1
|
Zhu F, Qin R, Ma S, Zhou Z, Tan C, Yang H, Zhang P, Xu Y, Luo Y, Chen J, Pan P. Designing a multi-epitope vaccine against Pseudomonas aeruginosa via integrating reverse vaccinology with immunoinformatics approaches. Sci Rep 2025; 15:10425. [PMID: 40140433 PMCID: PMC11947098 DOI: 10.1038/s41598-025-90226-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 02/11/2025] [Indexed: 03/28/2025] Open
Abstract
Pseudomonas aeruginosa is a typically opportunistic pathogen responsible for a wide range of nosocomial infections. In this study, we designed two multi-epitope vaccines targeting P. aeruginosa proteins, incorporating cytotoxic T lymphocyte (CTL), helper T lymphocyte (HTL), and linear B lymphocyte (LBL) epitopes identified using reverse vaccinology and immunoinformatics approaches. The vaccines exhibited favorable physicochemical properties, including stability, solubility, and optimal molecular weight, suggesting their potential as viable candidates for vaccine development. Molecular docking studies revealed strong binding affinity to Toll-like receptors 1 (TLR1) and 2 (TLR2). Furthermore, molecular dynamics simulations confirmed the stability of the vaccine-TLR complexes over time. Immune simulation analyses indicated that the vaccines could induce robust humoral and cellular immune responses, providing a promising new approach for combating P. aeruginosa infections, particularly in the face of increasing antibiotic resistance.
Collapse
Affiliation(s)
- Fei Zhu
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, Hunan, China
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China
- FuRong Laboratory, Changsha, 410008, Hunan, China
| | - Rongliu Qin
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, Hunan, China
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China
- FuRong Laboratory, Changsha, 410008, Hunan, China
| | - Shiyang Ma
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, Hunan, China
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China
- FuRong Laboratory, Changsha, 410008, Hunan, China
| | - Ziyou Zhou
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, Hunan, China
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China
- FuRong Laboratory, Changsha, 410008, Hunan, China
| | - Caixia Tan
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China
- Department of Infection Control Center of Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hang Yang
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, Hunan, China
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China
- FuRong Laboratory, Changsha, 410008, Hunan, China
| | - Peipei Zhang
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, Hunan, China
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China
- FuRong Laboratory, Changsha, 410008, Hunan, China
| | - Yizhong Xu
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, Hunan, China
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China
- FuRong Laboratory, Changsha, 410008, Hunan, China
| | - Yuying Luo
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, Hunan, China
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China
- FuRong Laboratory, Changsha, 410008, Hunan, China
| | - Jie Chen
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, Hunan, China.
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China.
- FuRong Laboratory, Changsha, 410008, Hunan, China.
| | - Pinhua Pan
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, Hunan, China.
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China.
- FuRong Laboratory, Changsha, 410008, Hunan, China.
| |
Collapse
|
2
|
Periferakis A, Periferakis AT, Troumpata L, Periferakis K, Georgatos-Garcia S, Touriki G, Dragosloveanu CDM, Caruntu A, Savulescu-Fiedler I, Dragosloveanu S, Scheau AE, Badarau IA, Caruntu C, Scheau C. Pinosylvin: A Multifunctional Stilbenoid with Antimicrobial, Antioxidant, and Anti-Inflammatory Potential. Curr Issues Mol Biol 2025; 47:204. [PMID: 40136458 PMCID: PMC11941527 DOI: 10.3390/cimb47030204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/13/2025] [Accepted: 03/15/2025] [Indexed: 03/27/2025] Open
Abstract
Stilbenoids are a category of plant compounds exhibiting notable health-related benefits. After resveratrol, perhaps the most well-known stilbenoid is pinosylvin, a major phytochemical constituent of most plants characterised by the pine spines among others. Pinosylvin and its derivatives have been found to exert potent antibacterial and antifungal effects, while their antiparasitic and antiviral properties are still a subject of ongoing research. The antioxidant properties of pinosylvin are mostly based on its scavenging of free radicals, inhibition of iNOS and protein kinase C, and promotion of HO-1 expression. Its anti-inflammatory properties are based on a variety of mechanisms, such as COX-2 inhibition, NF-κB and TRPA1 activation inhibition, and reduction in IL-6 levels. Its anticancer properties are partly associated with its antioxidant and anti-inflammatory potential, although a number of other mechanisms are described, such as apoptosis induction and matrix metalloproteinase inhibition. A couple of experiments have also suggested a neuroprotective potential. A multitude of ethnomedical and ethnobotanical effects of pinosylvin-containing plants are reported, like antimicrobial, antioxidant, anti-inflammatory, hepatoprotective, and prokinetic actions; many of these are corroborated by recent research. The advent of novel methods of artificial pinosylvin synthesis may facilitate its mass production and adoption as a medical compound. Finally, pinosylvin may be a tool in promoting environmentally friendly pesticide and insecticide policies and be used in land remediation schemes.
Collapse
Affiliation(s)
- Argyrios Periferakis
- Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Akadimia of Ancient Greek and Traditional Chinese Medicine, 16675 Athens, Greece
- Elkyda, Research & Education Centre of Charismatheia, 17675 Athens, Greece
| | - Aristodemos-Theodoros Periferakis
- Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Elkyda, Research & Education Centre of Charismatheia, 17675 Athens, Greece
| | - Lamprini Troumpata
- Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Konstantinos Periferakis
- Akadimia of Ancient Greek and Traditional Chinese Medicine, 16675 Athens, Greece
- Pan-Hellenic Organization of Educational Programs (P.O.E.P.), 17236 Athens, Greece
| | - Spyrangelos Georgatos-Garcia
- Tilburg Institute for Law, Technology, and Society (TILT), Tilburg University, 5037 DE Tilburg, The Netherlands
- Corvers Greece IKE, 15124 Athens, Greece
| | - Georgia Touriki
- Faculty of Law, Democritus University of Thrace, 69100 Komotini, Greece
| | - Christiana Diana Maria Dragosloveanu
- Department of Ophthalmology, Faculty of Dentistry, The “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Department of Ophthalmology, Clinical Hospital for Ophthalmological Emergencies, 010464 Bucharest, Romania
| | - Ana Caruntu
- Department of Oral and Maxillofacial Surgery, “Carol Davila” Central Military Emergency Hospital, 010825 Bucharest, Romania
- Department of Oral and Maxillofacial Surgery, Faculty of Dental Medicine, Titu Maiorescu University, 031593 Bucharest, Romania
| | - Ilinca Savulescu-Fiedler
- Department of Internal Medicine, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Internal Medicine and Cardiology, Coltea Clinical Hospital, 030167 Bucharest, Romania
| | - Serban Dragosloveanu
- Department of Orthopaedics and Traumatology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Orthopaedics, “Foisor” Clinical Hospital of Orthopaedics, Traumatology and Osteoarticular TB, 021382 Bucharest, Romania
| | - Andreea-Elena Scheau
- Department of Radiology and Medical Imaging, “Foisor” Clinical Hospital of Orthopaedics, Traumatology and Osteoarticular TB, 021382 Bucharest, Romania
| | - Ioana Anca Badarau
- Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Constantin Caruntu
- Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Dermatology, “Prof. N.C. Paulescu” National Institute of Diabetes, Nutrition and Metabolic Diseases, 011233 Bucharest, Romania
| | - Cristian Scheau
- Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Radiology and Medical Imaging, “Foisor” Clinical Hospital of Orthopaedics, Traumatology and Osteoarticular TB, 021382 Bucharest, Romania
| |
Collapse
|
3
|
Nouh HS, El-Zawawy NA, Halawa M, Shalamesh EM, Ali SS, Korbecka-Glinka G, Shala AY, El-Sapagh S. Endophytic Penicillium oxalicum AUMC 14898 from Opuntia ficus-indica: A Novel Source of Tannic Acid Inhibiting Virulence and Quorum Sensing of Extensively Drug-Resistant Pseudomonas aeruginosa. Int J Mol Sci 2024; 25:11115. [PMID: 39456896 PMCID: PMC11507641 DOI: 10.3390/ijms252011115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/08/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
Pseudomonas aeruginosa is a harmful pathogen that causes a variety of acute and chronic infections through quorum sensing (QS) mechanisms. The increasing resistance of this bacterium to numerous antibiotics has created a demand for new medications that specifically target QS. Endophytes can be the source of compounds with antibacterial properties. This research is the first to examine tannic acid (TA) produced by endophytic fungus as a potential biotherapeutic agent. A novel endophytic fungal isolate identified as Penicillium oxalicum was derived from the cladodes of Opuntia ficus-indica (L.). The species identification for this isolate was confirmed through sequencing of the internal transcribed spacer region. The metabolites from the culture of this isolate were extracted using ethyl acetate, then separated and characterized using chromatographic methods. This led to the acquisition of TA, a compound that shows strong anti-QS and excellent antibacterial effects against extensively drug-resistant P. aeruginosa strains. Furthermore, it was shown that treating P. aeruginosa with the obtained TA reduced the secretion of virulence factors controlled by QS in a dose-dependent manner, indicating that TA inhibited the QS characteristics of P. aeruginosa. Simultaneously, TA significantly inhibited the expression of genes associated with QS, including rhlR/I, lasR/I, and pqsR. In addition, in silico virtual molecular docking showed that TA could efficiently bind to QS receptor proteins. Our results showed that P. oxalicum could be a new source of TA for the treatment of infections caused by extensively drug-resistant P. aeruginosa.
Collapse
Affiliation(s)
- Hoda S. Nouh
- Botany and Microbiology Department, Faculty of Science, Tanta University, Tanta 31511, Egypt; (N.A.E.-Z.); (M.H.); (E.M.S.); (S.S.A.); (S.E.-S.)
| | - Nessma A. El-Zawawy
- Botany and Microbiology Department, Faculty of Science, Tanta University, Tanta 31511, Egypt; (N.A.E.-Z.); (M.H.); (E.M.S.); (S.S.A.); (S.E.-S.)
| | - Mohamed Halawa
- Botany and Microbiology Department, Faculty of Science, Tanta University, Tanta 31511, Egypt; (N.A.E.-Z.); (M.H.); (E.M.S.); (S.S.A.); (S.E.-S.)
| | - Ebrahim M. Shalamesh
- Botany and Microbiology Department, Faculty of Science, Tanta University, Tanta 31511, Egypt; (N.A.E.-Z.); (M.H.); (E.M.S.); (S.S.A.); (S.E.-S.)
| | - Sameh Samir Ali
- Botany and Microbiology Department, Faculty of Science, Tanta University, Tanta 31511, Egypt; (N.A.E.-Z.); (M.H.); (E.M.S.); (S.S.A.); (S.E.-S.)
| | - Grażyna Korbecka-Glinka
- Department of Biotechnology and Plant Breeding, Institute of Soil Science and Plant Cultivation—State Research Institute, 24-100 Puławy, Poland
| | - Awad Y. Shala
- Medicinal and Aromatic Plants Research Department, Horticulture Research Institute, Agricultural Research Center, Giza 12619, Egypt;
| | - Shimaa El-Sapagh
- Botany and Microbiology Department, Faculty of Science, Tanta University, Tanta 31511, Egypt; (N.A.E.-Z.); (M.H.); (E.M.S.); (S.S.A.); (S.E.-S.)
| |
Collapse
|
4
|
Nickerson R, Thornton CS, Johnston B, Lee AHY, Cheng Z. Pseudomonas aeruginosa in chronic lung disease: untangling the dysregulated host immune response. Front Immunol 2024; 15:1405376. [PMID: 39015565 PMCID: PMC11250099 DOI: 10.3389/fimmu.2024.1405376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 06/14/2024] [Indexed: 07/18/2024] Open
Abstract
Pseudomonas aeruginosa is a highly adaptable opportunistic pathogen capable of exploiting barriers and immune defects to cause chronic lung infections in conditions such as cystic fibrosis. In these contexts, host immune responses are ineffective at clearing persistent bacterial infection, instead driving a cycle of inflammatory lung damage. This review outlines key components of the host immune response to chronic P. aeruginosa infection within the lung, beginning with initial pathogen recognition, followed by a robust yet maladaptive innate immune response, and an ineffective adaptive immune response that propagates lung damage while permitting bacterial persistence. Untangling the interplay between host immunity and chronic P. aeruginosa infection will allow for the development and refinement of strategies to modulate immune-associated lung damage and potentiate the immune system to combat chronic infection more effectively.
Collapse
Affiliation(s)
- Rhea Nickerson
- Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Christina S. Thornton
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Brent Johnston
- Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Amy H. Y. Lee
- Department of Molecular Biology and Biochemistry, Faculty of Science, Simon Fraser University, Burnaby, BC, Canada
| | - Zhenyu Cheng
- Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
5
|
Liu X, Shi D, Cheng S, Chen X, Ma C, Jiang Y, Wang T, Chen T, Shaw C, Wang L, Zhou M. Modification and Synergistic Studies of a Novel Frog Antimicrobial Peptide against Pseudomonas aeruginosa Biofilms. Antibiotics (Basel) 2024; 13:574. [PMID: 39061256 PMCID: PMC11274128 DOI: 10.3390/antibiotics13070574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 07/28/2024] Open
Abstract
The overuse of traditional antibiotics has resulted in bacterial resistance and seriously compromised the therapeutic efficacy of traditional antibiotics, making the exploration of new antimicrobials particularly important. Several studies have shown that bioactive peptides have become an important source of new antimicrobial drugs due to their broad-spectrum antibacterial action and lack of susceptibility to resistance. In this study, a novel bioactive peptide Nigrosin-6VL was characterised from the skin secretion of the golden cross band frog, Odorrana andersonii, by using the 'shotgun' cloning strategy. Modifications on the Rana Box of Nigrosin-6VL revealed its critical role in antimicrobial functions. The peptide analogue, 2170-2R, designed to preserve the Rana Box structure while enhancing cationicity, exhibited improved therapeutic efficacy, particularly against Gram-negative bacteria, with a therapeutic value of 45.27. Synergistic studies demonstrated that 2170-2R inherits the synergistic antimicrobial activities of the parent peptides and effectively enhances the antimicrobial capacity of cefepime and gentamicin against both planktonic cells and biofilms. Specifically, 2170-2R can synergise effectively with cefepime and gentamicin against different strains of P. aeruginosa biofilms. Consequently, 2170-2R holds promise as a potent antimicrobial agent developed to combat infections induced by Pseudomonas aeruginosa.
Collapse
Affiliation(s)
- Xinze Liu
- Natural Drug Discovery Group, School of Pharmacy, Queen’s University Belfast, Belfast BT9 7BL, UK; (X.L.); (S.C.); (X.C.); (C.M.); (T.C.); (C.S.); (L.W.); (M.Z.)
| | - Daning Shi
- Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Haidian District, Beijing 100081, China;
| | - Shiya Cheng
- Natural Drug Discovery Group, School of Pharmacy, Queen’s University Belfast, Belfast BT9 7BL, UK; (X.L.); (S.C.); (X.C.); (C.M.); (T.C.); (C.S.); (L.W.); (M.Z.)
| | - Xiaoling Chen
- Natural Drug Discovery Group, School of Pharmacy, Queen’s University Belfast, Belfast BT9 7BL, UK; (X.L.); (S.C.); (X.C.); (C.M.); (T.C.); (C.S.); (L.W.); (M.Z.)
| | - Chengbang Ma
- Natural Drug Discovery Group, School of Pharmacy, Queen’s University Belfast, Belfast BT9 7BL, UK; (X.L.); (S.C.); (X.C.); (C.M.); (T.C.); (C.S.); (L.W.); (M.Z.)
| | - Yangyang Jiang
- Natural Drug Discovery Group, School of Pharmacy, Queen’s University Belfast, Belfast BT9 7BL, UK; (X.L.); (S.C.); (X.C.); (C.M.); (T.C.); (C.S.); (L.W.); (M.Z.)
| | - Tao Wang
- Natural Drug Discovery Group, School of Pharmacy, Queen’s University Belfast, Belfast BT9 7BL, UK; (X.L.); (S.C.); (X.C.); (C.M.); (T.C.); (C.S.); (L.W.); (M.Z.)
| | - Tianbao Chen
- Natural Drug Discovery Group, School of Pharmacy, Queen’s University Belfast, Belfast BT9 7BL, UK; (X.L.); (S.C.); (X.C.); (C.M.); (T.C.); (C.S.); (L.W.); (M.Z.)
| | - Chris Shaw
- Natural Drug Discovery Group, School of Pharmacy, Queen’s University Belfast, Belfast BT9 7BL, UK; (X.L.); (S.C.); (X.C.); (C.M.); (T.C.); (C.S.); (L.W.); (M.Z.)
| | - Lei Wang
- Natural Drug Discovery Group, School of Pharmacy, Queen’s University Belfast, Belfast BT9 7BL, UK; (X.L.); (S.C.); (X.C.); (C.M.); (T.C.); (C.S.); (L.W.); (M.Z.)
| | - Mei Zhou
- Natural Drug Discovery Group, School of Pharmacy, Queen’s University Belfast, Belfast BT9 7BL, UK; (X.L.); (S.C.); (X.C.); (C.M.); (T.C.); (C.S.); (L.W.); (M.Z.)
| |
Collapse
|
6
|
Kim SJ, Kim T, Choi H, Shin TR, Kim HI, Jang SH, Hong JY, Lee CY, Chung S, Choi JH, Sim YS. Respiratory pathogen and clinical features of hospitalized patients in acute exacerbation of chronic obstructive pulmonary disease after COVID 19 pandemic. Sci Rep 2024; 14:10462. [PMID: 38714885 PMCID: PMC11076476 DOI: 10.1038/s41598-024-61360-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 05/06/2024] [Indexed: 05/12/2024] Open
Abstract
Respiratory infections are common causes of acute exacerbation of chronic obstructive lung disease (AECOPD). We explored whether the pathogens causing AECOPD and clinical features changed from before to after the coronavirus disease 2019 (COVID-19) outbreak. We reviewed the medical records of patients hospitalized with AECOPD at four university hospitals between January 2017 and December 2018 and between January 2021 and December. We evaluated 1180 patients with AECOPD for whom medication histories were available. After the outbreak, the number of patients hospitalized with AECOPD was almost 44% lower compared with before the outbreak. Patients hospitalized with AECOPD after the outbreak were younger (75 vs. 77 years, p = 0.003) and more often stayed at home (96.6% vs. 88.6%, p < 0.001) than patients of AECOPD before the outbreak. Hospital stay was longer after the outbreak than before the outbreak (10 vs. 8 days. p < 0.001). After the COVID-19 outbreak, the identification rates of S. pneumoniae (15.3 vs. 6.2%, p < 0.001) and Hemophilus influenzae (6.4 vs. 2.4%, p = 0.002) decreased, whereas the identification rates of P. aeruginosa (9.4 vs. 13.7%, p = 0.023), Klebsiella pneumoniae (5.3 vs. 9.8%, p = 0.004), and methicillin-resistant Staphylococcus aureus (1.0 vs. 2.8%, p = 0.023) increased. After the outbreak, the identification rate of influenza A decreased (10.4 vs. 1.0%, p = 0.023). After the outbreak, the number of patients hospitalized with AECOPD was lower and the identification rates of community-transmitted pathogens tended to decrease, whereas the rates of pathogens capable of chronic colonization tended to increase. During the period of large-scale viral outbreaks that require quarantine, patients with AECOPD might be given more consideration for treatment against strains that can colonize chronic respiratory disease rather than community acquired pathogens.
Collapse
Affiliation(s)
- Soo Jung Kim
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Internal Medicine, Hallym University Kangnam Sacred Heart Hospital, Seoul, Korea
- Lung Research Institute, Hallym University College of Medicine, Chuncheon, Korea
| | - Taehee Kim
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Internal Medicine, Hallym University Kangnam Sacred Heart Hospital, Seoul, Korea
- Lung Research Institute, Hallym University College of Medicine, Chuncheon, Korea
| | - Hayoung Choi
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Internal Medicine, Hallym University Kangnam Sacred Heart Hospital, Seoul, Korea
- Lung Research Institute, Hallym University College of Medicine, Chuncheon, Korea
| | - Tae Rim Shin
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Internal Medicine, Hallym University Kangnam Sacred Heart Hospital, Seoul, Korea
- Lung Research Institute, Hallym University College of Medicine, Chuncheon, Korea
| | - Hwan Il Kim
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Internal Medicine, Hallym University Sacred Heart Hospital, Anyang-si, Korea
- Lung Research Institute, Hallym University College of Medicine, Chuncheon, Korea
| | - Seung Hun Jang
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Internal Medicine, Hallym University Sacred Heart Hospital, Anyang-si, Korea
- Lung Research Institute, Hallym University College of Medicine, Chuncheon, Korea
| | - Ji Young Hong
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Internal Medicine, Hallym University Chuncheon Sacred Heart Hospital, Chuncheon-si, Korea
- Lung Research Institute, Hallym University College of Medicine, Chuncheon, Korea
| | - Chang Youl Lee
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Internal Medicine, Hallym University Chuncheon Sacred Heart Hospital, Chuncheon-si, Korea
- Lung Research Institute, Hallym University College of Medicine, Chuncheon, Korea
| | - Soojie Chung
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Internal Medicine, Hallym University Dongtan Sacred Heart Hospital, Dongtan-si, Korea
- Lung Research Institute, Hallym University College of Medicine, Chuncheon, Korea
| | - Jeong-Hee Choi
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Internal Medicine, Hallym University Dongtan Sacred Heart Hospital, Dongtan-si, Korea
- Lung Research Institute, Hallym University College of Medicine, Chuncheon, Korea
| | - Yun Su Sim
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Internal Medicine, Hallym University Kangnam Sacred Heart Hospital, Seoul, Korea.
- Lung Research Institute, Hallym University College of Medicine, Chuncheon, Korea.
| |
Collapse
|
7
|
Wallart L, Ben Mlouka MA, Saffiedine B, Coquet L, Le H, Hardouin J, Jouenne T, Phan G, Kiefer-Meyer MC, Girard E, Broutin I, Cosette P. BacA: a possible regulator that contributes to the biofilm formation of Pseudomonas aeruginosa. Front Microbiol 2024; 15:1332448. [PMID: 38505547 PMCID: PMC10948618 DOI: 10.3389/fmicb.2024.1332448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 02/12/2024] [Indexed: 03/21/2024] Open
Abstract
Previously, we pointed out in P. aeruginosa PAO1 biofilm cells the accumulation of a hypothetical protein named PA3731 and showed that the deletion of the corresponding gene impacted its biofilm formation capacity. PA3731 belongs to a cluster of 4 genes (pa3732 to pa3729) that we named bac for "Biofilm Associated Cluster." The present study focuses on the PA14_16140 protein, i.e., the PA3732 (BacA) homolog in the PA14 strain. The role of BacA in rhamnolipid secretion, biofilm formation and virulence, was confirmed by phenotypic experiments with a bacA mutant. Additional investigations allow to advance that the bac system involves in fact 6 genes organized in operon, i.e., bacA to bacF. At a molecular level, quantitative proteomic studies revealed an accumulation of the BAC cognate partners by the bacA sessile mutant, suggesting a negative control of BacA toward the bac operon. Finally, a first crystallographic structure of BacA was obtained revealing a structure homologous to chaperones or/and regulatory proteins.
Collapse
Affiliation(s)
- Lisa Wallart
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, PBS UMR 6270, Rouen, France
| | - Mohamed Amine Ben Mlouka
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, PBS UMR 6270, Rouen, France
- Univ Rouen Normandy, INSERM US 51, CNRS UAR 2026, HeRacLeS PISSARO, Rouen, France
| | - Brahim Saffiedine
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, PBS UMR 6270, Rouen, France
| | - Laurent Coquet
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, PBS UMR 6270, Rouen, France
- Univ Rouen Normandy, INSERM US 51, CNRS UAR 2026, HeRacLeS PISSARO, Rouen, France
| | - Hung Le
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, PBS UMR 6270, Rouen, France
- Univ Rouen Normandy, INSERM US 51, CNRS UAR 2026, HeRacLeS PISSARO, Rouen, France
| | - Julie Hardouin
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, PBS UMR 6270, Rouen, France
- Univ Rouen Normandy, INSERM US 51, CNRS UAR 2026, HeRacLeS PISSARO, Rouen, France
| | - Thierry Jouenne
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, PBS UMR 6270, Rouen, France
| | - Gilles Phan
- Paris Cité University, CiTCoM, CNRS, Paris, France
| | - Marie-Christine Kiefer-Meyer
- Univ Rouen Normandie, Normandie Univ, GlycoMEV UR 4358, SFR Normandie Végétal FED 4277, Innovation Chimie Carnot, RMT BESTIM, GDR Chemobiologie, IRIB, Rouen, France
| | - Eric Girard
- Grenoble Alpes University, CNRS, CEA, IBS, Grenoble, France
| | | | - Pascal Cosette
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, PBS UMR 6270, Rouen, France
- Univ Rouen Normandy, INSERM US 51, CNRS UAR 2026, HeRacLeS PISSARO, Rouen, France
| |
Collapse
|
8
|
Kang D, Xu Q, Kirienko NV. In vitro lung epithelial cell model reveals novel roles for Pseudomonas aeruginosa siderophores. Microbiol Spectr 2024; 12:e0369323. [PMID: 38311809 PMCID: PMC10913452 DOI: 10.1128/spectrum.03693-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 12/21/2023] [Indexed: 02/06/2024] Open
Abstract
The multidrug-resistant pathogen Pseudomonas aeruginosa is a common nosocomial respiratory pathogen that continues to threaten the lives of patients with mechanical ventilation in intensive care units and those with underlying comorbidities such as cystic fibrosis or chronic obstructive pulmonary disease. For over 20 years, studies have repeatedly demonstrated that the major siderophore pyoverdine is an important virulence factor for P. aeruginosa in invertebrate and mammalian hosts in vivo. Despite its physiological significance, an in vitro, mammalian cell culture model that can be used to characterize the impact and molecular mechanisms of pyoverdine-mediated virulence has only been developed very recently. In this study, we adapt a previously-established, murine macrophage-based model to use human bronchial epithelial (16HBE) cells. We demonstrate that conditioned medium from P. aeruginosa induced rapid 16HBE cell death through the pyoverdine-dependent secretion of cytotoxic rhamnolipids. Genetic or chemical disruption of pyoverdine biosynthesis decreased rhamnolipid production and mitigated cell death. Consistent with these observations, chemical depletion of lipids or genetic disruption of rhamnolipid biosynthesis abrogated the toxicity of the conditioned medium. Furthermore, we also examine the effects of exposure to purified pyoverdine on 16HBE cells. While pyoverdine accumulated within cells, it was largely sequestered within early endosomes, resulting in minimal cytotoxicity. More membrane-permeable iron chelators, such as the siderophore pyochelin, decreased epithelial cell viability and upregulated several pro-inflammatory genes. However, pyoverdine potentiated these iron chelators in activating pro-inflammatory pathways. Altogether, these findings suggest that the siderophores pyoverdine and pyochelin play distinct roles in virulence during acute P. aeruginosa lung infection. IMPORTANCE Multidrug-resistant Pseudomonas aeruginosa is a versatile bacterium that frequently causes lung infections. This pathogen is life-threatening to mechanically-ventilated patients in intensive care units and is a debilitating burden for individuals with cystic fibrosis. However, the role of P. aeruginosa virulence factors and their regulation during infection are not fully understood. Previous murine lung infection studies have demonstrated that the production of siderophores (e.g., pyoverdine and pyochelin) is necessary for full P. aeruginosa virulence. In this report, we provide further mechanistic insight into this phenomenon. We characterize distinct and novel ways these siderophores contribute to virulence using an in vitro human lung epithelial cell culture model.
Collapse
Affiliation(s)
- Donghoon Kang
- Department of BioSciences, Rice University, Houston, Texas, USA
| | - Qi Xu
- Department of BioSciences, Rice University, Houston, Texas, USA
- Department of Bioengineering, Rice University, Houston, Texas, USA
| | | |
Collapse
|
9
|
Ambreetha S, Zincke D, Balachandar D, Mathee K. Genomic and metabolic versatility of Pseudomonas aeruginosa contributes to its inter-kingdom transmission and survival. J Med Microbiol 2024; 73. [PMID: 38362900 DOI: 10.1099/jmm.0.001791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024] Open
Abstract
Pseudomonas aeruginosa is one of the most versatile bacteria with renowned pathogenicity and extensive drug resistance. The diverse habitats of this bacterium include fresh, saline and drainage waters, soil, moist surfaces, taps, showerheads, pipelines, medical implants, nematodes, insects, plants, animals, birds and humans. The arsenal of virulence factors produced by P. aeruginosa includes pyocyanin, rhamnolipids, siderophores, lytic enzymes, toxins and polysaccharides. All these virulent elements coupled with intrinsic, adaptive and acquired antibiotic resistance facilitate persistent colonization and lethal infections in different hosts. To date, treating pulmonary diseases remains complicated due to the chronic secondary infections triggered by hospital-acquired P. aeruginosa. On the contrary, this bacterium can improve plant growth by suppressing phytopathogens and insects. Notably, P. aeruginosa is one of the very few bacteria capable of trans-kingdom transmission and infection. Transfer of P. aeruginosa strains from plant materials to hospital wards, animals to humans, and humans to their pets occurs relatively often. Recently, we have identified that plant-associated P. aeruginosa strains could be pathologically similar to clinical isolates. In this review, we have highlighted the genomic and metabolic factors that facilitate the dominance of P. aeruginosa across different biological kingdoms and the varying roles of this bacterium in plant and human health.
Collapse
Affiliation(s)
- Sakthivel Ambreetha
- Developmental Biology and Genetics, Division of Biological Sciences, Indian Institute of Science, Bengaluru, Karnataka, 560012, India
| | - Diansy Zincke
- Emerging Pathogens Institute, University of Florida, Gainesville, FL 32610, USA
| | - Dananjeyan Balachandar
- Department of Agricultural Microbiology, Tamil Nadu Agricultural University, Coimbatore, 641003, Tamil Nadu, India
| | - Kalai Mathee
- Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| |
Collapse
|
10
|
Kang D, Xu Q, Kirienko NV. In vitro Lung Epithelial Cell Model Reveals Novel Roles for Pseudomonas aeruginosa Siderophores. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.26.525796. [PMID: 36747656 PMCID: PMC9901015 DOI: 10.1101/2023.01.26.525796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Multidrug-resistant Pseudomonas aeruginosa is a common nosocomial respiratory pathogen that continues to threaten the lives of patients with mechanical ventilation in intensive care units and those with underlying comorbidities such as cystic fibrosis or chronic obstructive pulmonary disease. For over 20 years, studies have repeatedly demonstrated that the major siderophore pyoverdine is an important virulence factor for P. aeruginosa in invertebrate and mammalian hosts in vivo. Despite its physiological significance, an in vitro, mammalian cell culture model to characterize the impact and molecular mechanism of pyoverdine-mediated virulence has only been developed very recently. In this study, we adapt a previously-established, murine macrophage-based model for human bronchial epithelial cells (16HBE). We demonstrate that conditioned medium from P. aeruginosa induced rapid 16HBE cell death through the pyoverdine-dependent secretion of cytotoxic rhamnolipids. Genetic or chemical disruption of pyoverdine biosynthesis decreased rhamnolipid production and mitigated cell death. Consistent with these observations, chemical depletion of lipid factors or genetic disruption of rhamnolipid biosynthesis was sufficient to abrogate conditioned medium toxicity. Furthermore, we also examine the effects of purified pyoverdine exposure on 16HBE cells. While pyoverdine accumulated within cells, the siderophore was largely sequestered within early endosomes, showing minimal cytotoxicity. More membrane-permeable iron chelators, such as the siderophore pyochelin, decreased epithelial cell viability and upregulated several proinflammatory genes. However, pyoverdine potentiated these iron chelators in activating proinflammatory pathways. Altogether, these findings suggest that the siderophores pyoverdine and pyochelin play distinct roles in virulence during acute P. aeruginosa lung infection.
Collapse
Affiliation(s)
- Donghoon Kang
- Department of BioSciences, Rice University, Houston, TX, USA
| | - Qi Xu
- Department of BioSciences, Rice University, Houston, TX, USA
- Department of Bioengineering, Rice University, Houston, TX, USA
| | | |
Collapse
|
11
|
Grandy S, Scur M, Dolan K, Nickerson R, Cheng Z. Using model systems to unravel host-Pseudomonas aeruginosa interactions. Environ Microbiol 2023; 25:1765-1784. [PMID: 37290773 DOI: 10.1111/1462-2920.16440] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 05/29/2023] [Indexed: 06/10/2023]
Abstract
Using model systems in infection biology has led to the discoveries of many pathogen-encoded virulence factors and critical host immune factors to fight pathogenic infections. Studies of the remarkable Pseudomonas aeruginosa bacterium that infects and causes disease in hosts as divergent as humans and plants afford unique opportunities to shed new light on virulence strategies and host defence mechanisms. One of the rationales for using model systems as a discovery tool to characterise bacterial factors driving human infection outcomes is that many P. aeruginosa virulence factors are required for pathogenesis in diverse different hosts. On the other side, many host signalling components, such as the evolutionarily conserved mitogen-activated protein kinases, are involved in immune signalling in a diverse range of hosts. Some model organisms that have less complex immune systems also allow dissection of the direct impacts of innate immunity on host defence without the interference of adaptive immunity. In this review, we start with discussing the occurrence of P. aeruginosa in the environment and the ability of this bacterium to cause disease in various hosts as a natural opportunistic pathogen. We then summarise the use of some model systems to study host defence and P. aeruginosa virulence.
Collapse
Affiliation(s)
- Shannen Grandy
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Michal Scur
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Kathleen Dolan
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Rhea Nickerson
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Zhenyu Cheng
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
12
|
Periferakis AT, Periferakis A, Periferakis K, Caruntu A, Badarau IA, Savulescu-Fiedler I, Scheau C, Caruntu C. Antimicrobial Properties of Capsaicin: Available Data and Future Research Perspectives. Nutrients 2023; 15:4097. [PMID: 37836381 PMCID: PMC10574431 DOI: 10.3390/nu15194097] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 09/13/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023] Open
Abstract
Capsaicin is a phytochemical derived from plants of the genus Capsicum and subject of intensive phytochemical research due to its numerous physiological and therapeutical effects, including its important antimicrobial properties. Depending on the concentration and the strain of the bacterium, capsaicin can exert either bacteriostatic or even bactericidal effects against a wide range of both Gram-positive and Gram-negative bacteria, while in certain cases it can reduce their pathogenicity by a variety of mechanisms such as mitigating the release of toxins or inhibiting biofilm formation. Likewise, capsaicin has been shown to be effective against fungal pathogens, particularly Candida spp., where it once again interferes with biofilm formation. The parasites Toxoplasma gondi and Trypanosoma cruzi have been found to be susceptible to the action of this compound too while there are also viruses whose invasiveness is significantly dampened by it. Among the most encouraging findings are the prospects for future development, especially using new formulations and drug delivery mechanisms. Finally, the influence of capsaicin in somatostatin and substance P secretion and action, offers an interesting array of possibilities given that these physiologically secreted compounds modulate inflammation and immune response to a significant extent.
Collapse
Affiliation(s)
- Aristodemos-Theodoros Periferakis
- Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Elkyda, Research & Education Centre of Charismatheia, 17675 Athens, Greece
| | - Argyrios Periferakis
- Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Elkyda, Research & Education Centre of Charismatheia, 17675 Athens, Greece
- Akadimia of Ancient Greek and Traditional Chinese Medicine, 16675 Athens, Greece
| | - Konstantinos Periferakis
- Akadimia of Ancient Greek and Traditional Chinese Medicine, 16675 Athens, Greece
- Pan-Hellenic Organization of Educational Programs (P.O.E.P), 17236 Athens, Greece
| | - Ana Caruntu
- Department of Oral and Maxillofacial Surgery, “Carol Davila” Central Military Emergency Hospital, 010825 Bucharest, Romania
- Department of Oral and Maxillofacial Surgery, Faculty of Dental Medicine, “Titu Maiorescu” University, 031593 Bucharest, Romania
| | - Ioana Anca Badarau
- Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Ilinca Savulescu-Fiedler
- Department of Internal Medicine and Cardiology, Coltea Clinical Hospital, 030167 Bucharest, Romania
- Department of Internal Medicine, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Cristian Scheau
- Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Radiology and Medical Imaging, “Foisor” Clinical Hospital of Orthopaedics, Traumatology and Osteoarticular TB, 021382 Bucharest, Romania
| | - Constantin Caruntu
- Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Dermatology, ‘Prof. N.C. Paulescu’ National Institute of Diabetes, Nutrition and Metabolic Diseases, 011233 Bucharest, Romania
| |
Collapse
|
13
|
Fereshteh S, Haririzadeh Jouriani F, Noori Goodarzi N, Torkamaneh M, Khasheii B, Badmasti F. Defeating a superbug: A breakthrough in vaccine design against multidrug-resistant Pseudomonas aeruginosa using reverse vaccinology. PLoS One 2023; 18:e0289609. [PMID: 37535697 PMCID: PMC10399887 DOI: 10.1371/journal.pone.0289609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 07/22/2023] [Indexed: 08/05/2023] Open
Abstract
BACKGROUND Multidrug-resistant Pseudomonas aeruginosa has become a major cause of severe infections. Due to the lack of approved vaccines, this study has presented putative vaccine candidates against it. METHODS P. aeruginosa 24Pae112 as a reference strain was retrieved from GenBank database. The surface-exposed, antigenic, non-allergenic, and non-homologous human proteins were selected. The conserved domains of selected proteins were evaluated, and the prevalence of proteins was assessed among 395 genomes. Next, linear and conformational B-cell epitopes, and human MHC II binding sites were determined. Finally, five conserved and highly antigenic B-cell epitopes from OMPs were implanted on the three platforms as multi-epitope vaccines, including FliC, the bacteriophage T7 tail, and the cell wall-associated transporter proteins. The immunoreactivity was investigated using molecular docking and immune simulation. Furthermore, molecular dynamics simulation was done to refine the chimeric cell-wall-associated transporter-TLR4 complex as the best interaction. RESULTS Among 6494 total proteins of P. aeruginosa 24Pae112, 16 proteins (seven OMPs and nine secreted) were ideal according to the defined criteria. These proteins had a molecular weight of 110 kDa and were prevalent in ≥ 75% of P. aeruginosa genomes. Among the presented multi-epitope vaccines, the chimeric cell-wall-associated transporter had the strongest interaction with TLR4. Moreover, the immune simulation response revealed that the bacteriophage T7 tail chimeric protein had the strongest ability to stimulate the immune system. In addition, molecular docking and molecular dynamic simulation indicated the proper and stable interactions between the chimeric cell-wall-associated transporter and TLR4. CONCLUSION This study proposed 16 shortlisted proteins as promising immunogenic targets. Two novel platforms (e.g. cell-wall-associated transporter and bacteriophage T7 tail proteins) for designing of multi-epitope vaccines (MEVs), showed the better performance compared to FliC. In our future studies, these two MEVs will receive more scrutiny to evaluate their immunoreactivity.
Collapse
Affiliation(s)
| | | | - Narjes Noori Goodarzi
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahdi Torkamaneh
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| | - Behnoush Khasheii
- Department of Pathobiology, Faculty of Veterinary Science, Bu-Ali Sina University, Hamedan, Iran
| | - Farzad Badmasti
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
14
|
Rowe WJ, Lebman DA, Ohman DE. Mechanism of resistance to phagocytosis and pulmonary persistence in mucoid Pseudomonas aeruginosa. Front Cell Infect Microbiol 2023; 13:1125901. [PMID: 37009499 PMCID: PMC10050686 DOI: 10.3389/fcimb.2023.1125901] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 02/27/2023] [Indexed: 03/17/2023] Open
Abstract
IntroductionPseudomonas aeruginosa is known for its ability to form biofilms, which are dependent on the production of exopolysaccharides. During chronic colonization of the airway and biofilm formation, P. aeruginosa converts to a mucoid phenotype, indicating production of the exopolysaccharide alginate. The mucoid phenotype promotes resistance to phagocytic killing, but the mechanism has not been established.Methods and ResultsTo better understand the mechanism of phagocytic evasion conferred by alginate production, Human (THP-1) and murine (MH-S) macrophage cell lines were used to determine the effects of alginate production on macrophage binding, signaling and phagocytosis. Phagocytosis assays using mucoid clinical isolate FRD1 and its non-mucoid algD mutant showed that alginate production inhibited opsonic and non-opsonic phagocytosis, but exogenous alginate was not protective. Alginate caused a decrease in binding to murine macrophages. Blocking antibodies to CD11b and CD14 showed that these receptors were important for phagocytosis and were blocked by alginate. Furthermore, alginate production decreased the activation of signaling pathways required for phagocytosis. Mucoid and non-mucoid bacteria induced similar levels of MIP-2 from murine macrophages.DiscussionThis study demonstrated for the first time that alginate on the bacterial surface inhibits receptor-ligand interactions important for phagocytosis. Our data suggest that there is a selection for alginate conversion that blocks the earliest steps in phagocytosis, leading to persistence during chronic pulmonary infections.
Collapse
Affiliation(s)
- Warren J. Rowe
- Department of Microbiology & Immunology, Virginia Commonwealth University Medical Center, Richmond, VA, United States
| | - Deborah A. Lebman
- Department of Microbiology & Immunology, Virginia Commonwealth University Medical Center, Richmond, VA, United States
| | - Dennis E. Ohman
- Department of Microbiology & Immunology, Virginia Commonwealth University Medical Center, Richmond, VA, United States
- Research Service, McGuire Veterans Affairs Medical Center, Richmond, VA, United States
- *Correspondence: Dennis E. Ohman,
| |
Collapse
|
15
|
Kalpana S, Lin WY, Wang YC, Fu Y, Lakshmi A, Wang HY. Antibiotic Resistance Diagnosis in ESKAPE Pathogens-A Review on Proteomic Perspective. Diagnostics (Basel) 2023; 13:1014. [PMID: 36980322 PMCID: PMC10047325 DOI: 10.3390/diagnostics13061014] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/26/2023] [Accepted: 02/28/2023] [Indexed: 03/11/2023] Open
Abstract
Antibiotic resistance has emerged as an imminent pandemic. Rapid diagnostic assays distinguish bacterial infections from other diseases and aid antimicrobial stewardship, therapy optimization, and epidemiological surveillance. Traditional methods typically have longer turn-around times for definitive results. On the other hand, proteomic studies have progressed constantly and improved both in qualitative and quantitative analysis. With a wide range of data sets made available in the public domain, the ability to interpret the data has considerably reduced the error rates. This review gives an insight on state-of-the-art proteomic techniques in diagnosing antibiotic resistance in ESKAPE pathogens with a future outlook for evading the "imminent pandemic".
Collapse
Affiliation(s)
- Sriram Kalpana
- Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan 333423, Taiwan
| | | | - Yu-Chiang Wang
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
- Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Yiwen Fu
- Department of Medicine, Kaiser Permanente Santa Clara Medical Center, Santa Clara, CA 95051, USA
| | - Amrutha Lakshmi
- Department of Biochemistry, University of Madras, Guindy Campus, Chennai 600025, India
| | - Hsin-Yao Wang
- Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan 333423, Taiwan
| |
Collapse
|
16
|
Periferakis A, Periferakis K, Badarau IA, Petran EM, Popa DC, Caruntu A, Costache RS, Scheau C, Caruntu C, Costache DO. Kaempferol: Antimicrobial Properties, Sources, Clinical, and Traditional Applications. Int J Mol Sci 2022; 23:ijms232315054. [PMID: 36499380 PMCID: PMC9740324 DOI: 10.3390/ijms232315054] [Citation(s) in RCA: 113] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/23/2022] [Accepted: 11/26/2022] [Indexed: 12/03/2022] Open
Abstract
Flavonoids are a category of plant-derived compounds which exhibit a large number of health-related effects. One of the most well-known and studied flavonoids is kaempferol, which can be found in a wide variety of herbs and plant families. Apart from their anticarcinogenic and anti-inflammatory effects, kaempferol and its associated compounds also exhibit antibacterial, antifungal, and antiprotozoal activities. The development of drugs and treatment schemes based on these compounds is becoming increasingly important in the face of emerging resistance of numerous pathogens as well as complex molecular interactions between various drug therapies. In addition, many of the kaempferol-containing plants are used in traditional systems all over the world for centuries to treat numerous conditions. Due to its variety of sources and associated compounds, some molecular mechanisms of kaempferol antimicrobial activity are well known while others are still under analysis. This paper thoroughly documents the vegetal and food sources of kaempferol as well as the most recent and significant studies regarding its antimicrobial applications.
Collapse
Affiliation(s)
- Argyrios Periferakis
- Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Akadimia of Ancient Greek and Traditional Chinese Medicine, 16675 Athens, Greece
| | - Konstantinos Periferakis
- Akadimia of Ancient Greek and Traditional Chinese Medicine, 16675 Athens, Greece
- Pan-Hellenic Organization of Educational Programs (P.O.E.P), 17236 Athens, Greece
- Orasis Acupuncture Institute, 11526 Athens, Greece
| | - Ioana Anca Badarau
- Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Elena Madalina Petran
- Department of Biochemistry, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Toxicology, Grigore Alexandrescu Emergency Children’s Hospital, 011743 Bucharest, Romania
| | - Delia Codruta Popa
- Department of Biochemistry, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Hematology, Fundeni Clinical Institute, 022328 Bucharest, Romania
- Correspondence: (D.C.P.); (C.S.)
| | - Ana Caruntu
- Department of Oral and Maxillofacial Surgery, ‘Dr. Carol Davila’ Central Military Emergency Hospital, 010825 Bucharest, Romania
- Department of Oral and Maxillofacial Surgery, Faculty of Dental Medicine, ‘Titu Maiorescu’ University, 031593 Bucharest, Romania
| | - Raluca Simona Costache
- Department of Gastroenterology, Gastroenterology and Internal Medicine Clinic, ‘Dr. Carol Davila’ Central Military Emergency Hospital, 010825 Bucharest, Romania
- Department of Internal Medicine and Gastroenterology, ‘Carol Davila’ University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Cristian Scheau
- Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Correspondence: (D.C.P.); (C.S.)
| | - Constantin Caruntu
- Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Dermatology, ‘Prof. N.C. Paulescu’ National Institute of Diabetes, Nutrition and Metabolic Diseases, 011233 Bucharest, Romania
| | - Daniel Octavian Costache
- Department of Dermatology, ‘Dr. Carol Davila’ Central Military Emergency Hospital, 010825 Bucharest, Romania
| |
Collapse
|
17
|
Chronic Bronchial Infection Is Associated with More Rapid Lung Function Decline in Chronic Obstructive Pulmonary Disease. Ann Am Thorac Soc 2022; 19:1842-1847. [PMID: 35666811 DOI: 10.1513/annalsats.202108-974oc] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Rationale: Some patients with chronic obstructive pulmonary disease (COPD) suffer accelerated lung function (forced expiratory volume in 1 second [FEV1]) decline over time. Objectives: To investigate the relationship between chronic bronchial infection (CBI) and, in particular, the isolation of Pseudomonas aeruginosa (PA), and FEV1 decline in COPD. Methods: Post-hoc analysis of a prospective cohort of 201 patients with COPD followed up every 3-6 months for 84 months. CBI was defined as ⩾3 sputum positive cultures of the same pathogenic micro-organism (PPM) over 1 year. Patients were stratified according to the presence of CBI by any PPM, as well by a single or multiple isolation of PA during follow-up. An adjusted mixed-effects linear regression model was used to investigate the independent effects of CBI and PA isolation on FEV1 decline over time. Results: During follow-up, PPMs were never isolated in 43.3% of patients, in 23.9% of them PPMs were isolated once, and CBI by any PPM was confirmed in 32.8% of participants. FEV1 decline in the entire cohort was 33.7 (95% confidence interval [CI], 21.4-46.1) ml/year. This was significantly increased in patients with CBI by any PPM (57.1 [95% CI, 28.5-79.3] ml/year) and in those in whom PA was isolated at least once (48.5 [95% CI, 27.3-88.2] ml/year). Multivariable analysis showed that the presence of both CBI by any PPM, and at least one PA isolation, were independent factors associated with faster FEV1 decline adjusted by baseline FEV1, presence of bronchiectasis, body mass index, age, exacerbations, smoking status, symptoms, baseline treatment, and comorbidities. Conclusions: The presence of CBI by any PPM, and one or more PA isolation, were independently associated with FEV1 decline in patients with COPD.
Collapse
|
18
|
Yun M, Park SH, Kang DH, Kim JW, Kim JD, Ryu S, Lee J, Jeong HM, Hwang HR, Song KS. Inhibition of Pseudomonas aeruginosa LPS-Induced airway inflammation by RIPK3 in human airway. J Cell Mol Med 2022; 26:5506-5516. [PMID: 36226560 DOI: 10.1111/jcmm.17579] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 06/23/2022] [Accepted: 06/28/2022] [Indexed: 11/30/2022] Open
Abstract
Although the physiological function of receptor-interacting protein kinase (RIPK) 3 has emerged as a critical mediator of programmed necrosis/necroptosis, the intracellular role it plays as an attenuator in human lungs and human bronchial epithelia remains unclear. Here, we show that the expression of RIPK3 dramatically decreased in the inflamed tissues of human lungs, and moved from the nucleus to the cytoplasm. The overexpression of RIPK3 dramatically increased F-actin formation and decreased the expression of genes for pro-inflammatory cytokines (IL-6 and IL-1β), but not siRNA-RIPK3. Interestingly, whereas RIPK3 was bound to histone 1b without LPS stimulation, the interaction between them was disrupted after 15 min of LPS treatment. Histone methylation could not maintain the binding of RIPK3 and activated movement towards the cytoplasm. In the cytoplasm, overexpressed RIPK3 continuously attenuated pro-inflammatory cytokine gene expression by inhibiting NF-κB activation, preventing the progression of inflammation during Pseudomonas aeruginosa infection. Our data indicated that RIPK3 is critical for the regulation of the LPS-induced inflammatory microenvironment. Therefore, we suggest that RIPK3 is a potential therapeutic candidate for bacterial infection-induced pulmonary inflammation.
Collapse
Affiliation(s)
- Minsu Yun
- Department of Anesthesiology and Pain Medicine, Kosin University College of Medicine, Busan, South Korea
| | - Sun-Hee Park
- Department of Medical Science, Kosin University College of Medicine, Busan, South Korea
| | - Dong Hee Kang
- Department of Anesthesiology and Pain Medicine, Kosin University College of Medicine, Busan, South Korea
| | - Ji Wook Kim
- Department of Anesthesiology and Pain Medicine, Kosin University College of Medicine, Busan, South Korea
| | - Ju Deok Kim
- Department of Anesthesiology and Pain Medicine, Kosin University College of Medicine, Busan, South Korea
| | - Siejeong Ryu
- Department of Anesthesiology and Pain Medicine, Kosin University College of Medicine, Busan, South Korea
| | - Jeongyeob Lee
- Department of Anesthesiology and Pain Medicine, Kosin University College of Medicine, Busan, South Korea
| | - Hye Min Jeong
- Department of Medical Science, Kosin University College of Medicine, Busan, South Korea
| | - Hye Ran Hwang
- Department of Medical Science, Kosin University College of Medicine, Busan, South Korea
| | - Kyoung Seob Song
- Department of Medical Science, Kosin University College of Medicine, Busan, South Korea
| |
Collapse
|
19
|
Ramassamy M, Murris M, Recoche I, Mailhol C, Didier A, Guilleminault L. Piperacillin-tazobactam-induced fever in chronic respiratory diseases: Safe challenge test under premedication. REVUE FRANÇAISE D'ALLERGOLOGIE 2022. [DOI: 10.1016/j.reval.2021.09.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
20
|
Carstens H, Kalka K, Verhaegh R, Schumacher F, Soddemann M, Wilker B, Keitsch S, Sehl C, Kleuser B, Hübler M, Rauen U, Becker AK, Koch A, Gulbins E, Kamler M. Antimicrobial effects of inhaled sphingosine against Pseudomonas aeruginosa in isolated ventilated and perfused pig lungs. PLoS One 2022; 17:e0271620. [PMID: 35862397 PMCID: PMC9302828 DOI: 10.1371/journal.pone.0271620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 07/04/2022] [Indexed: 11/18/2022] Open
Abstract
Background
Ex-vivo lung perfusion (EVLP) is a save way to verify performance of donor lungs prior to implantation. A major problem of lung transplantation is a donor-to-recipient-transmission of bacterial cultures. Thus, a broadspectrum anti-infective treatment with sphingosine in EVLP might be a novel way to prevent such infections. Sphingosine inhalation might provide a reliable anti-infective treatment option in EVLP. Here, antimicrobial potency of inhalative sphingosine in an infection EVLP model was tested.
Methods
A 3-hour EVLP run using pig lungs was performed. Bacterial infection was initiated 1-hour before sphingosine inhalation. Biopsies were obtained 60 and 120 min after infection with Pseudomonas aeruginosa. Aliquots of broncho-alveolar lavage (BAL) before and after inhalation of sphingosine were plated and counted, tissue samples were fixed in paraformaldehyde, embedded in paraffin and sectioned. Immunostainings were performed.
Results
Sphingosine inhalation in the setting of EVLP rapidly resulted in a 6-fold decrease of P. aeruginosa CFU in the lung (p = 0.016). We did not observe any negative side effects of sphingosine.
Conclusion
Inhalation of sphingosine induced a significant decrease of Pseudomonas aeruginosa at the epithelial layer of tracheal and bronchial cells. The inhalation has no local side effects in ex-vivo perfused and ventilated pig lungs.
Collapse
Affiliation(s)
- Henning Carstens
- Department of Thoracic and Cardiovascular Surgery, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Cardiac Surgery for Congenital Heart Disease, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- * E-mail:
| | - Katharina Kalka
- Department of Thoracic and Cardiovascular Surgery, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Rabea Verhaegh
- Institute of Molecular Biology, University of Duisburg-Essen, Essen, Germany
| | | | - Matthias Soddemann
- Institute of Molecular Biology, University of Duisburg-Essen, Essen, Germany
| | - Barbara Wilker
- Institute of Molecular Biology, University of Duisburg-Essen, Essen, Germany
| | - Simone Keitsch
- Institute of Molecular Biology, University of Duisburg-Essen, Essen, Germany
| | - Carolin Sehl
- Institute of Molecular Biology, University of Duisburg-Essen, Essen, Germany
| | - Burkhard Kleuser
- Institute of Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Michael Hübler
- Cardiac Surgery for Congenital Heart Disease, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ursula Rauen
- Institute of Biochemistry, University of Duisburg-Essen, Essen, Germany
| | - Anne Katrin Becker
- Institute of Molecular Biology, University of Duisburg-Essen, Essen, Germany
| | - Achim Koch
- Department of Thoracic and Cardiovascular Surgery, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Erich Gulbins
- Institute of Molecular Biology, University of Duisburg-Essen, Essen, Germany
- Department of Surgery, University of Cincinnati, Medical School, Cincinnati, OH, United States of America
| | - Markus Kamler
- Department of Thoracic and Cardiovascular Surgery, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
21
|
Tang H, Yang D, Zhu L, Shi F, Ye G, Guo H, Deng H, Zhao L, Xu Z, Li Y. Paeonol Interferes With Quorum-Sensing in Pseudomonas aeruginosa and Modulates Inflammatory Responses In Vitro and In Vivo. Front Immunol 2022; 13:896874. [PMID: 35686124 PMCID: PMC9170885 DOI: 10.3389/fimmu.2022.896874] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 04/19/2022] [Indexed: 11/19/2022] Open
Abstract
Developing quorum-sensing (QS) based anti-infection drugs is one of the most powerful strategies to combat multidrug-resistant bacteria. Paeonol has been proven to attenuate the QS-controlled virulence factors of P. aeruginosa by down-regulating the transcription of QS signal molecules. This research aimed to assess the anti-virulence activity and mechanism of paeonol against P. aeruginosa infection in vitro and in vivo. In this study, paeonol was found to reduce the adhesion and invasion of P.aeruginosa to macrophages and resist the cytotoxicity induced by P.aeruginosa. Paeonol reduced the expression of virulence factors of P.aeruginosa by inhibiting QS, thereby reducing the LDH release and damage of P.aeruginosa-infected macrophages. Paeonol can inhibit bacterial virulence and enhance the ability of macrophages to clear P.aeruginosa. In addition, paeonol exerts anti-inflammatory activity by reducing the expression of inflammatory cytokines and increasing the production of anti-inflammatory cytokines. Paeonol treatment significantly inhibited the activation of TLR4/MyD88/NF-κB signaling pathway and decreased the inflammation response of P. aeruginosa-infected macrophages. Paeonol also significantly reduced the ability of P.aeruginosa to infect mice and reduced the inflammatory response. These data suggest that paeonol can inhibit the virulence of P.aeruginosa and decrease the inflammation response in P.aeruginosa-infected macrophages and mice, which can decrease the damage induced by P.aeruginosa infection and enhance the ability of macrophages to clear bacteria. This study supports the further development of new potential anti-infective drugs based on inhibition of QS and virulence factors.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Zhiwen Xu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yinglun Li
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
22
|
Dalal A, Kushwaha T, Choudhir G, Inampudi KK, Karmakar T, Hariprasad P, Gholap SL. Computational investigations on the potential role of hygrophorones as quorum sensing inhibitors against LasR protein of Pseudomonas aeruginosa. J Biomol Struct Dyn 2022; 41:2249-2259. [PMID: 35075974 DOI: 10.1080/07391102.2022.2029570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Pseudomonas aeruginosa is a gram negative, rod shape bacterium that infects people with compromised immune systems, such as those suffering from AIDS, organ transplantation and cancer. This bacterium is responsible for diseases like cystic fibrosis, chronic lung infection, and ulcerative keratitis. It is diagnosed in most of the patients who were on prolonged ventilation with long term critical care stay. P. aeruginosa develops rapid antimicrobial resistance that is challenging for the treatment and eventually it causes high mortality rate. Thus, the search for potential novel inhibitors that can inhibit the pathogenic activity of P. aeruginosa is of utmost importance. In P. aeruginosa, an important protein, LasR that participates in the gene regulations and expressions has been proposed to be a suitable drug target. Here, we identify a set of hygrophorone molecules as effective inhibitors for this LasR protein based on molecular docking and simulations studies. At first, large number of hygrophorone series of small molecules were screened against the LasR protein and their binding affinities were assessed based on the docking scores. Top scored molecules were selected for calculating various pharmacophore properties, and finally, their potential in inhibiting the LasR protein was delineated by atomistic molecular dynamics simulations and molecular mechanics Poisson-Boltzmann surface area-based calculations. Both docking and simulations studies reveal that a subset of hygrophorone molecules have a good binding affinity for LasR protein and form stable LasR-inhibitor complexes. The present study illustrates that the hygrophorones can be effective inhibitors for the LasR protein and will spur further in vitro studies that would aid to the ongoing search for new antibiotics.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Anu Dalal
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi, India
| | - Tushar Kushwaha
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Gourav Choudhir
- Centre for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi, India
| | - Krishna K Inampudi
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Tarak Karmakar
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi, India
| | - P Hariprasad
- Centre for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi, India
| | - Shivajirao L Gholap
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi, India
| |
Collapse
|
23
|
Carstens H, Kalka K, Verhaegh R, Schumacher F, Soddemann M, Wilker B, Keitsch S, Sehl C, Kleuser B, Wahlers T, Reiner G, Koch A, Rauen U, Gulbins E, Kamler M. Inhaled sphingosine has no adverse side effects in isolated ventilated and perfused pig lungs. Sci Rep 2021; 11:18607. [PMID: 34545108 PMCID: PMC8452622 DOI: 10.1038/s41598-021-97708-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 08/24/2021] [Indexed: 11/09/2022] Open
Abstract
Ex-vivo lung perfusion (EVLP) systems like XVIVO are more and more common in the setting of lung transplantation, since marginal donor-lungs can easily be subjected to a performance test or be treated with corticosteroids or antibiotics in high dose regimes. Donor lungs are frequently positive in bronchoalveolar lavage (BAL) bacterial cultures (46-89%) which leads to a donor-to-recipient transmission and after a higher risk of lung infection with reduced posttransplant outcome. We have previously shown that sphingosine very efficiently kills a variety of pathogens, including Pseudomonas aeruginosa, Staphylococcus aureus and epidermidis, Escherichia coli or Haemophilus influenzae. Thus, sphingosine could be a new treatment option with broadspectrum antiinfective potential, which may improve outcome after lung transplantation when administered prior to lung re-implantation. Here, we tested whether sphingosine has any adverse effects in the respiratory tract when applied into isolated ventilated and perfused lungs. A 4-h EVLP run using minipig lungs was performed. Functional parameters as well as perfusate measurements where obtained. Biopsies were obtained 30 min and 150 min after inhalation of sphingosine. Tissue samples were fixed in paraformaldehyde, embedded in paraffin and sectioned. Hemalaun, TUNEL as well as stainings with Cy3-coupled anti-sphingosine or anti-ceramide antibodies were implemented. We demonstrate that tube-inhalation of sphingosine into ex-vivo perfused and ventilated minipig lungs results in increased levels of sphingosine in the luminal membrane of bronchi and the trachea without morphological side effects up to very high doses of sphingosine. Sphingosine also did not affect functional lung performance. In summary, the inhalation of sphingosine results in an increase of sphingosine concentrations in the luminal plasma membrane of tracheal and bronchial epithelial cells. The inhalation has no local side effects in ex-vivo perfused and ventilated minipig lungs.
Collapse
Affiliation(s)
- Henning Carstens
- Department of Thoracic and Cardiovascular Surgery, University Hospital Essen, University of Duisburg-Essen, Hufelandstrasse 55, 45122, Essen, Germany. .,Cardiac Surgery for Congenital Heart Disease, University Medical Center Hamburg- Eppendorf, Martinistrasse 52, 20251, Hamburg, Germany.
| | - Katharina Kalka
- Department of Thoracic and Cardiovascular Surgery, University Hospital Essen, University of Duisburg-Essen, Hufelandstrasse 55, 45122, Essen, Germany
| | - Rabea Verhaegh
- Institute of Molecular Biology, University of Duisburg-Essen, Hufelandstrasse 55, 45122, Essen, Germany
| | - Fabian Schumacher
- Institute of Molecular Biology, University of Duisburg-Essen, Hufelandstrasse 55, 45122, Essen, Germany.,Department of Toxicology, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany.,Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Str. 2+4, 14195, Berlin, Germany
| | - Matthias Soddemann
- Institute of Molecular Biology, University of Duisburg-Essen, Hufelandstrasse 55, 45122, Essen, Germany
| | - Barbara Wilker
- Institute of Molecular Biology, University of Duisburg-Essen, Hufelandstrasse 55, 45122, Essen, Germany
| | - Simone Keitsch
- Institute of Molecular Biology, University of Duisburg-Essen, Hufelandstrasse 55, 45122, Essen, Germany
| | - Carolin Sehl
- Institute of Molecular Biology, University of Duisburg-Essen, Hufelandstrasse 55, 45122, Essen, Germany
| | - Burkhard Kleuser
- Department of Toxicology, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany.,Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Str. 2+4, 14195, Berlin, Germany
| | - Thorsten Wahlers
- Department of Cardiothoracic Surgery, Heart Center, University of Cologne, Kerpener Strasse 61, 50924, Cologne, Germany
| | - Gerald Reiner
- Department of Veterinary Clinical Sciences, Swine Clinic, Justus-Liebig-University, Giessen, Germany
| | - Achim Koch
- Department of Thoracic and Cardiovascular Surgery, University Hospital Essen, University of Duisburg-Essen, Hufelandstrasse 55, 45122, Essen, Germany
| | - Ursula Rauen
- Department of Thoracic and Cardiovascular Surgery, University Hospital Essen, University of Duisburg-Essen, Hufelandstrasse 55, 45122, Essen, Germany
| | - Erich Gulbins
- Institute of Molecular Biology, University of Duisburg-Essen, Hufelandstrasse 55, 45122, Essen, Germany.,Department of Surgery, University of Cincinnati, Medical School, 231 Albert Sabin Way, ML0558, Cincinnati, OH, 45267, USA
| | - Markus Kamler
- Department of Thoracic and Cardiovascular Surgery, University Hospital Essen, University of Duisburg-Essen, Hufelandstrasse 55, 45122, Essen, Germany
| |
Collapse
|
24
|
Morin CD, Déziel E, Gauthier J, Levesque RC, Lau GW. An Organ System-Based Synopsis of Pseudomonas aeruginosa Virulence. Virulence 2021; 12:1469-1507. [PMID: 34180343 PMCID: PMC8237970 DOI: 10.1080/21505594.2021.1926408] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Driven in part by its metabolic versatility, high intrinsic antibiotic resistance, and a large repertoire of virulence factors, Pseudomonas aeruginosa is expertly adapted to thrive in a wide variety of environments, and in the process, making it a notorious opportunistic pathogen. Apart from the extensively studied chronic infection in the lungs of people with cystic fibrosis (CF), P. aeruginosa also causes multiple serious infections encompassing essentially all organs of the human body, among others, lung infection in patients with chronic obstructive pulmonary disease, primary ciliary dyskinesia and ventilator-associated pneumonia; bacteremia and sepsis; soft tissue infection in burns, open wounds and postsurgery patients; urinary tract infection; diabetic foot ulcers; chronic suppurative otitis media and otitis externa; and keratitis associated with extended contact lens use. Although well characterized in the context of CF, pathogenic processes mediated by various P. aeruginosa virulence factors in other organ systems remain poorly understood. In this review, we use an organ system-based approach to provide a synopsis of disease mechanisms exerted by P. aeruginosa virulence determinants that contribute to its success as a versatile pathogen.
Collapse
Affiliation(s)
- Charles D Morin
- Centre Armand-Frappier Santé Biotechnologie, Institut National De La Recherche Scientifique (INRS), Laval, Quebec, Canada
| | - Eric Déziel
- Centre Armand-Frappier Santé Biotechnologie, Institut National De La Recherche Scientifique (INRS), Laval, Quebec, Canada
| | - Jeff Gauthier
- Département De Microbiologie-infectiologie Et Immunologie, Institut De Biologie Intégrative Et Des Systèmes (IBIS), Université Laval, Québec City, Quebec, Canada
| | - Roger C Levesque
- Département De Microbiologie-infectiologie Et Immunologie, Institut De Biologie Intégrative Et Des Systèmes (IBIS), Université Laval, Québec City, Quebec, Canada
| | - Gee W Lau
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, IL, US
| |
Collapse
|
25
|
Carlier FM, de Fays C, Pilette C. Epithelial Barrier Dysfunction in Chronic Respiratory Diseases. Front Physiol 2021; 12:691227. [PMID: 34248677 PMCID: PMC8264588 DOI: 10.3389/fphys.2021.691227] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 05/20/2021] [Indexed: 12/15/2022] Open
Abstract
Mucosal surfaces are lined by epithelial cells, which provide a complex and adaptive module that ensures first-line defense against external toxics, irritants, antigens, and pathogens. The underlying mechanisms of host protection encompass multiple physical, chemical, and immune pathways. In the lung, inhaled agents continually challenge the airway epithelial barrier, which is altered in chronic diseases such as chronic obstructive pulmonary disease, asthma, cystic fibrosis, or pulmonary fibrosis. In this review, we describe the epithelial barrier abnormalities that are observed in such disorders and summarize current knowledge on the mechanisms driving impaired barrier function, which could represent targets of future therapeutic approaches.
Collapse
Affiliation(s)
- François M. Carlier
- Pole of Pneumology, ENT, and Dermatology, Institute of Experimental and Clinical Research, Université catholique de Louvain, Brussels, Belgium
- Department of Pneumology and Lung Transplant, Centre Hospitalier Universitaire UCL Namur, Yvoir, Belgium
| | - Charlotte de Fays
- Pole of Pneumology, ENT, and Dermatology, Institute of Experimental and Clinical Research, Université catholique de Louvain, Brussels, Belgium
| | - Charles Pilette
- Pole of Pneumology, ENT, and Dermatology, Institute of Experimental and Clinical Research, Université catholique de Louvain, Brussels, Belgium
- Department of Pneumology, Cliniques universitaires St-Luc, Brussels, Belgium
| |
Collapse
|
26
|
Martinez-Garcia MÁ, Faner R, Oscullo G, la Rosa-Carrillo D, Soler-Cataluña JJ, Ballester M, Muriel A, Agusti A. Chronic bronchial infection and incident cardiovascular events in chronic obstructive pulmonary disease patients: A long-term observational study. Respirology 2021; 26:776-785. [PMID: 34002922 DOI: 10.1111/resp.14086] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 03/27/2021] [Accepted: 04/26/2021] [Indexed: 01/14/2023]
Abstract
BACKGROUND AND OBJECTIVE Cardiovascular (CV) diseases are frequent in patients with chronic obstructive pulmonary disease (COPD). Likewise, chronic bronchial infection (CBI) is also frequent in COPD and it is associated with systemic inflammation, a well-known CV risk factor. The objective of this study was to investigate the relationship between CBI, systemic inflammation and incident CV events. METHODS A post hoc analysis of prospectively collected cohort of 201 COPD patients [Global Initiative for Chronic Obstructive Lung Disease (GOLD) II-IV] followed up every 3-6 months for 84 months was conducted. CBI was defined as ≥3 positive pathogenic microorganisms sputum cultures over 1 year, separated by ≥3 months. Systemic inflammation was assessed by circulating levels of C-reactive protein and fibrinogen. Fatal and non-fatal CV events, including coronary and cerebrovascular events as well as arrhythmia episodes, were prospectively recorded. For analysis, they were analysed separately and combined in a composite variable. RESULTS As hypothesized, CBI was associated with persistent systemic inflammation and a significantly higher incidence of CV events (HR: 3.88; 95% CI: 1.83-8.22), mainly of coronary origin independent of age, number and severity of exacerbations, comorbidities, other CV risk factors, lung function, BMI, smoking status and treatments. These associations were particularly significant in patients with CBI by Pseudomonas aeruginosa (PA). CONCLUSION CBI, particularly by PA, is associated with sustained and enhanced systemic inflammation and a higher incidence of CV events (especially coronary events). The possibility that treating CBI may decrease systemic inflammation and CV events in COPD deserves prospective, interventional studies.
Collapse
Affiliation(s)
- Miguel Ángel Martinez-Garcia
- Respiratory Department, Hospital Universitario y Politécnico La Fe, Valencia, Spain.,Centro de Investigación Biomédica en Red (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - Rosa Faner
- Centro de Investigación Biomédica en Red (CIBERES), Instituto de Salud Carlos III, Madrid, Spain.,Institut d'investigacions Biomediques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
| | - Grace Oscullo
- Respiratory Department, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | | | | | - Marta Ballester
- Pneumology Unit, Hospital General de Requena, Valencia, Spain
| | - Alfonso Muriel
- Biostatistic Unit, Hospital Ramón y Cajal, IRYCIS, CIBERESP and Universidad de Alcalá, Madrid, Spain
| | - Alvar Agusti
- Centro de Investigación Biomédica en Red (CIBERES), Instituto de Salud Carlos III, Madrid, Spain.,Institut d'investigacions Biomediques August Pi I Sunyer (IDIBAPS), Barcelona, Spain.,Respiratory Institute, Hospital Clinic University, Barcelona, Spain
| |
Collapse
|
27
|
Wu Y, Liu Y, Gulbins E, Grassmé H. The Anti-Infectious Role of Sphingosine in Microbial Diseases. Cells 2021; 10:cells10051105. [PMID: 34064516 PMCID: PMC8147940 DOI: 10.3390/cells10051105] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 04/28/2021] [Accepted: 04/30/2021] [Indexed: 02/07/2023] Open
Abstract
Sphingolipids are important structural membrane components and, together with cholesterol, are often organized in lipid rafts, where they act as signaling molecules in many cellular functions. They play crucial roles in regulating pathobiological processes, such as cancer, inflammation, and infectious diseases. The bioactive metabolites ceramide, sphingosine-1-phosphate, and sphingosine have been shown to be involved in the pathogenesis of several microbes. In contrast to ceramide, which often promotes bacterial and viral infections (for instance, by mediating adhesion and internalization), sphingosine, which is released from ceramide by the activity of ceramidases, kills many bacterial, viral, and fungal pathogens. In particular, sphingosine is an important natural component of the defense against bacterial pathogens in the respiratory tract. Pathologically reduced sphingosine levels in cystic fibrosis airway epithelial cells are normalized by inhalation of sphingosine, and coating plastic implants with sphingosine prevents bacterial infections. Pretreatment of cells with exogenous sphingosine also prevents the viral spike protein of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) from interacting with host cell receptors and inhibits the propagation of herpes simplex virus type 1 (HSV-1) in macrophages. Recent examinations reveal that the bactericidal effect of sphingosine might be due to bacterial membrane permeabilization and the subsequent death of the bacteria.
Collapse
Affiliation(s)
- Yuqing Wu
- Department of Molecular Biology, University of Duisburg-Essen, Hufelandstrasse 55, 45122 Essen, Germany; (Y.W.); (Y.L.); (E.G.)
| | - Yongjie Liu
- Department of Molecular Biology, University of Duisburg-Essen, Hufelandstrasse 55, 45122 Essen, Germany; (Y.W.); (Y.L.); (E.G.)
- Department of Thoracic Transplantation, Thoracic and Cardiovascular Surgery, University of Duisburg-Essen, Hufelandstrasse 55, 45122 Essen, Germany
| | - Erich Gulbins
- Department of Molecular Biology, University of Duisburg-Essen, Hufelandstrasse 55, 45122 Essen, Germany; (Y.W.); (Y.L.); (E.G.)
- Department of Surgery, University of Cincinnati, 231 Albert Sabin Way, Cincinnati, OH 45267, USA
| | - Heike Grassmé
- Department of Molecular Biology, University of Duisburg-Essen, Hufelandstrasse 55, 45122 Essen, Germany; (Y.W.); (Y.L.); (E.G.)
- Correspondence: ; Tel.: +49-201-723-2133
| |
Collapse
|
28
|
Martínez-García MÁ, Faner R, Oscullo G, de la Rosa-Carrillo D, Soler-Cataluña JJ, Ballester M, Muriel A, Agusti A. Risk Factors and Relation with Mortality of a New Acquisition and Persistence of Pseudomonas aeruginosa in COPD Patients. COPD 2021; 18:333-340. [PMID: 33941014 DOI: 10.1080/15412555.2021.1884214] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The isolation of Pseudomonas aeruginosa (PA) in patients with chronic obstructive pulmonary disease (COPD) is associated with increased mortality. Yet, factors associated with first PA sputum isolation, and PA persistence have not been investigated before. The objective of the present study was to investigate risk factors for new acquisition and persistence of PA infection and their relationship with all-cause mortality in patients with COPD. Post-hoc analysis of prospectively collected cohort of 170 COPD patients (GOLD II-IV) who were free of previous PA isolation and followed up every 3-6 months for 85 [50.25-110.25] months. PA was isolated for the first time in 41 patients (24.1%) after 36 [12-60] months of follow-up. Risk factor for first PA isolation were high cumulative smoking exposure, severe airflow limitation, previous severe exacerbations, high fibrinogen levels and previous isolation of Haemophilus Influenzae. PA was isolated again one or more times during follow-up in 58.5% of these patients. This was significantly associated with the presence of CT bronchiectasis and persistence of severe exacerbations, whereas the use of inhaled antibiotic treatment after the first PA isolation (at the discretion of the attending physician) reduced PA persistence. During follow-up, 79 patients (46.4%) died. A single PA isolation did not increase mortality, but PA persistence did (HR 3.06 [1.8-5.2], p = 0.001). We conclude that PA occurs frequently in clinically stable COPD patients, risk factors for a first PA isolation and PA persistence are different, and the latter (but not the former) is associated with increased all-cause mortality.
Collapse
Affiliation(s)
| | - Rosa Faner
- Centro de Investigación Biomedica en Red (CIBERES), Instituto de Salud Carlos III, Madrid, Spain.,Institut d'investigacions biomediques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
| | - Grace Oscullo
- Respiratory Department, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | | | | | - Marta Ballester
- Pneumology Unit, Hospital General de Requena, Valencia, Spain6
| | - Alfonso Muriel
- Biostatistic Unit, Hospital Ramón y Cajal, Madrid, Spain
| | - Alvar Agusti
- Centro de Investigación Biomedica en Red (CIBERES), Instituto de Salud Carlos III, Madrid, Spain.,Institut d'investigacions biomediques August Pi I Sunyer (IDIBAPS), Barcelona, Spain.,Respiratory Institute, Hospital Clinic, University of Barcelona, IDIBAPS, Barcelona, Spain
| |
Collapse
|
29
|
Page LK, Staples KJ, Spalluto CM, Watson A, Wilkinson TMA. Influence of Hypoxia on the Epithelial-Pathogen Interactions in the Lung: Implications for Respiratory Disease. Front Immunol 2021; 12:653969. [PMID: 33868294 PMCID: PMC8044850 DOI: 10.3389/fimmu.2021.653969] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/09/2021] [Indexed: 12/11/2022] Open
Abstract
Under normal physiological conditions, the lung remains an oxygen rich environment. However, prominent regions of hypoxia are a common feature of infected and inflamed tissues and many chronic inflammatory respiratory diseases are associated with mucosal and systemic hypoxia. The airway epithelium represents a key interface with the external environment and is the first line of defense against potentially harmful agents including respiratory pathogens. The protective arsenal of the airway epithelium is provided in the form of physical barriers, and the production of an array of antimicrobial host defense molecules, proinflammatory cytokines and chemokines, in response to activation by receptors. Dysregulation of the airway epithelial innate immune response is associated with a compromised immunity and chronic inflammation of the lung. An increasing body of evidence indicates a distinct role for hypoxia in the dysfunction of the airway epithelium and in the responses of both innate immunity and of respiratory pathogens. Here we review the current evidence around the role of tissue hypoxia in modulating the host-pathogen interaction at the airway epithelium. Furthermore, we highlight the work needed to delineate the role of tissue hypoxia in the pathophysiology of chronic inflammatory lung diseases such as asthma, cystic fibrosis, and chronic obstructive pulmonary disease in addition to novel respiratory diseases such as COVID-19. Elucidating the molecular mechanisms underlying the epithelial-pathogen interactions in the setting of hypoxia will enable better understanding of persistent infections and complex disease processes in chronic inflammatory lung diseases and may aid the identification of novel therapeutic targets and strategies.
Collapse
Affiliation(s)
- Lee K. Page
- Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Southampton, United Kingdom
| | - Karl J. Staples
- Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Southampton, United Kingdom
- NIHR Southampton Biomedical Research Centre, Southampton Centre for Biomedical Research, Southampton General Hospital, Southampton, United Kingdom
| | - C. Mirella Spalluto
- Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Southampton, United Kingdom
- NIHR Southampton Biomedical Research Centre, Southampton Centre for Biomedical Research, Southampton General Hospital, Southampton, United Kingdom
| | - Alastair Watson
- Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Southampton, United Kingdom
- NIHR Southampton Biomedical Research Centre, Southampton Centre for Biomedical Research, Southampton General Hospital, Southampton, United Kingdom
- Birmingham Medical School, University of Birmingham, Birmingham, United Kingdom
| | - Tom M. A. Wilkinson
- Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Southampton, United Kingdom
- NIHR Southampton Biomedical Research Centre, Southampton Centre for Biomedical Research, Southampton General Hospital, Southampton, United Kingdom
| |
Collapse
|
30
|
Garcia-Clemente M, de la Rosa D, Máiz L, Girón R, Blanco M, Olveira C, Canton R, Martinez-García MA. Impact of Pseudomonas aeruginosa Infection on Patients with Chronic Inflammatory Airway Diseases. J Clin Med 2020; 9:jcm9123800. [PMID: 33255354 PMCID: PMC7760986 DOI: 10.3390/jcm9123800] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 11/20/2020] [Accepted: 11/22/2020] [Indexed: 12/12/2022] Open
Abstract
Pseudomonas aeruginosa (P. aeruginosa) is a ubiquitous and opportunistic microorganism and is considered one of the most significant pathogens that produce chronic colonization and infection of the lower respiratory tract, especially in people with chronic inflammatory airway diseases such as asthma, chronic obstructive pulmonary disease (COPD), cystic fibrosis (CF), and bronchiectasis. From a microbiological viewpoint, the presence and persistence of P. aeruginosa over time are characterized by adaptation within the host that precludes any rapid, devastating injury to the host. Moreover, this microorganism usually develops antibiotic resistance, which is accelerated in chronic infections especially in those situations where the frequent use of antimicrobials facilitates the selection of “hypermutator P. aeruginosa strain”. This phenomenon has been observed in people with bronchiectasis, CF, and the “exacerbator” COPD phenotype. From a clinical point of view, a chronic bronchial infection of P. aeruginosa has been related to more severity and poor prognosis in people with CF, bronchiectasis, and probably in COPD, but little is known on the effect of this microorganism infection in people with asthma. The relationship between the impact and treatment of P. aeruginosa infection in people with airway diseases emerges as an important future challenge and it is the most important objective of this review.
Collapse
Affiliation(s)
- Marta Garcia-Clemente
- Pneumology Department, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain;
| | - David de la Rosa
- Pneumology Department, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain;
| | - Luis Máiz
- Servicio de Neumología, Unidad de Fibrosis Quística, Bronquiectasias e Infección Bronquial Crónica, Hospital Ramón y Cajal, 28034 Madrid, Spain;
| | - Rosa Girón
- Pneumology Department, Hospital Univesitario la Princesa, 28006 Madrid, Spain;
| | - Marina Blanco
- Servicio de Neumología, Hospital Universitario A Coruña, 15006 A Coruña, Spain;
| | - Casilda Olveira
- Servicio de Neumología, Hospital Regional Universitario de Málaga, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga, 29010 Málaga, Spain;
| | - Rafael Canton
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain;
| | - Miguel Angel Martinez-García
- Pneumology Department, Universitary and Polytechnic La Fe Hospital, 46012 Valencia, Spain
- Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, 28034 Madrid, Spain
- Correspondence: ; Tel.: +34-609865934
| |
Collapse
|
31
|
de la Rosa Carrillo D, López-Campos JL, Alcázar Navarrete B, Calle Rubio M, Cantón Moreno R, García-Rivero JL, Máiz Carro L, Olveira Fuster C, Martínez-García MÁ. Consensus Document on the Diagnosis and Treatment of Chronic Bronchial Infection in Chronic Obstructive Pulmonary Disease. Arch Bronconeumol 2020; 56:651-664. [PMID: 32540279 DOI: 10.1016/j.arbres.2020.04.023] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/22/2020] [Accepted: 04/01/2020] [Indexed: 02/07/2023]
Abstract
Although the chronic presence of microorganisms in the airways of patients with stable chronic obstructive pulmonary disease (COPD) confers a poor outcome, no recommendations have been established in disease management guidelines on how to diagnose and treat these cases. In order to guide professionals, the Spanish Society of Pulmonology and Thoracic Surgery (SEPAR) has prepared a document which aims to answer questions on the clinical management of COPD patients in whom microorganisms are occasionally or habitually isolated. Since the available scientific evidence is too heterogeneous to use in the creation of a clinical practice guideline, we have drawn up a document based on existing scientific literature and clinical experience, addressing the definition of different clinical situations and their diagnosis and management. The text was drawn up by consensus and approved by a large group of respiratory medicine experts with extensive clinical and scientific experience in the field, and has been endorsed by the SEPAR Scientific Committee.
Collapse
Affiliation(s)
| | - José Luís López-Campos
- Servicio de Neumología, Unidad Médico-Quirúrgica de Enfermedades Respiratorias, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Sevilla, España; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, España
| | - Bernardino Alcázar Navarrete
- Servicio de Neumología, Hospital Regional Universitario de Málaga. Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga, Málaga, España
| | - Myriam Calle Rubio
- Servicio de Neumología, Hospital de Alta Resolución de Loja, Loja, Granada, España
| | - Rafael Cantón Moreno
- Servicio de Neumología, Unidad de Infección Bronquial Crónica, Fibrosis Quística y Bronquiectasias, Hospital Universitario Ramón y Cajal, Madrid, España
| | - Juan Luis García-Rivero
- Servicio de Neumología, Hospital Clínico San Carlos. Departamento de Medicina, Facultad de Medicina, UCM, Madrid, España
| | - Luís Máiz Carro
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal. Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, España
| | | | | |
Collapse
|
32
|
Pseudomonas Aeruginosa Induced Cell Death in Acute Lung Injury and Acute Respiratory Distress Syndrome. Int J Mol Sci 2020; 21:ijms21155356. [PMID: 32731491 PMCID: PMC7432812 DOI: 10.3390/ijms21155356] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 07/21/2020] [Accepted: 07/23/2020] [Indexed: 12/27/2022] Open
Abstract
Pseudomonas aeruginosa is an important opportunistic pathogen responsible for the cause of acute lung injury and acute respiratory distress syndrome. P. aeruginosa isthe leading species isolated from patients with nosocomial infection and is detected in almost all the patients with long term ventilation in critical care units. P. aeruginosa infection is also the leading cause of deleterious chronic lung infections in patients suffering from cystic fibrosis as well as the major reason for morbidity in people with chronic obstructive pulmonary disease. P. aeruginosa infections are linked to diseases with high mortality rates and are challenging for treatment, for which no effective remedies have been developed. Massive lung epithelial cell death is a hallmark of severe acute lung injury and acute respiratory distress syndrome caused by P. aeruginosa infection. Lung epithelial cell death poses serious challenges to air barrier and structural integrity that may lead to edema, cytokine secretion, inflammatory infiltration, and hypoxia. Here we review different types of cell death caused by P. aeruginosa serving as a starting point for the diseases it is responsible for causing. We also review the different mechanisms of cell death and potential therapeutics in countering the serious challenges presented by this deadly bacterium.
Collapse
|
33
|
Mishra R, Kushveer JS, Khan MIK, Pagal S, Meena CK, Murali A, Dhayalan A, Venkateswara Sarma V. 2,4-Di-Tert-Butylphenol Isolated From an Endophytic Fungus, Daldinia eschscholtzii, Reduces Virulence and Quorum Sensing in Pseudomonas aeruginosa. Front Microbiol 2020; 11:1668. [PMID: 32849344 PMCID: PMC7418596 DOI: 10.3389/fmicb.2020.01668] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 06/25/2020] [Indexed: 02/01/2023] Open
Abstract
Pseudomonas aeruginosa is among the top three gram-negative bacteria according to the WHO’s critical priority list of pathogens against which newer antibiotics are urgently needed and considered a global threat due to multiple drug resistance. This situation demands unconventional antimicrobial strategies such as the inhibition of quorum sensing to alleviate the manifestation of classical resistance mechanisms. Here, we report that 2,4-di-tert-butylphenol (2,4-DBP), isolated from an endophytic fungus, Daldinia eschscholtzii, inhibits the quorum-sensing properties of P. aeruginosa. We have found that treating P. aeruginosa with 2,4-DBP substantially reduced the secretion of virulence factors as well as biofilm, and its associated factors that are controlled by quorum sensing, in a dose-dependent manner. Concomitantly, 2,4-DBP also significantly reduced the expression of quorum sensing-related genes, i.e., lasI, lasR, rhlI, and rhlR significantly. Importantly, 2,4-DBP restricted the adhesion and invasion of P. aeruginosa to the A549 lung alveolar carcinoma cells. In addition, bactericidal assay with 2,4-DBP exhibited synergism with ampicillin to kill P. aeruginosa. Furthermore, our computational studies predicted that 2,4-DBP could bind to the P. aeruginosa quorum-sensing receptors LasR and RhlR. Collectively, these data suggest that 2,4-DBP can be exploited as a standalone drug or in combination with antibiotic(s) as an anti-virulence and anti-biofilm agent to combat the multidrug resistant P. aeruginosa infection.
Collapse
Affiliation(s)
- Rashmi Mishra
- Department of Biotechnology, Pondicherry University, Puducherry, India
| | | | - Mohd Imran K Khan
- Department of Biotechnology, Pondicherry University, Puducherry, India
| | - Sudhakar Pagal
- Department of Biotechnology, Pondicherry University, Puducherry, India
| | | | - Ayaluru Murali
- Centre for Bioinformatics, Pondicherry University, Puducherry, India
| | | | | |
Collapse
|
34
|
Choi W, Choe S, Lin J, Borchers MT, Kosmider B, Vassallo R, Limper AH, Lau GW. Exendin-4 restores airway mucus homeostasis through the GLP1R-PKA-PPARγ-FOXA2-phosphatase signaling. Mucosal Immunol 2020; 13:637-651. [PMID: 32034274 PMCID: PMC7664156 DOI: 10.1038/s41385-020-0262-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 01/03/2020] [Accepted: 01/21/2020] [Indexed: 02/04/2023]
Abstract
Goblet cell hyperplasia and metaplasia and excessive mucus are prominent pathologies of chronic airway diseases such as chronic obstructive pulmonary disease (COPD), cystic fibrosis (CF), and chronic bronchitis. Chronic infection by respiratory pathogens, including Pseudomonas aeruginosa, exacerbates cyclical proinflammatory responses and mucus hypersecretion. P. aeruginosa and its virulence factor pyocyanin contribute to these pathologies by inhibiting FOXA2, a key transcriptional regulator of mucus homeostasis, through activation of antagonistic signaling pathways EGFR-AKT/ERK1/2 and IL-4/IL-13-STAT6-SPDEF. However, FOXA2-targeted therapy has not been previously explored. Here, we examined the feasibility of repurposing the incretin mimetic Exendin-4 to restore FOXA2-mediated airway mucus homeostasis. We have found that Exendin-4 restored FOXA2 expression, attenuated mucin production in COPD and CF-diseased airway cells, and reduced mucin and P. aeruginosa burden in mouse lungs. Mechanistically, Exendin-4 activated the GLP1R-PKA-PPAR-γ-dependent phosphatases PTEN and PTP1B, which inhibited key kinases within both EGFR and STAT6 signaling cascades. Our results may lead to the repurposing of Exendin-4 and other incretin mimetics to restore FOXA2 function and ultimately regulate excessive mucus in diseased airways.
Collapse
Affiliation(s)
- Woosuk Choi
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Shawn Choe
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Jingjun Lin
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Michael T Borchers
- Department of Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Cincinnati Veteran's Affairs Medical Center, Cincinnati, OH, 45267, USA
| | - Beata Kosmider
- Department of Physiology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
- Department of Thoracic Medicine and Surgery, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
- Center for Inflammation, Translational and Clinical Lung Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Robert Vassallo
- Division of Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, MN, USA
| | - Andrew H Limper
- Division of Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, MN, USA
| | - Gee W Lau
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
35
|
Ahmadbeigi Y, Chirani AS, Soleimani N, Mahdavi M, Goudarzi M. Immunopotentiation of the engineered low-molecular-weight pilin targeting Pseudomonas aeruginosa: A combination of immunoinformatics investigation and active immunization. Mol Immunol 2020; 124:70-82. [PMID: 32540517 DOI: 10.1016/j.molimm.2020.05.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 04/22/2020] [Accepted: 05/11/2020] [Indexed: 01/08/2023]
Abstract
Several vaccine candidates have been introduced for immunization against Pseudomonas aeruginosa strains. Despite extensive efforts in recent decades, there is no accurate immunogenic candidate against this pathogen in the market yet. Due to the rapid increase in several drug-resistant strains, P. aeruginosa has caused various health concerns worldwide. It encodes many specific virulence features, which can be used as an appropriate vaccine candidate. The primary stage of the pathogenesis of P. aeruginosa is the expression of many dynamic adhesive molecules, such as type IV pili (T4P), which acts as a principal colonization factor. It has been confirmed that three different subtypes of T4P, including type IVa (T4aP), type IVb (T4bP) and tight adherence (Tad) pili are expressed by P. aeruginosa. The IVa fimbriae type is almost the main cause of challenges to design an effective pili based-immunotherapy method. Nevertheless, in terms of heterogeneity, variability and hidden conserved binding site of T4aP, this attitude has been remained controversial and there is no permitted human study based on IVa pilin commercially. The engineered synthetic peptide-based vaccines are highly talented to mimic the target. In this research, for the first time, some dominant immunogenic features of the Flp protein, such as both B- and T-cell-associated epitopes, presence of IgE-associated epitopes, solvent-accessible surface area were evaluated by analytical immunoinformatics methods. In addition, we designed the engineered Flp pilin as an effective immunogenic substance against several clinically important P. aeruginosa strains. Moreover, by practical active immunization approaches, the humoral and cellular immune response against the extremely conserved region of the engineered synthetic Flp (EFlp) formulated in Montanide ISA 266 compared to the control group. The results of active immunization against EFlp significantly signified that EFlp-Montanide ISA 266 (EFLP-M) strongly could induce both humoral and cellular immune responses. We concluded that Flp pilin has therapeutic potential against numerous clinically significant P. aeruginosa strains and can be served as a novel immunogen for further investigations for development of effective immunotherapy methods against P. aeruginosa as a dexterous pathogen.
Collapse
Affiliation(s)
- Yasaman Ahmadbeigi
- Department of Microbiology and Microbial Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Alireza Salimi Chirani
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Neda Soleimani
- Department of Microbiology and Microbial Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran.
| | - Mehdi Mahdavi
- Recombinant Vaccine Research Center, Tehran University of Medical Sciences, Tehran, Iran; Immunotherapy Group, The Institute of Pharmaceutical Science (TIPS), Tehran University of Medical Science, Tehran, Iran; Departments of Immunology, Pasteur Institute of Iran, Tehran, Iran
| | - Mehdi Goudarzi
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
36
|
Lopez-Campos JL, Miravitlles M, de la Rosa Carrillo D, Cantón R, Soler-Cataluña JJ, Martinez-Garcia MA. Current Challenges in Chronic Bronchial Infection in Patients with Chronic Obstructive Pulmonary Disease. J Clin Med 2020; 9:E1639. [PMID: 32481769 PMCID: PMC7356662 DOI: 10.3390/jcm9061639] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/21/2020] [Accepted: 05/22/2020] [Indexed: 12/14/2022] Open
Abstract
Currently, chronic obstructive pulmonary disease (COPD) patients and their physicians face a number of significant clinical challenges, one of which is the high degree of uncertainty related to chronic bronchial infection (CBI). By reviewing the current literature, several challenges can be identified, which should be considered as goals for research. One of these is to establish the bases for identifying the biological and clinical implications of the presence of potentially pathogenic microorganisms in the airways that should be more clearly elucidated according to the COPD phenotype. Another urgent area of research is the role of long-term preventive antibiotics. Clinical trials need to be carried out with inhaled antibiotic therapy to help clarify the profile of those antibiotics. The role of inhaled corticosteroids in patients with COPD and CBI needs to be studied to instruct the clinical management of these patients. Finally, it should be explored and confirmed whether a suitable antimicrobial treatment during exacerbations may contribute to breaking the vicious circle of CBI in COPD. The present review addresses the current state of the art in these areas to provide evidence which will enable us to progressively plan better healthcare for these patients.
Collapse
Affiliation(s)
- José Luis Lopez-Campos
- Unidad Médico-Quirúrgica de Enfermedades Respiratorias, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/Universidad de Sevilla, 41013 Seville, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, 28029 Madrid, Spain; (M.M.); (M.A.M.-G.)
| | - Marc Miravitlles
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, 28029 Madrid, Spain; (M.M.); (M.A.M.-G.)
- Pneumology Department, Hospital Universitari Vall d’Hebron/Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
| | | | - Rafael Cantón
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain;
| | | | - Miguel Angel Martinez-Garcia
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, 28029 Madrid, Spain; (M.M.); (M.A.M.-G.)
- Pneumology Department, Universitary and Polytechnic La Fe Hospital, 46015 Valencia, Spain
| |
Collapse
|
37
|
Hogea SP, Tudorache E, Fildan AP, Fira-Mladinescu O, Marc M, Oancea C. Risk factors of chronic obstructive pulmonary disease exacerbations. CLINICAL RESPIRATORY JOURNAL 2020; 14:183-197. [PMID: 31814260 DOI: 10.1111/crj.13129] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 11/07/2019] [Accepted: 12/03/2019] [Indexed: 12/13/2022]
Abstract
Chronic Obstructive Pulmonary Disease (COPD) is a chronic respiratory disease characterised by persistent respiratory symptoms and airflow limitation. COPD has a major impact on public health, mainly because of its increasing prevalence, morbidity and mortality. The natural course of COPD is aggravated by episodes of respiratory symptom worsening termed exacerbations that contribute to disease progression. Acute Exacerbations of COPD (AECOPD) can be triggered by a multitude of different factors, including respiratory tract infections, various exposures, prior exacerbations, non-adherence to treatment and associated comorbidities. AECOPD are associated with an inexorable decline of lung function and a significantly worse survival outcome. This review will summarise the most important aspects regarding the impact of different factors that contribute to COPD exacerbations.
Collapse
Affiliation(s)
- Stanca-Patricia Hogea
- Department of Pulmonology, University of Medicine and Pharmacy "Victor Babeș", Timișoara, Romania
| | - Emanuela Tudorache
- Department of Pulmonology, University of Medicine and Pharmacy "Victor Babeș", Timișoara, Romania
| | - Ariadna Petronela Fildan
- Internal Medicine Discipline, Medical Clinical Disciplines I, "Ovidius" University of Constanta Faculty of Medicine, Constanta, Romania
| | - Ovidiu Fira-Mladinescu
- Department of Pulmonology, University of Medicine and Pharmacy "Victor Babeș", Timișoara, Romania
| | - Monica Marc
- Department of Pulmonology, University of Medicine and Pharmacy "Victor Babeș", Timișoara, Romania
| | - Cristian Oancea
- Department of Pulmonology, University of Medicine and Pharmacy "Victor Babeș", Timișoara, Romania
| |
Collapse
|
38
|
Jacobs DM, Ochs-Balcom HM, Noyes K, Zhao J, Leung WY, Pu CY, Murphy TF, Sethi S. Impact of Pseudomonas aeruginosa Isolation on Mortality and Outcomes in an Outpatient Chronic Obstructive Pulmonary Disease Cohort. Open Forum Infect Dis 2020; 7:ofz546. [PMID: 31993457 PMCID: PMC6979313 DOI: 10.1093/ofid/ofz546] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 12/31/2019] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Tracheobronchial colonization by Pseudomonas aeruginosa (PA) has been shown to negatively impact outcomes in cystic fibrosis and bronchiectasis. There is uncertainty whether the same association is prevalent in chronic obstructive pulmonary disease (COPD), especially in the outpatient setting. Our objective was to determine (1) whether PA isolation is associated with mortality and (2) changes in exacerbation and hospitalization rates within a longitudinal cohort of COPD outpatients. METHODS Pseudomonas aeruginosa colonization was ascertained in monthly sputum cultures in a prospective cohort of COPD patients from 1994 to 2014. All-cause mortality was compared between patients who were colonized during their follow-up period (PA + ) and those who remained free of colonization (PA - ); Cox proportional hazards models were used. Exacerbation and hospitalization rates were evaluated by 2-rate χ 2 and segmented regression analysis for 12 months before and 24 months after PA isolation. RESULTS Pseudomonas aeruginosa was isolated from sputum in 73 of 181 (40%) patients. Increased mortality was seen with PA isolation: 56 of 73 (77%) PA + patients died compared with 73 of 108 (68%) PA - patients (P = .004). In adjusted models, PA + patients had a 47% higher risk of mortality (adjusted hazard ratio = 1.47; 95% confidence interval, 1.03-2.11; P = .04). Exacerbation rates were higher for the PA + group during preisolation (15.4 vs 9.0 per 100 person-months, P < .001) and postisolation periods (15.7 vs 7.5, P < .001). Hospitalization rates were higher during the postisolation period among PA + patients (6.25 vs 2.44, P < .001). CONCLUSIONS Tracheobronchial colonization by PA in COPD outpatients was associated with higher morbidity and mortality. This suggests that PA likely contributes to adverse clinical outcomes rather than just a marker of worsening disease.
Collapse
Affiliation(s)
- David M Jacobs
- Department of Pharmacy Practice, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, Buffalo, New York, USA
| | - Heather M Ochs-Balcom
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University at Buffalo, Buffalo, New York, USA
| | - Katia Noyes
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University at Buffalo, Buffalo, New York, USA
| | - Jiwei Zhao
- Department of Biostatistics, School of Public Health and Health Professions, University at Buffalo, Buffalo, New York, USA
| | - Wai Yin Leung
- Department of Pharmacy Practice, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, Buffalo, New York, USA
| | - Chan Yeu Pu
- Department of Medicine, Clinical and Translational Research Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, USA
| | - Timothy F Murphy
- Department of Medicine, Clinical and Translational Research Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, USA
| | - Sanjay Sethi
- Department of Medicine, Clinical and Translational Research Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, USA
| |
Collapse
|
39
|
Mishra R, Kushveer JS, Khan MIK, Pagal S, Meena CK, Murali A, Dhayalan A, Venkateswara Sarma V. 2,4-Di-Tert-Butylphenol Isolated From an Endophytic Fungus, Daldinia eschscholtzii, Reduces Virulence and Quorum Sensing in Pseudomonas aeruginosa. Front Microbiol 2020; 11:1668. [PMID: 32849344 DOI: 10.3389/fmicb.2020.0166-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 06/25/2020] [Indexed: 05/20/2023] Open
Abstract
Pseudomonas aeruginosa is among the top three gram-negative bacteria according to the WHO's critical priority list of pathogens against which newer antibiotics are urgently needed and considered a global threat due to multiple drug resistance. This situation demands unconventional antimicrobial strategies such as the inhibition of quorum sensing to alleviate the manifestation of classical resistance mechanisms. Here, we report that 2,4-di-tert-butylphenol (2,4-DBP), isolated from an endophytic fungus, Daldinia eschscholtzii, inhibits the quorum-sensing properties of P. aeruginosa. We have found that treating P. aeruginosa with 2,4-DBP substantially reduced the secretion of virulence factors as well as biofilm, and its associated factors that are controlled by quorum sensing, in a dose-dependent manner. Concomitantly, 2,4-DBP also significantly reduced the expression of quorum sensing-related genes, i.e., lasI, lasR, rhlI, and rhlR significantly. Importantly, 2,4-DBP restricted the adhesion and invasion of P. aeruginosa to the A549 lung alveolar carcinoma cells. In addition, bactericidal assay with 2,4-DBP exhibited synergism with ampicillin to kill P. aeruginosa. Furthermore, our computational studies predicted that 2,4-DBP could bind to the P. aeruginosa quorum-sensing receptors LasR and RhlR. Collectively, these data suggest that 2,4-DBP can be exploited as a standalone drug or in combination with antibiotic(s) as an anti-virulence and anti-biofilm agent to combat the multidrug resistant P. aeruginosa infection.
Collapse
Affiliation(s)
- Rashmi Mishra
- Department of Biotechnology, Pondicherry University, Puducherry, India
| | | | - Mohd Imran K Khan
- Department of Biotechnology, Pondicherry University, Puducherry, India
| | - Sudhakar Pagal
- Department of Biotechnology, Pondicherry University, Puducherry, India
| | | | - Ayaluru Murali
- Centre for Bioinformatics, Pondicherry University, Puducherry, India
| | | | | |
Collapse
|
40
|
Montón C, Prina E, Pomares X, Cugat JR, Casabella A, Oliva JC, Gallego M, Monsó E. Nebulized Colistin And Continuous Cyclic Azithromycin In Severe COPD Patients With Chronic Bronchial Infection Due To Pseudomonas aeruginosa: A Retrospective Cohort Study. Int J Chron Obstruct Pulmon Dis 2019; 14:2365-2373. [PMID: 31802860 PMCID: PMC6802559 DOI: 10.2147/copd.s209513] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 08/09/2019] [Indexed: 11/23/2022] Open
Abstract
Introduction Long-term use of nebulized or oral antibiotics is common in the treatment of cystic fibrosis and non-cystic fibrosis bronchiectasis. To date, however, few studies have focused on the use of nebulized antibiotics in COPD patients. The aims of this study are: to establish whether a combination of nebulized colistin plus continuous cyclic azithromycin in severe COPD patients with chronic bronchial infection due to Pseudomonas aeruginosa reduces the frequency of exacerbations, and to assess the effect of this treatment on microbiological sputum isolates. Material and methods A retrospective cohort was created for the analysis of patients with severe COPD and chronic bronchial infection due to P. aeruginosa treated with nebulized colistin at the Respiratory Day Care Unit between 2005 and 2015. The number and characteristics of COPD exacerbations (ECOPD) before and up to two years after the introduction of nebulized colistin treatment were recorded. Results We analyzed 32 severe COPD patients who received nebulized colistin for at least three months (median 17 months [IQR 7-24]). All patients but one received combination therapy with continuous cyclic azithromycin (median 24 months [IQR 11-30]). A significant reduction in the number of ECOPD from baseline of 38.3% at two years of follow-up was observed, with a clear decrease in P. aeruginosa ECOPD (from 59.5% to 24.6%) and a P. aeruginosa eradication rate of 28% over the two-year follow-up. Conclusion In patients with severe COPD and chronic bronchial infection due to P. aeruginosa, combination therapy with nebulized colistin and continuous cyclic azithromycin significantly reduced the number of ECOPD, with a marked decrease in P. aeruginosa sputum isolates.
Collapse
Affiliation(s)
- Concepción Montón
- Department of Respiratory Medicine, Hospital De Sabadell, Institut Universitari Parc Taulí-UAB, Sabadell, Spain.,Health Services Research on Chronic Diseases Network-REDISSEC, Galdakao, Spain
| | - Elena Prina
- Department of Respiratory Medicine, Hospital De Sabadell, Institut Universitari Parc Taulí-UAB, Sabadell, Spain
| | - Xavier Pomares
- Department of Respiratory Medicine, Hospital De Sabadell, Institut Universitari Parc Taulí-UAB, Sabadell, Spain.,CIBER de Enfermedades Respiratorias, CIBERES, Madrid, Spain
| | - Jose R Cugat
- Department of Respiratory Medicine, Fundació Althaia, Manresa, Spain
| | - Antonio Casabella
- Laboratory of Microbiology-UDIAT, Institut Universitari Parc Taulí-UAB, Sabadell, Spain
| | - Joan Carles Oliva
- Epidemiology and Assessment Unit, Fundació Parc Taulí, Universitat Autònoma de Barcelona, Sabadell, Spain
| | - Miguel Gallego
- Department of Respiratory Medicine, Hospital De Sabadell, Institut Universitari Parc Taulí-UAB, Sabadell, Spain.,CIBER de Enfermedades Respiratorias, CIBERES, Madrid, Spain
| | - Eduard Monsó
- Department of Respiratory Medicine, Hospital De Sabadell, Institut Universitari Parc Taulí-UAB, Sabadell, Spain.,CIBER de Enfermedades Respiratorias, CIBERES, Madrid, Spain
| |
Collapse
|
41
|
Nagaoka K, Yamashita Y, Kimura H, Kimura H, Suzuki M, Fukumoto T, Hayasaka K, Yoshida M, Hara T, Maki H, Ohkawa T, Konno S. Anti-PcrV titers in non-cystic fibrosis patients with Pseudomonas aeruginosa respiratory tract infection. Int J Infect Dis 2019; 87:54-59. [PMID: 31419482 DOI: 10.1016/j.ijid.2019.08.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/07/2019] [Accepted: 08/08/2019] [Indexed: 10/26/2022] Open
Abstract
OBJECTIVE The epidemiology and role of the anti-PcrV titer in non-cystic fibrosis patients with Pseudomonas aeruginosa airway tract infections is not fully understood. This study was performed to compare the anti-PcrV titers of patients with and without P. aeruginosa respiratory tract infections. METHODS This prospective cohort study was conducted at Hokkaido University Hospital in Japan. Participants had blood and sputum specimens collected on admission. They were divided into two groups based on their sputum culture results. Those with a P. aeruginosa infection were assigned to the P. aeruginosa (PA) group and those without a P. aeruginosa infection were assigned to the non-PA group. Serum anti-PcrV titers were measured using a validated ELISA. RESULTS Of the 44 participants, 15 were assigned to the PA group and 29 were assigned to the non-PA group. In the PA group, 10/15 participants (66.7%) had an anti-PcrV titer >1000ng/ml compared to 3/29 participants (10.3%) in the non-PA group (p<0.001). In the PA group, two of the five participants with an anti-PcrV titer <1000 ng/ml died of recurrent P. aeruginosa pneumonia; the other three participants did not develop pneumonia. CONCLUSION The anti-PcrV titers in participants with P. aeruginosa infection varied considerably. Patients with low anti-PcrV titers and refractory P. aeruginosa infections need to be monitored closely.
Collapse
Affiliation(s)
- Kentaro Nagaoka
- Department of Respiratory Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Hokkaido, Japan.
| | - Yu Yamashita
- Department of Respiratory Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Hokkaido, Japan
| | - Hirokazu Kimura
- Department of Respiratory Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Hokkaido, Japan
| | - Hiroki Kimura
- Department of Respiratory Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Hokkaido, Japan
| | - Masaru Suzuki
- Department of Respiratory Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Hokkaido, Japan
| | - Tatsuya Fukumoto
- Division of Laboratory and Transfusion Medicine, Hokkaido University Hospital, Hokkaido, Japan
| | - Kasumi Hayasaka
- Division of Laboratory and Transfusion Medicine, Hokkaido University Hospital, Hokkaido, Japan
| | - Mari Yoshida
- Translational Research Unit, Biomarker R&D Department, Shionogi & Co., Ltd., Osaka, Japan
| | - Takafumi Hara
- Drug Discovery & Disease Research Laboratory, Shionogi & Co., Ltd., Osaka, Japan
| | - Hideki Maki
- Drug Discovery & Disease Research Laboratory, Shionogi & Co., Ltd., Osaka, Japan
| | - Tomoyuki Ohkawa
- Translational Research Unit, Biomarker R&D Department, Shionogi & Co., Ltd., Osaka, Japan
| | - Satoshi Konno
- Department of Respiratory Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Hokkaido, Japan
| |
Collapse
|
42
|
Immunization with the ferric iron-binding periplasmic protein HitA provides protection against Pseudomonas aeruginosa in the murine infection model. Microb Pathog 2019; 131:181-185. [DOI: 10.1016/j.micpath.2019.04.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 04/07/2019] [Accepted: 04/08/2019] [Indexed: 12/16/2022]
|
43
|
Ruffin M, Brochiero E. Repair Process Impairment by Pseudomonas aeruginosa in Epithelial Tissues: Major Features and Potential Therapeutic Avenues. Front Cell Infect Microbiol 2019; 9:182. [PMID: 31214514 PMCID: PMC6554286 DOI: 10.3389/fcimb.2019.00182] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 05/13/2019] [Indexed: 01/13/2023] Open
Abstract
Epithelial tissues protecting organs from the environment are the first-line of defense against pathogens. Therefore, efficient repair mechanisms after injury are crucial to maintain epithelial integrity. However, these healing processes can be insufficient to restore epithelial integrity, notably in infectious conditions. Pseudomonas aeruginosa infections in cutaneous, corneal, and respiratory tract epithelia are of particular concern because they are the leading causes of hospitalizations, disabilities, and deaths worldwide. Pseudomonas aeruginosa has been shown to alter repair processes, leading to chronic wounds and infections. Because of the current increase in the incidence of multi-drug resistant isolates of P. aeruginosa, complementary approaches to decrease the negative impact of these bacteria on epithelia are urgently needed. Here, we review the recent advances in the understanding of the impact of P. aeruginosa infections on the integrity and repair mechanisms of alveolar, airway, cutaneous and corneal epithelia. Potential therapeutic avenues aimed at counteracting this deleterious impact of infection are also discussed.
Collapse
Affiliation(s)
- Manon Ruffin
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada.,Département de Médecine, Université de Montréal, Montréal, QC, Canada.,INSERM, Centre de Recherche Saint-Antoine, CRSA, Sorbonne Université, Paris, France
| | - Emmanuelle Brochiero
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada.,Département de Médecine, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
44
|
Identification of a lytic Pseudomonas aeruginosa phage depolymerase and its anti-biofilm effect and bactericidal contribution to serum. Virus Genes 2019; 55:394-405. [PMID: 30937696 DOI: 10.1007/s11262-019-01660-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 03/26/2019] [Indexed: 10/27/2022]
Abstract
Pseudomonas aeruginosa (P. aeruginosa) infection has imposed a great threat to patients with cystic fibrosis. With the emergence of multidrug-resistant P. aeruginosa, developing an alternative anti-microbial strategy is indispensable and more urgent than ever. In this study, a lytic P. aeruginosa phage was isolated from the sewage of a hospital, and one protein was predicted as the depolymerase-like protein by genomic sequence analysis, it includes two catalytic regions, the Pectate lyase_3 super family and Glycosyl hydrolase_28 super family. Further analysis demonstrated that recombinant depolymerase-like protein degraded P. aeruginosa exopolysaccharide and enhanced bactericidal activity mediated by serum in vitro. Additionally, this protein disrupted host bacterial biofilms. All of these results showed that the phage-derived depolymerase-like protein has the potential to be developed into an anti-microbial agent that targets P. aeruginosa.
Collapse
|
45
|
Characterization of Host Responses during Pseudomonas aeruginosa Acute Infection in the Lungs and Blood and after Treatment with the Synthetic Immunomodulatory Peptide IDR-1002. Infect Immun 2018; 87:IAI.00661-18. [PMID: 30323028 PMCID: PMC6300642 DOI: 10.1128/iai.00661-18] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 10/02/2018] [Indexed: 12/26/2022] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that causes nosocomial pneumonia and infects patients with cystic fibrosis. P. aeruginosa lung infections are difficult to treat due to bacterial resistance to antibiotics, and strains with multidrug resistance are becoming more prevalent. Pseudomonas aeruginosa is an opportunistic pathogen that causes nosocomial pneumonia and infects patients with cystic fibrosis. P. aeruginosa lung infections are difficult to treat due to bacterial resistance to antibiotics, and strains with multidrug resistance are becoming more prevalent. Here, we examined the use of a small host defense peptide, innate defense regulator 1002 (IDR-1002), in an acute P. aeruginosa lung infection in vivo. IDR-1002 significantly reduced the bacterial burden in bronchoalveolar lavage fluid (BALF), as well as MCP-1 in BALF and serum, KC in serum, and interleukin 6 (IL-6) in BALF. Transcriptome sequencing (RNA-Seq) was conducted on lungs and whole blood, and the effects of P. aeruginosa, IDR-1002, and the combination of P. aeruginosa and IDR-1002 were evaluated. Differential gene expression analysis showed that P. aeruginosa increased multiple inflammatory and innate immune pathways, as well as affected hemostasis, matrix metalloproteinases, collagen biosynthesis, and various metabolism pathways in the lungs and/or blood. Infected mice treated with IDR-1002 had significant changes in gene expression compared to untreated infected mice, with fewer differentially expressed genes associated with the inflammatory and innate immune responses to microbial infection, and treatment also affected morphogenesis, certain metabolic pathways, and lymphocyte activation. Overall, these results showed that IDR-1002 was effective in treating P. aeruginosa acute lung infections and associated inflammation.
Collapse
|
46
|
Pang Z, Raudonis R, Glick BR, Lin TJ, Cheng Z. Antibiotic resistance in Pseudomonas aeruginosa: mechanisms and alternative therapeutic strategies. Biotechnol Adv 2018; 37:177-192. [PMID: 30500353 DOI: 10.1016/j.biotechadv.2018.11.013] [Citation(s) in RCA: 1176] [Impact Index Per Article: 168.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 11/21/2018] [Accepted: 11/24/2018] [Indexed: 01/09/2023]
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that is a leading cause of morbidity and mortality in cystic fibrosis patients and immunocompromised individuals. Eradication of P. aeruginosa has become increasingly difficult due to its remarkable capacity to resist antibiotics. Strains of Pseudomonas aeruginosa are known to utilize their high levels of intrinsic and acquired resistance mechanisms to counter most antibiotics. In addition, adaptive antibiotic resistance of P. aeruginosa is a recently characterized mechanism, which includes biofilm-mediated resistance and formation of multidrug-tolerant persister cells, and is responsible for recalcitrance and relapse of infections. The discovery and development of alternative therapeutic strategies that present novel avenues against P. aeruginosa infections are increasingly demanded and gaining more and more attention. Although mostly at the preclinical stages, many recent studies have reported several innovative therapeutic technologies that have demonstrated pronounced effectiveness in fighting against drug-resistant P. aeruginosa strains. This review highlights the mechanisms of antibiotic resistance in P. aeruginosa and discusses the current state of some novel therapeutic approaches for treatment of P. aeruginosa infections that can be further explored in clinical practice.
Collapse
Affiliation(s)
- Zheng Pang
- Department of Pathology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Renee Raudonis
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Bernard R Glick
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Tong-Jun Lin
- Department of Pathology, Dalhousie University, Halifax, NS B3H 4R2, Canada; Department of Microbiology and Immunology, Dalhousie University, Halifax, NS B3H 4R2, Canada; Department of Pediatrics, IWK Health Centre, Halifax, NS B3K 6R8, Canada
| | - Zhenyu Cheng
- Department of Pathology, Dalhousie University, Halifax, NS B3H 4R2, Canada; Department of Microbiology and Immunology, Dalhousie University, Halifax, NS B3H 4R2, Canada.
| |
Collapse
|
47
|
Hommelsheim C, Sichau M, Heipel R, Müller E, Gatermann S, Pfeifer M, Ewig S. Predictors of Outcomes in Patients with Prolonged Weaning with Focus on Respiratory Tract Pathogens and Infection. Respiration 2018; 97:135-144. [PMID: 30332675 DOI: 10.1159/000493430] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 08/30/2018] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The impact of respiratory tract pathogens and infection on outcomes in patients with prolonged weaning is largely unknown. OBJECTIVE We studied predictors of weaning outcomes (death and failure to achieve spontaneous ventilation) in a population treated during a 3.5-year period in a specialized and certified weaning centre. METHODS Patient data were retrieved retrospectively from the clinical charts. Complete datasets were available in 173 patients. The following parameters were investigated as potential predictors of both endpoints: age; comorbidities; tracheobronchial pathogens; bacteraemia, pneumonia and number of pneumonias; and number of inhouse treatment cycles (none vs. ≥1). RESULTS Tracheobronchial pathogens, pneumonia, bacteraemia and the number of antibiotic cycles all significantly increased weaning duration and hospitalisation times. Independent predictors of death were atrial fibrillation (OR 2.6, 95% CI 1.2-5.8, p = 0.02) and tracheobronchial multiresistant Pseudomonas aeruginosa (OR 3.9, 95% CI 1.4-11.0, p = 0.01). Independent predictors of failure to achieve spontaneous ventilation included chronic obstructive pulmonary disease (OR 2.8, 95% CI 1.0-7.8, p = 0.045); neuromuscular disease (OR 8.3, 95% CI 1.2-27.2, p = 0.02); tracheobronchial P. aeruginosa (OR 3.3, 95% CI 1.3-9.3, p = 0.01); Stenotrophomonas maltophilia (OR 7.9, 95% CI 1.4-51.6, p = 0.02); and pneumonia (OR 4.4, 95% CI 1.5-10.9, p = 0.003). CONCLUSIONS The impact of respiratory tract pathogens and infection on weaning outcomes was remarkable. Predictors of death and failure to achieve spontaneous ventilation differed considerably. A priority may be to investigate preventive strategies against colonisation and infection with respiratory pathogens, particularly P. aeruginosa.
Collapse
Affiliation(s)
- Catharina Hommelsheim
- Kliniken für Pneumologie und Infektiologie, Thoraxzentrum Ruhrgebiet, Herne, Germany.,Kliniken für Pneumologie und Infektiologie, Thoraxzentrum Ruhrgebiet, Bochum, Germany
| | - Mathias Sichau
- Kliniken für Pneumologie und Infektiologie, Thoraxzentrum Ruhrgebiet, Herne, Germany.,Kliniken für Pneumologie und Infektiologie, Thoraxzentrum Ruhrgebiet, Bochum, Germany
| | - Roland Heipel
- Kliniken für Pneumologie und Infektiologie, Thoraxzentrum Ruhrgebiet, Herne, Germany.,Kliniken für Pneumologie und Infektiologie, Thoraxzentrum Ruhrgebiet, Bochum, Germany
| | - Eckhard Müller
- Klinik für Anästhesiologie, Intensiv-, Notfall- und Schmerzmedizin, Thoraxzentrum Ruhrgebiet, Herne, Germany
| | | | - Michael Pfeifer
- Klinik für Pneumologie, Universitätsklinikum Regensburg, Regensburg, Germany
| | - Santiago Ewig
- Kliniken für Pneumologie und Infektiologie, Thoraxzentrum Ruhrgebiet, Herne, .,Kliniken für Pneumologie und Infektiologie, Thoraxzentrum Ruhrgebiet, Bochum,
| |
Collapse
|
48
|
Choi W, Yang AX, Waltenburg MA, Choe S, Steiner M, Radwan A, Lin J, Maddox CW, Stern AW, Fredrickson RL, Lau GW. FOXA2 depletion leads to mucus hypersecretion in canine airways with respiratory diseases. Cell Microbiol 2018; 21:e12957. [DOI: 10.1111/cmi.12957] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 09/11/2018] [Accepted: 09/12/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Woosuk Choi
- Department of Pathobiology, College of Veterinary MedicineUniversity of Illinois at Urbana‐Champaign Urbana Illinois USA
| | - Alina X. Yang
- Department of Pathobiology, College of Veterinary MedicineUniversity of Illinois at Urbana‐Champaign Urbana Illinois USA
| | - Michelle A. Waltenburg
- Department of Pathobiology, College of Veterinary MedicineUniversity of Illinois at Urbana‐Champaign Urbana Illinois USA
| | - Shawn Choe
- Department of Pathobiology, College of Veterinary MedicineUniversity of Illinois at Urbana‐Champaign Urbana Illinois USA
| | - Madeline Steiner
- Department of Pathobiology, College of Veterinary MedicineUniversity of Illinois at Urbana‐Champaign Urbana Illinois USA
| | - Ahmed Radwan
- Department of Pathobiology, College of Veterinary MedicineUniversity of Illinois at Urbana‐Champaign Urbana Illinois USA
| | - Jingjun Lin
- Department of Pathobiology, College of Veterinary MedicineUniversity of Illinois at Urbana‐Champaign Urbana Illinois USA
| | - Carrol W. Maddox
- Department of Pathobiology, College of Veterinary MedicineUniversity of Illinois at Urbana‐Champaign Urbana Illinois USA
- Veterinary Diagnostic Laboratory, College of Veterinary MedicineUniversity of Illinois at Urbana‐Champaign Urbana Illinois USA
| | - Adam W. Stern
- Veterinary Diagnostic Laboratory, College of Veterinary MedicineUniversity of Illinois at Urbana‐Champaign Urbana Illinois USA
- Department of Veterinary Clinical Medicine, College of Veterinary MedicineUniversity of Illinois at Urbana‐Champaign Urbana Illinois USA
| | - Richard L. Fredrickson
- Veterinary Diagnostic Laboratory, College of Veterinary MedicineUniversity of Illinois at Urbana‐Champaign Urbana Illinois USA
- Department of Veterinary Clinical Medicine, College of Veterinary MedicineUniversity of Illinois at Urbana‐Champaign Urbana Illinois USA
| | - Gee W. Lau
- Department of Pathobiology, College of Veterinary MedicineUniversity of Illinois at Urbana‐Champaign Urbana Illinois USA
| |
Collapse
|
49
|
Lower Airway Bacterial Colonization Patterns and Species-Specific Interactions in Chronic Obstructive Pulmonary Disease. J Clin Microbiol 2018; 56:JCM.00330-18. [PMID: 30045868 DOI: 10.1128/jcm.00330-18] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Accepted: 07/18/2018] [Indexed: 01/19/2023] Open
Abstract
Little is known about interactions between nontypeable Haemophilus influenzae, Moraxella catarrhalis, Streptococcus pneumoniae, and Pseudomonas aeruginosa in the lower respiratory tract in chronic obstructive pulmonary disease (COPD) patients. We characterized colonization by these four bacterial species, determined species-specific interactions, and estimated the effects of host factors on bacterial colonization among COPD patients. We conducted a prospective cohort study in veterans with COPD that involved monthly clinical assessment and sputum cultures with an average duration of follow-up of 4.5 years. Cultures were used for bacterial identification. We analyzed bacterial interactions using generalized linear mixed models after controlling for clinical and demographic variables. The outcomes of interest were the relationships between bacteria based on clinical status (stable or exacerbation). One hundred eighty-one participants completed a total of 8,843 clinic visits, 30.8% of which had at least one of the four bacteria isolated. H. influenzae was the most common bacterium isolated (14.4%), followed by P. aeruginosa (8.1%). In adjusted models, S. pneumoniae colonization was positively associated with H. influenzae colonization (odds ratio [OR], 2.79; 95% confidence interval [CI], 2.03 to 3.73). We identified negative associations between P. aeruginosa and H. influenzae (OR, 0.15; 95% CI, 0.10 to 0.22) and P. aeruginosa and M. catarrhalis (OR, 0.51; 95% CI, 0.35 to 0.75). Associations were similar during stable and exacerbation visits. Recent antimicrobial therapy was associated with a lower prevalence of S. pneumoniae, H. influenzae, and M. catarrhalis, but not P. aeruginosa Our findings support the presence of specific interspecies interactions between common bacteria in the lower respiratory tracts of COPD patients. Further work is necessary to elucidate the mechanisms of these complex interactions that shift bacterial species.
Collapse
|
50
|
Risk factors for mortality in patients with Pseudomonas aeruginosa pneumonia: Clinical impact of mucA gene mutation. Respir Med 2018; 140:27-31. [PMID: 29957276 DOI: 10.1016/j.rmed.2018.05.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 05/18/2018] [Accepted: 05/19/2018] [Indexed: 11/20/2022]
Abstract
OBJECTIVES Pseudomonas aeruginosa frequently colonizes the lungs of chronic obstructive pulmonary disease (COPD) patients. Mucoid conversion is a hallmark of chronic P. aeruginosa infection, which is mediated by mucA gene mutations. The aim of this study is to identify predictive factors for mortality and the influence of mucA gene mutation in COPD patients with P. aeruginosa pneumonia. METHODS This study assessed 75 COPD patients with P. aeruginosa pneumonia at two university hospitals. The clinical and laboratory data were collected, and the P. aeruginosa isolates analyzed for the presence of mucA gene mutations. RESULTS MucA gene mutation of P. aeruginosa was an independent predictor of mortality (odds ratio [OR] 10.43, 95% confidence interval [CI]: 1.53-70.90, p = 0.017). In addition, the APACHE II score and C-reactive protein/Albumin (CA) ratio were independent predictive factors for mortality (OR 1.25, 95% CI: 1.07-1.46, p = 0.004; and OR 1.06, 95% CI: 1.02-1.10, p = 0.003, respectively). The optimal cutoff value of CA ratio for the greatest sensitivity and specificity was calculated as 31.27 (sensitivity, 85.7%; specificity, 80.3%). CONCLUSIONS CA ratio and mucA gene mutation of P. aeruginosa could be used as predictors to identify poor prognosis in COPD patients with P. aeruginosa pneumonia.
Collapse
|