1
|
Zhang J, Sun Y, Song W, Shan A. Vitamin E-Inhibited Phoxim-Induced Renal Oxidative Stress and Mitochondrial Apoptosis In Vivo and In Vitro of Piglets. Antioxidants (Basel) 2023; 12:2000. [PMID: 38001853 PMCID: PMC10668979 DOI: 10.3390/antiox12112000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/13/2023] [Accepted: 10/17/2023] [Indexed: 11/26/2023] Open
Abstract
Exposure to phoxim at low levels caused bioaccumulation with neurotoxicity but also induced oxidative stress, tissue damage, and abnormal nutrient metabolism. This study described that vitamin E ameliorates phoxim-induced nephrotoxicity via inhibiting mitochondrial apoptosis. In vivo, 24 healthy piglets were treated with phoxim (0 mg/kg and 500 mg/kg) and vitamin E + phoxim (vitamin E + phoxim: 200 mg/kg + 500 mg/kg). In vitro, PK15 cells were treated with phoxim (0 mg/L and 1 mg/L) and vitamin E + phoxim (phoxim + vitamin E: 1 mg/L + 1 mg/L) for 12 h and 24 h. Our results indicated that accumulation of ROS, oxidative stress, and renal cell injury through stimulation of mitochondrial apoptosis resulted in phoxim-induced nephrotoxicity. Phoxim resulted in swollen mitochondria, blurred internal cristae, renal glomerular atrophy, and renal interstitial fibrosis. Vitamin E alleviated the adverse effects of phoxim by reducing ROS and improving antioxidant capacity in vivo and in vitro. Vitamin E significantly increased SDH in vitro (p < 0.01), while it decreased ROS, Bad, and cyto-c in vitro and SOD and CAT in vivo (p < 0.05). Vitamin E ameliorated phoxim-induced renal histopathologic changes, and mitochondria swelled. In addition, vitamin E regulates phoxim-induced apoptosis by alleviating oxidative damage to the mitochondria.
Collapse
Affiliation(s)
- Jing Zhang
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, China
| | - Yuecheng Sun
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, China
| | - Wentao Song
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, China
| | - Anshan Shan
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
2
|
Lesta A, Marín-García PJ, Llobat L. How Does Nutrition Affect the Epigenetic Changes in Dairy Cows? Animals (Basel) 2023; 13:1883. [PMID: 37889793 PMCID: PMC10251833 DOI: 10.3390/ani13111883] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 05/25/2023] [Accepted: 06/01/2023] [Indexed: 10/29/2023] Open
Abstract
Dairy cows require a balanced diet that provides enough nutrients to support milk production, growth, and reproduction. Inadequate nutrition can lead to metabolic disorders, impaired fertility, and reduced milk yield. Recent studies have shown that nutrition can affect epigenetic modifications in dairy cows, which can impact gene expression and affect the cows' health and productivity. One of the most important epigenetic modifications in dairy cows is DNA methylation, which involves the addition of a methyl group to the DNA molecule. Studies have shown that the methylation status of certain genes in dairy cows can be influenced by dietary factors such as the level of methionine, lysine, choline, and folate in the diet. Other important epigenetic modifications in dairy cows are histone modification and microRNAs as regulators of gene expression. Overall, these findings suggest that nutrition can have a significant impact on the epigenetic regulation of gene expression in dairy cows. By optimizing the diet of dairy cows, it may be possible to improve their health and productivity by promoting beneficial epigenetic modifications. This paper reviews the main nutrients that can cause epigenetic changes in dairy cattle by analyzing the effect of diet on milk production and its composition.
Collapse
Affiliation(s)
- Ana Lesta
- MMOPS Research Group, Departamento Producción y Sanidad Animal, Salud Pública y Ciencia y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Cardenal Herrera—CEU, CEU Universities, 46115 Valencia, Spain;
| | - Pablo Jesús Marín-García
- Department of Animal Production and Health, Veterinary Public Health and Food Science and Technology (PASAPTA), Facultad de Veterinaria, Universidad Cardenal Herrera—CEU, CEU Universities, 46113 Valencia, Spain;
| | - Lola Llobat
- MMOPS Research Group, Departamento Producción y Sanidad Animal, Salud Pública y Ciencia y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Cardenal Herrera—CEU, CEU Universities, 46115 Valencia, Spain;
| |
Collapse
|
3
|
Bahaeddin Z, Khodagholi F, Foolad F, Emadi F, Alijaniha F, Zareh Shahamati S, Tavassoli Yousef Abadi R, Naseri M. Almond intake during pregnancy in rats improved the cognitive performance of adult male offspring. Nutr Neurosci 2022:1-13. [PMID: 35965474 DOI: 10.1080/1028415x.2022.2108255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
Background: Based on evidence there are accepted links among early nutrition, epigenetic processes, and cognitive performance. Almond as a nutritious food could exert neuroprotective effects and improve anxiety, learning, and memory.Methods: In the current study, female rats were fed with a diet containing 5% (w/w) almonds during the mating period (two days) and gestation period (21 consecutive days). Then, the effect of the almond diet on short-term memory (Y maze), anxiety (elevated plus maze), and stress adaptation (forced swimming test) were investigated in the adult male offspring. The hippocampus (HIP), prefrontal cortex (PFC), and amygdala (AMY) of offspring were collected, and the level of cyclic AMP response element-binding proteins (CREB), brain-derived neurotrophic factor (BDNF) was assessed by western blotting. Also, Monoamine oxidases (MAO)-A and B activity were evaluated via enzymatic assays.Results: Our results indicated that prenatal almond consumption improved memory, made a modest reduction in anxiety-like behavior, and increased stress adaptation in adult male offspring. Also, molecular assessments showed an increased level of CREB phosphorylation and BDNF in the HIP and PFC of the almond group, while the activity of MAO-A and MAO-B was inhibited by almond consumption in mentioned areas.Discussion: These findings introduce almonds as a beneficial diet during pregnancy, for improving short-term memory, stress adaptation, and cognitive performance in adult offspring.
Collapse
Affiliation(s)
- Zahra Bahaeddin
- Traditional Medicine Clinical Trial Research Center, Shahed University, Tehran, Iran
- Department of Traditional Persian Medicine, School of Medicine, Shahed University, Tehran, Iran
| | - Fariba Khodagholi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Forough Foolad
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Fatemeh Emadi
- Traditional Medicine Clinical Trial Research Center, Shahed University, Tehran, Iran
| | - Fatemeh Alijaniha
- Traditional Medicine Clinical Trial Research Center, Shahed University, Tehran, Iran
| | - Shima Zareh Shahamati
- NeuroBiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Mohsen Naseri
- Traditional Medicine Clinical Trial Research Center, Shahed University, Tehran, Iran
- Department of Traditional Persian Medicine, School of Medicine, Shahed University, Tehran, Iran
| |
Collapse
|
4
|
Li X, Wang M, Liu S, Chen X, Qiao Y, Yang X, Yao J, Wu S. Paternal transgenerational nutritional epigenetic effect: A new insight into nutritional manipulation to reduce the use of antibiotics in animal feeding. ANIMAL NUTRITION 2022; 11:142-151. [PMID: 36204282 PMCID: PMC9527621 DOI: 10.1016/j.aninu.2022.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 07/10/2022] [Accepted: 07/14/2022] [Indexed: 11/15/2022]
Abstract
The use of antibiotics in animal feeding has been banned in many countries because of increasing concerns about the development of bacterial resistance to antibiotics and potential issues on food safety. Searching for antibiotic substitutes is essential. Applying transgenerational epigenetic technology to animal production could be an alternative. Some environmental changes can be transferred to memory-like responses in the offspring through epigenetic mechanisms without changing the DNA sequence. In this paper, we reviewed those nutrients and non-nutritional additives that have transgenerational epigenetic effects, including some amino acids, vitamins, and polysaccharides. The paternal transgenerational nutritional epigenetic regulation was particularly focused on mechanism of the substantial contribution of male stud animals to the animal industries. We illustrated the effects of paternal transgenerational epigenetics on the metabolism and immunity in farming animals and proposed strategies to modulate male breeding livestock or poultry.
Collapse
Affiliation(s)
- Xinyi Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
- Department of Medicine, Karolinska Institutet, Solna, Stockholm 17165, Sweden
| | - Mengya Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shimin Liu
- Institute of Agriculture, University of Western Australia, Crawley, WA 6009, Australia
| | - Xiaodong Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yu Qiao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
- Department of Animal Engineering, Yangling Vocational and Technical College, Yangling, Shaanxi 712100, China
| | - Xiaojun Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Junhu Yao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
- Corresponding authors.
| | - Shengru Wu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
- Corresponding authors.
| |
Collapse
|
5
|
Nutrition and Metabolism: Foundations for Animal Growth, Development, Reproduction, and Health. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1354:1-24. [PMID: 34807434 DOI: 10.1007/978-3-030-85686-1_1] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Consumption of high-quality animal protein plays an important role in improving human nutrition, growth, development, and health. With an exponential growth of the global population, demands for animal-sourced protein are expected to increase by 60% between 2021 and 2050. In addition to the production of food protein and fiber (wool), animals are useful models for biomedical research to prevent and treat human diseases and serve as bioreactors to produce therapeutic proteins. For a high efficiency to transform low-quality feedstuffs and forages into high-quality protein and highly bioavailable essential minerals in diets of humans, farm animals have dietary requirements for energy, amino acids, lipids, carbohydrates, minerals, vitamins, and water in their life cycles. All nutrients interact with each other to influence the growth, development, and health of mammals, birds, fish, and crustaceans, and adequate nutrition is crucial for preventing and treating their metabolic disorders (including metabolic diseases) and infectious diseases. At the organ level, the small intestine is not only the terminal site for nutrient digestion and absorption, but also intimately interacts with a diverse community of intestinal antigens and bacteria to influence gut and whole-body health. Understanding the species and metabolism of intestinal microbes, as well as their interactions with the intestinal immune systems and the host intestinal epithelium can help to mitigate antimicrobial resistance and develop prebiotic and probiotic alternatives to in-feed antibiotics in animal production. As abundant sources of amino acids, bioactive peptides, energy, and highly bioavailable minerals and vitamins, animal by-product feedstuffs are effective for improving the growth, development, health, feed efficiency, and survival of livestock and poultry, as well as companion and aquatic animals. The new knowledge covered in this and related volumes of Adv Exp Med Biol is essential to ensure sufficient provision of animal protein for humans, while helping reduce greenhouse gas emissions, minimize the urinary and fecal excretion of nitrogenous and other wastes to the environment, and sustain animal agriculture (including aquaculture).
Collapse
|
6
|
Steinhauser CB, Askelson K, Hobbs KC, Bazer FW, Satterfield MC. Maternal nutrient restriction alters thyroid hormone dynamics in placentae of sheep having small for gestational age fetuses. Domest Anim Endocrinol 2021; 77:106632. [PMID: 34062290 PMCID: PMC8380679 DOI: 10.1016/j.domaniend.2021.106632] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/06/2021] [Accepted: 04/17/2021] [Indexed: 12/31/2022]
Abstract
Thyroid hormones regulate a multitude of metabolic and cellular processes involved in placental and fetal growth, while maternal nutrient restriction (NR) has the potential to influence these processes. Those fetuses most impacted by NR, as categorized by weight, are termed small for gestational age (SGA), but the role of thyroid hormones in these pregnancies is not fully understood. Therefore, the aims of the present study were to determine effects of NR during pregnancy on maternal and fetal thyroid hormone concentrations, as well as temporal and cell-specific expression of mRNAs and proteins for placental thyroid hormone transporters, thyroid hormone receptors, and deiodinases in ewes having either SGA or normal weight fetuses. Ewes with singleton pregnancies were fed either a 100% NRC (n = 8) or 50% NRC (NR; n = 28) diet from Days 35 to 135 of pregnancy with a single placentome surgically collected on Day 70. Fetal weight at necropsy on Day 135 was used to designate the fetuses as NR NonSGA (n = 7; heaviest NR fetuses) or NR SGA (n = 7; lightest NR fetuses). Thyroid hormone levels were lower in NR SGA compared to NR NonSGA ewes, while all NR fetuses had lower concentrations of thyroxine at Day 135. Expression of mRNAs for thyroid hormone transporters SLC16A2, SLC16A10, SLCO1C1, and SLCO4A1 were altered by day, but not nutrient restriction. Expression of THRA mRNA and protein was dysregulated in NR SGA fetuses with protein localized to syncytial and stromal cells in placentomes in all groups. The ratio of deiodinases DIO2 and DIO3 was greater for NR SGA placentae at Day 70, while DIO3 protein was less abundant in placentae from NR SGA than 100% NRC ewes. These results identify mid-gestational modifications in thyroid hormone-associated proteins in placentomes of ewes having SGA fetuses, as well as a potential for placentomes from NonSGA pregnancies to adapt to, and overcome, nutritional restrictions during pregnancy.
Collapse
Affiliation(s)
- C B Steinhauser
- Department of Animal Science, Texas A&M University, 2471 TAMU, College Station, Texas 77843
| | - K Askelson
- Department of Animal Science, Texas A&M University, 2471 TAMU, College Station, Texas 77843
| | - K C Hobbs
- Department of Animal Science, Texas A&M University, 2471 TAMU, College Station, Texas 77843
| | - F W Bazer
- Department of Animal Science, Texas A&M University, 2471 TAMU, College Station, Texas 77843
| | - M C Satterfield
- Department of Animal Science, Texas A&M University, 2471 TAMU, College Station, Texas 77843.
| |
Collapse
|
7
|
Steinhauser CB, Lambo CA, Askelson K, Burns GW, Behura SK, Spencer TE, Bazer FW, Satterfield MC. Placental Transcriptome Adaptations to Maternal Nutrient Restriction in Sheep. Int J Mol Sci 2021; 22:ijms22147654. [PMID: 34299281 PMCID: PMC8306922 DOI: 10.3390/ijms22147654] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 07/15/2021] [Indexed: 12/13/2022] Open
Abstract
Placental development is modified in response to maternal nutrient restriction (NR), resulting in a spectrum of fetal growth rates. Pregnant sheep carrying singleton fetuses and fed either 100% (n = 8) or 50% (NR; n = 28) of their National Research Council (NRC) recommended intake from days 35–135 of pregnancy were used to elucidate placentome transcriptome alterations at both day 70 and day 135. NR fetuses were further designated into upper (NR NonSGA; n = 7) and lower quartiles (NR SGA; n = 7) based on day 135 fetal weight. At day 70 of pregnancy, there were 22 genes dysregulated between NR SGA and 100% NRC placentomes, 27 genes between NR NonSGA and 100% NRC placentomes, and 22 genes between NR SGA and NR NonSGA placentomes. These genes mediated molecular functions such as MHC class II protein binding, signaling receptor binding, and cytokine activity. Gene set enrichment analysis (GSEA) revealed significant overrepresentation of genes for natural-killer-cell-mediated cytotoxicity in NR SGA compared to 100% NRC placentomes, and alterations in nutrient utilization pathways between NR SGA and NR NonSGA placentomes at day 70. Results identify novel factors associated with impaired function in SGA placentomes and potential for placentomes from NR NonSGA pregnancies to adapt to nutritional hardship.
Collapse
Affiliation(s)
- Chelsie B. Steinhauser
- Department of Animal Science, Texas A & M University, College Station, TX 77843, USA; (C.B.S.); (K.A.); (F.W.B.)
| | - Colleen A. Lambo
- Department of Veterinary Physiology and Pharmacology, Texas A & M University, College Station, TX 77843, USA;
| | - Katharine Askelson
- Department of Animal Science, Texas A & M University, College Station, TX 77843, USA; (C.B.S.); (K.A.); (F.W.B.)
| | - Gregory W. Burns
- Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, Grand Rapids, MI 49503, USA;
| | - Susanta K. Behura
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA; (S.K.B.); (T.E.S.)
- Institute for Data Science and Informatics, University of Missouri, Columbia, MO 65211, USA
| | - Thomas E. Spencer
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA; (S.K.B.); (T.E.S.)
| | - Fuller W. Bazer
- Department of Animal Science, Texas A & M University, College Station, TX 77843, USA; (C.B.S.); (K.A.); (F.W.B.)
| | - Michael Carey Satterfield
- Department of Animal Science, Texas A & M University, College Station, TX 77843, USA; (C.B.S.); (K.A.); (F.W.B.)
- Correspondence: ; Tel.: +1-979-845-6448
| |
Collapse
|
8
|
Marín-García PJ, Llobat L. How Does Protein Nutrition Affect the Epigenetic Changes in Pig? A Review. Animals (Basel) 2021; 11:ani11020544. [PMID: 33669864 PMCID: PMC7923233 DOI: 10.3390/ani11020544] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/16/2021] [Accepted: 02/17/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Epigenetic mechanisms regulate gene expression and depend of nutrition. In farm animals, and concretely, in pigs, some papers on protein nutrition have been realized to improve several productive traits. Changes in protein diet influence on epigenetic mechanisms that could affect productive and reproductive traits in individuals and their offspring. The purpose of this review was to update the current knowledge about the effects of these nutritional changes on epigenetic mechanisms in pigs. Abstract Epigenetic changes regulate gene expression and depend of external factors, such as environment and nutrition. In pigs, several studies on protein nutrition have been performed to improve productive and reproductive traits. Indeed, these studies aimed not only to determine broad protein requirements but also pigs’ essential amino acids requirements. Moreover, recent studies tried to determine these nutritional requirements for each individual, which is known as protein precision nutrition. However, nutritional changes could affect different epigenetic mechanisms, modifying metabolic pathways both in a given individual and its offspring. Modifications in protein nutrition, such as change in the amino acid profile, increase or decrease in protein levels, or the addition of metabolites that condition protein requirements, could affect the regulation of some genes, such as myostatin, insulin growth factor, or genes controlling cholesterol and glucose metabolism pathways. This review summarizes the impact of most common protein nutritional strategies on epigenetic changes and describes their effects on regulation of gene expression in pigs. In a context where animal nutrition is shifting towards precision protein nutrition (PPN), further studies evaluating the effects of PPN on animal epigenetic are necessary.
Collapse
Affiliation(s)
- Pablo Jesús Marín-García
- Departamento Producción y Sanidad Animal, Salud Pública y Ciencia y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, 46010 Valencia, Spain;
| | - Lola Llobat
- Grupo de Fisiopatología de la Reproducción, Departamento Producción y Sanidad Animal, Salud Pública y Ciencia y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, 46010 Valencia, Spain
- Correspondence:
| |
Collapse
|
9
|
Hussain T, Tan B, Murtaza G, Metwally E, Yang H, Kalhoro MS, Kalhoro DH, Chughtai MI, Yin Y. Role of Dietary Amino Acids and Nutrient Sensing System in Pregnancy Associated Disorders. Front Pharmacol 2020; 11:586979. [PMID: 33414718 PMCID: PMC7783402 DOI: 10.3389/fphar.2020.586979] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 11/23/2020] [Indexed: 12/16/2022] Open
Abstract
Defective implantation is related to pregnancy-associated disorders such as spontaneous miscarriage, intrauterine fetal growth restriction and others. Several factors proclaimed to be involved such as physiological, nutritional, environmental and managemental that leads to cause oxidative stress. Overloading of free radicals promotes oxidative stress, and the internal body system could not combat its ability to encounter the damaging effects and subsequently leading to pregnancy-related disorders. During pregnancy, essential amino acids display important role for optimum fetal growth and other necessary functions for continuing fruitful pregnancy. In this context, dietary amino acids have received much attention regarding the nutritional concerns during pregnancy. Arginine, glutamine, tryptophan and taurine play a crucial role in fetal growth, development and survival while ornithine and proline are important players for the regulation of gene expression, protein synthesis and angiogenesis. Moreover, amino acids also stimulate the mammalian target of rapamycin (mTOR) signaling pathway which plays a central role in the synthesis of proteins in placenta, uterus and fetus. This review article explores the significances of dietary amino acids in pregnancy development, regulation of nutrient-sensing pathways such as mTOR, peroxisome proliferator-activated receptors (PPARs), insulin/insulin-like growth factor signaling pathway (IIS) and 5' adenosine monophosphate-activated protein kinase (AMPK) which exhibit important role in reproduction and its related problems. In addition, the antioxidant function of dietary amino acids against oxidative stress triggering pregnancy disorders and their possible outcomes will also be enlightened. Dietary supplementation of amino acids during pregnancy could help mitigate reproductive disorders and thereby improving fertility in animals as well as humans.
Collapse
Affiliation(s)
- Tarique Hussain
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
- Animal Sciences Division, Nuclear Institute for Agriculture and Biology College, Pakistan Institute of Engineering and Applied Sciences (NIAB-C,PIEAS), Faisalabad, Pakistan
| | - Bie Tan
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Ghulam Murtaza
- Department of Animal Reproduction, Faculty of Animal Husbandry and Veterinary Sciences, Sindh Agriculture University, Sindh, Pakistan
| | - Elsayed Metwally
- Department of Cytology & Histology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Huansheng Yang
- Hunan International Joint laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Muhammad Saleem Kalhoro
- Department of Animal Products Technology, Faculty of Animal Husbandry and Veterinary Sciences, Sindh Agriculture University, Sindh, Pakistan
| | - Dildar Hussain Kalhoro
- Department of Veterinary Microbiology, Faculty of Animal Husbandry and Veterinary Sciences, Sindh Agriculture University, Sindh, Pakistan
| | - Muhammad Ismail Chughtai
- Animal Sciences Division, Nuclear Institute for Agriculture and Biology College, Pakistan Institute of Engineering and Applied Sciences (NIAB-C,PIEAS), Faisalabad, Pakistan
| | - Yulong Yin
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| |
Collapse
|
10
|
Dietary synbiotic alters plasma biochemical parameters and fecal microbiota and metabolites in sows. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104221] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
11
|
Steinhauser CB, Askelson K, Lambo CA, Hobbs KC, Bazer FW, Satterfield MC. Lipid metabolism is altered in maternal, placental, and fetal tissues of ewes with small for gestational age fetuses†. Biol Reprod 2020; 104:170-180. [PMID: 33001151 DOI: 10.1093/biolre/ioaa180] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 07/23/2020] [Accepted: 09/25/2020] [Indexed: 12/13/2022] Open
Abstract
Nutrient restriction (NR) has the potential to negatively impact birthweight, an indicator of neonatal survival and lifelong health. Those fetuses are termed as small for gestational age (SGA). Interestingly, there is a spectral phenotype of fetal growth rates in response to NR associated with changes in placental development, nutrient and waste transport, and lipid metabolism. A sheep model with a maternal diet, starting at Day 35, of 100% National Research Council (NRC) nutrient requirements (n = 8) or 50% NRC (n = 28) was used to assess alterations in fetuses designated NR SGA (n = 7) or NR NonSGA (n = 7) based on fetal weight at Day 135 of pregnancy. Allantoic fluid concentrations of triglycerides were greater in NR SGA fetuses than 100% NRC and NR NonSGA fetuses at Day 70 (P < 0.05). There was a negative correlation between allantoic fluid concentrations of triglycerides (R2 = 0.207) and bile acids (R2 = 0.179) on Day 70 and fetal weight at Day 135 for NR ewes (P < 0.05). Bile acids were more abundant in maternal and fetal blood for NR SGA compared to 100% NRC and NR NonSGA ewes (P < 0.05). Maternal blood concentrations of NEFAs increased in late pregnancy in NR NonSGA compared to NR SGA ewes (P < 0.05). Protein expression of fatty acid transporter SLC27A6 localized to placentomal maternal and fetal epithelia and decreased in Day 70 NR SGA compared to 100% NRC and NR NonSGA placentomes (P < 0.05). These results identify novel factors associated with an ability of placentae and fetuses in NR NonSGA ewes to adapt to, and overcome, nutritional hardship during pregnancy.
Collapse
Affiliation(s)
| | - Katharine Askelson
- Department of Animal Science, Texas A&M University, College Station, Texas, USA
| | - Colleen A Lambo
- Department of Animal Science, Texas A&M University, College Station, Texas, USA
| | - Kenneth C Hobbs
- Department of Animal Science, Texas A&M University, College Station, Texas, USA
| | - Fuller W Bazer
- Department of Animal Science, Texas A&M University, College Station, Texas, USA
| | - M Carey Satterfield
- Department of Animal Science, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
12
|
Frequent mating reduces male mating rate but not offspring quality or quantity in a neriid fly. Evol Ecol 2020. [DOI: 10.1007/s10682-020-10076-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
13
|
Abstract
The prevalence of insulin resistance (IR) is increasing rapidly worldwide and it is a relevant health problem because it is associated with several diseases, such as type 2 diabetes, cardiovascular disorders and cancer. Understanding the mechanisms involved in IR onset and progression will open new avenues for identifying biomarkers for preventing and treating IR and its co-diseases. Epigenetic mechanisms such as DNA methylation are important factors that mediate the environmental effect in the genome by regulating gene expression and consequently its effect on the phenotype and the development of disease. Taking into account that IR results from a complex interplay between genes and the environment and that epigenetic marks are reversible, disentangling the relationship between IR and epigenetics will provide new tools to improve the management and prevention of IR. Here, we review the current scientific evidence regarding the association between IR and epigenetic markers as mechanisms involved in IR development and potential management.
Collapse
Affiliation(s)
- Andrea G Izquierdo
- Epigenomics in Endocrinology and Nutrition group, Instituto de Investigacion Sanitaria (IDIS), Complejo Hospitalario Universitario de Santiago (CHUS/SERGAS), C/ Choupana, s/n, 15706, Santiago de Compostela, Spain
- CIBER Fisiopatologia de la Obesidad y Nutricion (CIBERobn), Madrid, Spain
| | - Ana B Crujeiras
- Epigenomics in Endocrinology and Nutrition group, Instituto de Investigacion Sanitaria (IDIS), Complejo Hospitalario Universitario de Santiago (CHUS/SERGAS), C/ Choupana, s/n, 15706, Santiago de Compostela, Spain.
- CIBER Fisiopatologia de la Obesidad y Nutricion (CIBERobn), Madrid, Spain.
| |
Collapse
|
14
|
Bach À. Effects of nutrition and genetics on fertility in dairy cows. Reprod Fertil Dev 2019; 31:40-54. [DOI: 10.1071/rd18364] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Optimal reproductive function in dairy cattle is mandatory to maximise profits. Dairy production has progressively improved milk yields, but, until recently, the trend in reproductive performance has been the opposite. Nutrition, genetics, and epigenetics are important aspects affecting the reproductive performance of dairy cows. In terms of nutrition, the field has commonly fed high-energy diets to dairy cows during the 3 weeks before calving in an attempt to minimise postpartum metabolic upsets. However, in the recent years it has become clear that feeding high-energy diets during the dry period, especially as calving approaches, may be detrimental to cow health, or at least unnecessary because cows, at that time, have low energy requirements and sufficient intake capacity. After calving, dairy cows commonly experience a period of negative energy balance (NEB) characterised by low blood glucose and high non-esterified fatty acid (NEFA) concentrations. This has both direct and indirect effects on oocyte quality and survival. When oocytes are forced to depend highly on the use of energy resources derived from body reserves, mainly NEFA, their development is compromised due to a modification in mitochondrial β-oxidation. Furthermore, the indirect effect of NEB on reproduction is mediated by a hormonal (both metabolic and reproductive) environment. Some authors have attempted to overcome the NEB by providing the oocyte with external sources of energy via dietary fat. Conversely, fertility is affected by a large number of genes, each with small individual effects, and thus it is unlikely that the decline in reproductive function has been directly caused by genetic selection for milk yield per se. It is more likely that the decline is the consequence of a combination of homeorhetic mechanisms (giving priority to milk over other functions) and increased metabolic pressure (due to a shortage of nutrients) with increasing milk yields. Nevertheless, genetics is an important component of reproductive efficiency, and the incorporation of genomic information is allowing the detection of genetic defects, degree of inbreeding and specific single nucleotide polymorphisms directly associated with reproduction, providing pivotal information for genetic selection programs. Furthermore, focusing on improving bull fertility in gene selection programs may represent an interesting opportunity. Conversely, the reproductive function of a given cow depends on the interaction between her genetic background and her environment, which ultimately modulates gene expression. Among the mechanisms modulating gene expression, microRNAs (miRNAs) and epigenetics seem to be most relevant. Several miRNAs have been described to play active roles in both ovarian and testicular function, and epigenetic effects have been described as a consequence of the nutrient supply and hormonal signals to which the offspring was exposed at specific stages during development. For example, there are differences in the epigenome of cows born to heifers and those born to cows, and this epigenome seems to be sensitive to the availability of methyl donor compounds of the dam. Lastly, recent studies in other species have shown the relevance of paternal epigenetic marks, but this aspect has been, until now, largely overlooked in dairy cattle.
Collapse
|
15
|
Macartney EL, Crean AJ, Bonduriansky R. Epigenetic paternal effects as costly, condition-dependent traits. Heredity (Edinb) 2018; 121:248-256. [PMID: 29904169 PMCID: PMC6082865 DOI: 10.1038/s41437-018-0096-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 02/07/2018] [Accepted: 04/20/2018] [Indexed: 12/24/2022] Open
Abstract
It is now recognized that post-copulatory traits, such as sperm and ejaculate production can impose metabolic costs, and such traits are therefore expected to exhibit condition-dependent expression, whereby, low condition individuals experience a greater marginal cost of investment compared to high condition individuals. Ejaculates are especially costly in species where males invest in offspring quality through nutrient-rich spermatophores or other seminal nuptial gifts. However, recent evidence shows that, in species where males do not provision females or offspring, males can still influence offspring development through paternal effects mediated by epigenetic factors, such as non-coding RNAs, DNA methylation and chromatin structure. Because such epigenetic paternal effects do not involve the transfer of substantial quantities of resources, such as nutrients, the costs of conferring such effects have not been considered. Here we argue that if selection favours paternal investment in offspring quality through epigenetic factors, then the epigenetic machinery required to bring about such effects may also be expected to evolve strongly condition-dependent expression. We outline indirect evidence suggesting that epigenetic paternal effects could impose substantial metabolic costs, consider the conditions under which selection may act on such effects, and suggest ways to test for differential costs and condition-dependence of these effects. Incorporating epigenetic paternal effects into condition-dependent life history theory will further our understanding of the heritability of fitness and the evolution of paternal investment strategies.
Collapse
Affiliation(s)
- Erin L Macartney
- Evolution and Ecology Research Centre and School of Biological, Earth and Environmental Sciences, UNSW Australia, Sydney, NSW, 2052, Australia.
| | - Angela J Crean
- Evolution and Ecology Research Centre and School of Biological, Earth and Environmental Sciences, UNSW Australia, Sydney, NSW, 2052, Australia
- Sydney School of Veterinary Science, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Russell Bonduriansky
- Evolution and Ecology Research Centre and School of Biological, Earth and Environmental Sciences, UNSW Australia, Sydney, NSW, 2052, Australia
| |
Collapse
|
16
|
García EV, Oliva ME, LeBlanc JG, Barrera AD. Epi-nutrients in the oviductal environment: Folate levels and differential gene expression of its receptors and transporters in the bovine oviduct. Theriogenology 2018; 119:189-197. [PMID: 30025295 DOI: 10.1016/j.theriogenology.2018.07.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Revised: 07/02/2018] [Accepted: 07/08/2018] [Indexed: 10/28/2022]
Abstract
Recent studies have demonstrated that the oviductal environment plays an active role in modulating the epigenetic marks of the preimplantation embryo genome, but the molecular factors that mediate this epigenetic effect are unknown. Folate is a well-known epi-nutrient that can impact on cell epigenetic machinery during embryonic and fetal development. However, the study of this epi-nutrient in the oviduct is still limited. The present study was conducted to confirm the presence and physiological concentration of folate in bovine oviductal fluid (OF) and to determine if bovine oviduct epithelial cells (BOECs) are able to regulate the uptake of this micronutrient. Samples of OF from ipsi- and contralateral oviducts were collected at different stages of the estrous cycle and folate levels were determined using a competitive receptor binding immunoassay. In addition, gene expression of folate receptors (FOLR1, FOLR2) and transporters (SLC19A1, SLC46A1) were analyzed in BOECs from ampulla and isthmus regions during different stages of the estrous cycle using RT-qPCR. In vitro culture assays were also performed to evaluate whether expression of these genes responds to hormonal stimulation. Our results demonstrated presence of folate in the OF, showing changes of its concentration in the ipsilateral oviduct during the estrous cycle and significantly lower levels at the postovulatory stage. Moreover, gene expression of folate receptors and transporters was detected in BOECs, showing regional and cycle-dependent changes. In particular, differential expression of FOLR1 mRNA was observed in BOECs from the isthmus region, reaching significantly higher levels during the postovulatory stage. Under in vitro culture conditions, gene expression of folate receptors and transporters was maintained in BOEC explants and a particular susceptibility to steroid hormone stimulation was observed. In conclusion, the present study confirms the presence of folate in the bovine oviduct and proves the existence of a fine-tuned regulation of the expression of its receptors and transporters, highlighting the importance to expand the knowledge about this epi-nutrient in the oviductal context.
Collapse
Affiliation(s)
- Elina V García
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET-UNT. Chacabuco 461, T4000ILI, San Miguel de Tucumán, Tucumán, Argentina; Instituto de Biología "Dr. Francisco D. Barbieri", Facultad de Bioquímica, Química y Farmacia, UNT. Chacabuco 461, T4000ILI, San Miguel de Tucumán, Tucumán, Argentina
| | - María E Oliva
- Instituto de Biología "Dr. Francisco D. Barbieri", Facultad de Bioquímica, Química y Farmacia, UNT. Chacabuco 461, T4000ILI, San Miguel de Tucumán, Tucumán, Argentina
| | - Jean G LeBlanc
- Centro de Referencia para Lactobacilos (CERELA-CONICET). Chacabuco 145, T4000ILC, San Miguel de Tucumán, Tucumán, Argentina
| | - Antonio D Barrera
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET-UNT. Chacabuco 461, T4000ILI, San Miguel de Tucumán, Tucumán, Argentina; Instituto de Biología "Dr. Francisco D. Barbieri", Facultad de Bioquímica, Química y Farmacia, UNT. Chacabuco 461, T4000ILI, San Miguel de Tucumán, Tucumán, Argentina.
| |
Collapse
|
17
|
Emam H, Ahmed E, Abdel-Daim M. Antioxidant capacity of omega-3-fatty acids and vitamin E against imidacloprid-induced hepatotoxicity in Japanese quails. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:11694-11702. [PMID: 29442305 DOI: 10.1007/s11356-018-1481-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 02/04/2018] [Indexed: 06/08/2023]
Abstract
Imidacloprid (IM) is a neonicotinoid insecticide, used in a wide range of agricultural activities worldwide. However, it results in ecosystem disturbances and signs of toxicity in human and animals. The current study was designed to elucidate the protective effects of omega-3-fatty acids (OFAs) and vitamin E (Vit E) against IM hepatotoxicity in Japanese quails. Seventy male quails (30 days old) were divided into seven groups (n = 10); G1 -ve control; G2 received IM (+ve control); G3 received OFA; G4 received Vit E; and G5, G6, and G7 received OFA and/or Vit E with IM for 30 days, respectively. Blood and liver tissue samples were collected. Imidacloprid significantly (p < 0.05) increased serum levels of alanine transferase (ALT), aspartate transferase (AST), triglycerides (TGC), and low-density lipoprotein cholesterol (LDL-C), as well as liver tissue malondialdehyde (MDA) concentration. Moreover, IM caused a significant (p < 0.05) decrease in the levels of serum high-density lipoprotein cholesterol (HDL-C), as well as liver superoxide dismutase (SOD) enzyme activity and reduced-glutathione (GSH) concentration in comparison to the -ve control group. Histopathological changes in hepatocytes, including thick cell trabeculae with marked hydropic vacuolar degeneration of cytoplasm, were found in IM-treated group. Treatment with OFA and/or Vit E resulted in significant improvements in general body condition, serum HDL-C level, and liver tissue SOD enzyme activity and GSH concentration, as well as significant decreases in the levels of serum AST, ALT, TGC, LDL-C, and hepatic tissue MDA. In conclusion, OFA and Vit E have a protective effect against IM toxicity, especially in their combination.
Collapse
Affiliation(s)
- Hazem Emam
- Department of Pharmacology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - Eman Ahmed
- Department of Pharmacology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - Mohamed Abdel-Daim
- Department of Pharmacology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt.
| |
Collapse
|
18
|
Abdelatty AM, Iwaniuk ME, Potts SB, Gad A. Influence of maternal nutrition and heat stress on bovine oocyte and embryo development. Int J Vet Sci Med 2018; 6:S1-S5. [PMID: 30761314 PMCID: PMC6161856 DOI: 10.1016/j.ijvsm.2018.01.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 01/19/2018] [Accepted: 01/23/2018] [Indexed: 12/17/2022] Open
Abstract
The global population is expected to increase from 7.6 to 9.6 billion people from 2017 to 2050. Increased demand for livestock production and rising global temperatures have made heat stress (HS) a major challenge for the dairy industry. HS been shown to have negative effects on production parameters such as dry matter intake, milk yield, and feed efficiency. In addition to affecting production parameters, HS has also been shown to have negative effects on the reproductive functions of dairy cows. Mitigation of HS effects on dairy cow productivity and fertility necessitate the strategic planning of nutrition, and environmental conditions. The current review will discuss the potential nutriepigenomic strategies to mitigate the effect of HS on bovine embryo.
Collapse
Affiliation(s)
- Alzahraa M. Abdelatty
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Cairo University, 11221 Giza, Egypt
| | - Marie E. Iwaniuk
- Animal and Avian Sciences Department, University of Maryland, College Park 20742, MD, USA
| | - Sarah B. Potts
- Animal and Avian Sciences Department, University of Maryland, College Park 20742, MD, USA
| | - Ahmed Gad
- Department of Animal Production, Faculty of Agriculture, Cairo University, 12613 Giza, Egypt
| |
Collapse
|
19
|
Ahmed EA, Elsayed DH, Kilany OE, El-Beltagy MA. Multivitamins preventive therapy against subclinical endometritis in buffaloes: Its correlation to NEFA and oxidative stress. Reprod Biol 2017; 17:239-245. [DOI: 10.1016/j.repbio.2017.05.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Accepted: 05/15/2017] [Indexed: 10/19/2022]
|
20
|
Acosta D, Denicol A, Tribulo P, Rivelli M, Skenandore C, Zhou Z, Luchini D, Corrêa M, Hansen P, Cardoso F. Effects of rumen-protected methionine and choline supplementation on the preimplantation embryo in Holstein cows. Theriogenology 2016; 85:1669-1679. [DOI: 10.1016/j.theriogenology.2016.01.024] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 01/20/2016] [Accepted: 01/27/2016] [Indexed: 01/02/2023]
|
21
|
Ibeagha-Awemu EM, Zhao X. Epigenetic marks: regulators of livestock phenotypes and conceivable sources of missing variation in livestock improvement programs. Front Genet 2015; 6:302. [PMID: 26442116 PMCID: PMC4585011 DOI: 10.3389/fgene.2015.00302] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 09/11/2015] [Indexed: 12/30/2022] Open
Abstract
Improvement in animal productivity has been achieved over the years through careful breeding and selection programs. Today, variations in the genome are gaining increasing importance in livestock improvement strategies. Genomic information alone, however, explains only a part of the phenotypic variance in traits. It is likely that a portion of the unaccounted variance is embedded in the epigenome. The epigenome encompasses epigenetic marks such as DNA methylation, histone tail modifications, chromatin remodeling, and other molecules that can transmit epigenetic information such as non-coding RNA species. Epigenetic factors respond to external or internal environmental cues such as nutrition, pathogens, and climate, and have the ability to change gene expression leading to emergence of specific phenotypes. Accumulating evidence shows that epigenetic marks influence gene expression and phenotypic outcome in livestock species. This review examines available evidence of the influence of epigenetic marks on livestock (cattle, sheep, goat, and pig) traits and discusses the potential for consideration of epigenetic markers in livestock improvement programs. However, epigenetic research activities on farm animal species are currently limited partly due to lack of recognition, funding and a global network of researchers. Therefore, considerable less attention has been given to epigenetic research in livestock species in comparison to extensive work in humans and model organisms. Elucidating therefore the epigenetic determinants of animal diseases and complex traits may represent one of the principal challenges to use epigenetic markers for further improvement of animal productivity.
Collapse
Affiliation(s)
- Eveline M. Ibeagha-Awemu
- Dairy and Swine Research and Development Centre, Agriculture and Agri-Food CanadaSherbrooke, QC, Canada
| | - Xin Zhao
- Department of Animal Science, McGill University, Ste-Anne-De-BellevueQC, Canada
| |
Collapse
|
22
|
Ji Y, Wu Z, Dai Z, Sun K, Wang J, Wu G. Nutritional epigenetics with a focus on amino acids: implications for the development and treatment of metabolic syndrome. J Nutr Biochem 2015; 27:1-8. [PMID: 26427799 DOI: 10.1016/j.jnutbio.2015.08.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 07/31/2015] [Accepted: 08/05/2015] [Indexed: 12/31/2022]
Abstract
Recent findings from human and animal studies indicate that maternal undernutrition or overnutrition affects covalent modifications of the fetal genome and its associated histones that can be carried forward to subsequent generations. An adverse outcome of maternal malnutrition is the development of metabolic syndrome, which is defined as a cluster of disorders including obesity, hyperglycemia, hyperinsulinemia, hyperlipidemia, hypertension and insulin resistance. The transgenerational impacts of maternal nutrition are known as fetal programming, which is mediated by stable and heritable alterations of gene expression through covalent modifications of DNA and histones without changes in DNA sequences (namely, epigenetics). The underlying mechanisms include chromatin remodeling, DNA methylation (occurring at the 5'-position of cytosine residues within CpG dinucleotides), histone modifications (acetylation, methylation, phosphorylation, ubiquitination and sumoylation) and expression and activity of small noncoding RNAs. The enzymes catalyzing these reactions include S-adenosylmethionine-dependent DNA and protein methyltransferases, DNA demethylases, histone acetylase (lysine acetyltransferase), general control nonderepressible 5 (GCN5)-related N-acetyltransferase (a superfamily of acetyltransferase) and histone deacetylase. Amino acids (e.g., glycine, histidine, methionine and serine) and vitamins (B6, B12 and folate) play key roles in provision of methyl donors for DNA and protein methylation. Therefore, these nutrients and related metabolic pathways are of interest in dietary treatment of metabolic syndrome. Intervention strategies include targeting epigenetically disturbed metabolic pathways through dietary supplementation with nutrients (particularly functional amino acids and vitamins) to regulate one-carbon-unit metabolism, antioxidative reactions and gene expression, as well as protein methylation and acetylation. These mechanism-based approaches may effectively improve health and well-being of affected offspring.
Collapse
Affiliation(s)
- Yun Ji
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing 100193, China
| | - Zhenlong Wu
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing 100193, China.
| | - Zhaolai Dai
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing 100193, China
| | - Kaiji Sun
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing 100193, China
| | - Junjun Wang
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing 100193, China
| | - Guoyao Wu
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing 100193, China; Department of Animal Science and Center for Animal Genomics, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
23
|
Abstract
PURPOSE OF REVIEW After the study of the gene code as a trigger for obesity, epigenetic code has appeared as a novel tool in the diagnosis, prognosis and treatment of obesity, and its related comorbidities. This review summarizes the status of the epigenetic field associated with obesity, and the current epigenetic-based approaches for obesity treatment. RECENT FINDINGS Thanks to technical advances, novel and key obesity-associated polymorphisms have been described by genome-wide association studies, but there are limitations with their predictive power. Epigenetics is also studied for disease association, which involves decoding of the genome information, transcriptional status and later phenotypes. Obesity could be induced during adult life by feeding and other environmental factors, and there is a strong association between obesity features and specific epigenetic patterns. These patterns could be established during early life stages, and programme the risk of obesity and its comorbidities during adult life. Furthermore, recent studies have shown that DNA methylation profile could be applied as biomarkers of diet-induced weight loss treatment. SUMMARY High-throughput technologies, recently implemented for commercial genetic test panels, could soon lead to the creation of epigenetic test panels for obesity. Nonetheless, epigenetics is a modifiable risk factor, and different dietary patterns or environmental insights during distinct stages of life could lead to rewriting of the epigenetic profile.
Collapse
Affiliation(s)
- Paul Cordero
- aInstitute for Liver and Digestive Health, University College London bDepartment of Gastroenterology and Hepatology, Guy's and St Thomas' Hospital, NHS Foundation Trust, London, UK
| | | | | |
Collapse
|
24
|
Lin G, Wang X, Wu G, Feng C, Zhou H, Li D, Wang J. Improving amino acid nutrition to prevent intrauterine growth restriction in mammals. Amino Acids 2015; 46:1605-23. [PMID: 24658999 DOI: 10.1007/s00726-014-1725-z] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2014] [Accepted: 03/06/2014] [Indexed: 12/18/2022]
Abstract
Intrauterine growth restriction (IUGR) is one of the most common concerns in human obstetrics and domestic animal production. It is usually caused by placental insufficiency, which decreases fetal uptake of nutrients (especially amino acids) from the placenta. Amino acids are not only building blocks for protein but also key regulators of metabolic pathways in fetoplacental development. The enhanced demands of amino acids by the developing conceptus must be met via active transport systems across the placenta as normal pregnancy advances. Growing evidence indicates that IUGR is associated with a reduction in placental amino acid transport capacity and metabolic pathways within the embryonic/fetal development. The positive relationships between amino acid concentrations in circulating maternal blood and placental amino acid transport into fetus encourage designing new therapies to prevent or treat IUGR by enhancing amino acid availability in maternal diets or maternal circulation. Despite the positive effects of available dietary interventions, nutritional therapy for IUGR is still in its infancy. Based on understanding of the underlying mechanisms whereby amino acids promote fetal growth and of their dietary requirements by IUGR, supplementation with functional amino acids (e.g., arginine and glutamine) hold great promise for preventing fetal growth restriction and improving health and growth of IUGR offspring.
Collapse
|
25
|
Dai Z, Wu Z, Hang S, Zhu W, Wu G. Amino acid metabolism in intestinal bacteria and its potential implications for mammalian reproduction. Mol Hum Reprod 2015; 21:389-409. [PMID: 25609213 DOI: 10.1093/molehr/gav003] [Citation(s) in RCA: 142] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Accepted: 01/15/2015] [Indexed: 12/13/2022] Open
Abstract
Reproduction is vital for producing offspring and preserving genetic resources. However, incidences of many reproductive disorders (e.g. miscarriage, intrauterine growth restriction, premature delivery and lower sperm quality) have either increased dramatically or remained at high rates over the last decades. Mounting evidence shows a strong correlation between enteral protein nutrition and reproduction. Besides serving as major nutrients in the diet, amino acids (AA) are signaling molecules in the regulation of diverse physiological processes, ranging from spermatogenesis to oocyte fertilization and to embryo implantation. Notably, the numbers of bacteria in the intestine exceed the numbers of host cells by 10 times. Microbes in the small-intestinal lumen actively metabolize large amounts of dietary AA and, therefore, affect the entry of AA into the portal circulation for whole-body utilization. Changes in the composition and abundance of AA-metabolizing bacteria in the gut during pregnancy, as well as their translocation to the uterus, may alter uterine function and epigenetic modifications of maternal physiology and metabolism, which are crucial for pregnancy recognition and fetal development. Thus, the presence of the maternal gut microbiota and AA metabolites in the intrauterine environments (e.g. endometrium and placenta) and breast milk is likely a unique signature for the programming of the whole-body microbiome and metabolism in both the fetus and infant. Dietary intervention with functional AA, probiotics and prebiotics to alter the abundance and activity of intestinal bacteria may ameliorate or prevent the development of metabolic syndrome, while improving reproductive performance in both males and females as well as their offspring.
Collapse
Affiliation(s)
- Zhaolai Dai
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing 100193, China
| | - Zhenlong Wu
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing 100193, China
| | - Suqin Hang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Weiyun Zhu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Guoyao Wu
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing 100193, China Department of Animal Science, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
26
|
Liu X, Pan S, Li X, Sun Q, Yang X, Zhao R. Maternal low-protein diet affects myostatin signaling and protein synthesis in skeletal muscle of offspring piglets at weaning stage. Eur J Nutr 2014; 54:971-9. [PMID: 25266448 DOI: 10.1007/s00394-014-0773-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 09/19/2014] [Indexed: 11/26/2022]
Abstract
PURPOSE We tested the hypothesis that maternal low-protein (LP) diet during gestation and lactation can program myostatin (MSTN) signaling and protein synthesis in skeletal muscle of offspring at weaning stage (35 days). METHODS Fourteen Meishan sows were fed either LP or standard-protein diets throughout gestation and lactation, male offspring piglets were killed at weaning stage and longissimus dorsi (LD) muscles were taken. The cross-sectional areas (CSA) of LD muscles were measured by hematoxylin and eosin staining. The levels of free amino acids in plasma were measured by amino acid auto-analyzer. Proteins and mRNA were determined by Western blot and RT-qPCR, respectively. RESULTS Body weight, LD muscle weight and the myofiber CSA were significantly decreased (P < 0.05) in LP piglets; meanwhile, the concentration of branched-chain amino acids was also significantly decreased (P < 0.001). MSTN protein content tended to be higher (P = 0.098) in LP piglets, while the expression of MSTN receptors, activin type II receptor-beta and transforming growth factor type-beta type I receptor kinase, was significantly up-regulated (P < 0.05). Furthermore, p38 mitogen-activated protein kinase, the downstream signaling factor of MSTN, was also enhanced significantly (P < 0.05). In addition, key factors of translation initiation, phosphorylated eukaryotic initiation factor 4E and the 70 kDa ribosomal protein S6 kinase, were significantly decreased (P < 0.05) in LP piglets. CONCLUSIONS Our results suggest that maternal LP diet during gestation and lactation affects MSTN signaling and protein synthesis in skeletal muscle of offspring at weaning stage.
Collapse
Affiliation(s)
- Xiujuan Liu
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | | | | | | | | | | |
Collapse
|
27
|
Mazzio EA, Soliman KFA. Epigenetics and nutritional environmental signals. Integr Comp Biol 2014; 54:21-30. [PMID: 24861811 DOI: 10.1093/icb/icu049] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
All terrestrial life is influenced by multi-directional flows of information about its environment, enabling malleable phenotypic change through signals, chemical processes, or various forms of energy that facilitate acclimatization. Billions of biological co-inhabitants of the earth, including all plants and animals, collectively make up a genetic/epigenetic ecosystem by which adaptation/survival (inputs and outputs) are highly interdependent on one another. As an ecosystem, the solar system, rotation of the planets, changes in sunlight, and gravitational pull influence cyclic epigenetic transitions and chromatin remodeling that constitute biological circadian rhythms controlling senescence. In humans, adverse environmental conditions such as poverty, stress, alcohol, malnutrition, exposure to pollutants generated from industrialization, man-made chemicals, and use of synthetic drugs can lead to maladaptive epigenetic-related illnesses with disease-specific genes being atypically activated or silenced. Nutrition and dietary practices are one of the largest facets in epigenetic-related metabolism, where specific "epi-nutrients" can stabilize the genome, given established roles in DNA methylation, histone modification, and chromatin remodeling. Moreover, food-based "epi-bioactive" constituents may reverse maladaptive epigenetic patterns, not only prior to conception and during fetal/early postnatal development but also through adulthood. In summary, in contrast to a static genomic DNA structure, epigenetic changes are potentially reversible, raising the hope for therapeutic and/or dietary interventions that can reverse deleterious epigenetic programing as a means to prevent or treat major illnesses.
Collapse
Affiliation(s)
- Elizabeth A Mazzio
- Florida A&M University, College of Pharmacy & Pharmaceutical Sciences, 1520 S MLK Jr. Blvd Tallahassee, FL 32307, USA
| | - Karam F A Soliman
- Florida A&M University, College of Pharmacy & Pharmaceutical Sciences, 1520 S MLK Jr. Blvd Tallahassee, FL 32307, USA
| |
Collapse
|
28
|
Kobayashi H, Iwai K, Niiro E, Morioka S, Yamada Y. Fetal programming theory: Implication for the understanding of endometriosis. Hum Immunol 2014; 75:208-17. [DOI: 10.1016/j.humimm.2013.12.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 11/05/2013] [Accepted: 12/17/2013] [Indexed: 10/25/2022]
|
29
|
Wu G, Bazer FW, Dai Z, Li D, Wang J, Wu Z. Amino Acid Nutrition in Animals: Protein Synthesis and Beyond. Annu Rev Anim Biosci 2014; 2:387-417. [DOI: 10.1146/annurev-animal-022513-114113] [Citation(s) in RCA: 292] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, Texas 77843; (G. Wu), (Z. Wu)
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China 100193
| | - Fuller W. Bazer
- Department of Animal Science, Texas A&M University, College Station, Texas 77843; (G. Wu), (Z. Wu)
| | - Zhaolai Dai
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China 100193
| | - Defa Li
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China 100193
| | - Junjun Wang
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China 100193
| | - Zhenlong Wu
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China 100193
| |
Collapse
|
30
|
Placental Vascular Defects in Compromised Pregnancies: Effects of Assisted Reproductive Technologies and Other Maternal Stressors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 814:193-204. [DOI: 10.1007/978-1-4939-1031-1_17] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|