1
|
Tian H, Gao X, Du H, Lin Z, Huang X. Changes in microbial and metabolic profiles of mice fed with long-term high salt diet. BMC Gastroenterol 2025; 25:375. [PMID: 40375136 PMCID: PMC12082937 DOI: 10.1186/s12876-025-03929-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 03/04/2025] [Indexed: 05/18/2025] Open
Abstract
PURPOSE High salt diet (HSD) has been considered as a risk factor for the development of metabolic disorders. However, less is known about long-term implications of HSD. Therefore, the aim of this study was to conduct a preliminary investigation into the effects of mice feeding with long-term HSD on gut microbial and metabolic profiles. METHODS In this study, C57BL/6 J mice were fed with HSD for 22 weeks, after which fat and feces were collected. The composition of fecal microbiota was determined using 16S rRNA gene sequencing. Fecal metabolic profiling of mice was identified through untargeted ultrahigh-performance liquid chromatography-mass spectrometry. In addition, the serum levels of adipocytokines, including fibroblast growth factor 21 (FGF21) and adiponectin (APN), were measured. RESULTS Long-term HSD disrupted the growth performance of mice. Compared to those fed a normal salt diet, mice on a long-term HSD showed slower weight gain, as well as lower fat accumulation and serum levels of APN, while experiencing elevated blood pressure and levels of serum FGF21 and glucose. The 16S rRNA sequencing revealed changes in community richness and diversity, with long-term HSD affecting the abundance of certain gut microbiota, including Firmicutes, Christensenella, Barnesiella, and Lactococcus. Fecal metabolomic analysis also uncovered alterations in metabolites, such as myriocin, cerulenin, norcholic acid, 7-ketocholesterol, and prostaglandins B2. Further analysis indicated that these gut and microbiota and metabolites are predominantly involved in the lipid metabolism of the organism. Importantly, variations in these gut metabolites and microbiota were significantly correlated with body weight, fat accumulation, and the levels of FGF21 and APN. CONCLUSION Long-term HSD affects physiological traits, alters gut metabolites profiles, and impacts the composition and function of gut microbiota, thus causes a certain impact on lipid metabolism.
Collapse
Affiliation(s)
- Huiying Tian
- The Laboratory of Animal Center, Wenzhou Medical University, Wenzhou, 325035, China
| | - Xiaotang Gao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Hanlin Du
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Zhuofeng Lin
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China.
| | - Xianen Huang
- Department of Endocrinology, The 3rd Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, China.
- Wenzhou Key Laboratory for the Diagnosis and Prevention of Diabetic Complication, Wenzhou, 325200, China.
| |
Collapse
|
2
|
Indrio F, Salatto A. Gut Microbiota-Bone Axis. ANNALS OF NUTRITION & METABOLISM 2025:1-10. [PMID: 39848230 DOI: 10.1159/000541999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 10/11/2024] [Indexed: 01/25/2025]
Abstract
BACKGROUND Knowledge of the complex interplay between gut microbiota and human health is gradually increasing as it has just recently been a field of such great interest. SUMMARY Recent studies have reported that communities of microorganisms inhabiting the gut influence the immune system through cellular responses and shape many physiological and pathophysiological aspects of the body, including muscle and bone metabolism (formation and resorption). Specifically, the gut microbiota affects skeletal homeostasis through changes in host metabolism, the immune system, hormone secretion, and the gut-brain axis. The major role on gut-bone axis is due to short-chain fatty acids (SCFAs). They have the ability to influence regulatory T-cell (Tregs) development and activate bone metabolism through the action of Wnt10. SCFA production may be a mechanism by which the microbial community, by increasing the serum level of insulin-like growth factor 1 (IGF-1), leads to the growth and regulation of bone homeostasis. A specific SCFA, butyrate, diffuses into the bone marrow where it expands Tregs. The Tregs induce production of the Wnt ligand Wnt10b by CD8+ T cells, leading to activation of Wnt signaling and stimulation of bone formation. At the hormonal level, the effect of the gut microbiota on bone homeostasis is expressed through the biphasic action of serotonin. Some microbiota, such as spore-forming microbes, regulate the level of serotonin in the gut, serum, and feces. Another group of bacterial species (Lactococcus, Mucispirillum, Lactobacillus, and Bifidobacterium) can increase the level of peripheral/vascular leptin, which in turn manages bone homeostasis through the action of brain serotonin.
Collapse
Affiliation(s)
- Flavia Indrio
- Department of Experimental Medicine, University of Salento, Lecce, Italy
| | - Alessia Salatto
- Department of Translational Medical Science, University of Naples Federico II, Napoli, Italy
| |
Collapse
|
3
|
Cacciatore S, Calvani R, Esposito I, Massaro C, Gava G, Picca A, Tosato M, Marzetti E, Landi F. Emerging Targets and Treatments for Sarcopenia: A Narrative Review. Nutrients 2024; 16:3271. [PMID: 39408239 PMCID: PMC11478655 DOI: 10.3390/nu16193271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/23/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
BACKGROUND Sarcopenia is characterized by the progressive loss of skeletal muscle mass, strength, and function, significantly impacting overall health and quality of life in older adults. This narrative review explores emerging targets and potential treatments for sarcopenia, aiming to provide a comprehensive overview of current and prospective interventions. METHODS The review synthesizes current literature on sarcopenia treatment, focusing on recent advancements in muscle regeneration, mitochondrial function, nutritional strategies, and the muscle-microbiome axis. Additionally, pharmacological and lifestyle interventions targeting anabolic resistance and neuromuscular junction integrity are discussed. RESULTS Resistance training and adequate protein intake remain the cornerstone of sarcopenia management. Emerging strategies include targeting muscle regeneration through myosatellite cell activation, signaling pathways, and chronic inflammation control. Gene editing, stem cell therapy, and microRNA modulation show promise in enhancing muscle repair. Addressing mitochondrial dysfunction through interventions aimed at improving biogenesis, ATP production, and reducing oxidative stress is also highlighted. Nutritional strategies such as leucine supplementation and anti-inflammatory nutrients, along with dietary modifications and probiotics targeting the muscle-microbiome interplay, are discussed as potential treatment options. Hydration and muscle-water balance are emphasized as critical in maintaining muscle health in older adults. CONCLUSIONS A combination of resistance training, nutrition, and emerging therapeutic interventions holds potential to significantly improve muscle function and overall health in the aging population. This review provides a detailed exploration of both established and novel approaches for the prevention and management of sarcopenia, highlighting the need for further research to optimize these strategies.
Collapse
Affiliation(s)
- Stefano Cacciatore
- Department of Geriatrics, Orthopedics and Rheumatology, Università Cattolica del Sacro Cuore, L.go F. Vito 1, 00168 Rome, Italy; (R.C.); (I.E.); (C.M.); (G.G.); (F.L.)
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy; (A.P.); (M.T.)
| | - Riccardo Calvani
- Department of Geriatrics, Orthopedics and Rheumatology, Università Cattolica del Sacro Cuore, L.go F. Vito 1, 00168 Rome, Italy; (R.C.); (I.E.); (C.M.); (G.G.); (F.L.)
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy; (A.P.); (M.T.)
| | - Ilaria Esposito
- Department of Geriatrics, Orthopedics and Rheumatology, Università Cattolica del Sacro Cuore, L.go F. Vito 1, 00168 Rome, Italy; (R.C.); (I.E.); (C.M.); (G.G.); (F.L.)
| | - Claudia Massaro
- Department of Geriatrics, Orthopedics and Rheumatology, Università Cattolica del Sacro Cuore, L.go F. Vito 1, 00168 Rome, Italy; (R.C.); (I.E.); (C.M.); (G.G.); (F.L.)
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy; (A.P.); (M.T.)
| | - Giordana Gava
- Department of Geriatrics, Orthopedics and Rheumatology, Università Cattolica del Sacro Cuore, L.go F. Vito 1, 00168 Rome, Italy; (R.C.); (I.E.); (C.M.); (G.G.); (F.L.)
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy; (A.P.); (M.T.)
| | - Anna Picca
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy; (A.P.); (M.T.)
- Department of Medicine and Surgery, LUM University, Strada Statale 100 Km 18, 70100 Casamassima, Italy
| | - Matteo Tosato
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy; (A.P.); (M.T.)
| | - Emanuele Marzetti
- Department of Geriatrics, Orthopedics and Rheumatology, Università Cattolica del Sacro Cuore, L.go F. Vito 1, 00168 Rome, Italy; (R.C.); (I.E.); (C.M.); (G.G.); (F.L.)
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy; (A.P.); (M.T.)
| | - Francesco Landi
- Department of Geriatrics, Orthopedics and Rheumatology, Università Cattolica del Sacro Cuore, L.go F. Vito 1, 00168 Rome, Italy; (R.C.); (I.E.); (C.M.); (G.G.); (F.L.)
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy; (A.P.); (M.T.)
| |
Collapse
|
4
|
Wielgosz-Grochowska JP, Domanski N, Drywień ME. Identification of SIBO Subtypes along with Nutritional Status and Diet as Key Elements of SIBO Therapy. Int J Mol Sci 2024; 25:7341. [PMID: 39000446 PMCID: PMC11242202 DOI: 10.3390/ijms25137341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/28/2024] [Accepted: 07/01/2024] [Indexed: 07/16/2024] Open
Abstract
Small intestinal bacterial overgrowth (SIBO) is a pathology of the small intestine and may predispose individuals to various nutritional deficiencies. Little is known about whether specific subtypes of SIBO, such as the hydrogen-dominant (H+), methane-dominant (M+), or hydrogen/methane-dominant (H+/M+), impact nutritional status and dietary intake in SIBO patients. The aim of this study was to investigate possible correlations between biochemical parameters, dietary nutrient intake, and distinct SIBO subtypes. This observational study included 67 patients who were newly diagnosed with SIBO. Biochemical parameters and diet were studied utilizing laboratory tests and food records, respectively. The H+/M+ group was associated with low serum vitamin D (p < 0.001), low serum ferritin (p = 0.001) and low fiber intake (p = 0.001). The M+ group was correlated with high serum folic acid (p = 0.002) and low intakes of fiber (p = 0.001) and lactose (p = 0.002). The H+ group was associated with low lactose intake (p = 0.027). These results suggest that the subtype of SIBO may have varying effects on dietary intake, leading to a range of biochemical deficiencies. Conversely, specific dietary patterns may predispose one to the development of a SIBO subtype. The assessment of nutritional status and diet, along with the diagnosis of SIBO subtypes, are believed to be key components of SIBO therapy.
Collapse
Affiliation(s)
| | - Nicole Domanski
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC V6T 1Z3, Canada;
| | - Małgorzata Ewa Drywień
- Department of Human Nutrition, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences, 02-776 Warsaw, Poland;
| |
Collapse
|
5
|
He Y, Cui W, Fang T, Zhang Z, Zeng M. Metabolites of the gut microbiota may serve as precise diagnostic markers for sarcopenia in the elderly. Front Microbiol 2023; 14:1301805. [PMID: 38188577 PMCID: PMC10768011 DOI: 10.3389/fmicb.2023.1301805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 11/28/2023] [Indexed: 01/09/2024] Open
Abstract
Sarcopenia, a disease recognized by the World Health Organization, has posed a great challenge to the world in the current aging society. The vital role of the gut microbiome through the gut-muscle axis in sarcopenia is increasingly recognized. However, the working mechanisms by which the gut microbiota functions have not been fully explored in the multi-omics field. Here, we designed a cross-sectional study that recruited patients (n = 32) with sarcopenia and healthy old adults (n = 31). Diagnosis of sarcopenia was based on the Asian Working Group for Sarcopenia (AWGS) in 2019 criteria. Muscle mass was represented by appendicular skeletal muscle mass measured by using direct segmental multi-frequency bioelectrical impedance and muscle strength was evaluated using the handgrip strength. The Short Physical Performance Battery, the 5-time Chair Stand Test, and the 4-metre Walk Test were used to assess physical performance. Shotgun metagenomic sequencing was used to profile the gut microbiome in order to identify its construction and function. Metabolome based on untargeted metabolomics was applied to describe the features and structure of fecal metabolites. In clinical indexes including triglycerides and high-density lipoprotein cholesterol, we noted a significant decrease in triglycerides (TG) and a significant increase in high-density lipoprotein cholesterol (HDL-C) in patients with sarcopenia. Appendicular skeletal muscle mass of patients with sarcopenia was lower than the health group. Based on intestinal metagenomic and fecal metabolomic profiles, we found that the gut microbiome and metabolome were disturbed in patients with sarcopenia, with significant decreases in bacteria such as Bifidobacterium longum, Bifidobacterium pseudocatenulatum, and Bifidobacterium adolescentis, as well as metabolites such as shikimic acid. Also, we plotted supervised classification models at the species level of gut bacteria (AUC = 70.83-88.33) and metabolites (AUC = 92.23-98.33) based on machine learning, respectively. Based on the gut-muscle axis network, a potential mechanism is proposed along the gut microbiome - key metabolites - clinical index, that Phascolarctobacterium faecium affects appendicular skeletal muscle mass, calf circumference, handgrip strength, and BMI via Shikimic acid metabolites. This study elucidates the potential mechanisms by which the gut microbiome influences the progress of sarcopenia through metabolites and provides a meaningful theoretical foundation for reference in the diagnosis and treatment of sarcopenia.
Collapse
Affiliation(s)
- Yangli He
- Center of Geriatrics, Hainan General Hospital/Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan Province, China
| | - Weipeng Cui
- School of Food Science and Engineering, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou, Hainan, China
| | - Tuanyu Fang
- Department of Endocrine, Hainan General Hospital/Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan Province, China
| | - Zeng Zhang
- School of Food Science and Engineering, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou, Hainan, China
| | - Min Zeng
- Center of Geriatrics, Hainan General Hospital/Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan Province, China
| |
Collapse
|
6
|
Verma H, Verma A, Bettag J, Kolli S, Kurashima K, Manithody C, Jain A. Role of Effective Policy and Screening in Managing Pediatric Nutritional Insecurity as the Most Important Social Determinant of Health Influencing Health Outcomes. Nutrients 2023; 16:5. [PMID: 38201835 PMCID: PMC10780641 DOI: 10.3390/nu16010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/11/2023] [Accepted: 12/13/2023] [Indexed: 01/12/2024] Open
Abstract
Social Determinants of Health (SDOH) impact nearly half of health outcomes, surpassing the influence of human behavior, clinical care, and the physical environment. SDOH has five domains: Economic Stability, Education Access and Quality, Health Care Access and Quality, Neighborhood and Built Environment, and Social and Community Context. Any adversity arising out of these interlinked domains predominantly affects children due to their greater susceptibility, and the adverse outcomes may span generations. Unfavorable SDOH may cause food insecurity, malnutrition, unbalanced gut microbiome, acute and chronic illnesses, inadequate education, unemployment, and lower life expectancy. Systematic screening by health care workers and physicians utilizing currently available tools and questionnaires can identify children susceptible to adverse childhood experiences, but there is a deficiency with respect to streamlined approach and institutional support. Additionally, current ameliorating supplemental food programs fall short of pediatric nutritional requirements. We propose a nutrition-based Surveillance, Screening, Referral, and Reevaluation (SSRR) plan encompassing a holistic approach to SDOH with a core emphasis on food insecurity, coupled with standardizing outcome-based interventions. We also propose more inclusive use of Food Prescription Programs, tailored to individual children's needs, with emphasis on education and access to healthy food.
Collapse
Affiliation(s)
- Hema Verma
- SLU College for Public Health and Social Justice, Saint Louis University, Saint Louis, MO 63104, USA
| | - Arun Verma
- Department of Pediatrics, Saint Louis University School of Medicine, Saint Louis, MO 63103, USA; (A.V.); (J.B.); (S.K.)
| | - Jeffery Bettag
- Department of Pediatrics, Saint Louis University School of Medicine, Saint Louis, MO 63103, USA; (A.V.); (J.B.); (S.K.)
| | - Sree Kolli
- Department of Pediatrics, Saint Louis University School of Medicine, Saint Louis, MO 63103, USA; (A.V.); (J.B.); (S.K.)
| | - Kento Kurashima
- Department of Pediatrics, Saint Louis University School of Medicine, Saint Louis, MO 63103, USA; (A.V.); (J.B.); (S.K.)
| | - Chandrashekhara Manithody
- Department of Pediatrics, Saint Louis University School of Medicine, Saint Louis, MO 63103, USA; (A.V.); (J.B.); (S.K.)
| | - Ajay Jain
- Department of Pediatrics, Saint Louis University School of Medicine, Saint Louis, MO 63103, USA; (A.V.); (J.B.); (S.K.)
| |
Collapse
|
7
|
Zhuang K, Meng W, Shu X, Liang D, Wang L, Zhang D. Fecal metabonomics combined with 16S rDNA sequencing to analyze the changes of gut microbiota in rats fed with different protein source diets. Eur J Nutr 2023; 62:2687-2703. [PMID: 37273002 DOI: 10.1007/s00394-023-03168-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 04/27/2023] [Indexed: 06/06/2023]
Abstract
PURPOSE When blended, animal and plant proteins can complement each other in terms of amino acid composition and release time. In this study, we investigated whether the blended protein diet has a better feeding effect than the single protein diet, and to reveal the differences in growth and intestinal microbiota composition caused by the blended protein diet. METHODS Forty Sprague Dawley (SD) rats received diets with different protein sources, including casein (C), whey protein (WP), black soybean protein (BSP), and black soybean-whey blended protein (BS-WP), for eight weeks. To investigate the effects of blended protein supplement on gut microbiota and metabolites, we performed a high throughput 16S rDNA sequencing and fecal metabolomics profiling. In addition, we determined growth and serum biochemical indices, and conducted intestinal morphology analyses. RESULTS Compared to those in the BSP and WP groups, the daily body weight gain and feed conversion efficiency increased in the BS-WP group. Serum biochemical indices indicated that the protein utilization efficiency of the WP and BS-WP groups was relatively high, and the BS-WP blended protein diet improved the protein adoption rate. The BS-WP blended protein diet also improved intestinal tissue morphology and promoted intestinal villi development compared to the single protein diets. Furthermore, dietary protein altered the composition of gut microbiota, the gut microbial diversity of rats fed with the BS-WP diet was significantly (P < 0.05) higher than that of the other groups. The difference in dietary protein corresponded with an alteration of fecal amino acids and their metabolites, and tryptophan and tyrosine metabolism were the key mechanisms leading to the changes in fecal microbial composition. CONCLUSION Dietary protein sources played an important role in the growth and development of rats by influencing intestinal metabolism and microbial composition. The BS-WP blended protein diet was more conducive to nutrient absorption than the single protein diet. Furthermore, blended protein increased the diversity of intestinal microbes and aided the establishment of intestinal barrier function.
Collapse
Affiliation(s)
- Kejin Zhuang
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, China
- Daqing Center of Inspection and Testing for Agricultural Products Ministry of Agriculture, Daqing, China
| | - Weihong Meng
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Xin Shu
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Defu Liang
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Lidong Wang
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Dongjie Zhang
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, China.
- National Coarse Cereals Engineering Research Center, Daqing, China.
| |
Collapse
|
8
|
Brahma S, Naik A, Lordan R. Probiotics: A gut response to the COVID-19 pandemic but what does the evidence show? Clin Nutr ESPEN 2022; 51:17-27. [PMID: 36184201 PMCID: PMC9393107 DOI: 10.1016/j.clnesp.2022.08.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/13/2022] [Accepted: 08/17/2022] [Indexed: 11/08/2022]
Abstract
Since the global outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), research has focused on understanding the etiology of coronavirus disease 2019 (COVID-19). Identifying and developing prophylactic and therapeutics strategies to manage the pandemic is still of critical importance. Among potential targets, the role of the gut and lung microbiomes in COVID-19 has been questioned. Consequently, probiotics were touted as potential prophylactics and therapeutics for COVID-19. In this review we highlight the role of the gut and lung microbiome in COVID-19 and potential mechanisms of action of probiotics. We also discuss the progress of ongoing clinical trials for COVID-19 that aim to modulate the microbiome using probiotics in an effort to develop prophylactic and therapeutic strategies. To date, despite the large interest in this area of research, there is promising but limited evidence to suggest that probiotics are an effective prophylactic or treatment strategy for COVID-19. However, the role of the microbiome in pathogenesis and as a potential target for therapeutics of COVID-19 cannot be discounted.
Collapse
Affiliation(s)
| | - Amruta Naik
- Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Ronan Lordan
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Systems Pharmacology and Therapeutics, Perelman School of Medicine, University of Philadelphia, PA, USA; Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
9
|
Asgharian M, Gholizadeh P, Samadi Kafil H, Ghojazadeh M, Samadi A, Soleymani J, Jouyban A, Tayebi Khosroshahi H. Correlation of inflammatory biomarkers with the diversity of Bacteroidaceae, Bifidobacteriaceae, Prevotellaceae and Lactobacillaceae families in the intestinal microbiota of patients with end stage renal disease. Adv Med Sci 2022; 67:304-310. [PMID: 35994929 DOI: 10.1016/j.advms.2022.07.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 05/17/2022] [Accepted: 07/18/2022] [Indexed: 11/28/2022]
Abstract
PURPOSE Serum levels of inflammatory cytokines and uremic toxins, and their inter-correlations with the diversity of Bacteroidaceae, Bifidobacteriaceae, Prevotellaceae and Lactobacillaceae families in intestinal microbiota were investigated in patients with end stage renal disease (ESRD). METHODS Stool and blood samples from 20 ESRD patients on maintenance hemodialysis were collected. DNA genome of the bacterial composition of the stool samples was extracted and evaluated by the sequencing analysis of 16S rRNA genes. Serum levels of inflammatory cytokines and uremic toxins were then analyzed. RESULTS The mean serum concentrations of TNF-α, IL-6, indoxyl sulfate (IS) and p-cresol (PC) were 305.99 ± 12.03 ng/L, 159.95 ± 64.22 ng/L, 36.76 ± 5.09 μg/mL and 0.39 ± 0.15 μg/mL, respectively. The most significant positive correlation was observed between Prevotellaceae family and total antioxidant capacity (TAC), Lactobacilli species and CRP and PC, as well as Scardovia wiggsiae and IS (p < 0.001). A negative correlation was also found between Bacteroides clarus and PC. Patients with ESRD on maintenance hemodialysis had elevated levels of PC and IS and increased levels of the inflammatory markers. The most positive correlation was found between microbiota and CRP and PC, while the most negative one was between microbiota and IL-1 and TAC. CONCLUSIONS The abundance and diversity of Bacteroidaceae, Bifidobacteriaceae, Prevotellaceae and Lactobacillaceae families and their correlations with clinical parameters could provide benefits in the ESRD patients but they could not promote the symptoms.
Collapse
Affiliation(s)
- Mostafa Asgharian
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Pourya Gholizadeh
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Samadi Kafil
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Morteza Ghojazadeh
- Neuroscience Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Azam Samadi
- Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jafar Soleymani
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abolghasem Jouyban
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran; Faculty of Pharmacy, Near East University, Nicosia, North Cyprus, Mersin, Turkey
| | | |
Collapse
|
10
|
Yang W, Gao B, Qin L, Wang X. Puerarin improves skeletal muscle strength by regulating gut microbiota in young adult rats. J Orthop Translat 2022; 35:87-98. [PMID: 36196075 PMCID: PMC9508383 DOI: 10.1016/j.jot.2022.08.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 08/22/2022] [Accepted: 08/22/2022] [Indexed: 12/25/2022] Open
Abstract
Background Sarcopenia is an age-related skeletal muscle dysfunction syndrome that is lacking validated treatments. Maximizing muscle strength in young adulthood may be a promising way to prevent sarcopenia in the elderly. The phytomolecule puerarin has been extensively used in clinical practice and reported to increase energy metabolism in skeletal muscle by directly targeting the skeletal muscle fiber. However, the bioavailability of puerarin is very poor, and almost 93% of puerarin stays in the intestine until excretion. Therefore, we hypothesize that puerarin may regulate gut microbiota to improve skeletal muscle strength and/or mass in adults. Methods Twenty three-month old male Sprague Dawley rats were divided into two groups according to average weights, puerarin group (puerarin dissolved in 0.5% CMC-Na, 150 mg/kg/day, N = 10), and control group (equal volume 0.5% CMC-Na, N = 10). The treatment lasted for 8 weeks. Muscle weight, muscle fiber types and cross-sectional area (CSA), ex vivo muscle contraction test and grip strength were measured. 16S rDNA sequencing was employed to evaluate the gut microbiota composition in the sample of cecal content. Short-chain fatty acids (SCFAs) in cecal and serum were analyzed by gas chromatography-mass spectrometry. Adenosine triphosphate (ATP) concentration in skeletal muscle was also detected. Pearson's correlation was used to analyze the relations between SCFAs, ATP concentration and muscle function. Results After puerarin treatment, grip strength, the specific twitch force, and the tetanic forces in the soleus (SOL) and extensor digitorum longus (EDL) muscle were significantly higher than those of the control group. The percentage and CSA of type II muscle fiber in EDL was higher in the puerarin group than those in the control group. Puerarin treatment significantly changed the gut microbial constitutes. Two SCFAs-productive microbiota, the families Peptococcaceae and Closteridiales, were significantly higher in the puerarin group than those in the control group, while the ratio of Prevotellaceae/Bacteroidaceae (P/B), a muscle atrophy indicator, was lower in the puerarin group. As expected, there were significant linear correlations between the concentrations of SCFAs, including cecal total SCFAs, serum n-butyric acid and total SCFAs, and skeletal muscle strength and function, including the twitch force and tetanic force of SOL and EDL, as well as the forelimb grip strength. Conclusion In conclusion, puerarin improved the forelimb grip strength and muscle contraction function in young adult rats. The underlying mechanism may include that puerarin increased SCFAs production by regulating gut microbiota, augmented ATP synthesis and skeletal muscle strength. The translational potential of this article: Our study finds that a clinical used phytomolecule puerarin has the potential of improving skeletal muscle strength in young adult rats. As puerarin has long-term clinical experience and shows good safety, it might be a potential candidate for developing muscle strengthening agents.
Collapse
Affiliation(s)
- Wenyao Yang
- Translational Medicine R&D Center, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Joint Laboratory of Chinese Academic of Science and Hong Kong for Biomaterials of the Chinese University of Hong Kong, Shenzhen, China
| | - Bimin Gao
- Translational Medicine R&D Center, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Joint Laboratory of Chinese Academic of Science and Hong Kong for Biomaterials of the Chinese University of Hong Kong, Shenzhen, China
| | - Ling Qin
- Translational Medicine R&D Center, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong, China
- Joint Laboratory of Chinese Academic of Science and Hong Kong for Biomaterials of the Chinese University of Hong Kong, Shenzhen, China
| | - Xinluan Wang
- Translational Medicine R&D Center, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Joint Laboratory of Chinese Academic of Science and Hong Kong for Biomaterials of the Chinese University of Hong Kong, Shenzhen, China
- Corresponding author. Translational Medicine R&D Center, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| |
Collapse
|
11
|
Pérez-Reytor D, Puebla C, Karahanian E, García K. Use of Short-Chain Fatty Acids for the Recovery of the Intestinal Epithelial Barrier Affected by Bacterial Toxins. Front Physiol 2021; 12:650313. [PMID: 34108884 PMCID: PMC8181404 DOI: 10.3389/fphys.2021.650313] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 04/26/2021] [Indexed: 01/22/2023] Open
Abstract
Short-chain fatty acids (SCFAs) are carboxylic acids produced as a result of gut microbial anaerobic fermentation. They activate signaling cascades, acting as ligands of G-protein-coupled receptors, such as GPR41, GPR43, and GPR109A, that can modulate the inflammatory response and increase the intestinal barrier integrity by enhancing the tight junction proteins functions. These junctions, located in the most apical zone of epithelial cells, control the diffusion of ions, macromolecules, and the entry of microorganisms from the intestinal lumen into the tissues. In this sense, several enteric pathogens secrete diverse toxins that interrupt tight junction impermeability, allowing them to invade the intestinal tissue and to favor gastrointestinal colonization. It has been recently demonstrated that SCFAs inhibit the virulence of different enteric pathogens and have protective effects against bacterial colonization. Here, we present an overview of SCFAs production by gut microbiota and their effects on the recovery of intestinal barrier integrity during infections by microorganisms that affect tight junctions. These properties make them excellent candidates in the treatment of infectious diseases that cause damage to the intestinal epithelium.
Collapse
Affiliation(s)
- Diliana Pérez-Reytor
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
| | - Carlos Puebla
- Instituto de Ciencias de la Salud, Universidad de O'Higgins, Rancagua, Chile
| | - Eduardo Karahanian
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
| | - Katherine García
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
| |
Collapse
|
12
|
Belizário JE, Faintuch J, Malpartida MG. Breath Biopsy and Discovery of Exclusive Volatile Organic Compounds for Diagnosis of Infectious Diseases. Front Cell Infect Microbiol 2021; 10:564194. [PMID: 33520731 PMCID: PMC7839533 DOI: 10.3389/fcimb.2020.564194] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 11/16/2020] [Indexed: 01/13/2023] Open
Abstract
Exhaled breath contains thousand metabolites and volatile organic compounds (VOCs) that originated from both respiratory tract and internal organ systems and their microbiomes. Commensal and pathogenic bacteria and virus of microbiomes are capable of producing VOCs of different chemical classes, and some of them may serve as biomarkers for installation and progression of various common human diseases. Here we describe qualitative and quantitative methods for measuring VOC fingerprints generated by cellular and microbial metabolic and pathologic pathways. We describe different chemical classes of VOCs and their role in the host cell-microbial interactions and their impact on infection disease pathology. We also update on recent progress on VOC signatures emitted by isolated bacterial species and microbiomes, and VOCs identified in exhaled breath of patients with respiratory tract and gastrointestinal diseases, and inflammatory syndromes, including the acute respiratory distress syndrome and sepsis. The VOC curated databases and instrumentations have been developed through statistically robust breathomic research in large patient populations. Scientists have now the opportunity to find potential biomarkers for both triage and diagnosis of particular human disease.
Collapse
Affiliation(s)
- José E Belizário
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Joel Faintuch
- Department of Gastroenterology of Medical School, University of Sao Paulo, São Paulo, Brazil
| | | |
Collapse
|
13
|
Zhang J, Liang D, Zhao A. Dietary Diversity and the Risk of Fracture in Adults: A Prospective Study. Nutrients 2020; 12:E3655. [PMID: 33261013 PMCID: PMC7761242 DOI: 10.3390/nu12123655] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/20/2020] [Accepted: 11/26/2020] [Indexed: 02/07/2023] Open
Abstract
Nutrition plays an important and modifiable role in bone health. This study aimed to investigate the effect of dietary diversity on the risk of any type of fracture in adults. Data from the China Health and Nutrition Survey collected between waves 1997 and 2015 were used. A total of 10,192 adults aged 40 years and older were included in the analysis. Both dietary diversity score (DDS) based on Chinese dietary guidelines (DDS-CDG) and minimum dietary diversity for women (DDS-MDD-W) were computed. Cox proportional hazards regression models were conducted to determine the association. Stratified analyses were conducted in women by the age of fracture using the case-control study approach. In men, higher scores in both the DDS-CDG (hazard ratio (HR) 0.70, 95% CI 0.56-0.88) and DDS-MDD-W (HR 0.67, 95% CI 0.54-0.82) were associated with decreased risk of fracture, however, the associations were not significant in women (DDS-CDG: HR 0.94, 95% CI 0.79-1.12; DDS-MDD-W: HR 0.93, 95% CI 0.79-1.09). In the stratified analyses, higher DDS-CDG (odds ratio (OR) 0.74, 95% CI 0.58-0.95) and higher DDS-MDD-W (OR 0.76, 95% CI 0.60-0.95) were associated with lower risks of fracture in women aged 40 to 60 years; in women aged over 60 years, no association was observed (DDS-CDG: OR 1.10, 95% CI 0.83-1.46; DDS-MDD-W: OR 1.00, 95% CI 0.79-1.27). In summary, higher dietary diversity was associated with decreased risk of fracture in men and middle-aged women, but not in women aged over 60 years.
Collapse
Affiliation(s)
- Jian Zhang
- Vanke School of Public Health, Tsinghua University, Beijing 100091, China;
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China
| | - Dong Liang
- China National Center for Food Safety Risk Assessment, Beijing 100021, China;
| | - Ai Zhao
- Vanke School of Public Health, Tsinghua University, Beijing 100091, China;
| |
Collapse
|
14
|
Gómez-Gallego C, García-Mantrana I, Martínez-Costa C, Salminen S, Isolauri E, Collado MC. The Microbiota and Malnutrition: Impact of Nutritional Status During Early Life. Annu Rev Nutr 2020; 39:267-290. [PMID: 31433738 DOI: 10.1146/annurev-nutr-082117-051716] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
According to the developmental origins of health and disease hypothesis, our health is determined by events experienced in utero and during early infancy. Indeed, both our prenatal and postnatal nutrition conditions have an impact on the initial architecture and activity of our microbiota. Recent evidence has underlined the importance of the composition of the early gut microbiota in relation to malnutrition, whether it be undernutrition or overnutrition, that is, in terms of both stunted and overweight development. It remains unclear how early microbial contact is linked to the risk of disease, as well as whether alterations in the microbiome underlie the pathogenesis of malnutrition or are merely the end result of it, which indicates that thequestion of causality must urgently be answered. This review provides information on the complex interaction between the microbiota and nutrition during the first 1,000 days of life, taking into account the impact of both undernutrition and overnutrition on the microbiota and on infants' health outcomes in the short- and long-term.
Collapse
Affiliation(s)
- Carlos Gómez-Gallego
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, FI-70210 Kuopio, Finland; .,Functional Foods Forum, University of Turku, FI-20520 Turku, Finland;
| | - Izaskun García-Mantrana
- Institute of Agrochemistry and Food Technology (IATA-CSIC), National Research Council, 46980 Valencia, Spain; ,
| | - Cecilia Martínez-Costa
- Department of Pediatrics, School of Medicine, University of Valencia, 46010 Valencia, Spain.,Pediatric Gastroenterology and Nutrition Section, Hospital Clinico Universitario Valencia, INCLIVA,46010 Valencia, Spain;
| | - Seppo Salminen
- Functional Foods Forum, University of Turku, FI-20520 Turku, Finland;
| | - Erika Isolauri
- Department of Paediatrics and Adolescent Medicine, Turku University Hospital, FI-20500 Turku, Finland; .,Department of Clinical Sciences, Faculty of Medicine, University of Turku, FI-20014 Turku, Finland
| | - M Carmen Collado
- Institute of Agrochemistry and Food Technology (IATA-CSIC), National Research Council, 46980 Valencia, Spain; , .,Functional Foods Forum, University of Turku, FI-20520 Turku, Finland;
| |
Collapse
|
15
|
Frampton J, Murphy KG, Frost G, Chambers ES. Short-chain fatty acids as potential regulators of skeletal muscle metabolism and function. Nat Metab 2020; 2:840-848. [PMID: 32694821 DOI: 10.1038/s42255-020-0188-7] [Citation(s) in RCA: 263] [Impact Index Per Article: 52.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 02/25/2020] [Indexed: 12/25/2022]
Abstract
A key metabolic activity of the gut microbiota is the fermentation of non-digestible carbohydrate, which generates short-chain fatty acids (SCFAs) as the principal end products. SCFAs are absorbed from the gut lumen and modulate host metabolic responses at different organ sites. Evidence suggests that these organ sites include skeletal muscle, the largest organ in humans, which plays a pivotal role in whole-body energy metabolism. In this Review, we evaluate the evidence indicating that SCFAs mediate metabolic cross-talk between the gut microbiota and skeletal muscle. We discuss the effects of three primary SCFAs (acetate, propionate and butyrate) on lipid, carbohydrate and protein metabolism in skeletal muscle, and we consider the potential mechanisms involved. Furthermore, we highlight the emerging roles of these gut-derived metabolites in skeletal muscle function and exercise capacity, present limitations in current knowledge and provide suggestions for future work.
Collapse
Affiliation(s)
- James Frampton
- Section for Nutrition Research, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
- Endocrinology and Investigative Medicine, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
| | - Kevin G Murphy
- Endocrinology and Investigative Medicine, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
| | - Gary Frost
- Section for Nutrition Research, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
| | - Edward S Chambers
- Section for Nutrition Research, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK.
| |
Collapse
|
16
|
Behera J, Ison J, Tyagi SC, Tyagi N. The role of gut microbiota in bone homeostasis. Bone 2020; 135:115317. [PMID: 32169602 PMCID: PMC8457311 DOI: 10.1016/j.bone.2020.115317] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 02/27/2020] [Accepted: 03/10/2020] [Indexed: 02/08/2023]
Abstract
The gut microbiota (GM) is referred to as the second gene pool of the human body and a commensal, symbiotic, and pathogenic microorganism living in our intestines. The knowledge of the complex interaction between intestinal microbiota and health outcomes is a novel and rapidly expanding the field. Earlier studies have reported that the microbial communities affect the cellular responses and shape many aspects of physiology and pathophysiology within the body, including muscle and bone metabolism (formation and resorption). GM influences the skeletal homeostasis via affecting the host metabolism, immune function, hormone secretion, and the gut-brain axis. The premise of this review is to discuss the role of GM on bone homeostasis and skeletal muscle mass function. This review also opens up new perspectives for pathophysiological studies by establishing the presence of a 'microbiota-skeletal' axis and raising the possibility of innovative new treatments for skeletal development.
Collapse
Affiliation(s)
- Jyotirmaya Behera
- Bone Biology Laboratory, Department of Physiology, School of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Jessica Ison
- Bone Biology Laboratory, Department of Physiology, School of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Suresh C Tyagi
- Bone Biology Laboratory, Department of Physiology, School of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Neetu Tyagi
- Bone Biology Laboratory, Department of Physiology, School of Medicine, University of Louisville, Louisville, KY 40202, USA.
| |
Collapse
|
17
|
Gut microbiota composition influences outcomes of skeletal muscle nutritional intervention via blended protein supplementation in posttransplant patients with hematological malignancies. Clin Nutr 2020; 40:94-102. [PMID: 32402683 DOI: 10.1016/j.clnu.2020.04.030] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 04/20/2020] [Accepted: 04/21/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND Skeletal muscle atrophy is an important and independent predictor of survival after hematopoietic stem cell transplantation (HSCT). Our previous study found that soy-whey blended protein (SWP) can improve muscle mass in acute leukemia patients. OBJECTIVE We aimed to explore potential factors that influence muscle outcomes after nutritional intervention. METHODS In this case-control study, 13 patients who received HSCT and failed to improve muscle function within half a year were included. After two months of SWP intervention, the subjects were divided into two groups (MSI: muscle status improved; MNI: muscle status not improved). 16S rDNA sequencing, principal coordinate analysis (PCoA) and the PICRUSt algorithm were used to analyze the composition, structure and function of the intestinal microbiota between the groups. This study was registered in the Chinese Clinical Trial Registry (ChiCTR 1800017765). RESULTS SWP significantly improved muscle status (muscle area: from 330.4 mm2 to 384.8 mm2, p = 0.02; muscle strength: from 19.2 kg to 21.3 kg, p = 0.04). However, there were a small number of subjects whose muscle status was not effectively improved. After SWP intervention, the diversity (Shannon: from 1.7 to 3.8, p = 0.01; Simpson: from 0.6 to 0.8, p = 0.015) of the intestinal microbiota in the MSI group increased significantly, whereas that in the MNI group did not. Principal component analysis (PCA) revealed separate groupings of the microbiota of the Baseline-MSI and Endpoint-MSI time points in the MSI group. Opposite patterns of microbial abundance change were found between the MSI group (75% of changed genera were increased) and the MNI group (80% of changed genera were decreased). Three bacterial taxa (negative correlation: Streptococcus; positive correlations: Ruminococcus and Veillonella) were significantly related to muscle improvement outcomes. Both pentose phosphate (p = 0.048) and amino acid biosynthesis (p = 0.039), which are related to muscle metabolism, were found to be significantly changed in the MSI group through PICRUSt algorithm prediction. CONCLUSIONS Our results suggest that the intestinal microbiota plays important roles in the regulation of muscle metabolism.
Collapse
|
18
|
Gut Microbial, Inflammatory and Metabolic Signatures in Older People with Physical Frailty and Sarcopenia: Results from the BIOSPHERE Study. Nutrients 2019; 12:nu12010065. [PMID: 31887978 PMCID: PMC7019826 DOI: 10.3390/nu12010065] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 12/19/2019] [Accepted: 12/23/2019] [Indexed: 12/11/2022] Open
Abstract
Physical frailty and sarcopenia (PF&S) share multisystem derangements, including variations in circulating amino acids and chronic low-grade inflammation. Gut microbiota balances inflammatory responses in several conditions and according to nutritional status. Therefore, an altered gut-muscle crosstalk has been hypothesized in PF&S. We analyzed the gut microbial taxa, systemic inflammation, and metabolic characteristics of older adults with and without PF&S. An innovative multi-marker analytical approach was applied to explore the classification performance of potential biomarkers for PF&S. Thirty-five community dwellers aged 70+, 18 with PF&S, and 17 nonPF&S controls were enrolled. Sequential and Orthogonalized Covariance Selection (SO-CovSel), a multi-platform regression method developed to handle highly correlated variables, was applied. The SO-CovSel model with the best prediction ability using the smallest number of variables was built using seven mediators. The model correctly classified 91.7% participants with PF&S and 87.5% nonPF&S controls. Compared with the latter group, PF&S participants showed higher serum concentrations of aspartic acid, lower circulating levels of concentrations of threonine and macrophage inflammatory protein 1α, increased abundance of Oscillospira and Ruminococcus microbial taxa, and decreased abundance of Barnesiellaceae and Christensenellaceae. Future investigations are warranted to determine whether these biomediators are involved in PF&S pathophysiology and may, therefore, provide new targets for interventions.
Collapse
|
19
|
Engevik MA, Morra CN, Röth D, Engevik K, Spinler JK, Devaraj S, Crawford SE, Estes MK, Kalkum M, Versalovic J. Microbial Metabolic Capacity for Intestinal Folate Production and Modulation of Host Folate Receptors. Front Microbiol 2019; 10:2305. [PMID: 31649646 PMCID: PMC6795088 DOI: 10.3389/fmicb.2019.02305] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Accepted: 09/20/2019] [Indexed: 12/19/2022] Open
Abstract
Microbial metabolites, including B complex vitamins contribute to diverse aspects of human health. Folate, or vitamin B9, refers to a broad category of biomolecules that include pterin, para-aminobenzoic acid (pABA), and glutamate subunits. Folates are required for DNA synthesis and epigenetic regulation. In addition to dietary nutrients, the gut microbiota has been recognized as a source of B complex vitamins, including folate. This study evaluated the predicted folate synthesis capabilities in the genomes of human commensal microbes identified in the Human Microbiome Project and folate production by representative strains of six human intestinal bacterial phyla. Bacterial folate synthesis genes were ubiquitous across 512 gastrointestinal reference genomes with 13% of the genomes containing all genes required for complete de novo folate synthesis. An additional 39% of the genomes had the genetic capacity to synthesize folates in the presence of pABA, an upstream intermediate that can be obtained through diet or from other intestinal microbes. Bacterial folate synthesis was assessed during exponential and stationary phase growth through the evaluation of expression of select folate synthesis genes, quantification of total folate production, and analysis of folate polyglutamylation. Increased expression of key folate synthesis genes was apparent in exponential phase, and increased folate polyglutamylation occurred during late stationary phase. Of the folate producers, we focused on the commensal Lactobacillus reuteri to examine host-microbe interactions in relation to folate and examined folate receptors in the physiologically relevant human enteroid model. RNAseq data revealed segment-specific folate receptor distribution. Treatment of human colonoid monolayers with conditioned media (CM) from wild-type L. reuteri did not influence the expression of key folate transporters proton-coupled folate transporter (PCFT) or reduced folate carrier (RFC). However, CM from L. reuteri containing a site-specific inactivation of the folC gene, which prevents the bacteria from synthesizing a polyglutamate tail on folate, significantly upregulated RFC expression. No effects were observed using L. reuteri with a site inactivation of folC2, which results in no folate production. This work sheds light on the contributions of microbial folate to overall folate status and mammalian host metabolism.
Collapse
Affiliation(s)
- Melinda A. Engevik
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, United States
- Department of Pathology, Texas Children’s Hospital, Houston, TX, United States
| | - Christina N. Morra
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, United States
- Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, TX, United States
| | - Daniel Röth
- Department of Molecular Imaging and Therapy, Beckman Research Institute of the City of Hope, Duarte, CA, United States
| | - Kristen Engevik
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States
| | - Jennifer K. Spinler
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, United States
- Department of Pathology, Texas Children’s Hospital, Houston, TX, United States
| | - Sridevi Devaraj
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, United States
- Department of Pathology, Texas Children’s Hospital, Houston, TX, United States
| | - Sue E. Crawford
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States
| | - Mary K. Estes
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States
- Department of Medicine – Gastroenterology, Hepatology and Infectious Diseases, Baylor College of Medicine, Houston, TX, United States
| | - Markus Kalkum
- Department of Molecular Imaging and Therapy, Beckman Research Institute of the City of Hope, Duarte, CA, United States
- Mass Spectrometry and Proteomics Core, Beckman Research Institute of the City of Hope, Duarte, CA, United States
| | - James Versalovic
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, United States
- Department of Pathology, Texas Children’s Hospital, Houston, TX, United States
| |
Collapse
|
20
|
Chittim CL, Irwin SM, Balskus EP. Deciphering Human Gut Microbiota-Nutrient Interactions: A Role for Biochemistry. Biochemistry 2018; 57:2567-2577. [PMID: 29669199 DOI: 10.1021/acs.biochem.7b01277] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The human gut contains trillions of microorganisms that play a central role in many aspects of host biology, including the provision of key nutrients from the diet. However, our appreciation of how gut microbes and their extensive metabolic capabilities affect the nutritional status of the human host is in its infancy. In this Perspective, we highlight how recent efforts to elucidate the biochemical basis for gut microbial metabolism of dietary components are reshaping our view of these organisms' roles in host nutrition. Gaining a molecular understanding of gut microbe-nutrient interactions will enhance our knowledge of how diet affects host health and disease, ultimately enabling personalized nutrition and therapeutics.
Collapse
Affiliation(s)
- Carina L Chittim
- Department of Chemistry and Chemical Biology , Harvard University , 12 Oxford Street , Cambridge , Massachusetts 02138 , United States
| | - Stephania M Irwin
- Department of Chemistry and Chemical Biology , Harvard University , 12 Oxford Street , Cambridge , Massachusetts 02138 , United States
| | - Emily P Balskus
- Department of Chemistry and Chemical Biology , Harvard University , 12 Oxford Street , Cambridge , Massachusetts 02138 , United States
| |
Collapse
|
21
|
Bober JR, Beisel CL, Nair NU. Synthetic Biology Approaches to Engineer Probiotics and Members of the Human Microbiota for Biomedical Applications. Annu Rev Biomed Eng 2018. [PMID: 29528686 DOI: 10.1146/annurev-bioeng-062117-121019] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
An increasing number of studies have strongly correlated the composition of the human microbiota with many human health conditions and, in several cases, have shown that manipulating the microbiota directly affects health. These insights have generated significant interest in engineering indigenous microbiota community members and nonresident probiotic bacteria as biotic diagnostics and therapeutics that can probe and improve human health. In this review, we discuss recent advances in synthetic biology to engineer commensal and probiotic lactic acid bacteria, bifidobacteria, and Bacteroides for these purposes, and we provide our perspective on the future potential of these technologies.
Collapse
Affiliation(s)
- Josef R Bober
- Department of Chemical and Biological Engineering, Tufts University, Medford, Massachusetts 02155, USA;
| | - Chase L Beisel
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, USA;
| | - Nikhil U Nair
- Department of Chemical and Biological Engineering, Tufts University, Medford, Massachusetts 02155, USA;
| |
Collapse
|
22
|
Gut Dysbiosis and Muscle Aging: Searching for Novel Targets against Sarcopenia. Mediators Inflamm 2018; 2018:7026198. [PMID: 29686533 PMCID: PMC5893006 DOI: 10.1155/2018/7026198] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 11/28/2017] [Accepted: 12/05/2017] [Indexed: 12/12/2022] Open
Abstract
Advanced age is characterized by several changes, one of which is the impairment of the homeostasis of intestinal microbiota. These alterations critically influence host health and have been associated with morbidity and mortality in older adults. “Inflammaging,” an age-related chronic inflammatory process, is a common trait of several conditions, including sarcopenia. Interestingly, imbalanced intestinal microbial community has been suggested to contribute to inflammaging. Changes in gut microbiota accompanying sarcopenia may be attenuated by supplementation with pre- and probiotics. Although muscle aging has been increasingly recognized as a biomarker of aging, the pathophysiology of sarcopenia is to date only partially appreciated. Due to its development in the context of the age-related inflammatory milieu, several studies favor the hypothesis of a tight connection between sarcopenia and inflammaging. However, conclusive evidence describing the signaling pathways involved has not yet been produced. Here, we review the current knowledge of the changes in intestinal microbiota that occur in advanced age with a special emphasis on findings supporting the idea of a modulation of muscle physiology through alterations in gut microbial composition and activity.
Collapse
|
23
|
Chen YC, Greenbaum J, Shen H, Deng HW. Association Between Gut Microbiota and Bone Health: Potential Mechanisms and Prospective. J Clin Endocrinol Metab 2017; 102:3635-3646. [PMID: 28973392 PMCID: PMC5630250 DOI: 10.1210/jc.2017-00513] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Accepted: 07/18/2017] [Indexed: 12/12/2022]
Abstract
CONTEXT It has been well established that the human gut microbiome plays a critical role in the regulation of important biological processes and the mechanisms underlying numerous complex diseases. Although researchers have only recently begun to study the relationship between the gut microbiota and bone metabolism, early efforts have provided increased evidence to suggest an important association. EVIDENCE ACQUISITION In this study, we attempt to comprehensively summarize the relationship between the gut microbiota and bone metabolism by detailing the regulatory effects of the microbiome on various biological processes, including nutrient absorption and the intestinal mucosal barrier, immune system functionality, the gut-brain axis, and excretion of functional byproducts. In this review, we incorporate evidence from various types of studies, including observational, in vitro and in vivo animal experiments, as well as small efficacy clinic trails. EVIDENCE SYNTHESIS We review the various potential mechanisms of influence for the gut microbiota on the regulation of bone metabolism and discuss the importance of further examining the potential effects of the gut microbiota on the risk of osteoporosis in humans. Furthermore, we outline some useful tools/approaches for metagenomics research and present some prominent examples of metagenomics association studies in humans. CONCLUSION Current research efforts, although limited, clearly indicate that the gut microbiota may be implicated in bone metabolism, and therefore, further exploration of this relationship is a promising area of focus in bone health and osteoporosis research. Although most existing studies investigate this relationship using animal models, human studies are both needed and on the horizon.
Collapse
Affiliation(s)
- Yuan-Cheng Chen
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, PR China
- Center of Bioinformatics and Genomics, Tulane University, New Orleans, Louisiana 70112
- Department of Global Biostatistics and Data Science, School of Public Health and Tropical Medicine, Tulane University, New Orleans, Louisiana 70112
| | - Jonathan Greenbaum
- Center of Bioinformatics and Genomics, Tulane University, New Orleans, Louisiana 70112
- Department of Global Biostatistics and Data Science, School of Public Health and Tropical Medicine, Tulane University, New Orleans, Louisiana 70112
| | - Hui Shen
- Center of Bioinformatics and Genomics, Tulane University, New Orleans, Louisiana 70112
- Department of Global Biostatistics and Data Science, School of Public Health and Tropical Medicine, Tulane University, New Orleans, Louisiana 70112
| | - Hong-Wen Deng
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, PR China
- Center of Bioinformatics and Genomics, Tulane University, New Orleans, Louisiana 70112
- Department of Global Biostatistics and Data Science, School of Public Health and Tropical Medicine, Tulane University, New Orleans, Louisiana 70112
| |
Collapse
|
24
|
Abstract
This narrative review summarises the benefits, risks and appropriate use of acid-suppressing drugs (ASDs), proton pump inhibitors and histamine-2 receptor antagonists, advocating a rationale balanced and individualised approach aimed to minimise any serious adverse consequences. It focuses on current controversies on the potential of ASDs to contribute to infections-bacterial, parasitic, fungal, protozoan and viral, particularly in the elderly, comprehensively and critically discusses the growing body of observational literature linking ASD use to a variety of enteric, respiratory, skin and systemic infectious diseases and complications (Clostridium difficile diarrhoea, pneumonia, spontaneous bacterial peritonitis, septicaemia and other). The proposed pathogenic mechanisms of ASD-associated infections (related and unrelated to the inhibition of gastric acid secretion, alterations of the gut microbiome and immunity), and drug-drug interactions are also described. Both probiotics use and correcting vitamin D status may have a significant protective effect decreasing the incidence of ASD-associated infections, especially in the elderly. Despite the limitations of the existing data, the importance of individualised therapy and caution in long-term ASD use considering the balance of benefits and potential harms, factors that may predispose to and actions that may prevent/attenuate adverse effects is evident. A six-step practical algorithm for ASD therapy based on the best available evidence is presented.
Collapse
Affiliation(s)
- Leon Fisher
- Frankston Hospital, Peninsula Health, Melbourne, Australia.
| | - Alexander Fisher
- The Canberra Hospital, ACT Health, Canberra, Australia
- Australian National University Medical School, Canberra, Australia
| |
Collapse
|
25
|
Thushara RM, Gangadaran S, Solati Z, Moghadasian MH. Cardiovascular benefits of probiotics: a review of experimental and clinical studies. Food Funct 2016; 7:632-642. [DOI: 10.1039/c5fo01190f] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
The microbiota inhabiting the human gastro-intestinal tract is reported to have a significant impact on the health of an individual.
Collapse
Affiliation(s)
- Ram Mohan Thushara
- Department of Human Nutritional Sciences
- University of Manitoba
- and the Canadian Centre for Agri-Food Research in Health and Medicine
- St. Boniface Hospital research Centre
- Winnipeg
| | - Surendiran Gangadaran
- Department of Human Nutritional Sciences
- University of Manitoba
- and the Canadian Centre for Agri-Food Research in Health and Medicine
- St. Boniface Hospital research Centre
- Winnipeg
| | - Zahra Solati
- Department of Human Nutritional Sciences
- University of Manitoba
- and the Canadian Centre for Agri-Food Research in Health and Medicine
- St. Boniface Hospital research Centre
- Winnipeg
| | - Mohammed H. Moghadasian
- Department of Human Nutritional Sciences
- University of Manitoba
- and the Canadian Centre for Agri-Food Research in Health and Medicine
- St. Boniface Hospital research Centre
- Winnipeg
| |
Collapse
|
26
|
Gut microbiota in older subjects: variation, health consequences and dietary intervention prospects. Proc Nutr Soc 2014; 73:441-51. [PMID: 24824449 DOI: 10.1017/s0029665114000597] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Alterations in intestinal microbiota composition and function have been linked to conditions including functional gastrointestinal disorders, obesity and diabetes. The gut microbiome encodes metabolic capability in excess of that encoded by the human genome, and bacterially produced enzymes are important for releasing nutrients from complex dietary ingredients. Previous culture-based studies had indicated that the gut microbiota of older people was different from that of younger adults, but the detailed findings were contradictory. Small-scale studies had also shown that the microbiota composition could be altered by dietary intervention or supplementation. We showed that the core microbiota and aggregate composition in 161 seniors was distinct from that of younger persons. To further investigate the reasons for this variation, we analysed the microbiota composition of 178 elderly subjects for whom the dietary intake data were available. The data revealed distinct microbiota composition groups, which overlapped with distinct dietary patterns that were governed by where people lived: at home, in rehabilitation or in long-term residential care. These diet-microbiota separations correlated with cluster analysis of NMR-derived faecal metabolites and shotgun metagenomic data. Major separations in the microbiota correlated with selected clinical measurements. It should thus be possible to programme the microbiota to enrich bacterial species and activities that promote healthier ageing. A number of other studies have investigated the effect of certain dietary components and their ability to modulate the microbiota composition to promote health. This review will discuss dietary interventions conducted thus far, especially those in elderly populations and highlight their impact on the intestinal microbiota.
Collapse
|