1
|
Reis-Sobreiro M, Teixeira da Mota A, Jardim C, Serre K. Bringing Macrophages to the Frontline against Cancer: Current Immunotherapies Targeting Macrophages. Cells 2021; 10:2364. [PMID: 34572013 PMCID: PMC8464913 DOI: 10.3390/cells10092364] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/07/2021] [Accepted: 08/29/2021] [Indexed: 12/21/2022] Open
Abstract
Macrophages are found in all tissues and display outstanding functional diversity. From embryo to birth and throughout adult life, they play critical roles in development, homeostasis, tissue repair, immunity, and, importantly, in the control of cancer growth. In this review, we will briefly detail the multi-functional, protumoral, and antitumoral roles of macrophages in the tumor microenvironment. Our objective is to focus on the ever-growing therapeutic opportunities, with promising preclinical and clinical results developed in recent years, to modulate the contribution of macrophages in oncologic diseases. While the majority of cancer immunotherapies target T cells, we believe that macrophages have a promising therapeutic potential as tumoricidal effectors and in mobilizing their surroundings towards antitumor immunity to efficiently limit cancer progression.
Collapse
Affiliation(s)
| | | | | | - Karine Serre
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa, Portugal; (M.R.-S.); (A.T.d.M.); (C.J.)
| |
Collapse
|
2
|
Gray SG. Emerging avenues in immunotherapy for the management of malignant pleural mesothelioma. BMC Pulm Med 2021; 21:148. [PMID: 33952230 PMCID: PMC8097826 DOI: 10.1186/s12890-021-01513-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 04/25/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The role of immunotherapy in cancer is now well-established, and therapeutic options such as checkpoint inhibitors are increasingly being approved in many cancers such as non-small cell lung cancer (NSCLC). Malignant pleural mesothelioma (MPM) is a rare orphan disease associated with prior exposure to asbestos, with a dismal prognosis. Evidence from clinical trials of checkpoint inhibitors in this rare disease, suggest that such therapies may play a role as a treatment option for a proportion of patients with this cancer. MAIN TEXT While the majority of studies currently focus on the established checkpoint inhibitors (CTLA4 and PD1/PDL1), there are many other potential checkpoints that could also be targeted. In this review I provide a synopsis of current clinical trials of immunotherapies in MPM, explore potential candidate new avenues that may become future targets for immunotherapy and discuss aspects of immunotherapy that may affect the clinical outcomes of such therapies in this cancer. CONCLUSIONS The current situation regarding checkpoint inhibitors in the management of MPM whilst encouraging, despite impressive durable responses, immune checkpoint inhibitors do not provide a long-term benefit to the majority of patients with cancer. Additional studies are therefore required to further delineate and improve our understanding of both checkpoint inhibitors and the immune system in MPM. Moreover, many new potential checkpoints have yet to be studied for their therapeutic potential in MPM. All these plus the existing checkpoint inhibitors will require the development of new biomarkers for patient stratification, response and also for predicting or monitoring the emergence of resistance to these agents in MPM patients. Other potential therapeutic avenues such CAR-T therapy or treatments like oncolytic viruses or agents that target the interferon pathway designed to recruit more immune cells to the tumor also hold great promise in this hard to treat cancer.
Collapse
Affiliation(s)
- Steven G Gray
- Thoracic Oncology Research Group, Central Pathology Laboratory, CPL 30, TCDSJ Cancer Institute, St James's Hospital, Dublin, D08 RX0X, Ireland.
- Department of Clinical Medicine, Trinity College Dublin, Dublin, Ireland.
- School of Biology, Technical University of Dublin, Dublin, Ireland.
| |
Collapse
|
3
|
Gray SG, Mutti L. Immunotherapy for mesothelioma: a critical review of current clinical trials and future perspectives. Transl Lung Cancer Res 2020; 9:S100-S119. [PMID: 32206576 PMCID: PMC7082257 DOI: 10.21037/tlcr.2019.11.23] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 11/14/2019] [Indexed: 12/25/2022]
Abstract
At the clinical level the role of immunotherapy in cancer is currently at a pivotal point. Therapies such as checkpoint inhibitors are being approved at many levels in cancers such as non-small cell lung cancer (NSCLC). Mesothelioma is a rare orphan disease associated with prior exposure to asbestos, with a dismal prognosis. Various clinical trials for checkpoint inhibitors have been conducted in this rare disease, and suggest that such therapies may play a role as a treatment option for a proportion of patients with this cancer. Most recently approved as a salvage therapy in mesothelioma was granted in Japan, regulatory approval for their use in the clinic elsewhere lags. In this article we review the current pertinent clinical trials of immunotherapies in malignant mesothelioma, discuss the current issues that may affect the clinical outcomes of such therapies and further evaluate potential candidate new avenues that may become future targets for immunotherapy in this cancer.
Collapse
Affiliation(s)
- Steven G. Gray
- Thoracic Oncology Research Group, Trinity St. James’s Cancer Institute, Trinity Translational Medicine Institute, Trinity Centre for Health Sciences, St. James’s Hospital, Dublin, Ireland
| | - Luciano Mutti
- Center for Biotechnology, Sbarro Institute for Cancer Research and Molecular Medicine, College of Science and Technology, Temple University, Philadelphia, PA, USA
| |
Collapse
|
4
|
Marron TU, Hammerich L, Brody J. Local Immunotherapies of Cancer. Oncoimmunology 2018. [DOI: 10.1007/978-3-319-62431-0_28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
5
|
Berraondo P, Minute L, Ajona D, Corrales L, Melero I, Pio R. Innate immune mediators in cancer: between defense and resistance. Immunol Rev 2017; 274:290-306. [PMID: 27782320 DOI: 10.1111/imr.12464] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Chronic inflammation in the tumor microenvironment and evasion of the antitumor effector immune response are two of the emerging hallmarks required for oncogenesis and cancer progression. The innate immune system not only plays a critical role in perpetuating these tumor-promoting hallmarks but also in developing antitumor adaptive immune responses. Thus, understanding the dual role of the innate system in cancer immunology is required for the design of combined immunotherapy strategies able to tackle established tumors. Here, we review recent advances in the understanding of the role of cell populations and soluble components of the innate immune system in cancer, with a focus on complement, the adapter molecule Stimulator of Interferon Genes, natural killer cells, myeloid cells, and B cells.
Collapse
Affiliation(s)
- Pedro Berraondo
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain.,Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain
| | - Luna Minute
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain.,Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain
| | - Daniel Ajona
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain.,Program of Solid Tumors and Biomarkers, CIMA, Pamplona, Spain.,Deparment of Biochemistry and Genetics, School of Sciences, University of Navarra, Pamplona, Spain
| | | | - Ignacio Melero
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain.,Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain
| | - Ruben Pio
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain. .,Program of Solid Tumors and Biomarkers, CIMA, Pamplona, Spain. .,Deparment of Biochemistry and Genetics, School of Sciences, University of Navarra, Pamplona, Spain.
| |
Collapse
|
6
|
Chi H, Li C, Zhao FS, Zhang L, Ng TB, Jin G, Sha O. Anti-tumor Activity of Toll-Like Receptor 7 Agonists. Front Pharmacol 2017; 8:304. [PMID: 28620298 PMCID: PMC5450331 DOI: 10.3389/fphar.2017.00304] [Citation(s) in RCA: 131] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 05/10/2017] [Indexed: 01/04/2023] Open
Abstract
Toll-like receptors (TLRs) are a class of pattern recognition receptors that play a bridging role in innate immunity and adaptive immunity. The activated TLRs not only induce inflammatory responses, but also elicit the development of antigen specific immunity. TLR7, a member of TLR family, is an intracellular receptor expressed on the membrane of endosomes. TLR7 can be triggered not only by ssRNA during viral infections, but also by immune modifiers that share a similar structure to nucleosides. Its powerful immune stimulatory action can be potentially used in the anti-tumor therapy. This article reviewed the anti-tumor activity and mechanism of TLR7 agonists that are frequently applied in preclinical and clinical investigations, and mainly focused on small synthetic molecules, including imiquimod, resiquimod, gardiquimod, and 852A, etc.
Collapse
Affiliation(s)
- Huju Chi
- Department of Anatomy, Histology and Developmental Biology, School of Basic Medical Sciences, Shenzhen University Health Science CentreShenzhen, China
| | - Chunman Li
- Department of Anatomy, Histology and Developmental Biology, School of Basic Medical Sciences, Shenzhen University Health Science CentreShenzhen, China
| | - Flora Sha Zhao
- School of Life Sciences, Faculty of Science, The Chinese University of Hong KongHong Kong, Hong Kong
| | - Li Zhang
- Department of Physiology and Neurology, University of ConnecticutStorrs, CT, United States
| | - Tzi Bun Ng
- Departmet of Biochemistry, Faculty of Science, The Chinese University of Hong KongHong Kong, Hong Kong
| | - Guangyi Jin
- Department of Pharmacy, Shenzhen University Health Science CentreShenzhen, China
| | - Ou Sha
- Department of Anatomy, Histology and Developmental Biology, School of Basic Medical Sciences, Shenzhen University Health Science CentreShenzhen, China
| |
Collapse
|
7
|
Hammerich L, Bhardwaj N, Kohrt HE, Brody JD. In situ vaccination for the treatment of cancer. Immunotherapy 2016; 8:315-30. [DOI: 10.2217/imt.15.120] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Vaccination has had a tremendous impact on human health by harnessing the immune system to prevent and eradicate infectious diseases and this same approach might be used in cancer therapy. Cancer vaccine development has been slowed hindered by the paucity of universal tumor-associated antigens and the difficulty in isolating and preparing individualized vaccines ex vivo. Another approach has been to initiate or stimulate an immune response in situ (at the tumor site) and thus exploit the potentially numerous tumor-associated antigens there. Here, we review the many approaches that have attempted to accomplish effective in situ vaccination, using intratumoral administration of immunomodulators to increase the numbers or activation state of either antigen present cells or T cells within the tumor.
Collapse
Affiliation(s)
- Linda Hammerich
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Nina Bhardwaj
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Holbrook E Kohrt
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Joshua D Brody
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
8
|
Gupta S, Termini JM, Issac B, Guirado E, Stone GW. Constitutively Active MAVS Inhibits HIV-1 Replication via Type I Interferon Secretion and Induction of HIV-1 Restriction Factors. PLoS One 2016; 11:e0148929. [PMID: 26849062 PMCID: PMC4743994 DOI: 10.1371/journal.pone.0148929] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 12/15/2015] [Indexed: 12/24/2022] Open
Abstract
Type I interferon is known to inhibit HIV-1 replication through the induction of interferon stimulated genes (ISG), including a number of HIV-1 restriction factors. To better understand interferon-mediated HIV-1 restriction, we constructed a constitutively active form of the RIG-I adapter protein MAVS. Constitutive MAVS was generated by fusion of full length MAVS to a truncated form of the Epstein Barr virus protein LMP1 (ΔLMP1). Supernatant from ΔLMP1-MAVS-transfected 293T cells contained high levels of type I interferons and inhibited HIV replication in both TZM-bl and primary human CD4+ T cells. Supernatant from ΔLMP1-MAVS-transfected 293T cells also inhibited replication of VSV-G pseudotyped single cycle SIV in TZM-bl cells, suggesting restriction was post-entry and common to both HIV and SIV. Gene array analysis of ΔLMP1-MAVS-transfected 293T cells and trans-activated CD4+ T cells showed significant upregulation of ISG, including previously characterized HIV restriction factors Viperin, Tetherin, MxB, and ISG56. Interferon blockade studies implicated interferon-beta in this response. In addition to direct viral inhibition, ΔLMP1-MAVS markedly enhanced secretion of IFN-β and IL-12p70 by dendritic cells and the activation and maturation of dendritic cells. Based on this immunostimulatory activity, an adenoviral vector (Ad5) expressing ΔLMP1-MAVS was tested as a molecular adjuvant in an HIV vaccine mouse model. Ad5-Gag antigen combined with Ad5-ΔLMP1-MAVS enhanced control of vaccinia-gag replication in a mouse challenge model, with 4/5 animals showing undetectable virus following challenge. Overall, ΔLMP1-MAVS is a promising reagent to inhibit HIV-1 replication in infected tissues and enhance vaccine-mediated immune responses, while avoiding toxicity associated with systemic type I interferon administration.
Collapse
Affiliation(s)
- Sachin Gupta
- Department of Microbiology and Immunology, Miami Center for AIDS Research and Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - James M. Termini
- Department of Microbiology and Immunology, Miami Center for AIDS Research and Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Biju Issac
- Division of Bioinformatics, Biostatistics and Bioinformatics Core, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Elizabeth Guirado
- Department of Microbiology and Immunology, Miami Center for AIDS Research and Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Geoffrey W. Stone
- Department of Microbiology and Immunology, Miami Center for AIDS Research and Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida, United States of America
- * E-mail:
| |
Collapse
|
9
|
Hammerich L, Binder A, Brody JD. In situ vaccination: Cancer immunotherapy both personalized and off-the-shelf. Mol Oncol 2015; 9:1966-81. [PMID: 26632446 PMCID: PMC5528727 DOI: 10.1016/j.molonc.2015.10.016] [Citation(s) in RCA: 136] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 10/20/2015] [Accepted: 10/20/2015] [Indexed: 01/15/2023] Open
Abstract
As cancer immunotherapy continues to benefit from novel approaches which cut immune 'brake pedals' (e.g. anti-PD1 and anti-CTLA4 antibodies) and push immune cell gas pedals (e.g. IL2, and IFNα) there will be increasing need to develop immune 'steering wheels' such as vaccines to guide the immune system specifically toward tumor associated antigens. Two primary hurdles in cancer vaccines have been: identification of universal antigens to be used in 'off-the-shelf' vaccines for common cancers, and 2) logistical hurdles of ex vivo production of individualized whole tumor cell vaccines. Here we summarize approaches using 'in situ vaccination' in which intratumoral administration of off-the-shelf immunomodulators have been developed to specifically induce (or amplify) T cell responses to each patient's individual tumor. Clinical studies have confirmed the induction of systemic immune and clinical responses to such approaches and preclinical models have suggested ways to further potentiate the translation of in situ vaccine trials for our patients.
Collapse
Affiliation(s)
- Linda Hammerich
- Icahn School of Medicine at Mount Sinai Hess Center for Science and Medicine, United States
| | - Adam Binder
- Icahn School of Medicine at Mount Sinai Hess Center for Science and Medicine, United States
| | - Joshua D Brody
- Icahn School of Medicine at Mount Sinai Hess Center for Science and Medicine, United States.
| |
Collapse
|
10
|
DNA vaccine molecular adjuvants SP-D-BAFF and SP-D-APRIL enhance anti-gp120 immune response and increase HIV-1 neutralizing antibody titers. J Virol 2015; 89:4158-69. [PMID: 25631080 DOI: 10.1128/jvi.02904-14] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Broadly neutralizing antibodies (bNAbs) specific for conserved epitopes on the HIV-1 envelope (Env) are believed to be essential for protection against multiple HIV-1 clades. However, vaccines capable of stimulating the production of bNAbs remain a major challenge. Given that polyreactivity and autoreactivity are considered important characteristics of anti-HIV bNAbs, we designed an HIV vaccine incorporating the molecular adjuvants BAFF (B cell activating factor) and APRIL (a proliferation-inducing ligand) with the potential to facilitate the maturation of polyreactive and autoreactive B cells as well as to enhance the affinity and/or avidity of Env-specific antibodies. We designed recombinant DNA plasmids encoding soluble multitrimers of BAFF and APRIL using surfactant protein D as a scaffold, and we vaccinated mice with these molecular adjuvants using DNA and DNA-protein vaccination strategies. We found that immunization of mice with a DNA vaccine encoding BAFF or APRIL multitrimers, together with interleukin 12 (IL-12) and membrane-bound HIV-1 Env gp140, induced neutralizing antibodies against tier 1 and tier 2 (vaccine strain) viruses. The APRIL-containing vaccine was particularly effective at generating tier 2 neutralizing antibodies following a protein boost. These BAFF and APRIL effects coincided with an enhanced germinal center (GC) reaction, increased anti-gp120 antibody-secreting cells, and increased anti-gp120 functional avidity. Notably, BAFF and APRIL did not cause indiscriminate B cell expansion or an increase in total IgG. We propose that BAFF and APRIL multitrimers are promising molecular adjuvants for vaccines designed to induce bNAbs against HIV-1. IMPORTANCE Recent identification of antibodies that neutralize most HIV-1 strains has revived hopes and efforts to create novel vaccines that can effectively stimulate HIV-1 neutralizing antibodies. However, the multiple immune evasion properties of HIV have hampered these efforts. These include the instability of the gp120 trimer, the inaccessibility of the conserved sequences, highly variable protein sequences, and the loss of HIV-1-specific antibody-producing cells during development. We have shown previously that tumor necrosis factor (TNF) superfamily ligands, including BAFF and APRIL, can be multitrimerized using the lung protein SP-D (surfactant protein D), enhancing immune responses. Here we show that DNA or DNA-protein vaccines encoding BAFF or APRIL multitrimers, IL-12p70, and membrane-bound HIV-1 Env gp140 induced tier 1 and tier 2 neutralizing antibodies in a mouse model. BAFF and APRIL enhanced the immune reaction, improved antibody binding, and increased the numbers of anti-HIV-1 antibody-secreting cells. Adaptation of this vaccine design may prove useful in designing preventive HIV-1 vaccines for humans.
Collapse
|
11
|
Design of vaccine adjuvants incorporating TNF superfamily ligands and TNF superfamily molecular mimics. Immunol Res 2014; 57:303-10. [PMID: 24198065 DOI: 10.1007/s12026-013-8443-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
TNF superfamily ligands play a critical role in the regulation of adaptive immune responses, including the costimulation of dendritic cells, T cells, and B cells. This costimulation could potentially be exploited for the development of prophylactic vaccines and immunotherapy. Despite this, there have been only a limited number of reports on the use of this family of molecules as gene-based adjuvants to enhance DNA and/or viral vector vaccines. In addition, the molecule latent membrane protein 1 (LMP1), a viral mimic of the TNF superfamily receptor CD40, provides an alternative approach for the design of novel molecular adjuvants. Here, we discuss advances in the development of recombinant TNF superfamily ligands as adjuvants for HIV vaccines and as cancer immunotherapy, including the use of LMP1 and LMP1-CD40 chimeric fusion proteins to mimic constitutive CD40 signaling.
Collapse
|
12
|
Vaccination with a fusion protein that introduces HIV-1 gag antigen into a multitrimer CD40L construct results in enhanced CD8+ T cell responses and protection from viral challenge by vaccinia-gag. J Virol 2013; 88:1492-501. [PMID: 24227853 DOI: 10.1128/jvi.02229-13] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
CD40 ligand (CD40L, CD154) is a membrane protein that is important for the activation of dendritic cells (DCs) and DC-induced CD8(+) T cell responses. To be active, CD40L must cluster CD40 receptors on responding cells. To produce a soluble form of CD40L that clusters CD40 receptors necessitates the use of a multitrimer construct. With this in mind, a tripartite fusion protein was made from surfactant protein D (SPD), HIV-1 Gag as a test antigen, and CD40L, where SPD serves as a scaffold for the multitrimer protein complex. This SPD-Gag-CD40L protein activated CD40-bearing cells and bone marrow-derived DCs in vitro. Compared to a plasmid for Gag antigen alone (pGag), DNA vaccination of mice with pSPD-Gag-CD40L induced an increased number of Gag-specific CD8(+) T cells with increased avidity for major histocompatibility complex class I-restricted Gag peptide and improved vaccine-induced protection from challenge by vaccinia-Gag virus. The importance of the multitrimeric nature of the complex was shown using a plasmid lacking the N terminus of SPD that produced a single trimer fusion protein. This plasmid, pTrimer-Gag-CD40L, was only weakly active on CD40-bearing cells and did not elicit strong CD8(+) T cell responses or improve protection from vaccinia-Gag challenge. An adenovirus 5 (Ad5) vaccine incorporating SPD-Gag-CD40L was much stronger than Ad5 expressing Gag alone (Ad5-Gag) and induced complete protection (i.e., sterilizing immunity) from vaccinia-Gag challenge. Overall, these results show the potential of a new vaccine design in which antigen is introduced into a construct that expresses a multitrimer soluble form of CD40L, leading to strongly protective CD8(+) T cell responses.
Collapse
|
13
|
Rakhmilevich AL, Alderson KL, Sondel PM. T-cell-independent antitumor effects of CD40 ligation. Int Rev Immunol 2012; 31:267-78. [PMID: 22804571 DOI: 10.3109/08830185.2012.698337] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
CD40 ligation has been shown to induce antitumor effects in mice and cancer patients. Most of the studies have focused on the ability of an agonistic anti-CD40 mAb to either directly kill CD40-positive tumor cells or activate T-cell immune responses. In this review the authors focus on the ability of CD40 ligation to activate antitumor effector mechanisms of the cells of innate immunity such as macrophages and NK cells.
Collapse
Affiliation(s)
- Alexander L Rakhmilevich
- Department of Human Oncology and Paul P. Carbone Comprehensive Cancer Center, University of Wisconsin-Madison, Madison, WI 53705, USA.
| | | | | |
Collapse
|
14
|
Immunity and malignant mesothelioma: From mesothelial cell damage to tumor development and immune response-based therapies. Cancer Lett 2012; 322:18-34. [DOI: 10.1016/j.canlet.2012.02.034] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Revised: 02/24/2012] [Accepted: 02/24/2012] [Indexed: 11/22/2022]
|
15
|
Kanagavelu SK, Snarsky V, Termini JM, Gupta S, Barzee S, Wright JA, Khan WN, Kornbluth RS, Stone GW. Soluble multi-trimeric TNF superfamily ligand adjuvants enhance immune responses to a HIV-1 Gag DNA vaccine. Vaccine 2012; 30:691-702. [PMID: 22146759 PMCID: PMC3253891 DOI: 10.1016/j.vaccine.2011.11.088] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Revised: 11/21/2011] [Accepted: 11/22/2011] [Indexed: 12/24/2022]
Abstract
BACKGROUND DNA vaccines remain an important component of HIV vaccination strategies, typically as part of a prime/boost vaccination strategy with viral vector or protein boost. A number of DNA prime/viral vector boost vaccines are currently being evaluated for both preclinical studies and in Phase I and Phase II clinical trials. These vaccines would benefit from molecular adjuvants that increase correlates of immunity during the DNA prime. While HIV vaccine immune correlates are still not well defined, there are a number of immune assays that have been shown to correlate with protection from viral challenge including CD8+ T cell avidity, antigen-specific proliferation, and polyfunctional cytokine secretion. METHODOLOGY AND PRINCIPAL FINDINGS Recombinant DNA vaccine adjuvants composed of a fusion between Surfactant Protein D (SP-D) and either CD40 Ligand (CD40L) or GITR Ligand (GITRL) were previously shown to enhance HIV-1 Gag DNA vaccines. Here we show that similar fusion constructs composed of the TNF superfamily ligands (TNFSFL) 4-1BBL, OX40L, RANKL, LIGHT, CD70, and BAFF can also enhanced immune responses to a HIV-1 Gag DNA vaccine. BALB/c mice were vaccinated intramuscularly with plasmids expressing secreted Gag and SP-D-TNFSFL fusions. Initially, mice were analyzed 2 weeks or 7 weeks following vaccination to evaluate the relative efficacy of each SP-D-TNFSFL construct. All SP-D-TNFSFL constructs enhanced at least one Gag-specific immune response compared to the parent vaccine. Importantly, the constructs SP-D-4-1BBL, SP-D-OX40L, and SP-D-LIGHT enhanced CD8+ T cell avidity and CD8+/CD4+ T cell proliferation 7 weeks post vaccination. These avidity and proliferation data suggest that 4-1BBL, OX40L, and LIGHT fusion constructs may be particularly effective as vaccine adjuvants. Constructs SP-D-OX40L, SP-D-LIGHT, and SP-D-BAFF enhanced Gag-specific IL-2 secretion in memory T cells, suggesting these adjuvants can increase the number of self-renewing Gag-specific CD8+ and/or CD4+ T cells. Finally adjuvants SP-D-OX40L and SP-D-CD70 increased T(H)1 (IgG2a) but not T(H)2 (IgG1) antibody responses in the vaccinated animals. Surprisingly, the B cell-activating protein BAFF did not enhance anti-Gag antibody responses when given as an SP-D fusion adjuvant, but nonetheless enhanced CD4+ and CD8+ T cell responses. CONCLUSIONS We present evidence that various SP-D-TNFSFL fusion constructs can enhance immune responses following DNA vaccination with HIV-1 Gag expression plasmid. These data support the continued evaluation of SP-D-TNFSFL fusion proteins as molecular adjuvants for DNA and/or viral vector vaccines. Constructs of particular interest included SP-D-OX40L, SP-D-4-1BBL, SP-D-LIGHT, and SP-D-CD70. SP-D-BAFF was surprisingly effective at enhancing T cell responses, despite its inability to enhance anti-Gag antibody secretion.
Collapse
Affiliation(s)
- Saravana K. Kanagavelu
- Department of Microbiology & Immunology, Miller School of Medicine, University of Miami, Miami, FL
| | - Victoria Snarsky
- Department of Medicine, University of California San Diego, La Jolla, CA; VA San Diego Healthcare System, San Diego, CA
| | - James M. Termini
- Department of Microbiology & Immunology, Miller School of Medicine, University of Miami, Miami, FL
| | - Sachin Gupta
- Department of Microbiology & Immunology, Miller School of Medicine, University of Miami, Miami, FL
| | - Suzanne Barzee
- Department of Medicine, University of California San Diego, La Jolla, CA; VA San Diego Healthcare System, San Diego, CA
| | - Jacqueline A. Wright
- Department of Microbiology & Immunology, Miller School of Medicine, University of Miami, Miami, FL
| | - Wasif N. Khan
- Department of Microbiology & Immunology, Miller School of Medicine, University of Miami, Miami, FL
| | - Richard S. Kornbluth
- Department of Medicine, University of California San Diego, La Jolla, CA; VA San Diego Healthcare System, San Diego, CA
| | - Geoffrey W. Stone
- Department of Microbiology & Immunology, Miller School of Medicine, University of Miami, Miami, FL
| |
Collapse
|
16
|
Abstract
Pleural malignancies, including primary malignant pleural mesothelioma and secondary pleural metastasis of various tumours resulting in malignant pleural effusion, are frequent and lethal diseases that deserve devoted translational research efforts for improvements to be introduced to the clinic. This paper highlights select clinical advances that have been accomplished recently and that are based on preclinical research on pleural malignancies. Examples are the establishment of folate antimetabolites in mesothelioma treatment, the use of PET in mesothelioma management and the discovery of mesothelin as a marker of mesothelioma. In addition to established translational advances, this text focuses on recent research findings that are anticipated to impact clinical pleural oncology in the near future. Such progress has been substantial, including the development of a genetic mouse model of mesothelioma and of transplantable models of pleural malignancies in immunocompetent hosts, the deployment of stereological and imaging methods for integral assessment of pleural tumour burden, as well as the discovery of the therapeutic potential of aminobiphosphonates, histone deacetylase inhibitors and ribonucleases against malignant pleural disease. Finally, key obstacles to overcome towards a more rapid advancement of translational research in pleural malignancies are outlined. These include the dissection of cell-autonomous and paracrine pathways of pleural tumour progression, the study of mesothelioma and malignant pleural effusion separately from other tumours at both the clinical and preclinical levels, and the expansion of tissue banks and consortia of clinical research of pleural malignancies.
Collapse
|
17
|
Stone GW, Barzee S, Snarsky V, Santucci C, Tran B, Langer R, Zugates GT, Anderson DG, Kornbluth RS. Nanoparticle-delivered multimeric soluble CD40L DNA combined with Toll-Like Receptor agonists as a treatment for melanoma. PLoS One 2009; 4:e7334. [PMID: 19812695 PMCID: PMC2754331 DOI: 10.1371/journal.pone.0007334] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2009] [Accepted: 09/16/2009] [Indexed: 01/08/2023] Open
Abstract
Stimulation of CD40 or Toll-Like Receptors (TLR) has potential for tumor immunotherapy. Combinations of CD40 and TLR stimulation can be synergistic, resulting in even stronger dendritic cell (DC) and CD8+ T cell responses. To evaluate such combinations, established B16F10 melanoma tumors were injected every other day X 5 with plasmid DNA encoding a multimeric, soluble form of CD40L (pSP-D-CD40L) either alone or combined with an agonist for TLR1/2 (Pam3CSK4 ), TLR2/6 (FSL-1 and MALP2), TLR3 (polyinosinic-polycytidylic acid, poly(I:C)), TLR4 ( monophosphoryl lipid A, MPL), TLR7 (imiquimod), or TLR9 (Class B CpG phosphorothioate oligodeoxynucleotide, CpG). When used by itself, pSP-D-CD40L slowed tumor growth and prolonged survival, but did not lead to cure. Of the TLR agonists, CpG and poly(I:C) also slowed tumor growth, and the combination of these two TLR agonists was more effective than either agent alone. The triple combination of intratumoral pSP-D-CD40L + CpG + poly(I:C) markedly slowed tumor growth and prolonged survival. This treatment was associated with a reduction in intratumoral CD11c+ dendritic cells and an influx of CD8+ T cells. Since intratumoral injection of plasmid DNA does not lead to efficient transgene expression, pSP-D-CD40L was also tested with cationic polymers that form DNA-containing nanoparticles which lead to enhanced intratumoral gene expression. Intratumoral injections of pSP-D-CD40L-containing nanoparticles formed from polyethylenimine (PEI) or C32 (a novel biodegradable poly(B-amino esters) polymer) in combination with CpG + poly(I:C) had dramatic antitumor effects and frequently cured mice of B16F10 tumors. These data confirm and extend previous reports that CD40 and TLR agonists are synergistic and demonstrate that this combination of immunostimulants can significantly suppress tumor growth in mice. In addition, the enhanced effectiveness of nanoparticle formulations of DNA encoding immunostimulatory molecules such as multimeric, soluble CD40L supports the further study of this technology for tumor immunotherapy.
Collapse
Affiliation(s)
- Geoffrey W. Stone
- Department of Medicine, University of California San Diego, La Jolla, California, United States of America
- Department of Medicine, VA San Diego Healthcare System, La Jolla, California, United States of America
| | - Suzanne Barzee
- Department of Medicine, University of California San Diego, La Jolla, California, United States of America
- Department of Medicine, VA San Diego Healthcare System, La Jolla, California, United States of America
| | - Victoria Snarsky
- Department of Medicine, University of California San Diego, La Jolla, California, United States of America
- Department of Medicine, VA San Diego Healthcare System, La Jolla, California, United States of America
| | - Camila Santucci
- Department of Medicine, University of California San Diego, La Jolla, California, United States of America
- Department of Medicine, VA San Diego Healthcare System, La Jolla, California, United States of America
| | - Brian Tran
- Department of Medicine, University of California San Diego, La Jolla, California, United States of America
- Department of Medicine, VA San Diego Healthcare System, La Jolla, California, United States of America
| | - Robert Langer
- David H. Koch Institute for Integrative Cancer Research at MIT, Cambridge, Massachusetts, United States of America
- Chemical Engineering Department, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Gregory T. Zugates
- David H. Koch Institute for Integrative Cancer Research at MIT, Cambridge, Massachusetts, United States of America
| | - Daniel G. Anderson
- David H. Koch Institute for Integrative Cancer Research at MIT, Cambridge, Massachusetts, United States of America
| | - Richard S. Kornbluth
- Department of Medicine, University of California San Diego, La Jolla, California, United States of America
- Department of Medicine, VA San Diego Healthcare System, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|