1
|
Lu YL, Huang C, Huang SY, Li T, Chen WY, Yi SL, Pei Y, Lu JT, Chen ZY, Cao HY, Tan B. The mechanism of patchouli alcohol in treating IBS-D based on BMP-Smad pathway. Biomed Pharmacother 2025; 187:118050. [PMID: 40267641 DOI: 10.1016/j.biopha.2025.118050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 04/07/2025] [Accepted: 04/14/2025] [Indexed: 04/25/2025] Open
Abstract
Irritable Bowel Syndrome (IBS) is a chronic gastrointestinal condition, and diarrhea predominant (IBS-D) is the most common subtype.The enteric nervous system (ENS) regulates major gastrointestinal motility and function, and the intestinal neuronal BMP-SMAD signaling pathway is closely related to intestinal motility. Patchouli alcohol (PA) has been reported to modulate IBS-D, but whether its mechanism of action ameliorates IBS-D through the BMP-SMAD signaling pathway is unclear.This study preliminarily confirmed the abnormal colonic contraction of IBS-D functional bowel disease, and PA can not only improve gastrointestinal motor function, effectively inhibit the characteristic diarrhea and increased visceral sensitivity in IBS-D rats, but also regulate the neurohomeostasis of the gastrointestinal tract. In this study, in vivo and ex vivo studies confirmed that the neurohomeostatic regulation of patchouli alcohol was related to the increase of BMPRII+ neuronal subsets in the intestinal myenteric plexus and the regulation of BMP-SMAD signal pathway; PA increased the phosphorylation level of BMP-SMAD pathway-related proteins in IBS-D rat intestinal neurons.The findings can provide evidence for subsequent clinical research and drug development.
Collapse
Affiliation(s)
- Yu-Lin Lu
- Research Centre of Basic Intergrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chen Huang
- Research Centre of Basic Intergrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shu-Yan Huang
- Research Centre of Basic Intergrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ting Li
- Research Centre of Basic Intergrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wan-Yu Chen
- Research Centre of Basic Intergrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shu-Lin Yi
- Research Centre of Basic Intergrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ying Pei
- Research Centre of Basic Intergrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jin-Tong Lu
- Research Centre of Basic Intergrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhuo-Ying Chen
- Research Centre of Basic Intergrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hong-Ying Cao
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Bo Tan
- Research Centre of Basic Intergrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China; Dongguan Institute of Guangzhou University of Chinese Medicine, Dongguan, China.
| |
Collapse
|
2
|
Abstract
The enteric nervous system (ENS) is the largest division of the peripheral nervous system and closely resembles components and functions of the central nervous system. Although the central role of the ENS in congenital enteric neuropathic disorders, including Hirschsprung disease and inflammatory and functional bowel diseases, is well acknowledged, its role in systemic diseases is less understood. Evidence of a disordered ENS has accumulated in neurodegenerative diseases ranging from amyotrophic lateral sclerosis, Alzheimer disease and multiple sclerosis to Parkinson disease as well as neurodevelopmental disorders such as autism. The ENS is a key modulator of gut barrier function and a regulator of enteric homeostasis. A 'leaky gut' represents the gateway for bacterial and toxin translocation that might initiate downstream processes. Data indicate that changes in the gut microbiome acting in concert with the individual genetic background can modify the ENS, central nervous system and the immune system, impair barrier function, and contribute to various disorders such as irritable bowel syndrome, inflammatory bowel disease or neurodegeneration. Here, we summarize the current knowledge on the role of the ENS in gastrointestinal and systemic diseases, highlighting its interaction with various key players involved in shaping the phenotypes. Finally, current flaws and pitfalls related to ENS research in addition to future perspectives are also addressed.
Collapse
|
3
|
Laxative Effects of Yangyin Tongmi Capsule on a Model of Diphenoxylate-Induced Constipation in Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:1471824. [PMID: 32148532 PMCID: PMC7056994 DOI: 10.1155/2020/1471824] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/31/2019] [Accepted: 01/29/2020] [Indexed: 12/30/2022]
Abstract
Constipation is characterized by reduced number of bowel movements, dry stools, and difficult defecation. Yangyin Tongmi capsule (YTC), a traditional Chinese formula, is used in the treatment of constipation, while the underlying mechanisms remain unknown. Herein, this work attempted to prove the effects of YTC on constipation treatment and its possible mechanisms. KM mice were randomly divided into four groups (n = 10/group) and treated with double distilled water (Control), diphenoxylate (Model: 10 mg/kg), or diphenoxylate plus low-dose YTC (L-YTC: 0.6 g/kg) or high-dose YTC (H-YTC: 1.2 g/kg). The data indicated that YTC can significantly shorten the discharge time of the first black stool, improve intestinal propulsion rate, and increase the water content and quantity of feces in mice. ELISA suggested that YTC regulate the content of intestinal hormones and neurotransmitters, such as motilin (MTL), gastrin (GT), somatostatin (SST), substance P (SP), acetylcholine (Ach), and nitric oxide (NO). The expression levels of aquaporin 3 (AQP3) and aquaporin 8 (AQP8) in the colon were examined by immunohistochemistry. In the meantime, the expression levels of P2X2, C-kit, and stem cell factor (SCF) in the colon were examined by western blot analysis. The results of this study suggest that YTC has mitigative effects on diphenoxylate-induced constipation by regulating the content of intestinal hormones and neurotransmitters and regulating the expression of related proteins in the colon.
Collapse
|
4
|
Li Y, Liu H, Dong Y. Significance of neurexin and neuroligin polymorphisms in regulating risk of Hirschsprung's disease. J Investig Med 2018; 66:1-8. [PMID: 29622757 PMCID: PMC5992363 DOI: 10.1136/jim-2017-000623] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/29/2018] [Indexed: 12/27/2022]
Abstract
By performing a basic case-control study among a Chinese population, the aims of this study were to explore if single nucleotide polymorphisms (SNPs) within neurexin and neuroligin were associated with susceptibility to Hirschsprung's disease (HD). Eleven SNPs within neurexin and neuroligin were selected in this basic case-control study, and this study recruited 210 children with HD and 187 healthy children. The t-test and Χ2 test were used to find the difference between case and control in their clinical variables. OR and 95% CI were used to assess the association between HD susceptibility and neurexin/neuroligin polymorphisms/haplotypes. Several SNPs were significantly associated with altered risk of HD in the Chinese Han population, including rs1421589 within NRXN1, rs11795613 and rs4844285 within NLGN3, as well as rs5961397, rs7157669 and rs724373 within NLGX4X (all P<0.05). Further studies presented that the effects of rs1421589 within NRXN1, rs4844285 and rs11795613 within NLGN3, as well as rs5961397 within NLGX4X on HD phenotypes were also statistically significant (all P<0.05). Conclusively, the polymorphisms and haplotypes situated within neurexin and neuroligin were markedly associated with the onset of HD, implying that mutations of neurexin and neuroligin might serve as the treatment target for HD for the Chinese children.
Collapse
Affiliation(s)
- Yanhong Li
- Department of Pediatrics, Zhoukou Central Hospital, Zhoukou, Henan Province, China
| | - Hui Liu
- Department of Pediatrics, Zhoukou Central Hospital, Zhoukou, Henan Province, China
| | - Yubin Dong
- Department of Pediatrics, Zhoukou Central Hospital, Zhoukou, Henan Province, China
| |
Collapse
|
5
|
Affiliation(s)
- Jackie D Wood
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, 304 Hamilton Hall, 1645 Neil Avenue, Columbus, OH, 43210, USA.
| |
Collapse
|
6
|
Shalaby NM, Shalaby NM. Effect of Ascaris lumbricoides infection on T helper cell type 2 in rural Egyptian children. Ther Clin Risk Manag 2016; 12:379-85. [PMID: 27022269 PMCID: PMC4790525 DOI: 10.2147/tcrm.s94019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Ascaris lumbricoides is a neglected parasite that induces changes in host immune response. This study is conducted to define the serum levels of tumor necrosis factor alpha (TNF-α), interleukin-4 (IL-4), and interleukin-5 (IL-5) in some Egyptian children and their relations to intensity of infection, age, and ascariasis symptoms. Stool samples were examined using formol-ether concentration and Kato-Katz thick smear techniques. Sera of 60 A. lumbricoides-infected children and 20 controls were tested by enzyme-linked immunosorbent assay. The mean sera concentrations of TNF-α, IL-4, and IL-5 were 7.41±2.5 pg/mL, 107.60±18.3 pg/mL, and 389.52±28.0 pg/mL, respectively. The controls had mean serum TNF-α 7.10±2.4 pg/mL, IL-4 25.49±2.6 pg/mL, and IL-5 88.76±22.7 pg/mL. The difference in the concentration of sera cytokines was statistically significant for IL-4 and IL-5 (P<0.01) between A. lumbricoides-infected children and controls. The intensity of infection correlated positively with IL-4 and IL-5 at r=0.959 and r=0.919, respectively. The concentrations of IL-4 and IL-5 correlated positively with the age at r=0.845 and r=0.934, respectively. Asthma and gastrointestinal tract upsets were correlated positively with IL-4 and IL-5. These data indicate that A. lumbricoides infection in our locality is associated with significantly high levels of IL-4 and IL-5.
Collapse
Affiliation(s)
- Naglaa M Shalaby
- Department of Parasitology, Faculty of Medicine, Mansoura, Egypt
| | - Nehad M Shalaby
- Mansoura University Children Hospital, Mansoura University, Mansoura, Egypt
| |
Collapse
|
7
|
Interactions Between Bacteria and the Gut Mucosa: Do Enteric Neurotransmitters Acting on the Mucosal Epithelium Influence Intestinal Colonization or Infection? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 874:121-41. [DOI: 10.1007/978-3-319-20215-0_5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
8
|
Wood JD. Enteric Neurobiology: Discoveries and Directions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 891:175-91. [PMID: 27379645 DOI: 10.1007/978-3-319-27592-5_17] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Discovery and documentation of noncholinergic-nonadrenergic neurotransmission in the enteric nervous system started a revolution in mechanisms of neural control of the digestive tract that continues into a twenty-first century era of translational gastroenterology, which is now firmly embedded in the term, neurogastroenterology. This chapter, on Enteric Neurobiology: Discoveries and Directions, tracks the step-by-step advances in enteric neuronal electrophysiology and synaptic behavior and progresses to the higher order functions of central pattern generators, hard wired synaptic circuits and libraries of neural programs in the brain-in-the-gut that underlie the several different patterns of motility and secretory behaviors that occur in the specialized, serially-connected compartments extending from the esophagus to the anus.
Collapse
Affiliation(s)
- Jackie D Wood
- Department of Physiology and Cell Biology, The Ohio State University College of Medicine, 304 Hamilton Hall, 1645 Neil Avenue, Columbus, OH, 43210-1218, USA.
| |
Collapse
|
9
|
Stavely R, Robinson AM, Miller S, Boyd R, Sakkal S, Nurgali K. Human adult stem cells derived from adipose tissue and bone marrow attenuate enteric neuropathy in the guinea-pig model of acute colitis. Stem Cell Res Ther 2015; 6:244. [PMID: 26652292 PMCID: PMC4674993 DOI: 10.1186/s13287-015-0231-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 10/22/2015] [Accepted: 11/09/2015] [Indexed: 02/08/2023] Open
Abstract
Introduction Mesenchymal stem cells (MSCs) have been identified as a viable treatment for inflammatory bowel disease (IBD). MSCs derived from bone marrow (BM-MSCs) have predominated in experimental models whereas the majority of clinical trials have used MSCs derived from adipose tissue (AT-MSCs), thus there is little consensus on the optimal tissue source. The therapeutic efficacies of these MSCs are yet to be compared in context of the underlying dysfunction of the enteric nervous system innervating the gastrointestinal tract concomitant with IBD. This study aims to characterise the in vitro properties of MSCs and compare their in vivo therapeutic potential for the treatment of enteric neuropathy associated with intestinal inflammation. Methods BM-MSCs and AT-MSCs were validated and characterised in vitro. In in vivo experiments, guinea-pigs received either 2,4,6-trinitrobenzene-sulfonate acid (TNBS) for the induction of colitis or sham treatment by enema. MSCs were administered at a dose of 1x106 cells via enema 3 hours after the induction of colitis. Colon tissues were collected 24 and 72 hours after TNBS administration to assess the level of inflammation and damage to the ENS. MSC migration to the myenteric plexus in vivo was elucidated by immunohistochemistry and in vitro using a modified Boyden chamber assay. Results Cells exhibited multipotency and a typical surface immunophenotype for validation as bona fide MSCs. In vitro characterisation revealed distinct differences in growth kinetics, clonogenicity and cell morphology between MSC types. In vivo, BM-MSCs were comparatively more effective than AT-MSCs in attenuating leukocyte infiltration and neuronal loss in the myenteric plexus. MSCs from both sources equally ameliorated body weight loss, gross morphological damage to the colon, changes in the neurochemical coding of neuronal subpopulations and the reduction in density of extrinsic and intrinsic nerve fibres innervating the colon. MSCs from both sources migrated to the myenteric plexus in in vivo colitis and in an in vitro assay. Conclusions These data from in vitro experiments suggest that AT-MSCs are ideal for cellular expansion. However, BM-MSCs were more therapeutic in the treatment of enteric neuropathy and plexitis. These characteristics should be considered when deciding on the MSC tissue source.
Collapse
Affiliation(s)
- Rhian Stavely
- Centre for Chronic Disease, College of Health and Biomedicine, Victoria University, Melbourne, Australia.
| | - Ainsley M Robinson
- Centre for Chronic Disease, College of Health and Biomedicine, Victoria University, Melbourne, Australia.
| | - Sarah Miller
- Centre for Chronic Disease, College of Health and Biomedicine, Victoria University, Melbourne, Australia.
| | - Richard Boyd
- Department of Anatomy and Developmental Biology, Monash University, Melbourne, Australia.
| | - Samy Sakkal
- Centre for Chronic Disease, College of Health and Biomedicine, Victoria University, Melbourne, Australia.
| | - Kulmira Nurgali
- Centre for Chronic Disease, College of Health and Biomedicine, Victoria University, Melbourne, Australia. .,College of Health and Biomedicine, Victoria University, Western Centre for Health Research & Education, 176 Furlong Road, St Albans, 3021, VIC, Australia.
| |
Collapse
|
10
|
Abstract
Mast cells (MCs) are tissue-resident immune cells that carry out protective roles against pathogens. In disease states, such as inflammatory bowel disease, these granulocytes release a diverse array of mediators that contribute to inflammatory processes. They also participate in wound repair and tissue remodeling. In this review, the composition of MCs and how their phenotypes can be altered during inflammation of the gastrointestinal tract is detailed. Animal and human clinical studies that have implicated the participation of MCs in inflammatory bowel disease are reviewed, including the contribution of the cell's mediators to clinical symptoms, stress-triggered inflammation, and fistula and strictures. Studies that have focused on negating the proinflammatory roles of MCs and their mediators in animal models suggest new targets for therapies for patients with inflammatory bowel disease.
Collapse
|
11
|
Wang GD, Wang XY, Liu S, Qu M, Xia Y, Needleman BJ, Mikami DJ, Wood JD. Innervation of enteric mast cells by primary spinal afferents in guinea pig and human small intestine. Am J Physiol Gastrointest Liver Physiol 2014; 307:G719-31. [PMID: 25147231 PMCID: PMC4187066 DOI: 10.1152/ajpgi.00125.2014] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Mast cells express the substance P (SP) neurokinin 1 receptor and the calcitonin gene-related peptide (CGRP) receptor in guinea pig and human small intestine. Enzyme-linked immunoassay showed that activation of intramural afferents by antidromic electrical stimulation or by capsaicin released SP and CGRP from human and guinea pig intestinal segments. Electrical stimulation of the afferents evoked slow excitatory postsynaptic potentials (EPSPs) in the enteric nervous system. The slow EPSPs were mediated by tachykinin neurokinin 1 and CGRP receptors. Capsaicin evoked slow EPSP-like responses that were suppressed by antagonists for protease-activated receptor 2. Afferent stimulation evoked slow EPSP-like excitation that was suppressed by mast cell-stabilizing drugs. Histamine and mast cell protease II were released by 1) exposure to SP or CGRP, 2) capsaicin, 3) compound 48/80, 4) elevation of mast cell Ca²⁺ by ionophore A23187, and 5) antidromic electrical stimulation of afferents. The mast cell stabilizers cromolyn and doxantrazole suppressed release of protease II and histamine when evoked by SP, CGRP, capsaicin, A23187, electrical stimulation of afferents, or compound 48/80. Neural blockade by tetrodotoxin prevented mast cell protease II release in response to antidromic electrical stimulation of mesenteric afferents. The results support a hypothesis that afferent innervation of enteric mast cells releases histamine and mast cell protease II, both of which are known to act in a diffuse paracrine manner to influence the behavior of enteric nervous system neurons and to elevate the sensitivity of spinal afferent terminals.
Collapse
Affiliation(s)
- Guo-Du Wang
- 1Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, Ohio;
| | - Xi-Yu Wang
- 1Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, Ohio;
| | - Sumei Liu
- 1Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, Ohio;
| | - Meihua Qu
- 1Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, Ohio;
| | - Yun Xia
- 1Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, Ohio; ,2Department of Anesthesiology, College of Medicine, The Ohio State University, Columbus, Ohio; and
| | - Bradley J. Needleman
- 3Department of Surgery, College of Medicine, The Ohio State University, Columbus, Ohio
| | - Dean J. Mikami
- 3Department of Surgery, College of Medicine, The Ohio State University, Columbus, Ohio
| | - Jackie D. Wood
- 1Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, Ohio;
| |
Collapse
|
12
|
Kispélyi B, Lohinai Z, Altdorfer K, Fehér E. Neuropeptide analysis of oral mucosa in diabetic rats. Neuroimmunomodulation 2014; 21:213-20. [PMID: 24514075 DOI: 10.1159/000356949] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 10/30/2013] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE Increasing evidence indicates that different neuropeptide-containing nerve elements are involved in the immune system and influence the inflammation of the gastrointestinal tract. The aim of this study was to investigate the morphological localization and distribution of the different immunoreactive (IR) nerve fibers and immunocompetent cells in the oral mucosa (e.g. tongue, gingiva) and compare the results with data received from streptozotocin (STZ)-induced diabetic rats. MATERIALS AND METHODS The different nerve elements and immunocytes were detected by ABC immunohistochemistry. RESULTS The IR nerve fibers were found in the tunica propria of oral mucosa with different densities. These IR nerve fibers were mainly located beneath the epithelial lining, around the blood vessels and glands, and some of them were also located in the taste buds. After 2 weeks of STZ treatment the total number of IR nerve fibers, especially the SP and neuropeptide Y (NPY) IR ones, was significantly increased (p < 0.05), as was also the number of immunocytes (lymphocytes, plasma cells, mast cells). Some of these cells also showed immunoreactivity for substance P (SP) and NPY. In several cases the SP IR nerve fibers were found in close proximity to the immunocytes. Electron microscopic investigation also revealed the close association between the IR nerve fibers and immunocompetent cells where the gap was 1 µm or even less. CONCLUSIONS The close anatomical associations suggest communication between nerve fibers and immune cells which can be crucial for maintaining mucosal homeostasis and for ensuring an appropriate response to injury.
Collapse
Affiliation(s)
- Barbara Kispélyi
- Department of Prosthodontics, Semmelweis University, Budapest, Hungary
| | | | | | | |
Collapse
|
13
|
Scaldaferri F, Pizzoferrato M, Pecere S, Forte F, Gasbarrini A. Bacterial flora as a cause or treatment of chronic diarrhea. Gastroenterol Clin North Am 2012; 41:581-602. [PMID: 22917165 DOI: 10.1016/j.gtc.2012.06.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Intestinal microflora can be considered an organ of the body. It has several functions in the human gut, mostly metabolic and immunologic, and constantly interacts with the intestinal mucosa in a delicate equilibrium. Chronic diarrhea is associated with an alteration of gut microbiota when a pathogen invades the gut and also in several conditions associated with intestinal mucosal damage or bowel dysfunction, as in inflammatory bowel disease, irritable bowel syndrome, or small bowel bacterial overgrowth. This article discusses the basis of gut microbiota modulation. Evidence for the efficacy of gut microbiota modulation in chronic conditions is also discussed.
Collapse
Affiliation(s)
- Franco Scaldaferri
- Division of Internal Medicine and Gastroenterology, Policlinico A. Gemelli Hospital - Catholic University of Rome, Rome, Italy
| | | | | | | | | |
Collapse
|
14
|
Bailey MT. The contributing role of the intestinal microbiota in stressor-induced increases in susceptibility to enteric infection and systemic immunomodulation. Horm Behav 2012; 62:286-94. [PMID: 22366706 DOI: 10.1016/j.yhbeh.2012.02.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2011] [Revised: 02/06/2012] [Accepted: 02/08/2012] [Indexed: 02/08/2023]
Abstract
The body is colonized by highly complex and genetically diverse communities of microbes, the majority of which reside within the intestines in largely stable but dynamically interactive climax communities. These microbes, referred to as the microbiota, have many functions that enhance the health of the host, and it is now recognized that the microbiota influence both mucosal and systemic immunity. The studies outlined in this review demonstrate that the microbiota are also involved in stressor-induced immunomodulation. Exposure to different types of stressors, including both physical and psychological stressors, changes the composition of the intestinal microbiota. The altered profile increases susceptibility to an enteric pathogen, i.e., Citrobacter rodentium, upon oral challenge, but is also associated with stressor-induced increases in innate immune activity. Studies using germfree mice, as well as antibiotic-treated mice, provide further evidence that the microbiota contribute to stressor-induced immunomodulation; stressor-induced increases in splenic macrophage microbicidal activity fail to occur in mice with no, or reduced, intestinal microbiota. While the mechanisms by which microbiota can impact mucosal immunity have been studied, how the microbiota impact systemic immune responses is not clear. A mechanism is proposed in which stressor-induced degranulation of mucosal mast cells increases the permeability of the intestines. This increased permeability would allow intact bacteria and/or bacterial products (like peptidoglycan) to translocate from the lumen of the intestines to the interior of the body, where they directly, or indirectly, prime the innate immune system for enhanced reactivity to antigenic stimulation.
Collapse
Affiliation(s)
- Michael T Bailey
- Institute for Behavioral Medicine Research, College of Medicine, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
15
|
Balemba OB, Bhattarai Y, Stenkamp-Strahm C, Lesakit MSB, Mawe GM. The traditional antidiarrheal remedy, Garcinia buchananii stem bark extract, inhibits propulsive motility and fast synaptic potentials in the guinea pig distal colon. Neurogastroenterol Motil 2010; 22:1332-9. [PMID: 20718943 PMCID: PMC2975827 DOI: 10.1111/j.1365-2982.2010.01583.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND Garcinia buchananii bark extract is a traditional African remedy for diarrhea, dysentery, abdominal discomfort, and pain. We investigated the mechanisms and efficacy of this extract using the guinea pig distal colon model of gastrointestinal motility. METHODS Stem bark was collected from G. buchananii trees in their natural habitat of Karagwe, Tanzania. Bark was sun dried and ground into fine powder, and suspended in Krebs to obtain an aqueous extract. Isolated guinea pig distal colon was used to determine the effect of the G. buchananii bark extract on fecal pellet propulsion. Intracellular recording was used to evaluate the extract action on evoked fast excitatory postsynaptic potentials (fEPSPs) in S-neurons of the myenteric plexus. KEY RESULTS Garcinia buchananii bark extract inhibited pellet propulsion in a concentration-dependent manner, with an optimal concentration of ∼10 mg powder per mL Krebs. Interestingly, washout of the extract resulted in an increase in pellet propulsion to a level above basal activity. The extract reversibly reduced the amplitude of evoked fEPSPs in myenteric neurons. The extract's inhibitory action on propulsive motility and fEPSPs was not affected by the opioid receptor antagonist, naloxone, or the alpha- 2 adrenoceptor antagonist, yohimbine. The extract inhibited pellet motility in the presence of gamma-aminobutyric acid (GABA), GABA(A) and GABA(B) receptor antagonists picrotoxin and phaclofen, respectively. However, phaclofen and picrotoxin inhibited recovery rebound of motility during washout. CONCLUSIONS & INFERENCES Garcinia buchananii extract has the potential to provide an effective, non-opiate antidiarrheal drug. Further studies are required to characterize bioactive components and elucidate the mechanisms of action, efficacy, and safety.
Collapse
Affiliation(s)
- O B Balemba
- Department of Biological Sciences/WWAMI, University of Idaho, Moscow, ID 83844–3051, USA.
| | | | | | | | | |
Collapse
|
16
|
Lakhan SE, Kirchgessner A. Neuroinflammation in inflammatory bowel disease. J Neuroinflammation 2010; 7:37. [PMID: 20615234 PMCID: PMC2909178 DOI: 10.1186/1742-2094-7-37] [Citation(s) in RCA: 160] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2010] [Accepted: 07/08/2010] [Indexed: 12/13/2022] Open
Abstract
Inflammatory bowel disease is a chronic intestinal inflammatory condition, the pathology of which is incompletely understood. Gut inflammation causes significant changes in neurally controlled gut functions including cramping, abdominal pain, fecal urgency, and explosive diarrhea. These symptoms are caused, at least in part, by prolonged hyperexcitability of enteric neurons that can occur following the resolution of colitis. Mast, enterochromaffin and other immune cells are increased in the colonic mucosa in inflammatory bowel disease and signal the presence of inflammation to the enteric nervous system. Inflammatory mediators include 5-hydroxytryptamine and cytokines, as well as reactive oxygen species and the production of oxidative stress. This review will discuss the effects of inflammation on enteric neural activity and potential therapeutic strategies that target neuroinflammation in the enteric nervous system.
Collapse
Affiliation(s)
- Shaheen E Lakhan
- Global Neuroscience Initiative Foundation, Los Angeles, CA, USA.
| | | |
Collapse
|
17
|
Schäfer KH, Van Ginneken C, Copray S. Plasticity and neural stem cells in the enteric nervous system. Anat Rec (Hoboken) 2010; 292:1940-52. [PMID: 19943347 DOI: 10.1002/ar.21033] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The enteric nervous system (ENS) is a highly organized part of the autonomic nervous system, which innervates the whole gastrointestinal tract by several interconnected neuronal networks. The ENS changes during development and keeps throughout its lifespan a significant capacity to adapt to microenvironmental influences, be it in inflammatory bowel diseases or changing dietary habits. The presence of neural stem cells in the pre-, postnatal, and adult gut might be one of the prerequisites to adapt to changing conditions. During the last decade, the ENS has increasingly come into the focus of clinical neural stem cell research, forming a considerable pool of neural crest derived stem cells, which could be used for cell therapy of dysganglionosis, that is, diseases based on the deficient or insufficient colonization of the gut by neural crest derived stem cells; in addition, the ENS could be an easily accessible neural stem cell source for cell replacement therapies for neurodegenerative disorders or traumatic lesions of the central nervous system.
Collapse
Affiliation(s)
- Karl-Herbert Schäfer
- Department of Biotechnology, University of Applied Sciences Kaiserslautern, Amerikastrasse 1, Zweibrücken, Germany.
| | | | | |
Collapse
|
18
|
Mawe GM, Strong DS, Sharkey KA. Plasticity of enteric nerve functions in the inflamed and postinflamed gut. Neurogastroenterol Motil 2009; 21:481-91. [PMID: 19368664 PMCID: PMC2717558 DOI: 10.1111/j.1365-2982.2009.01291.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Inflammation of the gut alters the properties of the intrinsic and extrinsic neurons that innervate it. While the mechanisms of neuroplasticity differ amongst the inflammatory models that have been used, amongst various regions of the gut, and between intrinsic vs extrinsic neurons, a number of consistent features have been observed. For example, intrinsic and extrinsic primary afferent neurons become hyperexcitable in response to inflammation, and interneuronal synaptic transmission is facilitated in the enteric circuitry. These changes contribute to alterations in gut function and sensation in the inflamed bowel as well as functional disorders, and these changes persist for weeks beyond the point at which detectable inflammation has subsided. Thus, gaining a more thorough understanding of the mechanisms responsible for inflammation-induced neuroplasticity, and strategies to reverse these changes are clinically relevant goals. The purpose of this review is to summarize our current knowledge regarding neurophysiological changes that occur during and following intestinal inflammation, and to identify and address gaps in our knowledge regarding the role of enteric neuroplasticity in inflammatory and functional gastrointestinal disorders.
Collapse
Affiliation(s)
- Gary M. Mawe
- Department of Anatomy and Neurobiology, The University of Vermont College of Medicine, Burlington, VT, USA, Hotchkiss Brain Institute and Snyder Institute of Infection, Immunity and Inflammation, Department of Physiology and Biophysics, University of Calgary, Calgary, Alberta, Canada
| | - Derek S. Strong
- Department of Anatomy and Neurobiology, The University of Vermont College of Medicine, Burlington, VT, USA
| | - Keith A. Sharkey
- Department of Anatomy and Neurobiology, The University of Vermont College of Medicine, Burlington, VT, USA, Hotchkiss Brain Institute and Snyder Institute of Infection, Immunity and Inflammation, Department of Physiology and Biophysics, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
19
|
De Lisle RC, Meldi L, Roach E, Flynn M, Sewell R. Mast cells and gastrointestinal dysmotility in the cystic fibrosis mouse. PLoS One 2009; 4:e4283. [PMID: 19172182 PMCID: PMC2627938 DOI: 10.1371/journal.pone.0004283] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2008] [Accepted: 12/19/2008] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Cystic fibrosis (CF) has many effects on the gastrointestinal tract and a common problem in this disease is poor nutrition. In the CF mouse there is an innate immune response with a large influx of mast cells into the muscularis externa of the small intestine and gastrointestinal dysmotility. The aim of this study was to evaluate the potential role of mast cells in gastrointestinal dysmotility using the CF mouse (Cftr(tm1UNC), Cftr knockout). METHODOLOGY Wild type (WT) and CF mice were treated for 3 weeks with mast cell stabilizing drugs (ketotifen, cromolyn, doxantrazole) or were treated acutely with a mast cell activator (compound 48/80). Gastrointestinal transit was measured using gavage of a fluorescent tracer. RESULTS In CF mice gastric emptying at 20 min post-gavage did not differ from WT, but was significantly less than in WT at 90 min post-gavage. Gastric emptying was significantly increased in WT mice by doxantrazole, but none of the mast cell stabilizers had any significant effect on gastric emptying in CF mice. Mast cell activation significantly enhanced gastric emptying in WT mice but not in CF mice. Small intestinal transit was significantly less in CF mice as compared to WT. Of the mast cell stabilizers, only doxantrazole significantly affected small intestinal transit in WT mice and none had any effect in CF mice. Mast cell activation resulted in a small but significant increase in small intestinal transit in CF mice but not WT mice. CONCLUSIONS The results indicate that mast cells are not involved in gastrointestinal dysmotility but their activation can stimulate small intestinal transit in cystic fibrosis.
Collapse
Affiliation(s)
- Robert C De Lisle
- Anatomy & Cell Biology, University of Kansas School of Medicine, Kansas City, Kansas, United States of America.
| | | | | | | | | |
Collapse
|
20
|
Bailey MT. The Effects of Psychological Stressors on the Intestinal Microbiota. Biosci Microflora 2009. [DOI: 10.12938/bifidus.28.125] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- Michael T. Bailey
- Division of Oral Biology, College of Dentistry, The Ohio State University
- The Institute for Behavioral Medicine Research, College of Medicine, The Ohio State University
| |
Collapse
|
21
|
|