1
|
Fu Q, DeJager J, Gardner EM. Supplementation and Mitigating Cognitive Decline in Older Adults With or Without Mild Cognitive Impairment or Dementia: A Systematic Review. Nutrients 2024; 16:3567. [PMID: 39458561 PMCID: PMC11509913 DOI: 10.3390/nu16203567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/11/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024] Open
Abstract
This systematic literature review aims to answer the question of how micronutrients might influence the development and progression of dementia. In the present work, we focused on an overview of an updated review of relevant literature published in the last two decades. This review aims to delineate the relationship between micronutrient supplementation and cognitive decline in older subjects. In carrying out this review, we followed PRISMA, and our literature search was performed on PubMed. This systematic review includes only primary studies that have investigated the efficacy of nutritional interventions for the prevention of dementia and improvement of cognitive function in subjects aged 65 years or older with normal cognition, mild cognitive impairment (MCI), or Alzheimer's disease (AD). A gross heterogeneity of studies forbids the possibility of a direct comparison of the results. A review of the inclusion criteria and restrictions has been conducted to check the validity and reliability of the results. In this review, thirty-three primary studies were included. Results have shown that supplementation with vitamin D, probiotics, and PUFAs would most likely reduce cognitive decline, dementia, or AD compared with vitamins A, B, C, and E, which were seen to be relatively ineffective. Of note, when considering vitamin B supplementation, positive effects were only observed in non-aspirin users having high ω-3 fatty acid (ω-3 FA) plasma levels. In some cases, however, there were genotypic differences in subjects in response to vitamin B supplementation.
Collapse
Affiliation(s)
| | | | - Elizabeth M. Gardner
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48823, USA; (Q.F.); (J.D.)
| |
Collapse
|
2
|
Loda I, D’Angelo E, Marzetti E, Kerminen H. Prevention, Assessment, and Management of Malnutrition in Older Adults with Early Stages of Cognitive Disorders. Nutrients 2024; 16:1566. [PMID: 38892503 PMCID: PMC11173938 DOI: 10.3390/nu16111566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/11/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024] Open
Abstract
Malnutrition is common in older adults, and its risk is greater in those living with dementia. Relative to cognitively healthy peers, the prevalence of malnutrition is also increased in individuals with early stages of cognitive disorders owing to pathophysiological, cognitive, and psychosocial changes related to cognitive impairment. Malnutrition is associated with adverse health outcomes, including faster cognitive and functional decline. Here, we provide an overview of the prevention, assessment, and management of malnutrition in older adults, with a special focus on the aspects that are important to consider in individuals with early stages of cognitive disorders. Strategies to prevent malnutrition include systematic screening for malnourishment using validated tools to detect those at risk. If the screening reveals an increased risk of malnutrition, a detailed assessment including the individual's nutritional, medical, and functional status as well as dietary intake should be performed. The management of malnutrition in the early stages of cognitive disorders should be based on the findings of a comprehensive assessment and be personalized according to the individual's specific characteristics. In the article, we also provide an overview of the evidence on vitamin supplements and specific dietary patterns to prevent cognitive decline or attenuate its progression.
Collapse
Affiliation(s)
- Irene Loda
- Scuola di Specialità in Geriatria, Università degli Studi di Brescia, Viale Europa 11, 25123 Brescia, Italy;
| | - Emanuela D’Angelo
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, Largo A. Gemelli 8, 00168 Rome, Italy
| | - Emanuele Marzetti
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, Largo A. Gemelli 8, 00168 Rome, Italy
- Department of Geriatrics, Orthopedics and Rheumatology, Università Cattolica del Sacro Cuore, Largo F. Vito 1, 00168 Rome, Italy;
| | - Hanna Kerminen
- Department of Geriatrics, Orthopedics and Rheumatology, Università Cattolica del Sacro Cuore, Largo F. Vito 1, 00168 Rome, Italy;
- Faculty of Medicine and Health Technology, The Gerontology Research Center (GEREC), Tampere University, Arvo Ylpön katu 34, 33520 Tampere, Finland
| |
Collapse
|
3
|
Fang A, Zhao Y, Yang P, Zhang X, Giovannucci EL. Vitamin D and human health: evidence from Mendelian randomization studies. Eur J Epidemiol 2024; 39:467-490. [PMID: 38214845 DOI: 10.1007/s10654-023-01075-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 10/30/2023] [Indexed: 01/13/2024]
Abstract
We summarized the current evidence on vitamin D and major health outcomes from Mendelian randomization (MR) studies. PubMed and Embase were searched for original MR studies on vitamin D in relation to any health outcome from inception to September 1, 2022. Nonlinear MR findings were excluded due to concerns about the validity of the statistical methods used. A meta-analysis was preformed to synthesize study-specific estimates after excluding overlapping samples, where applicable. The methodological quality of the included studies was evaluated according to the STROBE-MR checklist. A total of 133 MR publications were eligible for inclusion in the analyses. The causal association between vitamin D status and 275 individual outcomes was examined. Linear MR analyses showed genetically high 25-hydroxyvitamin D (25(OH)D) concentrations were associated with reduced risk of multiple sclerosis incidence and relapse, non-infectious uveitis and scleritis, psoriasis, femur fracture, leg fracture, amyotrophic lateral sclerosis, anorexia nervosa, delirium, heart failure, ovarian cancer, non-alcoholic fatty liver disease, dyslipidemia, and bacterial pneumonia, but increased risk of Behçet's disease, Graves' disease, kidney stone disease, fracture of radium/ulna, basal cell carcinoma, and overall cataracts. Stratified analyses showed that the inverse association between genetically predisposed 25(OH)D concentrations and multiple sclerosis risk was significant and consistent regardless of the genetic instruments GIs selected. However, the associations with most of the other outcomes were only pronounced when using genetic variants not limited to those in the vitamin D pathway as GIs. The methodological quality of the included MR studies was substantially heterogeneous. Current evidence from linear MR studies strongly supports a causal role of vitamin D in the development of multiple sclerosis. Suggestive support for a number of other health conditions could help prioritize conditions where vitamin D may be beneficial or harmful.
Collapse
Affiliation(s)
- Aiping Fang
- Department of Nutrition, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-Sen University, Guangzhou, China
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Yue Zhao
- Department of Nutrition, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Ping Yang
- School of Nursing, Peking University, Beijing, China
- School of Nursing, Johns Hopkins University, Baltimore, MD, USA
| | - Xuehong Zhang
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Edward L Giovannucci
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA.
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| |
Collapse
|
4
|
Jeong SP, Sharma N, An SSA. Role of Calcitriol and Vitamin D Receptor ( VDR) Gene Polymorphisms in Alzheimer's Disease. Int J Mol Sci 2024; 25:4806. [PMID: 38732025 PMCID: PMC11084202 DOI: 10.3390/ijms25094806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 02/21/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
Alzheimer's disease (AD) is characterized by amyloid beta (Aβ) buildup and neuronal degeneration. An association between low serum vitamin D levels and an increased risk of AD has been reported in several epidemiological studies. Calcitriol (1,25-dihydroxycholecalciferol) is the active form of vitamin D, and is generated in the kidney and many other tissues/organs, including the brain. It is a steroid hormone that regulates important functions like calcium/phosphorous levels, bone mineralization, and immunomodulation, indicating its broader systemic significance. In addition, calcitriol confers neuroprotection by mitigating oxidative stress and neuroinflammation, promoting the clearance of Aβ, myelin formation, neurogenesis, neurotransmission, and autophagy. The receptors to which calcitriol binds (vitamin D receptors; VDRs) to exert its effects are distributed over many organs and tissues, representing other significant roles of calcitriol beyond sustaining bone health. The biological effects of calcitriol are manifested through genomic (classical) and non-genomic actions through different pathways. The first is a slow genomic effect involving nuclear VDR directly affecting gene transcription. The association of AD with VDR gene polymorphisms relies on the changes in vitamin D consumption, which lowers VDR expression, protein stability, and binding affinity. It leads to the altered expression of genes involved in the neuroprotective effects of calcitriol. This review summarizes the neuroprotective mechanism of calcitriol and the role of VDR polymorphisms in AD, and might help develop potential therapeutic strategies and markers for AD in the future.
Collapse
Affiliation(s)
| | - Niti Sharma
- Bionano Research Institute, Gachon University, 1342 Seongnam-daero, Sujung-gu, Seongnam-si 461-701, Republic of Korea
| | - Seong Soo A. An
- Bionano Research Institute, Gachon University, 1342 Seongnam-daero, Sujung-gu, Seongnam-si 461-701, Republic of Korea
| |
Collapse
|
5
|
Plantone D, Pardini M, Caneva S, De Stefano N. Is There a Role of Vitamin D in Alzheimer's Disease? CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:545-553. [PMID: 37246320 DOI: 10.2174/1871527322666230526164421] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 04/05/2023] [Accepted: 04/19/2023] [Indexed: 05/30/2023]
Abstract
Alzheimer's disease (AD) represents the most prevalent type of neurodegenerative dementia and the sixth leading cause of death worldwide. The so-called "non-calcemic actions" of vitamin D have been increasingly described, and its insufficiency has already been linked to the onset and progression of the main neurological diseases, including AD. Immune-mediated Aβ plaque's phagocytosis and clearance, immune response, oxidative stress, and mitochondrial function are all influenced by vitamin D, and these functions are considered relevant in AD pathogenesis. However, it has been shown that the genomic vitamin D signaling pathway is already impaired in the AD brain, making things more complicated. In this paper, we aim to summarise the role of vitamin D in AD and review the results of the supplementation trials in AD patients.
Collapse
Affiliation(s)
- Domenico Plantone
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Matteo Pardini
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genova, Italy
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Stefano Caneva
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genova, Italy
| | - Nicola De Stefano
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| |
Collapse
|
6
|
Nguyen SA, Oughli HA, Lavretsky H. Use of Complementary and Integrative Medicine for Alzheimer's Disease and Cognitive Decline. J Alzheimers Dis 2024; 97:523-540. [PMID: 38073388 DOI: 10.3233/jad-230710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
Integrative medicine takes a holistic approach because it considers multiple aspects of the individual. This includes a person's physical, emotional, interpersonal, behavioral, nutritional, environmental, and spiritual dimensions of wellbeing that contribute to the Whole Person Health. There is increasing interest and popularity of integrative approaches to treating cognitive decline and dementia because of the multifactorial nature of aging and the limited pharmacological interventions available in treating cognitive decline and dementia, particularly Alzheimer's disease, the most common type of dementia. This review summarizes the existing evidence using complementary and integrative medicine therapies in cognitive decline and Alzheimer's disease. This includes the use of mind-body therapies, lifestyle interventions (nutritional, physical exercise, stress reduction), and other integrative modalities. Unfortunately, there are still limited studies available to guide clinicians despite the increasing popularity of integrative treatments.
Collapse
Affiliation(s)
- Sarah A Nguyen
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Hanadi Ajam Oughli
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Helen Lavretsky
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
7
|
Charbit J, Vidal JS, Hanon O. The role of nutrition in the prevention of cognitive decline. Curr Opin Clin Nutr Metab Care 2024; 27:9-16. [PMID: 38001066 DOI: 10.1097/mco.0000000000001002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2023]
Abstract
PURPOSE OF REVIEW Dementia is a growing concern and underscores the urgent need for effective preventive measures targeting modifiable risk factors. Nutrition is a key player in the onset and progression of inflammation and cognitive decline. This review provides a comprehensive overview of the effects of different dietary patterns, vitamins and nutrients for preventing cognitive decline, mainly among healthy individuals and those with mild cognitive impairment. RECENT FINDINGS The Mediterranean diet, omega-3 long-chain polyunsaturated fatty acids and B vitamins are the most investigated, with evidence supporting protection against cognitive decline among older adults varying across studies. More recent interventions examined in this review, such as MIND Diet, are promising with positive results, but further research is needed to conclusively establish their efficacy. It is also crucial to consider complete lifestyle as physical activity for preventing cognitive decline. SUMMARY Definitive conclusions are difficult to draw. Future studies should adopt a comprehensive approach and focus on multinutrient strategies and whole diets.
Collapse
Affiliation(s)
- Judith Charbit
- Université Paris Cité, Service Gérontologie Hôpital Broca
| | | | - Olivier Hanon
- Université Paris Cité, Chef de service Gérontologie Hôpital Broca, AP-HP, Paris, France
| |
Collapse
|
8
|
Reiss AB, Muhieddine D, Jacob B, Mesbah M, Pinkhasov A, Gomolin IH, Stecker MM, Wisniewski T, De Leon J. Alzheimer's Disease Treatment: The Search for a Breakthrough. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1084. [PMID: 37374288 PMCID: PMC10302500 DOI: 10.3390/medicina59061084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/22/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023]
Abstract
As the search for modalities to cure Alzheimer's disease (AD) has made slow progress, research has now turned to innovative pathways involving neural and peripheral inflammation and neuro-regeneration. Widely used AD treatments provide only symptomatic relief without changing the disease course. The recently FDA-approved anti-amyloid drugs, aducanumab and lecanemab, have demonstrated unclear real-world efficacy with a substantial side effect profile. Interest is growing in targeting the early stages of AD before irreversible pathologic changes so that cognitive function and neuronal viability can be preserved. Neuroinflammation is a fundamental feature of AD that involves complex relationships among cerebral immune cells and pro-inflammatory cytokines, which could be altered pharmacologically by AD therapy. Here, we provide an overview of the manipulations attempted in pre-clinical experiments. These include inhibition of microglial receptors, attenuation of inflammation and enhancement of toxin-clearing autophagy. In addition, modulation of the microbiome-brain-gut axis, dietary changes, and increased mental and physical exercise are under evaluation as ways to optimize brain health. As the scientific and medical communities work together, new solutions may be on the horizon to slow or halt AD progression.
Collapse
Affiliation(s)
- Allison B. Reiss
- Department of Medicine and Biomedical Research Institute, NYU Long Island School of Medicine, Mineola, NY 11501, USA; (D.M.); (B.J.); (M.M.); (A.P.); (I.H.G.); (J.D.L.)
| | - Dalia Muhieddine
- Department of Medicine and Biomedical Research Institute, NYU Long Island School of Medicine, Mineola, NY 11501, USA; (D.M.); (B.J.); (M.M.); (A.P.); (I.H.G.); (J.D.L.)
| | - Berlin Jacob
- Department of Medicine and Biomedical Research Institute, NYU Long Island School of Medicine, Mineola, NY 11501, USA; (D.M.); (B.J.); (M.M.); (A.P.); (I.H.G.); (J.D.L.)
| | - Michael Mesbah
- Department of Medicine and Biomedical Research Institute, NYU Long Island School of Medicine, Mineola, NY 11501, USA; (D.M.); (B.J.); (M.M.); (A.P.); (I.H.G.); (J.D.L.)
| | - Aaron Pinkhasov
- Department of Medicine and Biomedical Research Institute, NYU Long Island School of Medicine, Mineola, NY 11501, USA; (D.M.); (B.J.); (M.M.); (A.P.); (I.H.G.); (J.D.L.)
| | - Irving H. Gomolin
- Department of Medicine and Biomedical Research Institute, NYU Long Island School of Medicine, Mineola, NY 11501, USA; (D.M.); (B.J.); (M.M.); (A.P.); (I.H.G.); (J.D.L.)
| | | | - Thomas Wisniewski
- Center for Cognitive Neurology, Departments of Neurology, Pathology and Psychiatry, NYU School of Medicine, New York, NY 10016, USA;
| | - Joshua De Leon
- Department of Medicine and Biomedical Research Institute, NYU Long Island School of Medicine, Mineola, NY 11501, USA; (D.M.); (B.J.); (M.M.); (A.P.); (I.H.G.); (J.D.L.)
| |
Collapse
|
9
|
Xu Lou I, Chen J, Ali K, Shaikh AL, Chen Q. Mapping new pharmacological interventions for cognitive function in Alzheimer's disease: a systematic review of randomized clinical trials. Front Pharmacol 2023; 14:1190604. [PMID: 37332343 PMCID: PMC10270324 DOI: 10.3389/fphar.2023.1190604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 05/12/2023] [Indexed: 06/20/2023] Open
Abstract
Background and Objective: Alzheimer's disease (AD) is a progressive neurodegenerative disorder, that is, characterized by cognitive decline. To date, there are no effective treatments for AD. Therefore, the objective of this study was to map new perspectives on the effects of pharmacological treatment on cognitive function and the overall psychological state in patients with AD. Methods: Two independent researchers searched for randomized clinical trials (RCTs) exploring new pharmacological approaches related to cognition in Alzheimer's disease in adults from 2018 to 2023 in PubMed, Web of Science, Scopus, and Cochrane Library databases. A total of 17 RCTs were included in this review. Results: The results show that in recent years, new drugs have been tested in patients with Alzheimer's disease, including masitinib, methylphenidate, levetiracetam, Jiannao Yizhi, and Huannao Yicong formulas. Most studies have been conducted in populations with mild to moderate Alzheimer's disease. Conclusion: Although some of the drugs found suggested improvement in cognitive function, the scarcity of available studies highlights the need for further research in this area. Systematic review registration: [www.crd.york.ac.uk/prospero], identifier [CRD42023409986].
Collapse
Affiliation(s)
- Inmaculada Xu Lou
- International Education College of Zhejiang Chinese Medical University, Hangzhou, China
- Department of Cardiology, Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou, China
| | - Jiayue Chen
- Department of Cardiology, Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou, China
- Hangzhou Clinical Medical College Internal Medicine of Traditional Chinese Medicine of Zhejiang Chinese Medical University, Hangzhou, China
| | - Kamran Ali
- Department of Oncology, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu, China
| | - Abdul Lateef Shaikh
- Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Qilan Chen
- Department of Cardiology, Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou, China
| |
Collapse
|
10
|
Xu Lou I, Ali K, Chen Q. Effect of nutrition in Alzheimer's disease: A systematic review. Front Neurosci 2023; 17:1147177. [PMID: 37214392 PMCID: PMC10194838 DOI: 10.3389/fnins.2023.1147177] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/01/2023] [Indexed: 05/24/2023] Open
Abstract
Background and objective Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized by declining cognitive ability. Currently, there are no effective treatments for this condition. However, certain measures, such as nutritional interventions, can slow disease progression. Therefore, the objective of this systematic review was to identify and map the updates of the last 5 years regarding the nutritional status and nutritional interventions associated with AD patients. Study design A systematic review. Methods A search was conducted for randomized clinical trials, systematic reviews, and meta-analyses investigating the association between nutritional interventions and AD published between 2018 and 2022 in the PubMed, Web of Science, Scopus, and Cochrane Library databases. A total of 38 studies were identified, of which 17 were randomized clinical trials, and 21 were systematic reviews and/or meta-analyses. Results The results show that the western diet pattern is a risk factor for developing AD. In contrast, the Mediterranean diet, ketogenic diet, and supplementation with omega-3 fatty acids and probiotics are protective factors. This effect is significant only in cases of mild-to-moderate AD. Conclusion Certain nutritional interventions may slow the progression of AD and improve cognitive function and quality of life. Further research is required to draw more definitive conclusions.
Collapse
Affiliation(s)
- Inmaculada Xu Lou
- International Education College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- Department of Cardiology, Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou, Zhejiang, China
| | - Kamran Ali
- Department of Oncology, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Qilan Chen
- Department of Cardiology, Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
11
|
Van der Auwera S, Garvert L, Ameling S, Völzke H, Nauck M, Völker U, Grabe HJ. The interplay between micro RNAs and genetic liability to Alzheimer's Disease on memory trajectories in the general population. Psychiatry Res 2023; 323:115141. [PMID: 36905902 DOI: 10.1016/j.psychres.2023.115141] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/20/2023] [Accepted: 02/28/2023] [Indexed: 03/13/2023]
Abstract
Deficits in cognitive function and memory are common early symptoms of neurodegenerative disorders, such as Alzheimer's Disease (AD). Several studies have discussed micro RNAs (miRNAs) as potential epigenetic early detection biomarkers. In a longitudinal general population sample (n = 548) from the Study of Health in Pomerania, we analyzed the associations between 167 baseline miRNA levels and changes in verbal memory scores with a mean follow-up time of 7.4 years. We additionally assessed the impact of an individual's genetic liability for AD on verbal memory scores in n = 2,334 subjects and a possible interactions between epigenetic and genetic markers. Results revealed two miRNAs associated with changes in immediate verbal memory over time. In interaction analyses between miRNAs and a polygenic risk score for AD, five miRNAs showed a significant interaction effect on changes in verbal memory. All of these miRNAs have previously been identified in the context of AD, neurodegeneration or cognition. Our study provides candidate miRNAs for a decline in verbal memory as an early symptom of neurodegeneration and AD. Further experimental studies are needed to verify the diagnostic value of these miRNA markers in the prodromal stage of AD.
Collapse
Affiliation(s)
- Sandra Van der Auwera
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany; German Center for Neurodegenerative Diseases DZNE, Site Rostock/Greifswald, Greifswald, Germany.
| | - Linda Garvert
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany
| | - Sabine Ameling
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany; German Centre for Cardiovascular Research (DZHK), Partner Site Greifswald, Greifswald, Germany
| | - Henry Völzke
- German Centre for Cardiovascular Research (DZHK), Partner Site Greifswald, Greifswald, Germany; Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Matthias Nauck
- German Centre for Cardiovascular Research (DZHK), Partner Site Greifswald, Greifswald, Germany; Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Uwe Völker
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany; German Centre for Cardiovascular Research (DZHK), Partner Site Greifswald, Greifswald, Germany
| | - Hans J Grabe
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany; German Center for Neurodegenerative Diseases DZNE, Site Rostock/Greifswald, Greifswald, Germany
| |
Collapse
|
12
|
Role of Vitamin D Deficiency in the Pathogenesis of Cardiovascular and Cerebrovascular Diseases. Nutrients 2023; 15:nu15020334. [PMID: 36678205 PMCID: PMC9864832 DOI: 10.3390/nu15020334] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/29/2022] [Accepted: 12/30/2022] [Indexed: 01/12/2023] Open
Abstract
Deficiency in vitamin D (VitD), a lipid-soluble vitamin and steroid hormone, affects approximately 24% to 40% of the population of the Western world. In addition to its well-documented effects on the musculoskeletal system, VitD also contributes importantly to the promotion and preservation of cardiovascular health via modulating the immune and inflammatory functions and regulating cell proliferation and migration, endothelial function, renin expression, and extracellular matrix homeostasis. This brief overview focuses on the cardiovascular and cerebrovascular effects of VitD and the cellular, molecular, and functional changes that occur in the circulatory system in VitD deficiency (VDD). It explores the links among VDD and adverse vascular remodeling, endothelial dysfunction, vascular inflammation, and increased risk for cardiovascular and cerebrovascular diseases. Improved understanding of the complex role of VDD in the pathogenesis of atherosclerotic cardiovascular diseases, stroke, and vascular cognitive impairment is crucial for all cardiologists, dietitians, and geriatricians, as VDD presents an easy target for intervention.
Collapse
|
13
|
Ghahremani M, Smith EE, Chen H, Creese B, Goodarzi Z, Ismail Z. Vitamin D supplementation and incident dementia: Effects of sex, APOE, and baseline cognitive status. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2023; 15:e12404. [PMID: 36874594 PMCID: PMC9976297 DOI: 10.1002/dad2.12404] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 01/13/2023] [Accepted: 01/19/2023] [Indexed: 03/06/2023]
Abstract
Introduction Despite the association of vitamin D deficiency with incident dementia, the role of supplementation is unclear. We prospectively explored associations between vitamin D supplementation and incident dementia in 12,388 dementia-free persons from the National Alzheimer's Coordinating Center. Methods Baseline exposure to vitamin D was considered D+; no exposure prior to dementia onset was considered D-. Kaplan-Meier curves compared dementia-free survival between groups. Cox models assessed dementia incidence rates across groups, adjusted for age, sex, education, race, cognitive diagnosis, depression, and apolipoprotein E (APOE) ε4. Sensitivity analyses examined incidence rates for each vitamin D formulation. Potential interactions between exposure and model covariates were explored. Results Across all formulations, vitamin D exposure was associated with significantly longer dementia-free survival and lower dementia incidence rate than no exposure (hazard ratio = 0.60, 95% confidence interval: 0.55-0.65). The effect of vitamin D on incidence rate differed significantly across the strata of sex, cognitive status, and APOE ε4 status. Discussion Vitamin D may be a potential agent for dementia prevention. Highlights In a prospective cohort study, we assessed effects of Vitamin D on dementia incidence in 12,388 participants from the National Alzheimer's Coordinating Center dataset.Vitamin D exposure was associated with 40% lower dementia incidence versus no exposure.Vitamin D effects were significantly greater in females versus males and in normal cognition versus mild cognitive impairment.Vitamin D effects were significantly greater in apolipoprotein E ε4 non-carriers versus carriers.Vitamin D has potential for dementia prevention, especially in the high-risk strata.
Collapse
Affiliation(s)
- Maryam Ghahremani
- Department of PsychiatryCumming School of MedicineUniversity of CalgaryCalgaryAlbertaCanada
- Hotchkiss Brain InstituteCumming School of MedicineUniversity of CalgaryCalgaryAlbertaCanada
| | - Eric E. Smith
- Hotchkiss Brain InstituteCumming School of MedicineUniversity of CalgaryCalgaryAlbertaCanada
- Department of Community Health SciencesUniversity of CalgaryCalgaryAlbertaCanada
- Department of Clinical NeurosciencesCumming School of MedicineUniversity of CalgaryCalgaryAlbertaCanada
| | - Hung‐Yu Chen
- Department of PsychiatryCumming School of MedicineUniversity of CalgaryCalgaryAlbertaCanada
- Hotchkiss Brain InstituteCumming School of MedicineUniversity of CalgaryCalgaryAlbertaCanada
| | - Byron Creese
- College of Medicine and HealthUniversity of Exeter Medical SchoolUniversity of ExeterExeterUK
| | - Zahra Goodarzi
- Hotchkiss Brain InstituteCumming School of MedicineUniversity of CalgaryCalgaryAlbertaCanada
- Department of Community Health SciencesUniversity of CalgaryCalgaryAlbertaCanada
- O'Brien Institute of Public HealthUniversity of CalgaryCalgaryAlbertaCanada
| | - Zahinoor Ismail
- Department of PsychiatryCumming School of MedicineUniversity of CalgaryCalgaryAlbertaCanada
- Hotchkiss Brain InstituteCumming School of MedicineUniversity of CalgaryCalgaryAlbertaCanada
- Department of Community Health SciencesUniversity of CalgaryCalgaryAlbertaCanada
- Department of Clinical NeurosciencesCumming School of MedicineUniversity of CalgaryCalgaryAlbertaCanada
- College of Medicine and HealthUniversity of Exeter Medical SchoolUniversity of ExeterExeterUK
- O'Brien Institute of Public HealthUniversity of CalgaryCalgaryAlbertaCanada
| |
Collapse
|
14
|
Plantone D, Primiano G, Manco C, Locci S, Servidei S, De Stefano N. Vitamin D in Neurological Diseases. Int J Mol Sci 2022; 24:87. [PMID: 36613531 PMCID: PMC9820561 DOI: 10.3390/ijms24010087] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/16/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Vitamin D may have multiple effects on the nervous system and its deficiency can represent a possible risk factor for the development of many neurological diseases. Recent studies are also trying to clarify the different effects of vitamin D supplementation over the course of progressive neurological diseases. In this narrative review, we summarise vitamin D chemistry, metabolism, mechanisms of action, and the recommended daily intake. The role of vitamin D on gene transcription and the immune response is also reviewed. Finally, we discuss the scientific evidence that links low 25-hydroxyvitamin D concentrations to the onset and progression of severe neurological diseases, such as multiple sclerosis, Parkinson's disease, Alzheimer's disease, migraine, diabetic neuropathy and amyotrophic lateral sclerosis. Completed and ongoing clinical trials on vitamin D supplementation in neurological diseases are listed.
Collapse
Affiliation(s)
- Domenico Plantone
- Centre for Precision and Translational Medicine, Department of Medicine, Surgery and Neuroscience, University of Siena, 53100 Siena, Italy
| | - Guido Primiano
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
- Dipartimento Universitario di Neuroscienze, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Carlo Manco
- Centre for Precision and Translational Medicine, Department of Medicine, Surgery and Neuroscience, University of Siena, 53100 Siena, Italy
| | - Sara Locci
- Centre for Precision and Translational Medicine, Department of Medicine, Surgery and Neuroscience, University of Siena, 53100 Siena, Italy
| | - Serenella Servidei
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
- Dipartimento Universitario di Neuroscienze, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Nicola De Stefano
- Centre for Precision and Translational Medicine, Department of Medicine, Surgery and Neuroscience, University of Siena, 53100 Siena, Italy
| |
Collapse
|
15
|
Mantle D, Hargreaves IP. Mitochondrial Dysfunction and Neurodegenerative Disorders: Role of Nutritional Supplementation. Int J Mol Sci 2022; 23:12603. [PMID: 36293457 PMCID: PMC9604531 DOI: 10.3390/ijms232012603] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/14/2022] [Accepted: 10/16/2022] [Indexed: 08/27/2023] Open
Abstract
Mitochondrial dysfunction has been implicated in the pathogenesis of a number of neurodegenerative disorders, including Parkinson's disease, Alzheimer's disease, amyotrophic lateral sclerosis, multisystem atrophy, and progressive supranuclear palsy. This article is concerned specifically with mitochondrial dysfunction as defined by reduced capacity for ATP production, the role of depleted levels of key nutritionally related metabolites, and the potential benefit of supplementation with specific nutrients of relevance to normal mitochondrial function in the above neurodegenerative disorders. The article provides a rationale for a combination of CoQ10, B-vitamins/NADH, L-carnitine, vitamin D, and alpha-lipoic acid for the treatment of the above neurodegenerative disorders.
Collapse
Affiliation(s)
| | - Iain Parry Hargreaves
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Merseyside L3 5UX, UK
| |
Collapse
|