medical Research Institute (HMRI)New Lambton HeightsNewcastleNew South WalesAustralia
| | - Tyler J. Browne
- School of Biomedical Sciences & Pharmacy, Faculty of HealthUniversity of NewcastleCallaghanAustralia
- Hunter Medical Research Institute (HMRI)New Lambton HeightsNewcastleNew South WalesAustralia
| |
Collapse
|
6
|
Browne TJ, Smith KM, Gradwell MA, Dayas CV, Callister RJ, Hughes DI, Graham BA. Lateral lamina V projection neuron axon collaterals connect sensory processing across the dorsal horn of the mouse spinal cord. Sci Rep 2024; 14:26354. [PMID: 39487174 PMCID: PMC11530558 DOI: 10.1038/s41598-024-73620-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 09/19/2024] [Indexed: 11/04/2024] Open
Abstract
Spinal projection neurons (PNs) are defined by long axons that travel from their origin in the spinal cord to the brain where they relay sensory information from the body. The existence and function of a substantial axon collateral network, also arising from PNs and remaining within the spinal cord, is less well appreciated. Here we use a retrograde viral transduction strategy to characterise a novel subpopulation of deep dorsal horn spinoparabrachial neurons. Brainbow assisted analysis confirmed that virally labelled PN cell bodies formed a discrete cell column in the lateral part of Lamina V (LVlat) and the adjoining white matter. These PNs exhibited large dendritic territories biased to regions lateral and ventral to the cell body column and extending considerable rostrocaudal distances. Optogenetic activation of LVLat PNs confirmed this population mediates widespread signalling within spinal cord circuits, including activation in the superficial dorsal horn. This signalling was also demonstrated with patch clamp recordings during LVLat PN photostimulation, with a range of direct and indirect connections identified and evidence of a postsynaptic population of inhibitory interneurons. Together, these findings confirm a substantial role for PNs in local spinal sensory processing, as well as relay of sensory signals to the brain.
Collapse
Affiliation(s)
- Tyler J Browne
- School of Biomedical Sciences and Pharmacy, Faculty of Health, University of Newcastle, Callaghan, NSW, 2308, Australia.
- Hunter Medical Research Institute (HMRI), New Lambton Heights, NSW, Australia.
| | - Kelly M Smith
- Department of Neurobiology and the Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Mark A Gradwell
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
- W.M. Keck Center for Collaborative Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Christopher V Dayas
- School of Biomedical Sciences and Pharmacy, Faculty of Health, University of Newcastle, Callaghan, NSW, 2308, Australia
- Hunter Medical Research Institute (HMRI), New Lambton Heights, NSW, Australia
| | - Robert J Callister
- School of Biomedical Sciences and Pharmacy, Faculty of Health, University of Newcastle, Callaghan, NSW, 2308, Australia
- Hunter Medical Research Institute (HMRI), New Lambton Heights, NSW, Australia
| | - David I Hughes
- Institute of Neuroscience Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Brett A Graham
- School of Biomedical Sciences and Pharmacy, Faculty of Health, University of Newcastle, Callaghan, NSW, 2308, Australia
- Hunter Medical Research Institute (HMRI), New Lambton Heights, NSW, Australia
| |
Collapse
|
7
|
Li J, Serafin EK, Koorndyk N, Baccei ML. Astrocyte D1/D5 Dopamine Receptors Govern Non-Hebbian Long-Term Potentiation at Sensory Synapses onto Lamina I Spinoparabrachial Neurons. J Neurosci 2024; 44:e0170242024. [PMID: 38955487 PMCID: PMC11308343 DOI: 10.1523/jneurosci.0170-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 06/20/2024] [Accepted: 06/27/2024] [Indexed: 07/04/2024] Open
Abstract
Recent work demonstrated that activation of spinal D1 and D5 dopamine receptors (D1/D5Rs) facilitates non-Hebbian long-term potentiation (LTP) at primary afferent synapses onto spinal projection neurons. However, the cellular localization of the D1/D5Rs driving non-Hebbian LTP in spinal nociceptive circuits remains unknown, and it is also unclear whether D1/D5R signaling must occur concurrently with sensory input in order to promote non-Hebbian LTP at these synapses. Here we investigate these issues using cell-type-selective knockdown of D1Rs or D5Rs from lamina I spinoparabrachial neurons, dorsal root ganglion (DRG) neurons, or astrocytes in adult mice of either sex using Cre recombinase-based genetic strategies. The LTP evoked by low-frequency stimulation of primary afferents in the presence of the selective D1/D5R agonist SKF82958 persisted following the knockdown of D1R or D5R in spinoparabrachial neurons, suggesting that postsynaptic D1/D5R signaling was dispensable for non-Hebbian plasticity at sensory synapses onto these key output neurons of the superficial dorsal horn (SDH). Similarly, the knockdown of D1Rs or D5Rs in DRG neurons failed to influence SKF82958-enabled LTP in lamina I projection neurons. In contrast, SKF82958-induced LTP was suppressed by the knockdown of D1R or D5R in spinal astrocytes. Furthermore, the data indicate that the activation of D1R/D5Rs in spinal astrocytes can either retroactively or proactively drive non-Hebbian LTP in spinoparabrachial neurons. Collectively, these results suggest that dopaminergic signaling in astrocytes can strongly promote activity-dependent LTP in the SDH, which is predicted to significantly enhance the amplification of ascending nociceptive transmission from the spinal cord to the brain.
Collapse
Affiliation(s)
- Jie Li
- Department of Anesthesiology, Pain Research Center, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267
| | - Elizabeth K Serafin
- Department of Anesthesiology, Pain Research Center, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267
| | - Nathan Koorndyk
- Neuroscience Graduate Program, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267
| | - Mark L Baccei
- Department of Anesthesiology, Pain Research Center, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267
- Neuroscience Graduate Program, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267
| |
Collapse
|
8
|
Upadhyay A, Gradwell MA, Vajtay TJ, Conner J, Sanyal AA, Azadegan C, Patel KR, Thackray JK, Bohic M, Imai F, Ogundare SO, Yoshida Y, Abdus-Saboor I, Azim E, Abraira VE. The Dorsal Column Nuclei Scale Mechanical Sensitivity in Naive and Neuropathic Pain States. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.20.581208. [PMID: 38712022 PMCID: PMC11071288 DOI: 10.1101/2024.02.20.581208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Tactile perception relies on reliable transmission and modulation of low-threshold information as it travels from the periphery to the brain. During pathological conditions, tactile stimuli can aberrantly engage nociceptive pathways leading to the perception of touch as pain, known as mechanical allodynia. Two main drivers of peripheral tactile information, low-threshold mechanoreceptors (LTMRs) and postsynaptic dorsal column neurons (PSDCs), terminate in the brainstem dorsal column nuclei (DCN). Activity within the DRG, spinal cord, and DCN have all been implicated in mediating allodynia, yet the DCN remains understudied at the cellular, circuit, and functional levels compared to the other two. Here, we show that the gracile nucleus (Gr) of the DCN mediates tactile sensitivity for low-threshold stimuli and contributes to mechanical allodynia during neuropathic pain in mice. We found that the Gr contains local inhibitory interneurons in addition to thalamus-projecting neurons, which are differentially innervated by primary afferents and spinal inputs. Functional manipulations of these distinct Gr neuronal populations resulted in bidirectional changes to tactile sensitivity, but did not affect noxious mechanical or thermal sensitivity. During neuropathic pain, silencing Gr projection neurons or activating Gr inhibitory neurons was able to reduce tactile hypersensitivity, and enhancing inhibition was able to ameliorate paw withdrawal signatures of neuropathic pain, like shaking. Collectively, these results suggest that the Gr plays a specific role in mediating hypersensitivity to low-threshold, innocuous mechanical stimuli during neuropathic pain, and that Gr activity contributes to affective, pain-associated phenotypes of mechanical allodynia. Therefore, these brainstem circuits work in tandem with traditional spinal circuits underlying allodynia, resulting in enhanced signaling of tactile stimuli in the brain during neuropathic pain.
Collapse
Affiliation(s)
- Aman Upadhyay
- W.M. Keck Center for Collaborative Neuroscience, Rutgers University, The State University of New Jersey, New Brunswick, New Jersey, USA; Cell Biology and Neuroscience Department, Rutgers University, The State University of New Jersey, New Brunswick, New Jersey, USA
- Brain Health Institute, Rutgers University, Piscataway, New Jersey, USA
- Neuroscience PhD program at Rutgers Robert Wood Johnson Medical School, Piscataway, New Jersey, USA
| | - Mark A Gradwell
- W.M. Keck Center for Collaborative Neuroscience, Rutgers University, The State University of New Jersey, New Brunswick, New Jersey, USA; Cell Biology and Neuroscience Department, Rutgers University, The State University of New Jersey, New Brunswick, New Jersey, USA
- Brain Health Institute, Rutgers University, Piscataway, New Jersey, USA
| | - Thomas J Vajtay
- W.M. Keck Center for Collaborative Neuroscience, Rutgers University, The State University of New Jersey, New Brunswick, New Jersey, USA; Cell Biology and Neuroscience Department, Rutgers University, The State University of New Jersey, New Brunswick, New Jersey, USA
| | - James Conner
- Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Arnab A Sanyal
- W.M. Keck Center for Collaborative Neuroscience, Rutgers University, The State University of New Jersey, New Brunswick, New Jersey, USA; Cell Biology and Neuroscience Department, Rutgers University, The State University of New Jersey, New Brunswick, New Jersey, USA
| | - Chloe Azadegan
- W.M. Keck Center for Collaborative Neuroscience, Rutgers University, The State University of New Jersey, New Brunswick, New Jersey, USA; Cell Biology and Neuroscience Department, Rutgers University, The State University of New Jersey, New Brunswick, New Jersey, USA
| | - Komal R Patel
- W.M. Keck Center for Collaborative Neuroscience, Rutgers University, The State University of New Jersey, New Brunswick, New Jersey, USA; Cell Biology and Neuroscience Department, Rutgers University, The State University of New Jersey, New Brunswick, New Jersey, USA
| | - Joshua K Thackray
- Human Genetics Institute of New Jersey, Rutgers University, The State University of New Jersey, Piscataway, New Jersey, USA
| | - Manon Bohic
- W.M. Keck Center for Collaborative Neuroscience, Rutgers University, The State University of New Jersey, New Brunswick, New Jersey, USA; Cell Biology and Neuroscience Department, Rutgers University, The State University of New Jersey, New Brunswick, New Jersey, USA
- Brain Health Institute, Rutgers University, Piscataway, New Jersey, USA
| | - Fumiyasu Imai
- Burke Neurological Institute, White Plains, New York City, New York, USA
- Brain and Mind Research Institute, Weill Cornell Medicine, New York City, New York, USA
| | - Simon O Ogundare
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA; Department of Biological Sciences, Columbia University, New York City, New York, USA
| | - Yutaka Yoshida
- Burke Neurological Institute, White Plains, New York City, New York, USA
- Brain and Mind Research Institute, Weill Cornell Medicine, New York City, New York, USA
| | - Ishmail Abdus-Saboor
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA; Department of Biological Sciences, Columbia University, New York City, New York, USA
| | - Eiman Azim
- Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Victoria E Abraira
- W.M. Keck Center for Collaborative Neuroscience, Rutgers University, The State University of New Jersey, New Brunswick, New Jersey, USA; Cell Biology and Neuroscience Department, Rutgers University, The State University of New Jersey, New Brunswick, New Jersey, USA
- Brain Health Institute, Rutgers University, Piscataway, New Jersey, USA
- Lead contact
| |
Collapse
|
9
|
Chen H, Bleimeister IH, Nguyen EK, Li J, Cui AY, Stratton HJ, Smith KM, Baccei ML, Ross SE. The functional and anatomical characterization of three spinal output pathways of the anterolateral tract. Cell Rep 2024; 43:113829. [PMID: 38421871 PMCID: PMC11025583 DOI: 10.1016/j.celrep.2024.113829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 10/24/2023] [Accepted: 02/03/2024] [Indexed: 03/02/2024] Open
Abstract
The nature of spinal output pathways that convey nociceptive information to the brain has been the subject of controversy. Here, we provide anatomical, molecular, and functional characterizations of two distinct anterolateral pathways: one, ascending in the lateral spinal cord, triggers nociceptive behaviors, and the other one, ascending in the ventral spinal cord, when inhibited, leads to sensorimotor deficits. Moreover, the lateral pathway consists of at least two subtypes. The first is a contralateral pathway that extends to the periaqueductal gray (PAG) and thalamus; the second is a bilateral pathway that projects to the bilateral parabrachial nucleus (PBN). Finally, we present evidence showing that activation of the contralateral pathway is sufficient for defensive behaviors such as running and freezing, whereas the bilateral pathway is sufficient for attending behaviors such as licking and guarding. This work offers insight into the complex organizational logic of the anterolateral system in the mouse.
Collapse
Affiliation(s)
- Haichao Chen
- Tsinghua Medicine, Tsinghua University, Beijing 100084, China; Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Isabel H Bleimeister
- Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, PA 15213, USA; Medical Scientist Training Program, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Eileen K Nguyen
- Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, PA 15213, USA; Medical Scientist Training Program, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Jie Li
- Department of Anesthesiology, Pain Research Center, University of Cincinnati Medical Center, Cincinnati, OH 45267, USA
| | - Abby Yilin Cui
- Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Harrison J Stratton
- Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Kelly M Smith
- Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Mark L Baccei
- Department of Anesthesiology, Pain Research Center, University of Cincinnati Medical Center, Cincinnati, OH 45267, USA
| | - Sarah E Ross
- Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Anesthesiology, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| |
Collapse
|
10
|
Torres-Rodriguez JM, Wilson TD, Singh S, Torruella-Suárez ML, Chaudhry S, Adke AP, Becker JJ, Neugebauer B, Lin JL, Martinez Gonzalez S, Soler-Cedeño O, Carrasquillo Y. The parabrachial to central amygdala pathway is critical to injury-induced pain sensitization in mice. Neuropsychopharmacology 2024; 49:508-520. [PMID: 37542159 PMCID: PMC10789863 DOI: 10.1038/s41386-023-01673-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 06/27/2023] [Accepted: 07/12/2023] [Indexed: 08/06/2023]
Abstract
The spino-ponto-amygdaloid pathway is a major ascending circuit relaying nociceptive information from the spinal cord to the brain. Potentiation of excitatory synaptic transmission in the parabrachial nucleus (PBN) to central amygdala (CeA) pathway has been reported in rodent models of persistent pain. However, the functional significance of this pathway in the modulation of the somatosensory component of pain was recently challenged by studies showing that spinal nociceptive neurons do not target CeA-projecting PBN cells and that manipulations of this pathway have no effect on reflexive-defensive somatosensory responses to peripheral noxious stimulation. Here, we showed that activation of CeA-projecting PBN neurons is critical to increase both stimulus-evoked and spontaneous nociceptive responses following an injury in male and female mice. Using optogenetic-assisted circuit mapping, we confirmed a functional excitatory projection from PBN→CeA that is independent of the genetic or firing identity of CeA cells. We then showed that peripheral noxious stimulation increased the expression of the neuronal activity marker Fos in CeA-projecting PBN neurons and that chemogenetic inactivation of these cells decreased behavioral hypersensitivity in models of neuropathic and inflammatory pain without affecting baseline nociception. Lastly, we showed that chemogenetic activation of CeA-projecting PBN neurons is sufficient to induced bilateral hypersensitivity without injury. Together, our results indicate that the PBN→CeA pathway is a key modulator of pain-related behaviors that can increase reflexive-defensive and affective-motivational responses to somatosensory stimulation in injured states without affecting nociception under normal physiological conditions.
Collapse
Affiliation(s)
- Jeitzel M Torres-Rodriguez
- National Center for Complementary and Integrative Health, National Institutes of Health, Bethesda, MD, USA
| | - Torri D Wilson
- National Center for Complementary and Integrative Health, National Institutes of Health, Bethesda, MD, USA
| | - Sudhuman Singh
- National Center for Complementary and Integrative Health, National Institutes of Health, Bethesda, MD, USA
| | - Maria L Torruella-Suárez
- National Center for Complementary and Integrative Health, National Institutes of Health, Bethesda, MD, USA
| | - Sarah Chaudhry
- National Center for Complementary and Integrative Health, National Institutes of Health, Bethesda, MD, USA
| | - Anisha P Adke
- National Center for Complementary and Integrative Health, National Institutes of Health, Bethesda, MD, USA
| | - Jordan J Becker
- National Center for Complementary and Integrative Health, National Institutes of Health, Bethesda, MD, USA
| | - Benjamin Neugebauer
- National Center for Complementary and Integrative Health, National Institutes of Health, Bethesda, MD, USA
| | - Jenny L Lin
- National Center for Complementary and Integrative Health, National Institutes of Health, Bethesda, MD, USA
| | - Santiago Martinez Gonzalez
- National Center for Complementary and Integrative Health, National Institutes of Health, Bethesda, MD, USA
| | - Omar Soler-Cedeño
- National Center for Complementary and Integrative Health, National Institutes of Health, Bethesda, MD, USA
| | - Yarimar Carrasquillo
- National Center for Complementary and Integrative Health, National Institutes of Health, Bethesda, MD, USA.
- National Institute on Drug Abuse, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
11
|
Münzberg H, Berthoud HR, Neuhuber WL. Sensory spinal interoceptive pathways and energy balance regulation. Mol Metab 2023; 78:101817. [PMID: 37806487 PMCID: PMC10590858 DOI: 10.1016/j.molmet.2023.101817] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/02/2023] [Accepted: 10/03/2023] [Indexed: 10/10/2023] Open
Abstract
Interoception plays an important role in homeostatic regulation of energy intake and metabolism. Major interoceptive pathways include gut-to-brain and adipose tissue-to brain signaling via vagal sensory nerves and hormones, such as leptin. However, signaling via spinal sensory neurons is rapidly emerging as an additional important signaling pathway. Here we provide an in-depth review of the known anatomy and functions of spinal sensory pathways and discuss potential mechanisms relevant for energy balance homeostasis in health and disease. Because sensory innervation by dorsal root ganglia (DRG) neurons goes far beyond vagally innervated viscera and includes adipose tissue, skeletal muscle, and skin, it is in a position to provide much more complete metabolic information to the brain. Molecular and anatomical identification of function specific DRG neurons will be important steps in designing pharmacological and neuromodulation approaches to affect energy balance regulation in disease states such as obesity, diabetes, and cancer.
Collapse
Affiliation(s)
- Heike Münzberg
- Neurobiology of Nutrition & Metabolism Department, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, USA.
| | - Hans-Rudolf Berthoud
- Neurobiology of Nutrition & Metabolism Department, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, USA.
| | - Winfried L Neuhuber
- Institute for Anatomy and Cell Biology, Friedrich-Alexander University, Erlangen, Germany.
| |
Collapse
|
12
|
Frezel N, Ranucci M, Foster E, Wende H, Pelczar P, Mendes R, Ganley RP, Werynska K, d'Aquin S, Beccarini C, Birchmeier C, Zeilhofer HU, Wildner H. c-Maf-positive spinal cord neurons are critical elements of a dorsal horn circuit for mechanical hypersensitivity in neuropathy. Cell Rep 2023; 42:112295. [PMID: 36947543 PMCID: PMC10157139 DOI: 10.1016/j.celrep.2023.112295] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/02/2023] [Accepted: 03/06/2023] [Indexed: 03/23/2023] Open
Abstract
Corticospinal tract (CST) neurons innervate the deep spinal dorsal horn to sustain chronic neuropathic pain. The majority of neurons targeted by the CST are interneurons expressing the transcription factor c-Maf. Here, we used intersectional genetics to decipher the function of these neurons in dorsal horn sensory circuits. We find that excitatory c-Maf (c-MafEX) neurons receive sensory input mainly from myelinated fibers and target deep dorsal horn parabrachial projection neurons and superficial dorsal horn neurons, thereby connecting non-nociceptive input to nociceptive output structures. Silencing c-MafEX neurons has little effect in healthy mice but alleviates mechanical hypersensitivity in neuropathic mice. c-MafEX neurons also receive input from inhibitory c-Maf and parvalbumin neurons, and compromising inhibition by these neurons caused mechanical hypersensitivity and spontaneous aversive behaviors reminiscent of c-MafEX neuron activation. Our study identifies c-MafEX neurons as normally silent second-order nociceptors that become engaged in pathological pain signaling upon loss of inhibitory control.
Collapse
Affiliation(s)
- Noémie Frezel
- Institute of Pharmacology and Toxicology, University of Zürich, 8057 Zürich, Switzerland
| | - Matteo Ranucci
- Institute of Pharmacology and Toxicology, University of Zürich, 8057 Zürich, Switzerland
| | - Edmund Foster
- Institute of Pharmacology and Toxicology, University of Zürich, 8057 Zürich, Switzerland
| | | | - Pawel Pelczar
- Center for Transgenic Models (CTM), University of Basel, 4001 Basel, Switzerland
| | - Raquel Mendes
- Institute of Pharmacology and Toxicology, University of Zürich, 8057 Zürich, Switzerland
| | - Robert P Ganley
- Institute of Pharmacology and Toxicology, University of Zürich, 8057 Zürich, Switzerland
| | - Karolina Werynska
- Institute of Pharmacology and Toxicology, University of Zürich, 8057 Zürich, Switzerland
| | - Simon d'Aquin
- Institute of Pharmacology and Toxicology, University of Zürich, 8057 Zürich, Switzerland
| | - Camilla Beccarini
- Institute of Pharmacology and Toxicology, University of Zürich, 8057 Zürich, Switzerland
| | | | - Hanns Ulrich Zeilhofer
- Institute of Pharmacology and Toxicology, University of Zürich, 8057 Zürich, Switzerland; Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) Zürich, 8092 Zürich, Switzerland.
| | - Hendrik Wildner
- Institute of Pharmacology and Toxicology, University of Zürich, 8057 Zürich, Switzerland.
| |
Collapse
|
13
|
Li J, Serafin EK, Baccei ML. Intrinsic and synaptic properties of adult mouse spinoperiaqueductal gray neurons and the influence of neonatal tissue damage. Pain 2023; 164:905-917. [PMID: 36149785 PMCID: PMC10033328 DOI: 10.1097/j.pain.0000000000002787] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 09/09/2022] [Indexed: 11/26/2022]
Abstract
ABSTRACT The periaqueductal gray (PAG) represents a key target of projection neurons residing in the spinal dorsal horn. In comparison to lamina I spinoparabrachial neurons, little is known about the intrinsic and synaptic properties governing the firing of spino-PAG neurons, or whether such activity is modulated by neonatal injury. In this study, this issue was addressed using ex vivo whole-cell patch clamp recordings from lamina I spino-PAG neurons in adult male and female FVB mice after hindpaw incision at postnatal day (P)3. Spino-PAG neurons were classified as high output, medium output, or low output based on their action potential discharge after dorsal root stimulation. The high-output subgroup exhibited prevalent spontaneous burst firing and displayed initial burst or tonic patterns of intrinsic firing, whereas low-output neurons showed little spontaneous activity. Interestingly, the level of dorsal root-evoked firing significantly correlated with the resting potential and membrane resistance but not with the strength of primary afferent-mediated glutamatergic drive. Neonatal incision failed to alter the pattern of monosynaptic sensory input, with most spino-PAG neurons receiving direct connections from low-threshold C-fibers. Furthermore, primary afferent-evoked glutamatergic input and action potential discharge in adult spino-PAG neurons were unaltered by neonatal surgical injury. Finally, Hebbian long-term potentiation at sensory synapses, which significantly increased afferent-evoked firing, was similar between P3-incised and naive littermates. Collectively, these data suggest that the functional response of lamina I spino-PAG neurons to sensory input is largely governed by their intrinsic membrane properties and appears resistant to the persistent influence of neonatal tissue damage.
Collapse
Affiliation(s)
- Jie Li
- Department of Anesthesiology, Pain Research Center, University of Cincinnati Medical Center, Cincinnati, OH, United States
| | | | | |
Collapse
|
14
|
Torres-Rodriguez JM, Wilson TD, Singh S, Chaudhry S, Adke AP, Becker JJ, Lin JL, Martinez Gonzalez S, Soler-Cedeño O, Carrasquillo Y. The parabrachial to central amygdala circuit is a key mediator of injury-induced pain sensitization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.08.527340. [PMID: 36945586 PMCID: PMC10028796 DOI: 10.1101/2023.02.08.527340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
The spino-ponto-amygdaloid pathway is a major ascending circuit relaying nociceptive information from the spinal cord to the brain. Potentiation of excitatory synaptic transmission in the parabrachial nucleus (PbN) to central amygdala (CeA) pathway has been reported in rodent models of persistent pain. At the behavioral level, the PbN→CeA pathway has been proposed to serve as a general alarm system to potential threats that modulates pain-related escape behaviors, threat memory, aversion, and affective-motivational (but not somatosensory) responses to painful stimuli. Increased sensitivity to previously innocuous somatosensory stimulation is a hallmark of chronic pain. Whether the PbN→CeA circuit contributes to heightened peripheral sensitivity following an injury, however, remains unknown. Here, we demonstrate that activation of CeA-projecting PbN neurons contributes to injury-induced behavioral hypersensitivity but not baseline nociception in male and female mice. Using optogenetic assisted circuit mapping, we confirmed a functional excitatory projection from PbN→CeA that is independent of the genetic or firing identity of CeA cells. We then showed that peripheral noxious stimulation increases the expression of the neuronal activity marker c-Fos in CeA-projecting PbN neurons and chemogenetic inactivation of these cells reduces behavioral hypersensitivity in models of neuropathic and inflammatory pain without affecting baseline nociception. Lastly, we show that chemogenetic activation of CeA-projecting PbN neurons is sufficient to induce bilateral hypersensitivity without injury. Together, our results demonstrate that the PbN→CeA pathway is a key modulator of pain-related behaviors that can amplify responses to somatosensory stimulation in pathological states without affecting nociception under normal physiological conditions. Significance Statement Early studies identified the spino-ponto-amygdaloid pathway as a major ascending circuit conveying nociceptive inputs from the spinal cord to the brain. The functional significance of this circuit to injury-induced hypersensitivity, however, remains unknown. Here, we addressed this gap in knowledge using viral-mediated anatomical tracers, ex-vivo electrophysiology and chemogenetic intersectional approaches in rodent models of persistent pain. We found that activation of this pathway contributes to injury-induced hypersensitivity, directly demonstrating a critical function of the PbN→CeA circuit in pain modulation.
Collapse
Affiliation(s)
| | - Torri D. Wilson
- National Center for Complementary and Integrative Health, Bethesda, MD, United States
| | - Sudhuman Singh
- National Center for Complementary and Integrative Health, Bethesda, MD, United States
| | - Sarah Chaudhry
- National Center for Complementary and Integrative Health, Bethesda, MD, United States
| | - Anisha P. Adke
- National Center for Complementary and Integrative Health, Bethesda, MD, United States
| | - Jordan J. Becker
- National Center for Complementary and Integrative Health, Bethesda, MD, United States
| | - Jenny L. Lin
- National Center for Complementary and Integrative Health, Bethesda, MD, United States
| | | | - Omar Soler-Cedeño
- National Center for Complementary and Integrative Health, Bethesda, MD, United States
| | - Yarimar Carrasquillo
- National Center for Complementary and Integrative Health, Bethesda, MD, United States
- National Institute on Drug Abuse, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
15
|
Krotov V, Agashkov K, Romanenko S, Koroid K, Krasniakova M, Belan P, Voitenko N. Neuropathic pain changes the output of rat lamina I spino-parabrachial neurons. BBA ADVANCES 2023; 3:100081. [PMID: 37082260 PMCID: PMC10074952 DOI: 10.1016/j.bbadva.2023.100081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 02/16/2023] Open
Abstract
• Spared nerve injury (SNI) altered the action potential (AP) output of lamina I spino-parabrachial neurons (SPNs) without affecting their resting potential or membrane resistance. • In one-third of SPNs, high-threshold dorsal root stimulation elicited persistent AP firing which was never observed in cells from naïve animals. • 38% of SPNs from SNI rats showed spontaneous persistent AP firing. • After SNI low- and high-output SPNs were no longer nociceptive-specific as part of them responded with APs to low-threshold stimulation. • These SNI-induced changes of SPN output might represent cellular mechanisms for neuropathy-associated allodynia, hyperalgesia, and spontaneous pain.
Collapse
|
16
|
Kókai É, Luz LL, Fernandes EC, Safronov BV, Poisbeau P, Szucs P. Quantitative spatial analysis reveals that the local axons of lamina I projection neurons and interneurons exhibit distributions that predict distinct roles in spinal sensory processing. J Comp Neurol 2022; 530:3270-3287. [PMID: 36094014 PMCID: PMC9826435 DOI: 10.1002/cne.25413] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 08/28/2022] [Accepted: 08/30/2022] [Indexed: 01/11/2023]
Abstract
Our knowledge about the detailed wiring of neuronal circuits in the spinal dorsal horn (DH), where initial sensory processing takes place, is still very sparse. While a substantial amount of data is available on the somatodendritic morphology of DH neurons, the laminar and segmental distribution patterns and consequential function of individual axons are much less characterized. In the present study, we fully reconstructed the axonal and dendritic processes of 10 projection neurons (PNs) and 15 interneurons (INs) in lamina I of the rat, to reveal quantitative differences in their distribution. We also performed whole-cell patch-clamp recordings to test the predicted function of certain axon collaterals. In line with our earlier qualitative description, we found that lamina I INs in the lateral aspect of the superficial DH send axon collaterals toward the medial part and occupy mostly laminae I-III, providing anatomical basis for a lateromedial flow of information within the DH. Local axon collaterals of PNs were more extensively distributed including dorsal commissural axon collaterals that might refer to those reported earlier linking the lateral aspect of the left and right DHs. PN collaterals dominated the dorsolateral funiculus and laminae IV-VI, suggesting propriospinal and ventral connections. Indeed, patch-clamp recordings confirmed the existence of a dorsoventral excitatory drive upon activation of neurokinin-1 receptors that, although being expressed in various lamina I neurons, are specifically enriched in PNs. In summary, lamina I PNs and INs have almost identical dendritic input fields, while their segmental axon collateral distribution patterns are distinct. INs, whose somata reside in lamina I, establish local connections, may show asymmetry, and contribute to bridging the medial and lateral halves of the DH. PNs, on the other hand, preferably relay their integrated dendritic input to deeper laminae of the spinal gray matter where it might be linked to other ascending pathways or the premotor network, resulting in a putative direct contribution to the nociceptive withdrawal reflex.
Collapse
Affiliation(s)
- Éva Kókai
- Department of Anatomy, Histology and Embryology, Faculty of MedicineUniversity of DebrecenDebrecenHungary,ELKH‐DE Neuroscience Research GroupDebrecenHungary
| | - Lilana L. Luz
- Instituto de Investigacao e Inovacao em SaudeUniversidade do PortoPortoPortugal,Neuronal Networks Group, Instituto de Biologia Molecular e Celular (IBMC)Universidade do PortoPortoPortugal
| | - Elisabete C. Fernandes
- Instituto de Investigacao e Inovacao em SaudeUniversidade do PortoPortoPortugal,Neuronal Networks Group, Instituto de Biologia Molecular e Celular (IBMC)Universidade do PortoPortoPortugal
| | - Boris V. Safronov
- Instituto de Investigacao e Inovacao em SaudeUniversidade do PortoPortoPortugal,Neuronal Networks Group, Instituto de Biologia Molecular e Celular (IBMC)Universidade do PortoPortoPortugal
| | - Pierrick Poisbeau
- Centre national de la Recherche Scientifique, Institut des Neurosciences Cellulaires et IntégrativesUniversity de StrasbourgStrasbourgFrance
| | - Peter Szucs
- Department of Anatomy, Histology and Embryology, Faculty of MedicineUniversity of DebrecenDebrecenHungary,ELKH‐DE Neuroscience Research GroupDebrecenHungary
| |
Collapse
|
17
|
Spinal ascending pathways for somatosensory information processing. Trends Neurosci 2022; 45:594-607. [PMID: 35701247 DOI: 10.1016/j.tins.2022.05.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/19/2022] [Accepted: 05/14/2022] [Indexed: 12/27/2022]
Abstract
The somatosensory system processes diverse types of information including mechanical, thermal, and chemical signals. It has an essential role in sensory perception and body movement and, thus, is crucial for organism survival. The neural network for processing somatosensory information comprises multiple key nodes. Spinal projection neurons represent the key node for transmitting somatosensory information from the periphery to the brain. Although the anatomy of spinal ascending pathways has been characterized, the mechanisms underlying somatosensory information processing by spinal ascending pathways are incompletely understood. Recent studies have begun to reveal the diversity of spinal ascending pathways and their functional roles in somatosensory information processing. Here, we review the anatomic, molecular, and functional characteristics of spinal ascending pathways.
Collapse
|
18
|
Wang LB, Su XJ, Wu QF, Xu X, Wang XY, Chen M, Ye JR, Maimaitiabula A, Liu XQ, Sun W, Zhang Y. Parallel Spinal Pathways for Transmitting Reflexive and Affective Dimensions of Nocifensive Behaviors Evoked by Selective Activation of the Mas-Related G Protein-Coupled Receptor D-Positive and Transient Receptor Potential Vanilloid 1-Positive Subsets of Nociceptors. Front Cell Neurosci 2022; 16:910670. [PMID: 35693883 PMCID: PMC9175034 DOI: 10.3389/fncel.2022.910670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/04/2022] [Indexed: 11/29/2022] Open
Abstract
The high incidence of treatment-resistant pain calls for the urgent preclinical translation of new analgesics. Understanding the behavioral readout of pain in animals is crucial for efficacy evaluation when developing novel analgesics. Mas-related G protein-coupled receptor D-positive (Mrgprd+) and transient receptor potential vanilloid 1-positive (TRPV1+) sensory neurons are two major non-overlapping subpopulations of C-fiber nociceptors. Their activation has been reported to provoke diverse nocifensive behaviors. However, what kind of behavior reliably represents subjectively conscious pain perception needs to be revisited. Here, we generated transgenic mice in which Mrgprd+ or TRPV1+ sensory neurons specifically express channelrhodopsin-2 (ChR2). Under physiological conditions, optogenetic activation of hindpaw Mrgprd+ afferents evoked reflexive behaviors (lifting, etc.), but failed to produce aversion. In contrast, TRPV1+ afferents activation evoked marked reflexive behaviors and affective responses (licking, etc.), as well as robust aversion. Under neuropathic pain conditions induced by spared nerve injury (SNI), affective behaviors and avoidance can be elicited by Mrgprd+ afferents excitation. Mechanistically, spinal cord-lateral parabrachial nucleus (lPBN) projecting neurons in superficial layers (lamina I–IIo) were activated by TRPV1+ nociceptors in naïve conditions or by Mrgprd+ nociceptors after SNI, whereas only deep spinal cord neurons were activated by Mrgprd+ nociceptors in naïve conditions. Moreover, the excitatory inputs from Mrgprd+ afferents to neurons within inner lamina II (IIi) are partially gated under normal conditions. Altogether, we conclude that optogenetic activation of the adult Mrgprd+ nociceptors drives non-pain-like reflexive behaviors via the deep spinal cord pathway under physiological conditions and drives pain-like affective behaviors via superficial spinal cord pathway under pathological conditions. The distinct spinal pathway transmitting different forms of nocifensive behaviors provides different therapeutic targets. Moreover, this study appeals to the rational evaluation of preclinical analgesic efficacy by using comprehensive and suitable behavioral assays, as well as by assessing neural activity in the two distinct pathways.
Collapse
Affiliation(s)
- Liang-Biao Wang
- Stroke Center & Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Xiao-Jing Su
- Stroke Center & Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Qiao-Feng Wu
- Stroke Center & Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Xiang Xu
- Stroke Center & Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Xin-Yue Wang
- Stroke Center & Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Mo Chen
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Jia-Reng Ye
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Abasi Maimaitiabula
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Xiao-Qing Liu
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Wen Sun
- Stroke Center & Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Wen Sun,
| | - Yan Zhang
- Stroke Center & Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- *Correspondence: Yan Zhang,
| |
Collapse
|
19
|
Skorput AGJ, Gore R, Schorn R, Riedl MS, Marron Fernandez de Velasco E, Hadlich B, Kitto KF, Fairbanks CA, Vulchanova L. Targeting the somatosensory system with AAV9 and AAV2retro viral vectors. PLoS One 2022; 17:e0264938. [PMID: 35271639 PMCID: PMC8912232 DOI: 10.1371/journal.pone.0264938] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 02/19/2022] [Indexed: 12/17/2022] Open
Abstract
Adeno-associated viral (AAV) vectors allow for site-specific and time-dependent genetic manipulation of neurons. However, for successful implementation of AAV vectors, major consideration must be given to the selection of viral serotype and route of delivery for efficient gene transfer into the cell type being investigated. Here we compare the transduction pattern of neurons in the somatosensory system following injection of AAV9 or AAV2retro in the parabrachial complex of the midbrain, the spinal cord dorsal horn, the intrathecal space, and the colon. Transduction was evaluated based on Cre-dependent expression of tdTomato in transgenic reporter mice, following delivery of AAV9 or AAV2retro carrying identical constructs that drive the expression of Cre/GFP. The pattern of distribution of tdTomato expression indicated notable differences in the access of the two AAV serotypes to primary afferent neurons via peripheral delivery in the colon and to spinal projections neurons via intracranial delivery within the parabrachial complex. Additionally, our results highlight the superior sensitivity of detection of neuronal transduction based on reporter expression relative to expression of viral products.
Collapse
Affiliation(s)
- Alexander G. J. Skorput
- Department of Neuroscience, Medical School, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Reshma Gore
- Department of Neuroscience, Medical School, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Rachel Schorn
- Department of Neuroscience, Medical School, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Maureen S. Riedl
- Department of Neuroscience, Medical School, University of Minnesota, Minneapolis, Minnesota, United States of America
| | | | - Bailey Hadlich
- Department of Neuroscience, Medical School, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Kelley F. Kitto
- Department of Neuroscience, Medical School, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Carolyn A. Fairbanks
- Department of Neuroscience, Medical School, University of Minnesota, Minneapolis, Minnesota, United States of America
- Department of Pharmacology, Medical School, University of Minnesota, Minneapolis, Minnesota, United States of America
- Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Lucy Vulchanova
- Department of Neuroscience, Medical School, University of Minnesota, Minneapolis, Minnesota, United States of America
- * E-mail:
| |
Collapse
|
20
|
Medlock L, Sekiguchi K, Hong S, Dura-Bernal S, Lytton WW, Prescott SA. Multiscale Computer Model of the Spinal Dorsal Horn Reveals Changes in Network Processing Associated with Chronic Pain. J Neurosci 2022; 42:3133-3149. [PMID: 35232767 PMCID: PMC8996343 DOI: 10.1523/jneurosci.1199-21.2022] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 02/17/2022] [Accepted: 02/17/2022] [Indexed: 11/21/2022] Open
Abstract
Pain-related sensory input is processed in the spinal dorsal horn (SDH) before being relayed to the brain. That processing profoundly influences whether stimuli are correctly or incorrectly perceived as painful. Significant advances have been made in identifying the types of excitatory and inhibitory neurons that comprise the SDH, and there is some information about how neuron types are connected, but it remains unclear how the overall circuit processes sensory input or how that processing is disrupted under chronic pain conditions. To explore SDH function, we developed a computational model of the circuit that is tightly constrained by experimental data. Our model comprises conductance-based neuron models that reproduce the characteristic firing patterns of spinal neurons. Excitatory and inhibitory neuron populations, defined by their expression of genetic markers, spiking pattern, or morphology, were synaptically connected according to available qualitative data. Using a genetic algorithm, synaptic weights were tuned to reproduce projection neuron firing rates (model output) based on primary afferent firing rates (model input) across a range of mechanical stimulus intensities. Disparate synaptic weight combinations could produce equivalent circuit function, revealing degeneracy that may underlie heterogeneous responses of different circuits to perturbations or pathologic insults. To validate our model, we verified that it responded to the reduction of inhibition (i.e., disinhibition) and ablation of specific neuron types in a manner consistent with experiments. Thus validated, our model offers a valuable resource for interpreting experimental results and testing hypotheses in silico to plan experiments for examining normal and pathologic SDH circuit function.SIGNIFICANCE STATEMENT We developed a multiscale computer model of the posterior part of spinal cord gray matter (spinal dorsal horn), which is involved in perceiving touch and pain. The model reproduces several experimental observations and makes predictions about how specific types of spinal neurons and synapses influence projection neurons that send information to the brain. Misfiring of these projection neurons can produce anomalous sensations associated with chronic pain. Our computer model will not only assist in planning future experiments, but will also be useful for developing new pharmacotherapy for chronic pain disorders, connecting the effect of drugs acting at the molecular scale with emergent properties of neurons and circuits that shape the pain experience.
Collapse
Affiliation(s)
- Laura Medlock
- Neurosciences & Mental Health, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
| | - Kazutaka Sekiguchi
- Drug Developmental Research Laboratory, Shionogi Pharmaceutical Research Center, Toyonaka, Osaka 561-0825, Japan
- State University of New York Downstate Health Science University, Brooklyn, New York 11203
| | - Sungho Hong
- Computational Neuroscience Unit, Okinawa Institute of Science and Technology, Okinawa, 904-0495, Japan
| | - Salvador Dura-Bernal
- State University of New York Downstate Health Science University, Brooklyn, New York 11203
- Nathan Kline Institute for Psychiatric Research, Orangeburg, New York 10962
| | - William W Lytton
- State University of New York Downstate Health Science University, Brooklyn, New York 11203
- Kings County Hospital, Brooklyn, New York 11207
| | - Steven A Prescott
- Neurosciences & Mental Health, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
21
|
Gradwell MA, Boyle KA, Browne TJ, Bell AM, Leonardo J, Peralta Reyes FS, Dickie AC, Smith KM, Callister RJ, Dayas CV, Hughes DI, Graham BA. Diversity of inhibitory and excitatory parvalbumin interneuron circuits in the dorsal horn. Pain 2022; 163:e432-e452. [PMID: 34326298 PMCID: PMC8832545 DOI: 10.1097/j.pain.0000000000002422] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 12/03/2022]
Abstract
ABSTRACT Parvalbumin-expressing interneurons (PVINs) in the spinal dorsal horn are found primarily in laminae II inner and III. Inhibitory PVINs play an important role in segregating innocuous tactile input from pain-processing circuits through presynaptic inhibition of myelinated low-threshold mechanoreceptors and postsynaptic inhibition of distinct spinal circuits. By comparison, relatively little is known of the role of excitatory PVINs (ePVINs) in sensory processing. Here, we use neuroanatomical and optogenetic approaches to show that ePVINs comprise a larger proportion of the PVIN population than previously reported and that both ePVIN and inhibitory PVIN populations form synaptic connections among (and between) themselves. We find that these cells contribute to neuronal networks that influence activity within several functionally distinct circuits and that aberrant activity of ePVINs under pathological conditions is well placed to contribute to the development of mechanical hypersensitivity.
Collapse
Affiliation(s)
- Mark A. Gradwell
- Faculty of Health, School of Biomedical Sciences & Pharmacy, University of Newcastle, Callaghan, Australia
- Hunter Medical Research Institute (HMRI), New Lambton Heights, New South Wales, Australia
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ, United States
- W.M. Keck Center for Collaborative Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ, United States
| | - Kieran A. Boyle
- Institute of Neuroscience Psychology, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Tyler J. Browne
- Faculty of Health, School of Biomedical Sciences & Pharmacy, University of Newcastle, Callaghan, Australia
- Hunter Medical Research Institute (HMRI), New Lambton Heights, New South Wales, Australia
| | - Andrew M. Bell
- Institute of Neuroscience Psychology, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Jacklyn Leonardo
- Institute of Neuroscience Psychology, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Fernanda S. Peralta Reyes
- Institute of Neuroscience Psychology, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Allen C. Dickie
- Institute of Neuroscience Psychology, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Kelly M. Smith
- Faculty of Health, School of Biomedical Sciences & Pharmacy, University of Newcastle, Callaghan, Australia
- Hunter Medical Research Institute (HMRI), New Lambton Heights, New South Wales, Australia
- Department of Neurobiology and the Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, PA, United States
| | - Robert J. Callister
- Faculty of Health, School of Biomedical Sciences & Pharmacy, University of Newcastle, Callaghan, Australia
- Hunter Medical Research Institute (HMRI), New Lambton Heights, New South Wales, Australia
| | - Christopher V. Dayas
- Faculty of Health, School of Biomedical Sciences & Pharmacy, University of Newcastle, Callaghan, Australia
- Hunter Medical Research Institute (HMRI), New Lambton Heights, New South Wales, Australia
| | - David I. Hughes
- Institute of Neuroscience Psychology, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Brett A. Graham
- Faculty of Health, School of Biomedical Sciences & Pharmacy, University of Newcastle, Callaghan, Australia
- Hunter Medical Research Institute (HMRI), New Lambton Heights, New South Wales, Australia
| |
Collapse
|