1
|
Esteves F, Madureira J, Costa C, Pires J, Barros B, Alves S, Vaz J, Oliveira M, Slezakova K, Fernandes A, Pereira MDC, Morais S, Valdiglesias V, Bonassi S, Teixeira JP, Costa S. Occupational exposure to wildland firefighting and its effects on systemic DNA damage. Int J Hyg Environ Health 2025; 266:114576. [PMID: 40203508 DOI: 10.1016/j.ijheh.2025.114576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 03/28/2025] [Accepted: 04/03/2025] [Indexed: 04/11/2025]
Abstract
BACKGROUND Portugal is among the European Union countries more devastated by forest fires. Wildland firefighters are at the forefront of this battle, facing exposure to a wide range of harmful pollutants. Epidemiological studies have highlighted a potential link between occupational firefighting exposure and several diseases, including cancer. To date, very few studies have explored the biological mechanisms associated with such exposure. The present longitudinal study aims to assess changes in early effect biomarkers following wildland firefighters' occupational exposure to a real wildfire event. METHODS Paired blood samples from 59 healthy Portuguese wildland firefighters were collected at two different time points: before wildfire season and after a fire event during wildfire season. Sociodemographic variables (e.g., age, sex) and work-related factors (e.g., years of service) were assessed via a self-reported questionnaire. Levels of early effect biomarkers, such as primary DNA damage and oxidative DNA damage (oxidised purines) were assessed via comet assay. DNA double-strand breaks (DSBs) were evaluated by phosphorylated H2AX (γH2AX). Moreover, hydroxylated polycyclic aromatic hydrocarbon metabolites (OHPAHs) and metal(loid)s were quantified in urine samples. The influence of urinary OHPAHs, urinary metal(loid)s, and other exposure-related factors (e.g., firefighting duration) on changes (Δ) in early effect biomarkers (post-vs. baseline levels) was investigated. RESULTS Firefighting activities led to a significant increase in both primary DNA damage and oxidative DNA damage by 22 % (95 % CI: 1.11-1.35; p < 0.05) and 23 % (95 % CI: 1.04-1.45; p < 0.05), respectively. Results from linear regression revealed that per each unit increase of urinary 2-hydroxyfluorene (2-OHFlu) (μmol/mol creatinine), the risk of ⧍ oxidative DNA damage increased by 20 % [FR: 1.20 (1.09-1.32); p < 0.01]. Additionally, each unit increase in urinary cesium (Cs) (μg/L) resulted in a significant 4 % increase in Δ primary DNA damage [FR: 1.04 (1.01-1.06); p < 0.05] and a 3 % increase in Δ oxidative DNA damage [FR: 1.03 (1.01-1.05); p < 0.05]. Post-exposure levels of γH2AX were significantly correlated with urinary 2-OHFlu levels assessed after firefighting (r = 0.30; p < 0.05). Furthermore, exposure duration and reported breathing difficulties during firefighting were significantly associated with increased levels of primary DNA damage. CONCLUSION Results obtained provide insights into the potential human health effects of wildland firefighting occupational exposure at the genetic and molecular levels, offering new and important mechanistic data. These findings are crucial for implementing health and safety measures, recommendations, and best practices to mitigate occupational risks and protect the health of wildland firefighters.
Collapse
Affiliation(s)
- Filipa Esteves
- Environmental Health Department, National Institute of Health, Rua Alexandre Herculano, nº 321, 4000-055, Porto, Portugal; EPIUnit - Instituto de Saúde Pública, Universidade do Porto, Rua das Taipas, n° 135, 4050-600, Porto, Portugal; Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Universidade do Porto, Rua das Taipas, n° 135, 4050-600, Porto, Portugal; Department of Public Health and Forensic Sciences, and Medical School, Faculty of Medicine, University of Porto, Rua Doutor Plácido da Costa, 4200-450, Porto, Portugal
| | - Joana Madureira
- Environmental Health Department, National Institute of Health, Rua Alexandre Herculano, nº 321, 4000-055, Porto, Portugal; EPIUnit - Instituto de Saúde Pública, Universidade do Porto, Rua das Taipas, n° 135, 4050-600, Porto, Portugal; Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Universidade do Porto, Rua das Taipas, n° 135, 4050-600, Porto, Portugal
| | - Carla Costa
- Environmental Health Department, National Institute of Health, Rua Alexandre Herculano, nº 321, 4000-055, Porto, Portugal; EPIUnit - Instituto de Saúde Pública, Universidade do Porto, Rua das Taipas, n° 135, 4050-600, Porto, Portugal; Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Universidade do Porto, Rua das Taipas, n° 135, 4050-600, Porto, Portugal
| | - Joana Pires
- Environmental Health Department, National Institute of Health, Rua Alexandre Herculano, nº 321, 4000-055, Porto, Portugal; EPIUnit - Instituto de Saúde Pública, Universidade do Porto, Rua das Taipas, n° 135, 4050-600, Porto, Portugal; Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Universidade do Porto, Rua das Taipas, n° 135, 4050-600, Porto, Portugal
| | - Bela Barros
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Instituto Politécnico do Porto, Dr. António Bernardino de Almeida 431, 4249-015, Porto, Portugal
| | - Sara Alves
- Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253, Bragança, Portugal
| | - Josiana Vaz
- Research Centre for Active Living and Wellbeing (LiveWell), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253, Bragança, Portugal; CIMO, LA SusTEC, Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253, Bragança, Portugal
| | - Marta Oliveira
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Instituto Politécnico do Porto, Dr. António Bernardino de Almeida 431, 4249-015, Porto, Portugal
| | - Klara Slezakova
- LEPABE-ALiCE, Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| | - Adília Fernandes
- Research Centre for Active Living and Wellbeing (LiveWell), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253, Bragança, Portugal; CIMO, LA SusTEC, Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253, Bragança, Portugal
| | - Maria do Carmo Pereira
- LEPABE-ALiCE, Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| | - Simone Morais
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Instituto Politécnico do Porto, Dr. António Bernardino de Almeida 431, 4249-015, Porto, Portugal
| | - Vanessa Valdiglesias
- Universidade da Coruña, Grupo NanoToxGen, Centro Interdisciplinar de Química e Bioloxía - CICA, Departamento de Biología, Facultad de Ciencias, Campus A Zapateira s/n, A Coruña, Spain; Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, As Xubias, A Coruña, 15006, Spain
| | - Stefano Bonassi
- Unit of Clinical and Molecular Epidemiology, IRCCS San Raffaele Roma, 00163, Rome, Italy; Department of Human Sciences and Quality of Life Promotion, San Raffaele University, 00166, Rome, Italy
| | - João Paulo Teixeira
- Environmental Health Department, National Institute of Health, Rua Alexandre Herculano, nº 321, 4000-055, Porto, Portugal; EPIUnit - Instituto de Saúde Pública, Universidade do Porto, Rua das Taipas, n° 135, 4050-600, Porto, Portugal; Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Universidade do Porto, Rua das Taipas, n° 135, 4050-600, Porto, Portugal.
| | - Solange Costa
- Environmental Health Department, National Institute of Health, Rua Alexandre Herculano, nº 321, 4000-055, Porto, Portugal; EPIUnit - Instituto de Saúde Pública, Universidade do Porto, Rua das Taipas, n° 135, 4050-600, Porto, Portugal; Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Universidade do Porto, Rua das Taipas, n° 135, 4050-600, Porto, Portugal
| |
Collapse
|
2
|
Noah TL, Alexis NE, Bennett WD, Hernandez ML, Burbank AJ, Li H, Zhou H, Jaspers I, Peden DB. Effect of prednisone on woodsmoke-induced sputum inflammation in healthy volunteers: A randomized, placebo-controlled pilot study. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. GLOBAL 2025; 4:100347. [PMID: 39524042 PMCID: PMC11546454 DOI: 10.1016/j.jacig.2024.100347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/17/2024] [Accepted: 09/12/2024] [Indexed: 11/16/2024]
Abstract
Background Inhalation of biomass smoke is associated with adverse respiratory effects in those with chronic pulmonary conditions. There are few published data regarding the effects of anti-inflammatory interventions on these outcomes. Objective Our aim was to assess the effects of postexposure prednisone on woodsmoke (WS)-induced sputum neutrophilia. Methods We carried out a randomized, placebo-controlled, crossover pilot study assessing the effect of a postexposure dose of 60 mg prednisone on induced sputum inflammation after controlled exposure to WS (500 μg/m3 for 2 hours) in healthy adults who had been identified in a separate screening protocol as being "PMN responsive" to WS. Secondary end points were sputum cytokine level and mucociliary clearance as measured by γ-scintigraphy. Results A total of 11 subjects yielded complete data for the primary analysis. At 24 hours after WS exposure, there was a significant increase in sputum percentage of PMNs (%PMN) versus at baseline after placebo (median = 42% [IQR = 31%-53%]) (P = .02) but not after prednisone (median = 32% [IQR = 18%-40%]) (P = .09). Prednisone reduced Δ%PMN at 24 hours, but this difference did not reach statistical significance. However, for the 8 of 11 subjects who were PMN responsive after placebo, prednisone reduced Δ%PMN significantly (P = .05). Prednisone had no significant effects on sputum levels of IL-1β, IL-6, IL-8, or TNF-α. WS exposure tended to reduce mucociliary clearance in the placebo arm but not in the prednisone arm. Conclusions Prednisone taken immediately after exposure to WS mitigated short-term increase in sputum %PMN among healthy volunteers selected for their underlying inflammatory responsiveness to WS. Our data support future studies assessing anti-inflammatory interventions and the role of mucus clearance in WS-induced respiratory health effects.
Collapse
Affiliation(s)
- Terry L. Noah
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC
- Center for Environmental Medicine, Asthma and Lung Biology, Chapel Hill, NC
| | - Neil E. Alexis
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC
- Center for Environmental Medicine, Asthma and Lung Biology, Chapel Hill, NC
| | - William D. Bennett
- Center for Environmental Medicine, Asthma and Lung Biology, Chapel Hill, NC
| | - Michelle L. Hernandez
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC
- Center for Environmental Medicine, Asthma and Lung Biology, Chapel Hill, NC
| | - Allison J. Burbank
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC
- Center for Environmental Medicine, Asthma and Lung Biology, Chapel Hill, NC
| | - Haolin Li
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Haibo Zhou
- Center for Environmental Medicine, Asthma and Lung Biology, Chapel Hill, NC
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Ilona Jaspers
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC
- Center for Environmental Medicine, Asthma and Lung Biology, Chapel Hill, NC
| | - David B. Peden
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC
- Center for Environmental Medicine, Asthma and Lung Biology, Chapel Hill, NC
| |
Collapse
|
3
|
Allaouat S, Yli-Tuomi T, Tiittanen P, Kukkonen J, Kangas L, Mikkonen S, Ngandu T, Jousilahti P, Siponen T, Zeller T, Lanki T. Long-term exposures to low concentrations of source-specific air pollution, road-traffic noise, and systemic inflammation and cardiovascular disease biomarkers. ENVIRONMENTAL RESEARCH 2024; 262:119846. [PMID: 39187149 DOI: 10.1016/j.envres.2024.119846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 08/22/2024] [Accepted: 08/24/2024] [Indexed: 08/28/2024]
Abstract
OBJECTIVES Air pollution and traffic noise are detrimental to cardiovascular health. However, the effects of different sources of these exposures on cardiovascular biomarkers remain unclear. We explored the associations of long-term exposure to source-specific air pollution (vehicular exhausts and residential woodsmoke) at low concentrations and road-traffic noise with systemic inflammation and cardiovascular disease biomarkers. MATERIAL AND METHODS Modeled outdoor exposure to fine particulate matter (aerodynamic diameter ≤2.5 μm; PM2.5) from vehicular exhausts and residential woodsmoke, nitrogen dioxide (NO2) from road traffic, and road-traffic noise were linked to the home addresses of the participants (Finnish residents aged 25-74) in the FINRISK study 1997-2012. The participants were located in the cities of Helsinki, Vantaa, and the region of Turku, Finland. The outcomes were high-sensitivity C-reactive protein (CRP), a biomarker for systemic inflammation, and cardiovascular disease biomarkers N-terminal pro-B-type natriuretic peptide (NT-proBNP) and troponin I. We performed cross-sectional analyses with linear and additive models and adjusted for potential confounders. RESULTS We found no association between PM2.5 from vehicular exhausts (% CRP difference for 1 μg/m3 increase in PM2.5: -0.9, 95% confidence interval, CI: -7.2, 5.8), or from residential woodsmoke (% difference: -8.1, 95% CI: -21.7, 7.9) and CRP (N = 4147). Road-traffic noise >70 dB tended to be positively associated with CRP (% CRP difference versus noise reference category of ≤45 dB: 18.3, 95% CI: -0.5, 40.6), but the association lacked significance and robustness (N = 7142). Otherwise, we found no association between road-traffic noise and CRP, nor between NO2 from road traffic and NT-proBNP (N = 1907) or troponin I (N = 1951). CONCLUSION Long-term exposures to source-specific, fairly low-level air pollution from vehicular exhausts and residential woodsmoke, or road-traffic noise were not associated with systemic inflammation and cardiovascular disease biomarkers in this urban area.
Collapse
Affiliation(s)
- Sara Allaouat
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland; Lifestyles and Living Environments Unit, Department of Public Health, Finnish Institute for Health and Welfare, Kuopio, Finland.
| | - Tarja Yli-Tuomi
- Lifestyles and Living Environments Unit, Department of Public Health, Finnish Institute for Health and Welfare, Kuopio, Finland
| | - Pekka Tiittanen
- Lifestyles and Living Environments Unit, Department of Public Health, Finnish Institute for Health and Welfare, Kuopio, Finland
| | - Jaakko Kukkonen
- Finnish Meteorological Institute, Helsinki, Finland; Centre for Climate Change Research (C3R), University of Hertfordshire, Hatfield, UK
| | - Leena Kangas
- Finnish Meteorological Institute, Helsinki, Finland
| | - Santtu Mikkonen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - Tiia Ngandu
- Lifestyles and Living Environments Unit, Department of Public Health, Finnish Institute for Health and Welfare, Kuopio, Finland
| | - Pekka Jousilahti
- Lifestyles and Living Environments Unit, Department of Public Health, Finnish Institute for Health and Welfare, Kuopio, Finland
| | - Taina Siponen
- Lifestyles and Living Environments Unit, Department of Public Health, Finnish Institute for Health and Welfare, Kuopio, Finland
| | - Tanja Zeller
- University Center of Cardiovascular Science, University Heart and Vascular Center Hamburg, Germany; Department of Cardiology, University Heart and Vascular Center Hamburg, Medical University Hamburg-Eppendorf, Hamburg, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Lübeck/Kiel, Hamburg, Germany
| | - Timo Lanki
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland; Lifestyles and Living Environments Unit, Department of Public Health, Finnish Institute for Health and Welfare, Kuopio, Finland; Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
4
|
Long E, Rider CF, Carlsten C. Controlled human exposures: a review and comparison of the health effects of diesel exhaust and wood smoke. Part Fibre Toxicol 2024; 21:44. [PMID: 39444041 PMCID: PMC11515699 DOI: 10.1186/s12989-024-00603-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 09/24/2024] [Indexed: 10/25/2024] Open
Abstract
One of the most pressing issues in global health is air pollution. Emissions from traffic-related air pollution and biomass burning are two of the most common sources of air pollution. Diesel exhaust (DE) and wood smoke (WS) have been used as models of these pollutant sources in controlled human exposure (CHE) experiments. The aim of this review was to compare the health effects of DE and WS using results obtained from CHE studies. A total of 119 CHE-DE publications and 25 CHE-WS publications were identified for review. CHE studies of DE generally involved shorter exposure durations and lower particulate matter concentrations, and demonstrated more potent dysfunctional outcomes than CHE studies of WS. In the airways, DE induces neutrophilic inflammation and increases airway hyperresponsiveness, but the effects of WS are unclear. There is strong evidence that DE provokes systemic oxidative stress and inflammation, but less evidence exists for WS. Exposure to DE was more prothrombotic than WS. DE generally increased cardiovascular dysfunction, but limited evidence is available for WS. Substantial heterogeneity in experimental methodology limited the comparison between studies. In many areas, outcomes of WS exposures tended to trend in similar directions to those of DE, suggesting that the effects of DE exposure may be useful for inferring possible responses to WS. However, several gaps in the literature were identified, predominantly pertaining to elucidating the effects of WS exposure. Future studies should strongly consider performing head-to-head comparisons between DE and WS using a CHE design to determine the differential effects of these exposures.
Collapse
Affiliation(s)
- Erin Long
- Faculty of Medicine, University of British Columbia, 317 - 2194 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Christopher F Rider
- Department of Medicine, Division of Respiratory Medicine, University of British Columbia, 2775 Laurel Street 7th Floor, Vancouver, BC, V5Z 1M9, Canada
| | - Christopher Carlsten
- Department of Medicine, Division of Respiratory Medicine, University of British Columbia, 2775 Laurel Street 7th Floor, Vancouver, BC, V5Z 1M9, Canada.
| |
Collapse
|
5
|
Paiva AM, Barros B, Oliveira M, Alves S, Esteves F, Fernandes A, Vaz J, Slezáková K, Teixeira JP, Costa S, Morais S. Biomonitoring of polycyclic aromatic hydrocarbons exposure and short-time health effects in wildland firefighters during real-life fire events. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171801. [PMID: 38508274 DOI: 10.1016/j.scitotenv.2024.171801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/27/2024] [Accepted: 03/16/2024] [Indexed: 03/22/2024]
Abstract
Human biomonitoring data retrieved from real-life wildland firefighting in Europe and, also, worldwide are scarce. Thus, in this study, 176 Portuguese firefighters were biomonitored pre- and post- unsimulated wildfire combating (average:12-13 h; maximum: 55 h) to evaluate the impact on the levels of urinary polycyclic aromatic hydrocarbons hydroxylated metabolites (OHPAH; quantified by high-performance liquid chromatography with fluorescence detection) and the associated short-term health effects (symptoms, and total and differentiated white blood cells). Correlations between these variables and data retrieved from the self-reported questionnaires were also investigated. Firefighters were organized into four groups according to their exposure to wildfire emissions and their smoking habits: non-smoking non-exposed (NSNExp), non-smoking exposed (NSExp), smoking non-exposed (SNExp), and smoking and exposed (SExp). The most abundant metabolites were 1-hydroxynaphthalene and 1-hydroxyacenaphthene (1OHNaph + 1OHAce) (98-99 %), followed by 2-hydroxyfluorene (2OHFlu) (0.2-1.1 %), 1-hydroxyphenanthrene (1OHPhen) (0.2-0.4 %), and 1-hydroxypyrene (1OHPy) (0.1-0.2 %); urinary 3-hydroxybenzo(a)pyrene was not detected. The exposure to wildfire emissions significantly elevated the median concentrations of each individual and total OHPAH compounds in all groups, but this effect was more pronounced in non-smoking (1.7-4.2 times; p ≤ 0.006) than in smoking firefighters (1.3-1.6 times; p ≤ 0.03). The greatest discriminant of exposure to wildfire emissions was 1OHNaph + 1OHAce (increase of 4.2 times), while for tobacco smoke it was 2OHFlu (increase of 10 times). Post-exposure, white blood cells count significantly increased ranging from 1.4 (smokers, p = 0.025) to 3.7-fold (non-smokers, p < 0.001), which was accompanied by stronger significant correlations (0.480 < r < 0.882; p < 0.04) between individual and total OHPAH and total white blood cells (and lymphocytes > monocytes > neutrophils in non-smokers), evidencing the impact of PAH released from wildfire on immune cells. This study identifies Portuguese firefighters with high levels of biomarkers of exposure to PAH and points out the importance of adopting biomonitoring schemes, that include multiple biomarkers of exposure and biomarkers of effect, and implementing mitigations strategies.
Collapse
Affiliation(s)
- Ana Margarida Paiva
- REQUIMTE/LAQV, ISEP, Polytechnic of Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal
| | - Bela Barros
- REQUIMTE/LAQV, ISEP, Polytechnic of Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal
| | - Marta Oliveira
- REQUIMTE/LAQV, ISEP, Polytechnic of Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal
| | - Sara Alves
- Instituto Politécnico de Bragança, UICISA: E, Unidade de Investigação em Ciências da Saúde: Enfermagem, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Filipa Esteves
- Environmental Health Department, National Institute of Health Dr. Ricardo Jorge, Rua Alexandre Herculano 321, 4000-055 Porto, Portugal; Department of Public Health and Forensic Sciences, Medical School, Faculty of Medicine, University of Porto, Rua Dr. Plácido da Costa, 4200-450 Porto, Portugal; EPIUnit, Instituto de Saúde Pública da Universidade do Porto, Rua das Taipas 135, 4050-600 Porto, Portugal
| | - Adília Fernandes
- Instituto Politécnico de Bragança, UICISA: E, Unidade de Investigação em Ciências da Saúde: Enfermagem, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Josiana Vaz
- CIMO, Instituto Politécnico de Bragança, Centro de Investigação de Montanha, Campus Santa Apolónia, 5300-253 Bragança, Portugal; SusTEC, Instituto Politécnico de Bragança, Sustec - Associate Laboratory for Sustainability and Technology in Inland Regions, Campus Santa Apolónia, 5300-253 Bragança, Portugal
| | - Klára Slezáková
- LEPABE-ALiCE, Departamento de Engenharia Química, Faculdade de Engenharia, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - João Paulo Teixeira
- Environmental Health Department, National Institute of Health Dr. Ricardo Jorge, Rua Alexandre Herculano 321, 4000-055 Porto, Portugal; EPIUnit, Instituto de Saúde Pública da Universidade do Porto, Rua das Taipas 135, 4050-600 Porto, Portugal
| | - Solange Costa
- Environmental Health Department, National Institute of Health Dr. Ricardo Jorge, Rua Alexandre Herculano 321, 4000-055 Porto, Portugal; EPIUnit, Instituto de Saúde Pública da Universidade do Porto, Rua das Taipas 135, 4050-600 Porto, Portugal
| | - Simone Morais
- REQUIMTE/LAQV, ISEP, Polytechnic of Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal.
| |
Collapse
|
6
|
Sol JA, Covington AC, McCloy AD, Sessums IP, Malek EM, McGinnis GR, Quindry JC. Effects of Acute Sleep Deprivation on the Physiological Response to Woodsmoke and Exercise. J Occup Environ Med 2024; 66:381-387. [PMID: 38383951 PMCID: PMC11073906 DOI: 10.1097/jom.0000000000003071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
OBJECTIVE To evaluate sleep deprivation effects on the acute physiological response to a combined stressor of woodsmoke and exercise. METHODS Ten participants completed two exercise trials (8 hours of sleep vs 4 hours) with woodsmoke. Trials were conducted in a crossover design. Key measures examined before and after each trial included heart rate variability, pulse wave velocity, blood pressure, pulmonary function testing, and oxidative stress. RESULTS Acute sleep deprivation experienced before exercise and woodsmoke exposure did not impact metrics of heart rate variability, pulse wave velocity, pulmonary function testing, blood pressure, or oxidative stress. CONCLUSIONS Acute sleep deprivation did not amplify physiologic metrics in response to moderate-intensity aerobic exercise with inhaled woodsmoke. Although findings do not eliminate the negative impacts of inhaling woodsmoke, more research is needed to understand the acute effects of woodsmoke exposure on the cardiovascular system. 1.
Collapse
Affiliation(s)
- Joseph A. Sol
- School of Integrative Physiology and Athletic Training, University of Montana, Missoula, MT
| | - Anna C. Covington
- School of Integrative Physiology and Athletic Training, University of Montana, Missoula, MT
| | - Aidan D.A. McCloy
- School of Integrative Physiology and Athletic Training, University of Montana, Missoula, MT
| | - Izaac P. Sessums
- School of Integrative Physiology and Athletic Training, University of Montana, Missoula, MT
| | - Elias M. Malek
- School of Kinesiology and Nutrition Sciences, University of Nevada – Las Vegas, Las Vegas, NV
| | - Graham R. McGinnis
- School of Kinesiology and Nutrition Sciences, University of Nevada – Las Vegas, Las Vegas, NV
| | - John C. Quindry
- School of Integrative Physiology and Athletic Training, University of Montana, Missoula, MT
| |
Collapse
|
7
|
Christison KS, Sol JA, Gurney SC, Dumke CL. Wildland Firefighter Critical Training Elicits Positive Adaptations to Markers of Cardiovascular and Metabolic Health. Wilderness Environ Med 2023; 34:328-333. [PMID: 37258395 DOI: 10.1016/j.wem.2023.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 03/03/2023] [Accepted: 04/10/2023] [Indexed: 06/02/2023]
Abstract
INTRODUCTION The purpose of this study was to identify physiologic changes in body composition and resting metabolic markers of health across 2 wk of critical training (CT) in wildland firefighters (WLFFs). METHODS Twenty-two male and 3 female participants were recruited from 2 hotshot crews across the western United States prior to the 2022 fire season and monitored over their 80-h CT. Body weight (BW) and skinfolds were recorded before and after CT to estimate body fat (BF) and lean body weight (LBW). Blood was analyzed for changes in hematocrit, hemoglobin, plasma volume, and resting values of a lipid and metabolic panel. RESULTS The high physical demands of CT resulted in improvements in total cholesterol (-19.3 mg/dL, P<0.001), triglycerides (-34.4 mg/dL, P<0.001), low-density lipoprotein cholesterol (-18.1 mg/dL, P<0.001), very-low-density lipoprotein cholesterol (-5.2 mg/dL, P<0.001), high-density lipoprotein cholesterol (+4.0 mg/dL, P=0.002), non-high-density lipoprotein cholesterol (-19.3 mg/dL, P<0.001), and fasting glucose (-4.3 mg/dL, P=0.008) from before CT to after CT. Significant decreases in hemoglobin and hematocrit were also seen (P<0.001) with corresponding increases in estimated plasma volume (+6.1%, P<0.001). These alterations were seen despite maintenance of BW, LBW, and BF. Lower pretraining BF was associated with a greater magnitude of improvements in fasting glucose and cholesterol markers. CONCLUSIONS The observed improvements in baseline metabolic and cardiovascular markers along with plasma volume expansion suggest a positive response to the physical stress of WLFF CT. It appears that higher preseason fitness was associated with greater adaptations to the CT stressor.
Collapse
Affiliation(s)
- Katherine S Christison
- School of Integrative Physiology and Athletic Training, University of Montana, Missoula, MT
| | - Joseph A Sol
- School of Integrative Physiology and Athletic Training, University of Montana, Missoula, MT; United States Department of Agriculture, Forest Service, National Technology and Development Program, Missoula, MT
| | - Shae C Gurney
- School of Integrative Physiology and Athletic Training, University of Montana, Missoula, MT
| | - Charles L Dumke
- School of Integrative Physiology and Athletic Training, University of Montana, Missoula, MT.
| |
Collapse
|
8
|
Aguilera J, Kaushik A, Cauwenberghs N, Heider A, Ogulur I, Yazici D, Smith E, Alkotob S, Prunicki M, Akdis CA, Nadeau KC. Granzymes, IL-16, and poly(ADP-ribose) polymerase 1 increase during wildfire smoke exposure. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. GLOBAL 2023; 2:100093. [PMID: 37539354 PMCID: PMC10399148 DOI: 10.1016/j.jacig.2023.100093] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Background Given the increasing prevalence of wildfires worldwide, understanding the effects of wildfire air pollutants on human health-particularly in specific immunologic pathways-is crucial. Exposure to air pollutants is associated with cardiorespiratory disease; however, immune and epithelial barrier alterations require further investigation. Objective We sought to determine the impact of wildfire smoke exposure on the immune system and epithelial barriers by using proteomics and immune cell phenotyping. Methods A San Francisco Bay area cohort (n = 15; age 30 ± 10 years) provided blood samples before (October 2019 to March 2020; air quality index = 37) and during (August 2020; air quality index = 80) a major wildfire. Exposure samples were collected 11 days (range, 10-12 days) after continuous exposure to wildfire smoke. We determined alterations in 506 proteins, including zonulin family peptide (ZFP); immune cell phenotypes by cytometry by time of flight (CyTOF); and their interrelationship using a correlation matrix. Results Targeted proteomic analyses (n = 15) revealed a decrease of spondin-2 and an increase of granzymes A, B, and H, killer cell immunoglobulin-like receptor 3DL1, IL-16, nibrin, poly(ADP-ribose) polymerase 1, C1q TNF-related protein, fibroblast growth factor 19, and von Willebrand factor after 11 days' average continuous exposure to smoke from a large wildfire (P < .05). We also observed a large correlation cluster between immune regulation pathways (IL-16, granzymes A, B, and H, and killer cell immunoglobulin-like receptor 3DL1), DNA repair [poly(ADP-ribose) 1, nibrin], and natural killer cells. We did not observe changes in ZFP levels suggesting a change in epithelial barriers. However, ZFP was associated with immune cell phenotypes (naive CD4+, TH2 cells). Conclusion We observed functional changes in critical immune cells and their proteins during wildfire smoke exposure. Future studies in larger cohorts or in firefighters exposed to wildfire smoke should further assess immune changes and intervention targets.
Collapse
Affiliation(s)
- Juan Aguilera
- the Center for Community Health Impact, University of Texas Health Science Center School of Public Health, El Paso
| | - Abhinav Kaushik
- the Department of Medicine, Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford
| | - Nicholas Cauwenberghs
- the Department of Cardiovascular Sciences, Hypertension and Cardiovascular Epidemiology Research Unit, KU Leuven, Leuven
| | - Anja Heider
- the Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos
| | - Ismail Ogulur
- the Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos
| | - Duygu Yazici
- the Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos
| | - Eric Smith
- the David Geffen School of Medicine at University of California, Los Angeles
| | | | - Mary Prunicki
- the Department of Medicine, Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford
| | - Cezmi A. Akdis
- the Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos
- the Christine Kühne-Center for Allergy Research and Education (CK-CARE), Davos
| | - Kari C. Nadeau
- the Department of Medicine, Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford
- the Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston
| |
Collapse
|
9
|
Sampath V, Aguilera J, Prunicki M, Nadeau KC. Mechanisms of climate change and related air pollution on the immune system leading to allergic disease and asthma. Semin Immunol 2023; 67:101765. [PMID: 37105834 PMCID: PMC10275624 DOI: 10.1016/j.smim.2023.101765] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 04/19/2023] [Indexed: 04/29/2023]
Abstract
Climate change is considered the greatest threat to global health. Greenhouse gases as well as global surface temperatures have increased causing more frequent and intense heat and cold waves, wildfires, floods, drought, altered rainfall patterns, hurricanes, thunderstorms, air pollution, and windstorms. These extreme weather events have direct and indirect effects on the immune system, leading to allergic disease due to exposure to pollen, molds, and other environmental pollutants. In this review, we will focus on immune mechanisms associated with allergy and asthma-related health risks induced by climate change events. We will review current understanding of the molecular and cellular mechanisms by which the changing environment mediates these effects.
Collapse
Affiliation(s)
- Vanitha Sampath
- Sean N. Parker Center for Allergy and Asthma Research, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA.
| | - Juan Aguilera
- Center for Community Health Impact, The University of Texas Health Science Center at Houston School of Public Health, El Paso, Texas, USA
| | - Mary Prunicki
- Sean N. Parker Center for Allergy and Asthma Research, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Kari C Nadeau
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
10
|
Pace A, Villamediana P, Rezamand P, Skibiel AL. Effects of wildfire smoke PM2.5 on indicators of inflammation, health, and metabolism of preweaned Holstein heifers. J Anim Sci 2023; 101:skad246. [PMID: 37465977 PMCID: PMC10449420 DOI: 10.1093/jas/skad246] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 07/15/2023] [Indexed: 07/20/2023] Open
Abstract
Wildfires are a growing concern as large, catastrophic fires are becoming more commonplace. Wildfire smoke consists of fine particulate matter (PM2.5), which can cause immune responses and disease in humans. However, the present knowledge of the effects of wildfire PM2.5 on dairy cattle is sparse. The present study aimed to elucidate the effects of wildfire-PM2.5 exposure on dairy calf health and performance. Preweaned Holstein heifers (N = 15) were assessed from birth through weaning, coinciding with the 2021 wildfire season. Respiratory rate, heart rate, rectal temperatures, and health scores were recorded and blood samples were collected weekly or twice a week for analysis of hematology, blood metabolites, and acute phase proteins. Hourly PM2.5 concentrations and meteorological data were obtained, and temperature-humidity index (THI) was calculated. Contribution of wildfires to PM2.5 fluxes were determined utilizing AirNowTech Navigator and HYSPLIT modeling. Mixed models were used for data analysis, with separate models for lags of up to 7 d, and fixed effects of daily average PM2.5, THI, and PM2.5 × THI, and calf as a random effect. THI ranged from 48 to 73, while PM2.5 reached concentrations up to 118.8 µg/m3 during active wildfires. PM2.5 and THI positively interacted to elevate respiratory rate, heart rate, rectal temperature, and eosinophils on lag day 0 (day of exposure; all P < 0.05). There was a negative interactive effect of PM2.5 and THI on lymphocytes after a 2-d lag (P = 0.03), and total white blood cells, neutrophils, hemoglobin, and hematocrit after a 3-d lag (all P < 0.02), whereas there was a positive interactive effect on cough scores and eye scores on lag day 3 (all P < 0.02). Glucose and NEFA were increased as a result of combined elevated PM2.5 and THI on lag day 1, whereas BHB was decreased (all P < 0.05). Contrarily, on lag day 3 and 6, there was a negative interactive effect of PM2.5 and THI on glucose and NEFA, but a positive interactive effect on BHB (all P < 0.03). Serum amyloid A was decreased whereas haptoglobin was increased with elevated PM2.5 and THI together on lag days 0 to 4 (all P < 0.05). These findings indicate that exposure to wildfire-derived PM2.5, along with increased THI during the summer months, elicits negative effects on preweaned calf health and performance both during and following exposure.
Collapse
Affiliation(s)
- Alexandra Pace
- Department of Animal, Veterinary and Food Sciences, University of Idaho, Moscow, ID 83844, USA
| | - Patricia Villamediana
- Department of Animal, Veterinary and Food Sciences, University of Idaho, Moscow, ID 83844, USA
| | - Pedram Rezamand
- Department of Animal, Veterinary and Food Sciences, University of Idaho, Moscow, ID 83844, USA
| | - Amy L Skibiel
- Department of Animal, Veterinary and Food Sciences, University of Idaho, Moscow, ID 83844, USA
| |
Collapse
|
11
|
Firefighters With Higher Cardiorespiratory Fitness Demonstrate Lower Markers of Cardiovascular Disease Risk. J Occup Environ Med 2022; 64:1036-1040. [PMID: 35902372 DOI: 10.1097/jom.0000000000002632] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVE High cardiorespiratory fitness (CRF) is associated with reduced markers of oxidative stress and cardiovascular disease (CVD) risk factors; however, this relationship has not been elucidated in firefighters. The purpose of this study was to examine differences in markers of CVD risk between firefighters who have either high or low levels of CRF. METHODS Forty-six firefighters participated in a maximal graded exercise test and a dual-energy x-ray absorptiometry scan and provided a fasted blood sample. V˙O 2max values were categorized based on American College of Sports Medicine guidelines to establish high- and low-fitness groups. RESULTS High fitness firefighters demonstrated significantly higher high-density lipoprotein cholesterol and lower markers of CVD risk: cholesterol, triglycerides, low-density lipoprotein cholesterol, insulin, homeostatic model assessment for insulin resistance, C-reactive protein, and advanced oxidation protein products concentrations. CONCLUSION Firefighters are encouraged to maintain high CRF to reduce risk of CVD.
Collapse
|
12
|
Orysiak J, Młynarczyk M, Piec R, Jakubiak A. Lifestyle and environmental factors may induce airway and systemic inflammation in firefighters. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:73741-73768. [PMID: 36094704 PMCID: PMC9465149 DOI: 10.1007/s11356-022-22479-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 08/07/2022] [Indexed: 06/15/2023]
Abstract
Health status depends on multiple genetic and non-genetic factors. Nonheritable factors (such as lifestyle and environmental factors) have stronger impact on immune responses than genetic factors. Firefighters work is associated with exposure to air pollution and heat stress, as well as: extreme physical effort, mental stress, or a changed circadian rhythm, among others. All these factors can contribute to both, short-term and long-term impairment of the physical and mental health of firefighters. Increased levels of some inflammatory markers, such as pro-inflammatory cytokines or C-reactive protein (CRP) have been observed in firefighters, which can lead to local, acute inflammation that promotes a systemic inflammatory response. It is worth emphasizing that inflammation is one of the main hallmarks of cancer and also plays a key role in the development of cardiovascular and respiratory diseases. This article presents possible causes of the development of an inflammatory reaction in firefighters, with particular emphasis on airway inflammation caused by smoke exposure.
Collapse
Affiliation(s)
- Joanna Orysiak
- Central Institute for Labour Protection - National Research Institute, Czerniakowska St. 16, 00-701, Warsaw, Poland.
| | - Magdalena Młynarczyk
- Central Institute for Labour Protection - National Research Institute, Czerniakowska St. 16, 00-701, Warsaw, Poland
| | - Robert Piec
- Institute of Internal Security, The Main School of Fire Service, Słowackiego St. 52/54, 01-629, Warsaw, Poland
| | - Agnieszka Jakubiak
- Department of Heart Failure and Cardiac Rehabilitation, Medical University of Warsaw, Żwirki and Wigury St. 61, 02-091, Warsaw, Poland
| |
Collapse
|
13
|
Lin CH, Liu WS, Wan C, Wang HH. Pentraxin 3 mediates early inflammatory response and EMT process in human tubule epithelial cells induced by PM2.5. Int Immunopharmacol 2022; 112:109258. [PMID: 36179417 DOI: 10.1016/j.intimp.2022.109258] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/30/2022] [Accepted: 09/12/2022] [Indexed: 11/18/2022]
Abstract
Pentraxin 3 (PTX3) is a multifunctional molecule that mainly expressed in response to proinflammatory stimuli under physiological and pathological conditions. It is produced in tubule epithelial cells that is involved in the innate immune response and inflammatory reactions in the kidney. However, its role in fine particulate matter (PM2.5)-induced renal injury associated with inflammation remains to be investigated. As a result of PM2.5 exposure, the levels of interleukin (IL)-1β, IL-6 and tumor necrosis factor (TNF)-α levels were increased in HK-2 cells. Notably, the mesenchymal phenotypes with migratory abilities of HK-2 cells were found following PM2.5 exposure. The elevated expressions of PTX3 mRNA and protein in response to PM2.5 were tested by RT-PCR and Western blotting respectively. Further determinate the role of PTX3 by siRNA showed lack of PTX3 could increase IL-6 production and promote epithelial-mesenchymal transition (EMT) process, as evidenced by decreased expressions of E-cadherin, and increased expressions of N-cadherin and α-SMA in HK-2 cells following PM2.5 exposure. Our study indicates that PTX3 mediates early inflammatory response and EMT in PM2.5-exposed HK-2 cells, suggesting a counter-regulatory role of PTX3 in the early course of tubule cell injury induced by PM2.5.
Collapse
Affiliation(s)
- Chien-Hung Lin
- Division of Pediatric Immunology and Nephrology, Department of Pediatrics, Taipei Veterans General Hospital, Taipei, Taiwan; Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan; College of Science and Engineering, Fu Jen Catholic University, New Taipei, Taiwan.
| | - Wen-Sheng Liu
- College of Science and Engineering, Fu Jen Catholic University, New Taipei, Taiwan; Department of Pediatrics, Taipei City Hospital, Zhongxing Branch, Taiwan
| | - Chuan Wan
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan; Department of Pediatrics, Taipei City Hospital, Zhongxing Branch, Taiwan
| | - Hsin-Hui Wang
- Division of Pediatric Immunology and Nephrology, Department of Pediatrics, Taipei Veterans General Hospital, Taipei, Taiwan; Institute of Emergency and Critical Care Medicine, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
14
|
Affiliation(s)
- Cezmi A Akdis
- Affiliations Swiss Institute of Allergy and Asthma Research (SIAF), University Zurich, Davos, Switzerland.
| | - Kari C Nadeau
- Sean N. Parker Center for Allergy and Asthma Research at Stanford University and Division of Pulmonary, Allergy, and Critical Care Medicine, Stanford University, Stanford, CA, USA
| |
Collapse
|
15
|
Sol JA, Quindry JC. Application of a Novel Collection of Exhaled Breath Condensate to Exercise Settings. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19073948. [PMID: 35409631 PMCID: PMC8997655 DOI: 10.3390/ijerph19073948] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/21/2022] [Accepted: 03/23/2022] [Indexed: 02/04/2023]
Abstract
The collection of exhaled breath condensate (EBC) is a non-invasive method for obtaining biosamples from the lower respiratory tract, an approach amenable to exercise, environmental, and work physiology applications. The purpose of this study was to develop a cost-effective, reproducible methodology for obtaining larger volume EBC samples. Participants (male: n = 10; female: n = 6; 26 ± 8 yrs.) completed a 10 min EBC collection using a novel device (N-EBC). After initial collection, a 45 min bout of cycling at 75% HRmax was performed, followed by another N-EBC collection. In a subset of individuals (n = 5), EBC was obtained using both the novel technique and a commercially available EBC collection device (R-EBC) in a randomized fashion. N-EBC volume—pre- and post-exercise (2.3 ± 0.8 and 2.6 ± 0.9 mL, respectively)—and pH (7.4 ± 0.5 and 7.4 ± 0.5, respectively) were not significantly different. When normalized for participant body height, device comparisons indicated N-EBC volumes were larger than R-EBC at pre-exercise (+12%) and post-exercise (+48%). Following moderate-intensity exercise, no changes in the pre- and post-trial values of Pentraxin 3 (0.25 ± 0.04 and 0.26 ± 0.06 pg/mL, respectively) and 8-Isoprostrane (0.43 ± 0.33 and 0.36 ± 0.24 pg/mL, respectively) concentrations were observed. In a cost-efficient fashion, the N-EBC method produced larger sample volumes, both pre- and post-exercise, facilitating more biomarker tests to be performed.
Collapse
|
16
|
Guo C, Lv S, Liu Y, Li Y. Biomarkers for the adverse effects on respiratory system health associated with atmospheric particulate matter exposure. JOURNAL OF HAZARDOUS MATERIALS 2022; 421:126760. [PMID: 34396970 DOI: 10.1016/j.jhazmat.2021.126760] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/17/2021] [Accepted: 07/25/2021] [Indexed: 06/13/2023]
Abstract
Large amounts of epidemiological evidence have confirmed the atmospheric particulate matter (PM2.5) exposure was positively correlated with the morbidity and mortality of respiratory diseases. Nevertheless, its pathogenesis remains incompletely understood, probably resulting from the activation of oxidative stress, inflammation, altered genetic and epigenetic modifications in the lung upon PM2.5 exposure. Currently, biomarker investigations have been widely used in epidemiological and toxicological studies, which may help in understanding the biologic mechanisms underlying PM2.5-elicited adverse health outcomes. Here, the emerging biomarkers to indicate PM2.5-respiratory system interactions were summarized, primarily related to oxidative stress (ROS, MDA, GSH, etc.), inflammation (Interleukins, FENO, CC16, etc.), DNA damage (8-OHdG, γH2AX, OGG1) and also epigenetic modulation (DNA methylation, histone modification, microRNAs). The identified biomarkers shed light on PM2.5-elicited inflammation, fibrogenesis and carcinogenesis, thus may favor more precise interventions in public health. It is worth noting that some inconsistent findings may possibly relate to the inter-study differentials in the airborne PM2.5 sample, exposure mode and targeted subjects, as well as methodological issues. Further research, particularly by -omics technique to identify novel, specific biomarkers, is warranted to illuminate the causal relationship between PM2.5 pollution and deleterious lung outcomes.
Collapse
Affiliation(s)
- Caixia Guo
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Songqing Lv
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China; Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Yufan Liu
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China; Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Yanbo Li
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China; Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
17
|
Koopmans E, Cornish K, Fyfe TM, Bailey K, Pelletier CA. Health risks and mitigation strategies from occupational exposure to wildland fire: a scoping review. J Occup Med Toxicol 2022; 17:2. [PMID: 34983565 PMCID: PMC8725416 DOI: 10.1186/s12995-021-00328-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 08/24/2021] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVES Due to accelerating wildland fire activity, there is mounting urgency to understand, prevent, and mitigate the occupational health impacts associated with wildland fire suppression. The objectives of this review of academic and grey literature were to: 1. Identify the impact of occupational exposure to wildland fires on physical, mental, and emotional health; and 2. Examine the characteristics and effectiveness of prevention, mitigation, or management strategies studied to reduce negative health outcomes associated with occupational exposure to wildland fire. METHODS Following established scoping review methods, academic literature as well as government and industry reports were identified by searching seven academic databases and through a targeted grey literature search. 4679 articles were screened using pre-determined eligibility criteria. Data on study characteristics, health outcomes assessed, prevention or mitigation strategies studied, and main findings were extracted from each included document. The results of this scoping review are presented using descriptive tables and a narrative summary to organize key findings. RESULTS The final sample was comprised of 100 articles: 76 research articles and 24 grey literature reports. Grey literature focused on acute injuries and fatalities. Health outcomes reported in academic studies focused on respiratory health (n = 14), mental health (n = 16), and inflammation and oxidative stress (n = 12). The identified studies evaluated short-term outcomes measuring changes across a single shift or wildland fire season. Most research was conducted with wildland firefighters and excluded personnel such as aviation crews, contract crews, and incident management teams. Five articles reported direct study of mitigation strategies, focusing on the potential usage of masks, advanced hygiene protocols to reduce exposure, fluid intake to manage hydration and core temperature, and glutamine supplementation to reduce fatigue. CONCLUSIONS While broad in scope, the evidence base linking wildland fire exposure to any one health outcome is limited. The lack of long-term evidence on changes in health status or morbidity is a clear evidence gap and there is a need to prioritize research on the mental and physical health impact of occupational exposure to wildland fire.
Collapse
Affiliation(s)
- Erica Koopmans
- Health Research Institute, University of Northern British Columbia, 3333 University Way, Prince George, BC, V2N 4Z9, Canada
| | - Katie Cornish
- Health Research Institute, University of Northern British Columbia, 3333 University Way, Prince George, BC, V2N 4Z9, Canada
| | - Trina M Fyfe
- Northern Medical Program, University of Northern British Columbia, 3333 University Way, Prince George, BC, V2N 4Z9, Canada
| | - Katherine Bailey
- School of Health Sciences, University of Northern British Columbia, 3333 University Way, Prince George, BC, V2N 4Z9, Canada
| | - Chelsea A Pelletier
- School of Health Sciences, University of Northern British Columbia, 3333 University Way, Prince George, BC, V2N 4Z9, Canada.
| |
Collapse
|
18
|
Williamson-Reisdorph CM, Tiemessen KG, Christison K, Gurney S, Richmond D, Wood K, Quindry TS, Dumke CL, Quindry JC. Cardiovascular and Blood Oxidative Stress Responses to Exercise and Acute Woodsmoke Exposure in Recreationally Active Individuals. Wilderness Environ Med 2021; 33:17-24. [PMID: 34887190 DOI: 10.1016/j.wem.2021.10.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/12/2021] [Accepted: 10/15/2021] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Those who work and recreate outdoors experience woodsmoke exposure during fire season. Exercise during woodsmoke exposure harms the cardiovascular system, but the acute physiologic and biochemical responses are understudied. The purpose of this pilot laboratory-based study was to examine the effect of exercise during woodsmoke exposure on acute indicators of cardiovascular function, including heart rate variability (HRV), pulse wave velocity (PWV), blood pressure (BP), augmentation index (AIx), and blood oxidative stress. METHODS Ten participants performed 2 moderate-intensity exercise (70% V˙O2max) trials (clean air 0 μg·m-3, woodsmoke 250 μg·m-3) in a crossover design. HRV, PWV, BP, AIx, and blood oxidative stress were measured before, after, and 90 min after exercise for each trial. Blood oxidative stress was quantified through lipid damage (LOOH, 8-ISO), protein damage (3-NT, PC), and antioxidant capacity (TEAC). RESULTS A 45-min woodsmoke exposure combined with moderate-intensity exercise did not result in a statistically significant difference in HRV, PWV, BP, AIx, or oxidative stress (P>0.05). CONCLUSIONS Despite the known deleterious effects of smoke inhalation, moderate-intensity aerobic exercise while exposed to woodsmoke particulate matter (250 μg·m-3) did not result in a statistically significant difference in HRV, PWV, or blood oxidative stress in this methodologic context. Although findings do not negate the negative impact of woodsmoke inhalation, additional research approaches are needed to better understand the acute effects of smoke exposure on the cardiovascular system.
Collapse
Affiliation(s)
| | - Kathryn G Tiemessen
- School of Integrative Physiology and Athletic Training, University of Montana, Missoula, Montana
| | - Katie Christison
- School of Integrative Physiology and Athletic Training, University of Montana, Missoula, Montana
| | - Shae Gurney
- School of Integrative Physiology and Athletic Training, University of Montana, Missoula, Montana
| | - Dylan Richmond
- School of Integrative Physiology and Athletic Training, University of Montana, Missoula, Montana
| | - Kesley Wood
- School of Integrative Physiology and Athletic Training, University of Montana, Missoula, Montana
| | - Tiffany S Quindry
- School of Integrative Physiology and Athletic Training, University of Montana, Missoula, Montana
| | - Charles L Dumke
- School of Integrative Physiology and Athletic Training, University of Montana, Missoula, Montana
| | - John C Quindry
- School of Integrative Physiology and Athletic Training, University of Montana, Missoula, Montana.
| |
Collapse
|
19
|
Abstract
Firefighters are the professional force at high risk of suffering potential health consequences due to their chronic exposure to numerous hazardous pollutants during firefighting activities. Unfortunately, determination of fire emission exposure is very challenging. As such, the identification and development of appropriate biomarkers is critical in meeting this need. This chapter presents a critical review of current information related with the use of different urinary biomarkers of effect and exposure in occupationally exposed firefighters over the last 25 years. Evidence suggests that urinary isoprostanes and mutagenicity testing are promising biomarkers of early oxidative stress. Data indicate that firefighters participating in firefighting activities present with increased urinary biomarkers of exposure. These include polycyclic aromatic hydrocarbons, heavy metals and metalloids, organo-chlorine and -phosphorus compounds, environmental phenols, phthalates, benzene and toluene. More studies are urgently needed to better evaluate firefighter occupational safety and health and to support the implementation of preventive measures and mitigation strategies to promote the protection of this chronically exposed group of workers.
Collapse
|
20
|
Barros B, Oliveira M, Morais S. Firefighters' occupational exposure: Contribution from biomarkers of effect to assess health risks. ENVIRONMENT INTERNATIONAL 2021; 156:106704. [PMID: 34161906 DOI: 10.1016/j.envint.2021.106704] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 06/04/2021] [Accepted: 06/07/2021] [Indexed: 06/13/2023]
Abstract
Firefighting is physically and physiologically exhausting besides encompassing exposure to toxic fire emissions. Biomonitoring studies from the past five years have been significantly contributing to characterize the occupational-related health effects in this group of professionals and to improve risk assessment. Therefore, this study gathers and critically discusses the most characterized biomarkers of effect (oxidative stress, DNA and protein damage, stress hormones, inflammation, and vascular, lung, and liver injury), including those potentially more promising to be explored in future studies, and their relation with health outcomes. Various studies proved an association between exposures to fire emissions and/or heat and significantly altered values of biomarkers of inflammation (soluble adhesion molecules, tumor necrosis factor, interleukins, and leucocyte count), vascular damage and tissue injury (pentraxin-3, vascular endothelial growth factor, and cardiac troponin T) in firefighting forces. Moreover, preliminary data of DNA damage in blood, urinary mutagenicity and 8-isoprostaglandin in exhaled breath condensate suggest that these biomarkers of oxidative stress should be further explored. However, most of the reported studies are based on cross-sectional designs, which limit full identification and characterization of the risk factors and their association with development of work-related diseases. Broader studies based on longitudinal designs and strongly supported by the analysis of several types of biomarkers in different biological fluids are further required to gain deeper insights into the firefighters occupational related health hazards and contribute to implementation of new or improved surveillance programs.
Collapse
Affiliation(s)
- Bela Barros
- REQUIMTE-LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015 Porto
| | - Marta Oliveira
- REQUIMTE-LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015 Porto
| | - Simone Morais
- REQUIMTE-LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015 Porto.
| |
Collapse
|
21
|
Gurney SC, Christison KS, Williamson-Reisdorph CM, Sol JA, Quindry TS, Quindry JC, Dumke CL. Alterations in Metabolic and Cardiovascular Risk Factors During Critical Training in Wildland Firefighters. J Occup Environ Med 2021; 63:594-599. [PMID: 34184652 DOI: 10.1097/jom.0000000000002191] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE To identify physiologic stressors related to cardiovascular disease via changes in metabolic, inflammatory, and oxidative stress biomarkers during 2 weeks of preseason training in wildland firefighters (WLFFs). METHODS Participants were recruited from a local hotshot crew and monitored during preseason training. Fitness was assessed via the Bureau of Land Management fitness challenge. Venipuncture blood was collected on days 1, 4, 8, and 11 and analyzed for changes in a lipid and glucose panel, C-reactive protein, and oxidative stress markers 8-isoprostane (8ISO), 3-nitrotyrosine (3NT), lipid hydroperoxides (LOOH), and protein carbonyls. RESULTS The high physical demands of training resulted in significant (P < 0.05) reductions in total cholesterol, glucose, and hemoglobin A1c. A main effect for time was observed in 8ISO, 3NT, and LOOH. CONCLUSIONS Alterations in metabolic and oxidative stress markers suggest an acute, high-intensity physical stress during WLFF preseason training.
Collapse
Affiliation(s)
- Shae C Gurney
- School of Integrative Physiology and Athletic Training, University of Montana (Mr Gurney, Ms Christison, Mrs Williamson-Reisdorph, Mr Sol, Mrs Tiffany Quindry, Dr John Quindry, Dr Dumke); United States Department of Agriculture, Forest Service, National Technology and Development Program (Mr Sol), Missoula, Montana
| | | | | | | | | | | | | |
Collapse
|
22
|
Wang Z, Xu M, Wang Y, Wang T, Wu N, Zheng W, Duan H. Air particulate matter pollution and circulating surfactant protein: A systemic review and meta-analysis. CHEMOSPHERE 2021; 272:129564. [PMID: 33476792 DOI: 10.1016/j.chemosphere.2021.129564] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 12/28/2020] [Accepted: 01/03/2021] [Indexed: 06/12/2023]
Abstract
OBJECTIVE Air particulate matter (PM) pollution is associated with the alterations in circulating pulmonary damage proteins. But there are not consistent results among the epidemiological studies. The aim of this study is to investigate the alteration of surfactant protein (SP) from PM exposure. METHODS We conducted a comprehensive meta-analysis by searching the databases of PubMed, Medline, EMBASE, Web of Science and CNKI before October 2020 which reported PM pollutants and surfactant protein in the population. The sources of heterogeneity were assessed by subgroup (smoking, particulate matter with different aerodynamic diameter, exposure duration) analysis. We also used the publication bias tests for the comprehensive assessment. RESULTS This meta-analysis consisted of 10 studies with 1985 subjects. The results showed that the combined standardized mean difference (SMD) value was 0.05, 95% confidence interval (CI) was -0.07 to 0.17 for serum SP-A and -0.81 (95% CI: -1.41 to -0.21) for circulating SP-D. Among smokers, the combined SMD value of SP-A were 0.29 (95% CI: 0.05 to 0.52). We did not find the correlation between publication year of SP-A and SP-D and study heterogeneity. CONCLUSIONS Circulating SP-D was significantly decreased by air particulate matter. Serum SP-A was significantly increased by PM exposure among smokers. Circulating surfactant protein may be considered as a biomarker for respiratory injury caused by air particulate matter.
Collapse
Affiliation(s)
- Zhenjie Wang
- Key Laboratory of Chemical Safety and Health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Mengmeng Xu
- Key Laboratory of Chemical Safety and Health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yanhua Wang
- Key Laboratory of Chemical Safety and Health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Ting Wang
- Key Laboratory of Chemical Safety and Health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Nan Wu
- Key Laboratory of Chemical Safety and Health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Wenjing Zheng
- Office of Epidemiology, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Huawei Duan
- Key Laboratory of Chemical Safety and Health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China.
| |
Collapse
|
23
|
Respiratory Impacts of Wildland Fire Smoke: Future Challenges and Policy Opportunities. An Official American Thoracic Society Workshop Report. Ann Am Thorac Soc 2021; 18:921-930. [PMID: 33938390 PMCID: PMC8456726 DOI: 10.1513/annalsats.202102-148st] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Wildland fires are diminishing air quality on a seasonal and regional basis, raising concerns about respiratory health risks to the public and occupational groups. This American Thoracic Society (ATS) workshop was convened in 2019 to meet the growing health threat of wildland fire smoke. The workshop brought together a multidisciplinary group of 19 experts, including wildland fire managers, public health officials, epidemiologists, toxicologists, and pediatric and adult pulmonologists. The workshop examined the following four major topics: 1) the science of wildland fire incidence and fire management, 2) the respiratory and cardiovascular health effects of wildland fire smoke exposure, 3) communication strategies to address these health risks, and 4) actions to address wildland fire health impacts. Through formal presentations followed by group discussion, workshop participants identified top priorities for fire management, research, communication, and public policy to address health risks of wildland fires. The workshop concluded that short-term exposure to wildland smoke causes acute respiratory health effects, especially among those with asthma and chronic obstructive pulmonary disease. Research is needed to understand long-term health effects of repeated smoke exposures across fire seasons for children, adults, and highly exposed occupational groups (especially firefighters). Other research priorities include fire data collection and modeling, toxicology of different fire fuel sources, and the efficacy of health protective measures to prevent respiratory effects of smoke exposure. The workshop committee recommends a unified federal response to the growing problem of wildland fires, including investment in fire behavior and smoke air quality modeling, research on the health impacts of smoke, and development of robust clinical and public health communication tools.
Collapse
|
24
|
Orach J, Rider CF, Carlsten C. Concentration-dependent health effects of air pollution in controlled human exposures. ENVIRONMENT INTERNATIONAL 2021; 150:106424. [PMID: 33596522 DOI: 10.1016/j.envint.2021.106424] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/21/2021] [Accepted: 01/26/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Air pollution is a leading contributor to premature mortality worldwide and is often represented by particulate matter (PM), a key contributor to its harmful health effects. Concentration-response relationships are useful for quantifying the effects of air pollution in relevant populations and in considering potential effect thresholds. Controlled human exposures can provide data on acute effects and concentration-response relationships that complement epidemiological studies. OBJECTIVES We examined PM concentration-responses after controlled human air pollution exposures to examine exposure-response markers, assess effect modifiers, and identify potential effect thresholds. METHODS We reviewed primary research from published controlled human exposure studies where responses were reported at multiple target PM concentrations or summarized per unit change in PM to identify concentration-dependent effects. RESULTS Of the 191 publications identified through PubMed and supplementary searches, 31 were eligible. Eligible studies collectively represented four pollutant models: concentrated ambient particles, engineered carbon nanoparticles, diesel exhaust, and woodsmoke. We identified concentration-dependent effects on oxidative stress markers, inflammation, and cardiovascular function that overlapped across different pollutants. Metabolic syndrome and glutathione s-transferase mu 1 genotype were identified as potential effect modifiers. DISCUSSION Improved understanding of concentration-response relationships is integral to biomonitoring and mitigation of health effects through impact assessment and policy. Although we identified potential concentration-response markers, thresholds, and modifiers, our conclusions on these relationships were limited by a dearth of eligible publications, considerable variability in methodology, and inconsistent reporting standards between studies. More research is required to validate these observations. We recommend that future studies harmonize estimate reporting to facilitate the identification of robust response markers across research and applied settings.
Collapse
Affiliation(s)
- Juma Orach
- Air Pollution Exposure Laboratory, Division of Respiratory Medicine, Department of Medicine, Vancouver Coastal Health Research Institute, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Christopher F Rider
- Air Pollution Exposure Laboratory, Division of Respiratory Medicine, Department of Medicine, Vancouver Coastal Health Research Institute, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Christopher Carlsten
- Air Pollution Exposure Laboratory, Division of Respiratory Medicine, Department of Medicine, Vancouver Coastal Health Research Institute, The University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
25
|
Schwartz C, Bølling AK, Carlsten C. Controlled human exposures to wood smoke: a synthesis of the evidence. Part Fibre Toxicol 2020; 17:49. [PMID: 33008417 PMCID: PMC7530963 DOI: 10.1186/s12989-020-00375-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 08/19/2020] [Indexed: 01/16/2023] Open
Abstract
Background Exposure to particulate matter (PM) from wood combustion represents a global health risk, encompassing diverse exposure sources; indoor exposures due to cooking in developing countries, ambient PM exposures from residential wood combustion in developed countries, and the predicted increasing number of wildfires due to global warming. Although physicochemical properties of the PM, as well as the exposure levels vary considerably between these sources, controlled human exposure studies may provide valuable insight to the harmful effects of wood smoke (WS) exposures in general. However, no previous review has focused specifically on controlled human exposure studies to WS. Results The 22 publications identified, resulting from 12 controlled human studies, applied a range of combustion conditions, exposure levels and durations, and exercise components in their WS exposure. A range of airway, cardiovascular and systemic endpoints were assessed, including lung function and heart rate measures, inflammation and oxidative stress. However, the possibility for drawing general conclusions was precluded by the large variation in study design, resulting in differences in physicochemical properties of WS, effective dose, as well as included endpoints and time-points for analysis. Overall, there was most consistency in reported effects for airways, while oxidative stress, systemic inflammation and cardiovascular physiology did not show any clear patterns. Conclusion Based on the reviewed controlled human exposure studies, conclusions regarding effects of acute WS exposure on human health are premature. Thus, more carefully conducted human studies are needed. Future studies should pay particular attention to the applied WS exposure, to assure that both exposure levels and PM properties reflect the research question.
Collapse
Affiliation(s)
- Carley Schwartz
- Department of Medicine, Division of Respiratory Medicine, University of British Columbia, P: 604-875-4729, 2775 Laurel Street 10th Floor, Vancouver, BC, V5Z 1M9, Canada
| | - Anette Kocbach Bølling
- Section of Air Pollution and Noise, Department of Environmental Health, Norwegian Institute of Public Health, P.O. Box 222 Skøyen, 0213, Oslo, Norway
| | - Christopher Carlsten
- Department of Medicine, Division of Respiratory Medicine, University of British Columbia, P: 604-875-4729, 2775 Laurel Street 10th Floor, Vancouver, BC, V5Z 1M9, Canada.
| |
Collapse
|
26
|
Nelson J, Chalbot MCG, Pavicevic Z, Kavouras IG. Characterization of exhaled breath condensate (EBC) non-exchangeable hydrogen functional types and lung function of wildland firefighters. J Breath Res 2020; 14:046010. [PMID: 32969351 DOI: 10.1088/1752-7163/abb761] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Inhalation of smoke is shown to be associated with adverse respiratory outcomes in firefighters. Due to invasiveness of procedures to obtain airways lining fluid, the immediate responses of the target organ (i.e. lung) are secondarily assessed through biomarkers in blood and urine. The objective of this study was to identify changes in metabolic profile of exhaled breath condensate (EBC) and lung function of firefighters exposed to wildfires smoke. A total of 29 subjects were studied over 16 events; 14 of these subjects provided cross-shift EBC samples. The predominant types of non-exchangeable hydrogen in EBC were saturated oxygenated hydrogen, aliphatic alkyl and allylic. Non-exchangeable allylic and oxygenated hydrogen concentrations decreased in post-exposure EBC samples. Longer exposures were correlated with increased abundance of oxidized carbon in ketones, acids and esters. Post-exposure lung function declines (forced expiratory volume in 1 s (FEV1): 0.08 l, forced vital capacity (FVC): 0.07 l, FEV1/FVC: 0.03 l, peak expiratory flow (PEF): 0.39 l s-1) indicated airways inflammation. They were related to exposure intensity (FEV1 and FVC) and exposure duration (PEF). This study showed that EBC characterization of non-exchangeable hydrogen types by NMR may provide insights on EBC molecular compositions in response to smoke inhalation and facilitate targeted analysis to identify specific biomarkers.
Collapse
Affiliation(s)
- Jordan Nelson
- Department of Environmental Health Sciences, Ryals School of Public Health, University of Alabama at Birmingham, Birmingham, AL 35219, United States of America
| | | | | | | |
Collapse
|
27
|
Kolpakova AF, Sharipov RN, Volkova OA, Kolpakov FA. Role of air pollution by particulate matter in the pathogenesis of cardiovascular diseases. Prevention measures. КАРДИОВАСКУЛЯРНАЯ ТЕРАПИЯ И ПРОФИЛАКТИКА 2020. [DOI: 10.15829/1728-8800-2020-2421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
The review highlights contemporary concepts about the role of atmospheric air pollution by particulate matter (PM) in pathogenesis of cardiovascular diseases (CVD). We used publications from the PubMed and Russian Science Citation Index databases. The influence of PM on the development and progression of CVD is considered depending on size, origin, chemical composition, concentration in air. PM with an aerodynamic diameter of ≤2,5 μm (PM2,5) are recognized as the most dangerous. Epidemiological studies have established a dose-dependent effect PM. Oxidative stress, damage of genome of cell and epigenetic changes associated with PM effect are the important component of CVD pathogenesis. Systematization of scientific data through a formalized description helps to understand the pathogenesis of CVD and facilitates its practical use for assessing the risk of occurrence, early diagnosing, prognostication, increasing the effectiveness of treatment, and developing preventive measures.
Collapse
Affiliation(s)
- A. F. Kolpakova
- Institute of Computational Technologies, Siberian Branch of the Russian Academy of Sciences
| | | | - O. A. Volkova
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences
| | - F. A. Kolpakov
- Institute of Computational Technologies, Siberian Branch of the Russian Academy of Sciences;
LLC BIOSOFT.RU
| |
Collapse
|
28
|
Oliveira M, Costa S, Vaz J, Fernandes A, Slezakova K, Delerue-Matos C, Teixeira JP, Carmo Pereira M, Morais S. Firefighters exposure to fire emissions: Impact on levels of biomarkers of exposure to polycyclic aromatic hydrocarbons and genotoxic/oxidative-effects. JOURNAL OF HAZARDOUS MATERIALS 2020; 383:121179. [PMID: 31522064 DOI: 10.1016/j.jhazmat.2019.121179] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 09/04/2019] [Accepted: 09/06/2019] [Indexed: 06/10/2023]
Abstract
Firefighters represent one of the riskiest occupations, yet due to the logistic reasons, the respective exposure assessment is one of the most challenging. Thus, this work assessed the impact of firefighting activities on levels of urinary monohydroxyl-polycyclic aromatic hydrocarbons (OHPAHs; 1-hydroxynaphthalene, 1-hydroxyacenaphthene, 2-hydroxyfluorene, 1-hydroxyphenanthrene, 1-hydroxypyrene, 3-hydroxybenzo(a)pyrene) and genotoxic/oxidative-effect biomarkers (basal DNA and oxidative DNA damage) of firefighters from eight firehouses. Cardiac frequency, blood pressure and arterial oxygen saturation were also monitored. OHPAHs were determined by liquid-chromatography with fluorescence detection, while genotoxic/oxidative-effect biomarkers were assessed by the comet assay. Concentrations of total OHPAHs were up to 340% higher (p ≤ 0.05) in (non-smoking and smoking) exposed workers than in control subjects (non-smoking and non-exposed to combat activities); the highest increments were observed for 1-hydroxynaphthalene and 1-hydroxyacenaphthene (82-88% of ∑OHPAHs), and for 2-hydroxyfluorene (5-15%). Levels of biomarker for oxidative stress were increased in non-smoking exposed workers than in control group (316%; p ≤ 0.001); inconclusive results were found for DNA damage. Positive correlations were found between the cardiac frequency, ∑OHPAHs and the oxidative DNA damage of non-smoking (non-exposed and exposed) firefighters. Evidences were raised regarding the simultaneous use of these biomarkers for the surveillance of firefighters' health and to better estimate the potential short-term health risks.
Collapse
Affiliation(s)
- Marta Oliveira
- REQUIMTE-LAQV, Instituto Superior de Engenharia, Rua Dr. António Bernardino de Almeida 431, 4249-015, Porto, Portugal; LEPABE, Departamento de Engenharia Química, Faculdade de Engenharia, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| | - Solange Costa
- National Institute of Health, Environmental Health Department, Rua Alexandre Herculano 321, 4000-055, Porto, Portugal; EPIUnit - Instituto de Saúde Pública da Universidade do Porto, Rua das Taipas 135, 4050-600, Porto, Portugal
| | - Josiana Vaz
- Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253, Bragança, Portugal
| | - Adília Fernandes
- Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253, Bragança, Portugal
| | - Klara Slezakova
- REQUIMTE-LAQV, Instituto Superior de Engenharia, Rua Dr. António Bernardino de Almeida 431, 4249-015, Porto, Portugal; LEPABE, Departamento de Engenharia Química, Faculdade de Engenharia, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| | - Cristina Delerue-Matos
- REQUIMTE-LAQV, Instituto Superior de Engenharia, Rua Dr. António Bernardino de Almeida 431, 4249-015, Porto, Portugal
| | - João Paulo Teixeira
- National Institute of Health, Environmental Health Department, Rua Alexandre Herculano 321, 4000-055, Porto, Portugal; EPIUnit - Instituto de Saúde Pública da Universidade do Porto, Rua das Taipas 135, 4050-600, Porto, Portugal
| | - Maria Carmo Pereira
- LEPABE, Departamento de Engenharia Química, Faculdade de Engenharia, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| | - Simone Morais
- REQUIMTE-LAQV, Instituto Superior de Engenharia, Rua Dr. António Bernardino de Almeida 431, 4249-015, Porto, Portugal.
| |
Collapse
|
29
|
Pardo M, Li C, He Q, Levin-Zaidman S, Tsoory M, Yu Q, Wang X, Rudich Y. Mechanisms of lung toxicity induced by biomass burning aerosols. Part Fibre Toxicol 2020; 17:4. [PMID: 31959190 PMCID: PMC6971884 DOI: 10.1186/s12989-020-0337-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 01/06/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Carbonaceous aerosols emitted from indoor and outdoor biomass burning are major risk factors contributing to the global burden of disease. Wood tar aerosols, namely, tar ball particles, compose a substantial fraction of carbonaceous emissions, especially from biomass smoldering. However, their health-related impacts and toxicity are still not well known. This study investigated the toxicity of the water-soluble fraction of pyrolyzed wood tar aerosols in exposed mice and lung epithelial cells. RESULTS Mice exposed to water-soluble wood tar aerosols showed increased inflammatory and oxidative stress responses. Bronchial epithelial cells exposed to the same water-soluble wood tar aerosols showed increased cell death with apoptotic characteristics. Alterations in oxidative status, including changes in reactive oxygen species (ROS) levels and reductions in the expression of antioxidant genes related to the transcription factor Nrf2, were observed and were confirmed by increased levels of MDA, a lipid peroxidation adduct. Damage to mitochondria was observed as an early event responsible for the aforementioned changes. CONCLUSIONS The toxicity and health effect-related mechanisms of water-soluble wood tar were investigated for the first time in the context of biomass burning. Wood tar particles may account for major responses such as cell death, oxidative stress, supression of protection mechnaisms and mitochondrial damaged cause by expsoure to biomass burning aerosols.
Collapse
Affiliation(s)
- Michal Pardo
- Department of Earth and Planetary Sciences, Weizmann Institute of Science, 76100, Rehovot, Israel.
| | - Chunlin Li
- Department of Earth and Planetary Sciences, Weizmann Institute of Science, 76100, Rehovot, Israel
| | - Quanfu He
- Department of Earth and Planetary Sciences, Weizmann Institute of Science, 76100, Rehovot, Israel
| | | | - Michael Tsoory
- Department of Veterinary Resources, Weizmann Institute of Science, 761001, Rehovot, Israel
| | - Qingqing Yu
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xinming Wang
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Yinon Rudich
- Department of Earth and Planetary Sciences, Weizmann Institute of Science, 76100, Rehovot, Israel
| |
Collapse
|
30
|
Abstract
OBJECTIVES The current laboratory study quantified blood oxidative stress to woodsmoke exposure. METHODS Participants inhaled woodsmoke during three randomized crossover exercise trials (Clean Air [0 μg/m], Low Exposure [250 μg/m], and High Exposure [500 μg/m], Woodsmoke [particulate matter less than 2.5 μm, PM2.5]). Trolox equivalent antioxidant capacity (TEAC), uric acid (UA), 8-isoprostanes (8-ISO), lipid hydroperoxides (LOOH), protein carbonyls (PC), nitrotyrosine (3-NT), 8-isoprostane, and myeloperoxidase (MPO) were quantified in Pre, immediately Post, and 1- (1Hr) hour post blood samples. RESULTS UA decreased following Low Exposure, while plasma TEAC levels increased Post and 1Hr. LOOH levels decreased 1Hr Post (High Exposure), while 8-Iso increased following both smoke trials. PC and MPO were unchanged following all trials, while 3-NT increased over Clean Air. CONCLUSION Blood oxidative stress occurred largely independent of PM2.5 concentrations. Future studies should employ longer duration smoke and exercise combined with physiologic parameters.
Collapse
|
31
|
Fedak KM, Good N, Walker ES, Balmes J, Brook RD, Clark ML, Cole-Hunter T, Devlin R, L'Orange C, Luckasen G, Mehaffy J, Shelton R, Wilson A, Volckens J, Peel JL. Acute Effects on Blood Pressure Following Controlled Exposure to Cookstove Air Pollution in the STOVES Study. J Am Heart Assoc 2019; 8:e012246. [PMID: 31286826 PMCID: PMC6662148 DOI: 10.1161/jaha.119.012246] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Background Exposure to air pollution from solid fuel used in residential cookstoves is considered a leading environmental risk factor for disease globally, but evidence for this relationship is largely extrapolated from literature on smoking, secondhand smoke, and ambient fine particulate matter (PM2.5). Methods and Results We conducted a controlled human‐exposure study (STOVES [the Subclinical Tests on Volunteers Exposed to Smoke] Study) to investigate acute responses in blood pressure following exposure to air pollution emissions from cookstove technologies. Forty‐eight healthy adults received 2‐hour exposures to 5 cookstove treatments (three stone fire, rocket elbow, fan rocket elbow, gasifier, and liquefied petroleum gas), spanning PM2.5 concentrations from 10 to 500 μg/m3, and a filtered air control (0 μg/m3). Thirty minutes after exposure, systolic pressure was lower for the three stone fire treatment (500 μg/m3PM2.5) compared with the control (−2.3 mm Hg; 95% CI, −4.5 to −0.1) and suggestively lower for the gasifier (35 μg/m3PM2.5; −1.8 mm Hg; 95% CI, −4.0 to 0.4). No differences were observed at 3 hours after exposure; however, at 24 hours after exposure, mean systolic pressure was 2 to 3 mm Hg higher for all treatments compared with control except for the rocket elbow stove. No differences were observed in diastolic pressure for any time point or treatment. Conclusions Short‐term exposure to air pollution from cookstoves can elicit an increase in systolic pressure within 24 hours. This response occurred across a range of stove types and PM2.5 concentrations, raising concern that even low‐level exposures to cookstove air pollution may pose adverse cardiovascular effects.
Collapse
Affiliation(s)
- Kristen M Fedak
- 1 Department of Environmental and Radiological Health Sciences Colorado State University Fort Collins CO
| | - Nicholas Good
- 1 Department of Environmental and Radiological Health Sciences Colorado State University Fort Collins CO
| | - Ethan S Walker
- 1 Department of Environmental and Radiological Health Sciences Colorado State University Fort Collins CO
| | - John Balmes
- 2 Department of Medicine University of California San Francisco San Francisco CA
| | - Robert D Brook
- 3 Division of Cardiovascular Medicine University of Michigan Medical School Ann Arbor MI
| | - Maggie L Clark
- 1 Department of Environmental and Radiological Health Sciences Colorado State University Fort Collins CO
| | - Tom Cole-Hunter
- 1 Department of Environmental and Radiological Health Sciences Colorado State University Fort Collins CO.,4 Centre for Air Pollution, Energy, and Health Research Queensland University of Technology Brisbane Australia
| | - Robert Devlin
- 5 Environmental Public Health Division United States Environmental Protection Agency Chapel Hill NC
| | - Christian L'Orange
- 6 Department of Mechanical Engineering Colorado State University Fort Collins CO
| | | | - John Mehaffy
- 6 Department of Mechanical Engineering Colorado State University Fort Collins CO
| | - Rhiannon Shelton
- 1 Department of Environmental and Radiological Health Sciences Colorado State University Fort Collins CO
| | - Ander Wilson
- 8 Department of Statistics Colorado State University Fort Collins CO
| | - John Volckens
- 6 Department of Mechanical Engineering Colorado State University Fort Collins CO
| | - Jennifer L Peel
- 1 Department of Environmental and Radiological Health Sciences Colorado State University Fort Collins CO
| |
Collapse
|
32
|
Sol JA, Domitrovich JW, Ruby BC, Gaskill SE, Dumke CL. In Reply to Drs McAnaney and Ganti. Wilderness Environ Med 2019; 30:217-218. [PMID: 31029544 DOI: 10.1016/j.wem.2019.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 02/12/2019] [Indexed: 11/26/2022]
Affiliation(s)
- Joseph A Sol
- National Technology & Development Program, Missoula, MT
| | | | - Brent C Ruby
- Montana Center for Work Physiology and Exercise Metabolism, Missoula, MT
| | | | | |
Collapse
|
33
|
Zhou L, Su X, Li B, Chu C, Sun H, Zhang N, Han B, Li C, Zou B, Niu Y, Zhang R. PM2.5 exposure impairs sperm quality through testicular damage dependent on NALP3 inflammasome and miR-183/96/182 cluster targeting FOXO1 in mouse. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 169:551-563. [PMID: 30476817 DOI: 10.1016/j.ecoenv.2018.10.108] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 10/27/2018] [Accepted: 10/30/2018] [Indexed: 06/09/2023]
Abstract
Exposure to ambient fine particular matter (PM2.5) has been clearly associated with male reproductive disorders. However, very limited toxicological studies were carried out to investigate the potential mechanisms underlying the PM2.5-induced sperm quality decline. In the present study, we established a real time whole-body PM2.5 exposure mouse model to investigate the effects of PM2.5 on sperm quality and its potential mechanisms. Sixty male C57BL/6 mice were randomly subjected to three groups: filtered air group, unfiltered air group and concentrated air group. Half of the mice from each group were sacrificed for study when the exposure duration accumulated to 8 weeks and the rest of the mice were sacrificed when exposed for 16 weeks. Our results suggested that PM2.5 exposure could induce significant increases in circulating white blood cells and inflammation in lungs. PM2.5 exposure induced apparently DNA damages and histopathologic changes in testes. There were significantly decreased sperm densities of mice, which were paralleled with the down-regulated testosterone levels in testes tissue of mice after exposure to PM2.5 for 16 weeks. The numbers of motile sperms were decreased and sperms with abnormal morphology were increased after PM2.5 exposure in a time-depended and dose-depended manner. PM2.5 exposure significantly increased the expression of the major components of the NACHT, LRR and PYD domains-containing protein3 (NALP3) inflammasome, accompanied by the increased expression of miR-183/96/182 targeting FOXO1 in testes. The present data demonstrated that sperm quality decline induced by PM2.5 could be partly explained by the inflammatory reaction in testes which might be a consequence of systemic inflammation. The molecular mechanism was depended on the activation of NALP3 inflammasome accompanied by miR-183/96/182 targeting FOXO1 in testes.
Collapse
Affiliation(s)
- Lixiao Zhou
- Department of Toxicology, Hebei Medical University, Shijiazhuang, China
| | - Xuan Su
- Department of Toxicology, Hebei Medical University, Shijiazhuang, China
| | - Binghua Li
- Department of Occupational Health and Environmental Health, Hebei Medical University, Shijiazhuang, China
| | - Chen Chu
- Department of Toxicology, Hebei Medical University, Shijiazhuang, China
| | - Hongyue Sun
- Department of Toxicology, Hebei Medical University, Shijiazhuang, China
| | - Ning Zhang
- Department of Toxicology, Hebei Medical University, Shijiazhuang, China
| | - Bin Han
- Department of Toxicology, Hebei Medical University, Shijiazhuang, China
| | - Chen Li
- Department of Toxicology, Hebei Medical University, Shijiazhuang, China
| | - Bingjie Zou
- Department of Toxicology, Hebei Medical University, Shijiazhuang, China
| | - Yujie Niu
- Department of Toxicology, Hebei Medical University, Shijiazhuang, China; Department of Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, China
| | - Rong Zhang
- Department of Toxicology, Hebei Medical University, Shijiazhuang, China; Department of Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, China.
| |
Collapse
|
34
|
Impact of Ketone Salt Containing Supplement on Cardiorespiratory and Oxidative Stress Response in Firefighters Exercising in Personal Protective Equipment. Asian J Sports Med 2019. [DOI: 10.5812/asjsm.82404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
35
|
Wu CM, Adetona A, Song C(C, Naeher L, Adetona O. Measuring acute pulmonary responses to occupational wildland fire smoke exposure using exhaled breath condensate. ARCHIVES OF ENVIRONMENTAL & OCCUPATIONAL HEALTH 2019; 75:65-69. [PMID: 30668286 PMCID: PMC6646110 DOI: 10.1080/19338244.2018.1562413] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Wildland firefighters are directly exposed to elevated levels of wildland fire (WF) smoke. Although studies demonstrate WF smoke exposure is associated with lung function changes, few studies that use invasive sample collection methods have been conducted to investigate underlying biochemical changes. These methods are also either unrepresentative of the deeper airways or capable of inducing inflammation. In the present study, levels of biomarkers of oxidative stress (8-isoprostane) and pro-inflammatory response (interleukin-6 [IL-6], interleukin-8 [IL-8], C-reactive protein [CRP], and soluble intercellular adhesion molecule-1 [sICAM-1]) were determined in exhaled breath condensate (EBC) samples that were collected from firefighters before, after, and next morning following prescribed burn and regular work shifts. Results show only a marginal cross-shift increase in 8-isoprostane on burn days (.05 < p value < .1), suggesting WF smoke exposure causes mild pulmonary responses.
Collapse
Affiliation(s)
- Chieh-Ming Wu
- Division of Environmental Health Sciences, College of Public Health, The Ohio State University, Columbus, OH
| | | | - Chi (Chuck) Song
- Division of Biostatistics, College of Public Health, The Ohio State University, Columbus, OH
| | - Luke Naeher
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA
| | - Olorunfemi Adetona
- Division of Environmental Health Sciences, College of Public Health, The Ohio State University, Columbus, OH
| |
Collapse
|
36
|
Effects of Environmental Heat and Antioxidant Ingestion on Blood Markers of Oxidative Stress in Professional Firefighters Performing Structural Fire Exercises. J Occup Environ Med 2018; 60:e595-e601. [DOI: 10.1097/jom.0000000000001452] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
37
|
Impact of Work Task-Related Acute Occupational Smoke Exposures on Select Proinflammatory Immune Parameters in Wildland Firefighters. J Occup Environ Med 2018; 59:679-690. [PMID: 28692002 DOI: 10.1097/jom.0000000000001053] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
OBJECTIVE A repeated measures study was used to assess the effect of work tasks on select proinflammatory biomarkers in firefighters working at prescribed burns. METHODS Ten firefighters and two volunteers were monitored for particulate matter and carbon monoxide on workdays, January to July 2015. Before and after workshift dried blood spots were analyzed for inflammatory mediators using the Meso Scale Discovery assay, while blood smears were used to assess leukocyte parameters. RESULTS Firefighters lighting with drip-torches had higher cross-work-shift increases in interleukin-8, C-reactive protein, and serum amyloid A compared with holding, a task involving management of fire boundaries. A positive association between interleukin-8 and segmented-neutrophil was observed. CONCLUSION Results from this study suggest that intermittent occupational diesel exposures contribute to cross-work-shift changes in host systemic innate inflammation as indicated by elevated interleukin-8 levels and peripheral blood segmented-neutrophils.
Collapse
|
38
|
Keir JLA, Akhtar US, Matschke DMJ, Kirkham TL, Chan HM, Ayotte P, White PA, Blais JM. Elevated Exposures to Polycyclic Aromatic Hydrocarbons and Other Organic Mutagens in Ottawa Firefighters Participating in Emergency, On-Shift Fire Suppression. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:12745-12755. [PMID: 29043785 DOI: 10.1021/acs.est.7b02850] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Occupational exposures to combustion emissions were examined in Ottawa Fire Service (OFS) firefighters. Paired urine and dermal wipe samples (i.e., pre- and post-event) as well as personal air samples and fire event questionnaires were collected from 27 male OFS firefighters. A total of 18 OFS office workers were used as additional controls. Exposures to polycyclic aromatic hydrocarbons (PAHs) and other organic mutagens were assessed by quantification of urinary PAH metabolite levels, levels of PAHs in dermal wipes and personal air samples, and urinary mutagenicity using the Salmonella mutagenicity assay (Ames test). Urinary Clara Cell 16 (CC16) and 15-isoprostane F2t (8-iso-PGF2α) levels were used to assess lung injury and overall oxidative stress, respectively. The results showed significant 2.9- to 5.3-fold increases in average post-event levels of urinary PAH metabolites, depending on the PAH metabolite (p < 0.0001). Average post-event levels of urinary mutagenicity showed a significant, event-related 4.3-fold increase (p < 0.0001). Urinary CC16 and 8-iso-PGF2α did not increase. PAH concentrations in personal air and on skin accounted for 54% of the variation in fold changes of urinary PAH metabolites (p < 0.002). The results indicate that emergency, on-shift fire suppression is associated with significantly elevated exposures to combustion emissions.
Collapse
Affiliation(s)
- Jennifer L A Keir
- Department of Biology, University of Ottawa , 30 Marie Curie, Ottawa, Ontario K1N 6N5, Canada
| | - Umme S Akhtar
- Department of Biology, University of Ottawa , 30 Marie Curie, Ottawa, Ontario K1N 6N5, Canada
| | - David M J Matschke
- Ottawa Fire Services , 1445 Carling Avenue, Ottawa, Ontario K1Z 7L9, Canada
| | - Tracy L Kirkham
- Dalla Lana School of Public Health, University of Toronto , 155 College Street, Toronto, Ontario M5T 3M7, Canada
| | - Hing Man Chan
- Department of Biology, University of Ottawa , 30 Marie Curie, Ottawa, Ontario K1N 6N5, Canada
| | - Pierre Ayotte
- Centre de toxicologie du Québec, Institut national de santé publique du Québec and Université Laval , 945 Avenue Wolfe, Québec City, Québec G1V 5B3, Canada
| | - Paul A White
- Department of Biology, University of Ottawa , 30 Marie Curie, Ottawa, Ontario K1N 6N5, Canada
- Environmental Health Science and Research Bureau, Health Canada , 50 Colombine Driveway, Ottawa, Ontario K1A 0K9, Canada
| | - Jules M Blais
- Department of Biology, University of Ottawa , 30 Marie Curie, Ottawa, Ontario K1N 6N5, Canada
| |
Collapse
|
39
|
Herseth JI, Volden V, Bolling AK. Particulate matter-mediated release of long pentraxin 3 (PTX3) and vascular endothelial growth factor (VEGF) in vitro: Limited importance of endotoxin and organic content. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2017; 80:105-119. [PMID: 28071984 DOI: 10.1080/15287394.2016.1257399] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 11/02/2016] [Indexed: 06/06/2023]
Abstract
Exposure to particulate matter (PM) is associated with adverse health effects, but it is still relatively unknown which role PM sources and physicochemical properties play in the observed effects. It was postulated that PM in vitro induces release of long pentraxin 3 (PTX3) and vascular endothelial growth factor (VEGF) and that endotoxin and organic compounds present in the PM regulate this release. A contact coculture of THP-1 human leukemia monocytes and A549 human adenocarcinoma alveolar pneumocytes was exposed to PM from Traffic, Wood, Diesel, and Quartz (10-40 µg/cm2) for 12-64 h to determine release of PTX3 and VEGF. The role of endotoxin and the organic fraction in the mediator release was assessed using polymyxin B sulfate and organic extracts, respectively. Finally, antagonists were used to investigate whether the early proinflammatory cytokines interleukin (IL)-1 and tumor necrosis factor (TNF)-α affected the PTX3 and VEGF release. All PM samples induced a time-dependent release of both PTX3 and VEGF. Traffic mediated the greatest release of PTX3, whereas Wood and Diesel were more potent inducers of VEGF. The endotoxin content did not markedly affect release of either mediator, while the organic fraction exerted no significant effect on VEGF release and limited influence on PTX3 release. In addition, the IL-1 and TNF-α agonists affected PTX3 release more strongly than VEGF release. In conclusion, the current data show a limited impact of endotoxin and organic compounds on PTX3 and VEGF release. Further, the observed differences in response patterns may point toward differential regulation of PM-mediated release of PTX3 and VEGF.
Collapse
Affiliation(s)
- J I Herseth
- a Faculty of Health Sciences , Oslo and Akershus University College of Applied Sciences , Oslo , Norway
| | - V Volden
- a Faculty of Health Sciences , Oslo and Akershus University College of Applied Sciences , Oslo , Norway
| | - A K Bolling
- b Department of Air Pollution and Noise , Norwegian Institute of Public Health , Oslo , Norway
| |
Collapse
|
40
|
Potential Harmful Effects of PM2.5 on Occurrence and Progression of Acute Coronary Syndrome: Epidemiology, Mechanisms, and Prevention Measures. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2016; 13:ijerph13080748. [PMID: 27463723 PMCID: PMC4997434 DOI: 10.3390/ijerph13080748] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 07/13/2016] [Accepted: 07/20/2016] [Indexed: 12/18/2022]
Abstract
The harmful effects of particulate matter with an aerodynamic diameter of <2.5 µm (PM2.5) and its association with acute coronary syndrome (ACS) has gained increased attention in recent years. Significant associations between PM2.5 and ACS have been found in most studies, although sometimes only observed in specific subgroups. PM2.5-induced detrimental effects and ACS arise through multiple mechanisms, including endothelial injury, an enhanced inflammatory response, oxidative stress, autonomic dysfunction, and mitochondria damage as well as genotoxic effects. These effects can lead to a series of physiopathological changes including coronary artery atherosclerosis, hypertension, an imbalance between energy supply and demand to heart tissue, and a systemic hypercoagulable state. Effective strategies to prevent the harmful effects of PM2.5 include reducing pollution sources of PM2.5 and population exposure to PM2.5, and governments and organizations publicizing the harmful effects of PM2.5 and establishing air quality standards for PM2.5. PM2.5 exposure is a significant risk factor for ACS, and effective strategies with which to prevent both susceptible and healthy populations from an increased risk for ACS have important clinical significance in the prevention and treatment of ACS.
Collapse
|