1
|
Lv B, Zhang X, Wang Y, Wu W, Li D, Hu Z. Discovery of the Chlorinated and Ammoniated Derivatives of Vanillin as Potential Insecticidal Candidates Targeting V-ATPase: Structure-Based Virtual Screening, Synthesis, and Bioassay. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:20872-20881. [PMID: 39259043 DOI: 10.1021/acs.jafc.4c05174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Vacuolar-type H+-ATPases (V-ATPases) play a crucial role in the life cycle of agricultural pests and represent a promising target for the development of novel insecticides. In this study, S18, a derivative of vanillin acquired from Specs database using a structure-based virtual screening methodology, was first identified as a V-ATPase inhibitor. It binds to subunit A of the enzyme with a Kd of 1 nM and exhibits insecticidal activity against M. separata. Subsequently, using S18 as the lead compound, a new series of vanillin derivatives were rationally designed and efficiently synthesized. and their biological activities were assessed. Among them, compound 3b-03 showed the strongest insecticidal activity against M. separata by effectively targeting the V-ATPase subunit A with Kd of 0.803 μM. Isothermal titration calorimetric measurements and docking results provided insights into its interaction with subunit A of V-ATPase, which could facilitate future research aimed at the development of novel chemical insecticides.
Collapse
Affiliation(s)
- Bo Lv
- Shaanxi Key Laboratory of Botanical Pesticide R & D, Institute of Pesticide Science, Northwest A&F University, Yangling, Shaanxi 712100, PR China
- Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Xianxia Zhang
- Shaanxi Key Laboratory of Botanical Pesticide R & D, Institute of Pesticide Science, Northwest A&F University, Yangling, Shaanxi 712100, PR China
- Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Yu Wang
- Shaanxi Key Laboratory of Botanical Pesticide R & D, Institute of Pesticide Science, Northwest A&F University, Yangling, Shaanxi 712100, PR China
- Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Wenjun Wu
- Shaanxi Key Laboratory of Botanical Pesticide R & D, Institute of Pesticide Science, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Ding Li
- Shaanxi Key Laboratory of Botanical Pesticide R & D, Institute of Pesticide Science, Northwest A&F University, Yangling, Shaanxi 712100, PR China
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Zhaonong Hu
- Shaanxi Key Laboratory of Botanical Pesticide R & D, Institute of Pesticide Science, Northwest A&F University, Yangling, Shaanxi 712100, PR China
- Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| |
Collapse
|
2
|
Quade BN, Parker MD, Occhipinti R. The therapeutic importance of acid-base balance. Biochem Pharmacol 2021; 183:114278. [PMID: 33039418 PMCID: PMC7544731 DOI: 10.1016/j.bcp.2020.114278] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 10/06/2020] [Indexed: 02/06/2023]
Abstract
Baking soda and vinegar have been used as home remedies for generations and today we are only a mouse-click away from claims that baking soda, lemon juice, and apple cider vinegar are miracles cures for everything from cancer to COVID-19. Despite these specious claims, the therapeutic value of controlling acid-base balance is indisputable and is the basis of Food and Drug Administration-approved treatments for constipation, epilepsy, metabolic acidosis, and peptic ulcers. In this narrative review, we present evidence in support of the current and potential therapeutic value of countering local and systemic acid-base imbalances, several of which do in fact involve the administration of baking soda (sodium bicarbonate). Furthermore, we discuss the side effects of pharmaceuticals on acid-base balance as well as the influence of acid-base status on the pharmacokinetic properties of drugs. Our review considers all major organ systems as well as information relevant to several clinical specialties such as anesthesiology, infectious disease, oncology, dentistry, and surgery.
Collapse
Affiliation(s)
- Bianca N Quade
- Department of Physiology and Biophysics, The State University of New York, The University at Buffalo, Buffalo, NY 14203, USA
| | - Mark D Parker
- Department of Physiology and Biophysics, The State University of New York, The University at Buffalo, Buffalo, NY 14203, USA; Department of Ophthalmology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, USA; State University of New York Eye Institute, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Rossana Occhipinti
- Department of Physiology and Biophysics, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA.
| |
Collapse
|
3
|
Song Q, Meng B, Xu H, Mao Z. The emerging roles of vacuolar-type ATPase-dependent Lysosomal acidification in neurodegenerative diseases. Transl Neurodegener 2020; 9:17. [PMID: 32393395 PMCID: PMC7212675 DOI: 10.1186/s40035-020-00196-0] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 04/23/2020] [Indexed: 12/15/2022] Open
Abstract
Background Lysosomes digest extracellular material from the endocytic pathway and intracellular material from the autophagic pathway. This process is performed by the resident hydrolytic enzymes activated by the highly acidic pH within the lysosomal lumen. Lysosome pH gradients are mainly maintained by the vacuolar (H+) ATPase (or V-ATPase), which pumps protons into lysosomal lumen by consuming ATP. Dysfunction of V-ATPase affects lysosomal acidification, which disrupts the clearance of substrates and leads to many disorders, including neurodegenerative diseases. Main body As a large multi-subunit complex, the V-ATPase is composed of an integral membrane V0 domain involved in proton translocation and a peripheral V1 domain catalyzing ATP hydrolysis. The canonical functions of V-ATPase rely on its H+-pumping ability in multiple vesicle organelles to regulate endocytic traffic, protein processing and degradation, synaptic vesicle loading, and coupled transport. The other non-canonical effects of the V-ATPase that are not readily attributable to its proton-pumping activity include membrane fusion, pH sensing, amino-acid-induced activation of mTORC1, and scaffolding for protein-protein interaction. In response to various stimuli, V-ATPase complex can reversibly dissociate into V1 and V0 domains and thus close ATP-dependent proton transport. Dysregulation of pH and lysosomal dysfunction have been linked to many human diseases, including neurodegenerative disorders such as Alzheimer disease, Parkinson’s disease, amyotrophic lateral sclerosis as well as neurodegenerative lysosomal storage disorders. Conclusion V-ATPase complex is a universal proton pump and plays an important role in lysosome acidification in all types of cells. Since V-ATPase dysfunction contributes to the pathogenesis of multiple neurodegenerative diseases, further understanding the mechanisms that regulate the canonical and non-canonical functions of V-ATPase will reveal molecular details of disease process and help assess V-ATPase or molecules related to its regulation as therapeutic targets.
Collapse
Affiliation(s)
- Qiaoyun Song
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA.,Department of Reproductive Genetics, Hebei General Hospital, Shijiazhuang, Hebei Province, 050051, People's Republic of China.,Department of Neurology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Bo Meng
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA.,Department of Neurology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Haidong Xu
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA.,Department of Neurology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Zixu Mao
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA. .,Department of Neurology, Emory University School of Medicine, Atlanta, GA, 30322, USA.
| |
Collapse
|
4
|
Bissler JJ, Zadjali F, Bridges D, Astrinidis A, Barone S, Yao Y, Redd JR, Siroky BJ, Wang Y, Finley JT, Rusiniak ME, Baumann H, Zahedi K, Gross KW, Soleimani M. Tuberous sclerosis complex exhibits a new renal cystogenic mechanism. Physiol Rep 2019; 7:e13983. [PMID: 30675765 PMCID: PMC6344348 DOI: 10.14814/phy2.13983] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Accepted: 12/20/2018] [Indexed: 02/06/2023] Open
Abstract
Tuberous sclerosis complex (TSC) is a tumor predisposition syndrome with significant renal cystic and solid tumor disease. While the most common renal tumor in TSC, the angiomyolipoma, exhibits a loss of heterozygosity associated with disease, we have discovered that the renal cystic epithelium is composed of type A intercalated cells that have an intact Tsc gene that have been induced to exhibit Tsc-mutant disease phenotype. This mechanism appears to be different than that for ADPKD. The murine models described here closely resemble the human disease and both appear to be mTORC1 inhibitor responsive. The induction signaling driving cystogenesis may be mediated by extracellular vesicle trafficking.
Collapse
Affiliation(s)
- John J. Bissler
- Department of PediatricsUniversity of Tennessee Health Science Center and Le Bonheur Children's HospitalMemphisTennessee
- St. Jude Children's Research HospitalMemphisTennessee
| | - Fahad Zadjali
- Department of Clinical BiochemistryCollege of Medicine & Health SciencesSultan Qaboos UniversityMuscatOman
| | - Dave Bridges
- Department of Nutritional SciencesUniversity of Michigan School of Public HealthAnn ArborMichigan
| | - Aristotelis Astrinidis
- Department of PediatricsUniversity of Tennessee Health Science Center and Le Bonheur Children's HospitalMemphisTennessee
| | - Sharon Barone
- Departments of MedicineUniversity of Cincinnati College of MedicineCincinnatiOhio
- Center on Genetics of TransportUniversity of Cincinnati College of MedicineCincinnatiOhio
- Research ServicesVeterans Affairs Medical CenterCincinnatiOhio
| | - Ying Yao
- Department of PediatricsUniversity of Tennessee Health Science Center and Le Bonheur Children's HospitalMemphisTennessee
| | - JeAnna R. Redd
- Department of Nutritional SciencesUniversity of Michigan School of Public HealthAnn ArborMichigan
| | - Brian J. Siroky
- Department of PediatricsUniversity of Cincinnati College of MedicineCincinnatiOhio
| | - Yanqing Wang
- Department of Molecular and Cellular BiologyRoswell Park Cancer InstituteBuffaloNew York
| | - Joel T. Finley
- Department of PediatricsUniversity of Tennessee Health Science Center and Le Bonheur Children's HospitalMemphisTennessee
| | - Michael E. Rusiniak
- Department of Molecular and Cellular BiologyRoswell Park Cancer InstituteBuffaloNew York
| | - Heinz Baumann
- Department of Molecular and Cellular BiologyRoswell Park Cancer InstituteBuffaloNew York
| | - Kamyar Zahedi
- Departments of MedicineUniversity of Cincinnati College of MedicineCincinnatiOhio
- Center on Genetics of TransportUniversity of Cincinnati College of MedicineCincinnatiOhio
- Research ServicesVeterans Affairs Medical CenterCincinnatiOhio
| | - Kenneth W. Gross
- Department of Molecular and Cellular BiologyRoswell Park Cancer InstituteBuffaloNew York
| | - Manoocher Soleimani
- Departments of MedicineUniversity of Cincinnati College of MedicineCincinnatiOhio
- Center on Genetics of TransportUniversity of Cincinnati College of MedicineCincinnatiOhio
- Research ServicesVeterans Affairs Medical CenterCincinnatiOhio
| |
Collapse
|
5
|
Watanabe T. Improving outcomes for patients with distal renal tubular acidosis: recent advances and challenges ahead. Pediatric Health Med Ther 2018; 9:181-190. [PMID: 30588151 PMCID: PMC6296208 DOI: 10.2147/phmt.s174459] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Primary distal renal tubular acidosis (dRTA) is a rare genetic disorder caused by impaired distal acidification due to a failure of type A intercalated cells (A-ICs) in the collecting tubule. dRTA is characterized by persistent hyperchloremia, a normal plasma anion gap, and the inability to maximally lower urinary pH in the presence of systemic metabolic acidosis. Common clinical features of dRTA include vomiting, failure to thrive, polyuria, hypercalciuria, hypocitraturia, nephrocalcinosis, nephrolithiasis, growth delay, and rickets. Mutations in genes encoding three distinct transport proteins in A-ICs have been identified as causes of dRTA, including the B1/ATP6V1B1 and a4/ATP6V0A4 subunits of the vacuolar-type H+-ATPase (H+-ATPase) and the chloride-bicarbonate exchanger AE1/SLC4A1. Homozygous or compound heterozygous mutations in ATP6V1B1 and ATP6V0A4 lead to autosomal recessive (AR) dRTA. dRTA caused by SLC4A1 mutations can occur with either autosomal dominant or AR transmission. Red blood cell abnormalities have been associated with AR dRTA due to SLC4A1 mutations, including hereditary spherocytosis, Southeast Asia ovalocytosis, and others. Some patients with dRTA exhibit atypical clinical features, including transient and reversible proximal tubular dysfunction and hyperammonemia. Incomplete dRTA presents with inadequate urinary acidification, but without spontaneous metabolic acidosis and recurrent urinary stones. Heterozygous mutations in the AE1 or H+-ATPase genes have recently been reported in patients with incomplete dRTA. Early and sufficient doses of alkali treatment are needed for patients with dRTA. Normalized serum bicarbonate, urinary calcium excretion, urinary low-molecular-weight protein levels, and growth rate are good markers of adherence to and/or efficacy of treatment. The prognosis of dRTA is generally good in patients with appropriate treatment. However, recent studies showed an increased frequency of chronic kidney disease (CKD) in patients with dRTA during long-term follow-up. The precise pathogenic mechanisms of CKD in patients with dRTA are unknown.
Collapse
Affiliation(s)
- Toru Watanabe
- Department of Pediatrics, Niigata City General Hospital, Niigata City 950-1197, Japan,
| |
Collapse
|
6
|
Colacurcio DJ, Nixon RA. Disorders of lysosomal acidification-The emerging role of v-ATPase in aging and neurodegenerative disease. Ageing Res Rev 2016; 32:75-88. [PMID: 27197071 DOI: 10.1016/j.arr.2016.05.004] [Citation(s) in RCA: 354] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 05/02/2016] [Accepted: 05/13/2016] [Indexed: 12/21/2022]
Abstract
Autophagy and endocytosis deliver unneeded cellular materials to lysosomes for degradation. Beyond processing cellular waste, lysosomes release metabolites and ions that serve signaling and nutrient sensing roles, linking the functions of the lysosome to various pathways for intracellular metabolism and nutrient homeostasis. Each of these lysosomal behaviors is influenced by the intraluminal pH of the lysosome, which is maintained in the low acidic range by a proton pump, the vacuolar ATPase (v-ATPase). New reports implicate altered v-ATPase activity and lysosomal pH dysregulation in cellular aging, longevity, and adult-onset neurodegenerative diseases, including forms of Parkinson disease and Alzheimer disease. Genetic defects of subunits composing the v-ATPase or v-ATPase-related proteins occur in an increasingly recognized group of familial neurodegenerative diseases. Here, we review the expanding roles of the v-ATPase complex as a platform regulating lysosomal hydrolysis and cellular homeostasis. We discuss the unique vulnerability of neurons to persistent low level lysosomal dysfunction and review recent clinical and experimental studies that link dysfunction of the v-ATPase complex to neurodegenerative diseases across the age spectrum.
Collapse
|
7
|
Couoh-Cardel S, Milgrom E, Wilkens S. Affinity Purification and Structural Features of the Yeast Vacuolar ATPase Vo Membrane Sector. J Biol Chem 2015; 290:27959-71. [PMID: 26416888 DOI: 10.1074/jbc.m115.662494] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Indexed: 12/27/2022] Open
Abstract
The membrane sector (Vo) of the proton pumping vacuolar ATPase (V-ATPase, V1Vo-ATPase) from Saccharomyces cerevisiae was purified to homogeneity, and its structure was characterized by EM of single molecules and two-dimensional crystals. Projection images of negatively stained Vo two-dimensional crystals showed a ring-like structure with a large asymmetric mass at the periphery of the ring. A cryo-EM reconstruction of Vo from single-particle images showed subunits a and d in close contact on the cytoplasmic side of the proton channel. A comparison of three-dimensional reconstructions of free Vo and Vo as part of holo V1Vo revealed that the cytoplasmic N-terminal domain of subunit a (aNT) must undergo a large conformational change upon enzyme disassembly or (re)assembly from Vo, V1, and subunit C. Isothermal titration calorimetry using recombinant subunit d and aNT revealed that the two proteins bind each other with a Kd of ~5 μm. Treatment of the purified Vo sector with 1-palmitoyl-2-hydroxy-sn-glycero-3-[phospho-rac-(1-glycerol)] resulted in selective release of subunit d, allowing purification of a VoΔd complex. Passive proton translocation assays revealed that both Vo and VoΔd are impermeable to protons. We speculate that the structural change in subunit a upon release of V1 from Vo during reversible enzyme dissociation plays a role in blocking passive proton translocation across free Vo and that the interaction between aNT and d seen in free Vo functions to stabilize the Vo sector for efficient reassembly of V1Vo.
Collapse
Affiliation(s)
- Sergio Couoh-Cardel
- From the Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, Syracuse, New York 13210
| | - Elena Milgrom
- From the Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, Syracuse, New York 13210
| | - Stephan Wilkens
- From the Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, Syracuse, New York 13210
| |
Collapse
|
8
|
Smardon AM, Diab HI, Tarsio M, Diakov TT, Nasab ND, West RW, Kane PM. The RAVE complex is an isoform-specific V-ATPase assembly factor in yeast. Mol Biol Cell 2013; 25:356-67. [PMID: 24307682 PMCID: PMC3907276 DOI: 10.1091/mbc.e13-05-0231] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Vacuolar H+-ATPases (V-ATPases) acidify multiple organelles, and subunit isoforms help impart organelle-specific regulation of acidification. The regulator of ATPase of vacuoles and endosomes (RAVE) complex regulates organelle acidification by promoting V-ATPase assembly. This work demonstrates that RAVE is the first identified isoform-specific V-ATPase assembly factor required for control of vacuolar acidification. The regulator of ATPase of vacuoles and endosomes (RAVE) complex is implicated in vacuolar H+-translocating ATPase (V-ATPase) assembly and activity. In yeast, rav1∆ mutants exhibit a Vma− growth phenotype characteristic of loss of V-ATPase activity only at high temperature. Synthetic genetic analysis identified mutations that exhibit a full, temperature-independent Vma− growth defect when combined with the rav1∆ mutation. These include class E vps mutations, which compromise endosomal sorting. The synthetic Vma− growth defect could not be attributed to loss of vacuolar acidification in the double mutants, as there was no vacuolar acidification in the rav1∆ mutant. The yeast V-ATPase a subunit is present as two isoforms, Stv1p in Golgi and endosomes and Vph1p in vacuoles. Rav1p interacts directly with the N-terminal domain of Vph1p. STV1 overexpression suppressed the growth defects of both rav1∆ and rav1∆vph1∆, and allowed RAVE-independent assembly of active Stv1p-containing V-ATPases in vacuoles. Mutations causing synthetic genetic defects in combination with rav1∆ perturbed the normal localization of Stv1–green fluorescent protein. We propose that RAVE is necessary for assembly of Vph1-containing V-ATPase complexes but not Stv1-containing complexes. Synthetic Vma− phenotypes arise from defects in Vph1p-containing complexes caused by rav1∆, combined with defects in Stv1p-containing V-ATPases caused by the second mutation. Thus RAVE is the first isoform-specific V-ATPase assembly factor.
Collapse
Affiliation(s)
- Anne M Smardon
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210
| | | | | | | | | | | | | |
Collapse
|
9
|
Rahmati N, Kunzelmann K, Xu J, Barone S, Sirianant L, De Zeeuw CI, Soleimani M. Slc26a11 is prominently expressed in the brain and functions as a chloride channel: expression in Purkinje cells and stimulation of V H⁺-ATPase. Pflugers Arch 2013; 465:1583-97. [PMID: 23733100 PMCID: PMC11708839 DOI: 10.1007/s00424-013-1300-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 05/13/2013] [Accepted: 05/14/2013] [Indexed: 02/07/2023]
Abstract
SLC26A11 (human)/Slc26a11 (mouse), also known as kidney brain anion transporter (KBAT), is a member of the SLC26 anion transporter family and shows abundant mRNA expression in the brain. However, its exact cellular distribution and subcellular localization in the brain and its functional identity and possible physiological roles remain unknown. Expression and immunostaining studies demonstrated that Slc26a11 is abundantly expressed in the cerebellum, with a predominant expression in Purkinje cells. Lower expression levels were detected in hippocampus, olfactory bulb, cerebral cortex, and subcortical structures. Patch clamp studies in HEK293 cells transfected with mouse cDNA demonstrated that Slc26a11 can function as a chloride channel that is active under basal conditions and is not regulated by calcium, forskolin, or co-expression with cystic fibrosis transmembrane regulator. Single and double immunofluorescent labeling studies demonstrated the localization of vacuolar (V) H⁺-ATPase and Slc26a11 (KBAT) in the plasma membrane in Purkinje cells. Functional studies in HEK293 cells indicated that transfection with Slc26a11 stimulated acid transport via endogenous V H⁺-ATPase. We conclude that Slc26a11 (KBAT) is prominently distributed in output neurons of various subcortical and cortical structures in the central nervous system, with specific expression in Purkinje cells and that it may operate as a chloride channel regulating acid translocation by H⁺-ATPase across the plasma membrane and in intracellular compartments.
Collapse
Affiliation(s)
- Negah Rahmati
- Department of Neuroscience, Erasmus University, Rotterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
10
|
Ribeiro CC, Monteiro RM, Freitas FP, Retamal C, Teixeira LRS, Palma LM, Silva FE, Façanha AR, Okorokova-Façanha AL, Okorokov LA. Extracellular glucose increases the coupling capacity of the yeast V H+-ATPase and the resistance of its H+ transport activity to nitrate inhibition. PLoS One 2012; 7:e49580. [PMID: 23189149 PMCID: PMC3506656 DOI: 10.1371/journal.pone.0049580] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Accepted: 10/11/2012] [Indexed: 11/18/2022] Open
Abstract
V H(+)-ATPase has an important role in a variety of key physiological processes. This enzyme is reversibly activated/partly inactivated by the addition/exhaustion of extracellular glucose. The current model of its regulation assumes the reversible disassembly/reassembly of ∼60-70% of the V1 and V0 membrane complexes, which are responsible for ATP hydrolysis and H(+) conductance, respectively. The number of assembled complexes determines the pump activity because disassembled complexes are inactive. The model predicts the identical catalytic properties for the activated and semi-active enzymes molecules. To verify the model predictions we have isolated total membranes from yeast spheroplasts that were pre-incubated either with or without glucose. Nitrate treatment of membranes revealed the similar ATPase inhibition for two enzyme states, suggesting that they have identical structures that are essential for ATP hydrolysis. However, H(+) transport was inhibited more than the ATPase activities, indicating a nitrate uncoupling action, which was significantly higher for the nonactivated enzyme. This finding suggests that the structure of the non-activated enzyme, which is essential for H(+) transport, is less stable than that of the activated enzyme. Moreover, the glucose activation of the pump increases i) its coupling capacity; ii) its K(M) for ATP hydrolysis and ATP affinity for H(+) transport; iii) the Vmax for H(+) transport in comparison with the Vmax for ATP hydrolysis and iv) the immune reactivity of catalytic subunit A and regulatory subunit B by 9.3 and 2.4 times, respectively. The protein content of subunits A and B was not changed by extracellular glucose. We propose that instead of the dissociation/reassociation of complexes V1 and V0, changes in the extracellular glucose concentration cause reversible and asymmetrical modulations in the immune reactivity of subunits A and B by their putative biochemical modifications. This response asymmetrically modulates H(+)-transport and ATP hydrolysis, exhibiting distinct properties for the activated versus non-activated enzymes.
Collapse
Affiliation(s)
- Camila C. Ribeiro
- Laboratório de Fisiologia e Bioquímica de Microrganismos, Centro de Biociência e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Brasil
- Laboratório de Biologia Celular e Tecidual, Centro de Biociência e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Brasil
| | - Renan M. Monteiro
- Laboratório de Fisiologia e Bioquímica de Microrganismos, Centro de Biociência e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Brasil
| | - Flavia P. Freitas
- Laboratório de Fisiologia e Bioquímica de Microrganismos, Centro de Biociência e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Brasil
| | - Claudio Retamal
- Laboratório de Biologia Celular e Tecidual, Centro de Biociência e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Brasil
| | - Layz R. S. Teixeira
- Laboratório de Fisiologia e Bioquímica de Microrganismos, Centro de Biociência e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Brasil
| | - Livia M. Palma
- Laboratório de Fisiologia e Bioquímica de Microrganismos, Centro de Biociência e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Brasil
| | - Flavia E. Silva
- Laboratório de Fisiologia e Bioquímica de Microrganismos, Centro de Biociência e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Brasil
| | - Arnoldo R. Façanha
- Laboratório de Biologia Celular e Tecidual, Centro de Biociência e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Brasil
| | - Anna L. Okorokova-Façanha
- Laboratório de Fisiologia e Bioquímica de Microrganismos, Centro de Biociência e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Brasil
| | - Lev A. Okorokov
- Laboratório de Fisiologia e Bioquímica de Microrganismos, Centro de Biociência e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Brasil
| |
Collapse
|
11
|
Basak RC, Sharkawi KM, Rahman MM, Swar MM. Distal renal tubular acidosis, hypokalemic paralysis, nephrocalcinosis, primary hypothyroidism, growth retardation, osteomalacia and osteoporosis leading to pathological fracture: a case report. Oman Med J 2011; 26:271-4. [PMID: 22043434 DOI: 10.5001/omj.2011.66] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Accepted: 07/07/2011] [Indexed: 12/29/2022] Open
Abstract
Renal tubular acidosis (RTA) is a constellation of syndromes arising from different derangements of tubular acid transport. Recent advances in the biology of urinary acidification have allowed us to discern various molecular mechanisms responsible for these syndromes. RTA often presents as renal stone disease with nephrocalcinosis, ricket/osteomalacia and growth retardation in children with ultimate short stature in adulthood. The case reported here has features of distal renal tubular acidosis (dRTA), hypokalemic paralysis, primary hypothyroidism, growth retardation, osteomalacia and osteopenia leading to stress fracture. All these features presenting in a single case (as in our case) is a rare occurrence, so far other cases of distal renal tubular acidosis (dRTA) have been reported.
Collapse
|
12
|
Xu J, Barone S, Li H, Holiday S, Zahedi K, Soleimani M. Slc26a11, a chloride transporter, localizes with the vacuolar H(+)-ATPase of A-intercalated cells of the kidney. Kidney Int 2011; 80:926-937. [PMID: 21716257 PMCID: PMC11709004 DOI: 10.1038/ki.2011.196] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Chloride has an important role in regulating vacuolar H(+)-ATPase activity across specialized cellular and intracellular membranes. In the kidney, vacuolar H(+)-ATPase is expressed on the apical membrane of acid-secreting A-type intercalated cells in the collecting duct where it has an essential role in acid secretion and systemic acid base homeostasis. Here, we report the identification of a chloride transporter, which co-localizes with and regulates the activity of plasma membrane H(+)-ATPase in the kidney collecting duct. Immunoblotting and immunofluorescent labeling identified Slc26a11 (∼72 kDa), expressed in a subset of cells in the collecting duct. On the basis of double-immunofluorescent labeling with AQP2 and identical co-localization with H(+)-ATPase, cells expressing Slc26a11 were deemed to be distinct from principal cells and were found to be intercalated cells. Functional studies in transiently transfected COS7 cells indicated that Slc26a11 (designated as kidney brain anion transporter (KBAT)) can transport chloride and increase the rate of acid extrusion by means of H(+)-ATPase. Thus, Slc26a11 is a partner of vacuolar H(+)-ATPase facilitating acid secretion in the collecting duct.
Collapse
Affiliation(s)
- Jie Xu
- Research Services, Veterans Affairs Medical Center, Cincinnati, Ohio, USA; Department of Medicine, University of Cincinnati, Cincinnati, Ohio, USA; Department of Orthodontics, University of Florida, Gainesville, Florida, USA; Center on Genetics of Transport and Epithelial Biology, University of Cincinnati, Cincinnati, Ohio, USA
| | - Sharon Barone
- Research Services, Veterans Affairs Medical Center, Cincinnati, Ohio, USA; Department of Medicine, University of Cincinnati, Cincinnati, Ohio, USA; Department of Orthodontics, University of Florida, Gainesville, Florida, USA; Center on Genetics of Transport and Epithelial Biology, University of Cincinnati, Cincinnati, Ohio, USA
| | - Hong Li
- Research Services, Veterans Affairs Medical Center, Cincinnati, Ohio, USA; Department of Medicine, University of Cincinnati, Cincinnati, Ohio, USA; Department of Orthodontics, University of Florida, Gainesville, Florida, USA; Center on Genetics of Transport and Epithelial Biology, University of Cincinnati, Cincinnati, Ohio, USA
| | - Shannon Holiday
- Research Services, Veterans Affairs Medical Center, Cincinnati, Ohio, USA; Department of Medicine, University of Cincinnati, Cincinnati, Ohio, USA; Department of Orthodontics, University of Florida, Gainesville, Florida, USA; Center on Genetics of Transport and Epithelial Biology, University of Cincinnati, Cincinnati, Ohio, USA
| | - Kamyar Zahedi
- Research Services, Veterans Affairs Medical Center, Cincinnati, Ohio, USA; Department of Medicine, University of Cincinnati, Cincinnati, Ohio, USA; Department of Orthodontics, University of Florida, Gainesville, Florida, USA; Center on Genetics of Transport and Epithelial Biology, University of Cincinnati, Cincinnati, Ohio, USA
| | - Manoocher Soleimani
- Research Services, Veterans Affairs Medical Center, Cincinnati, Ohio, USA; Department of Medicine, University of Cincinnati, Cincinnati, Ohio, USA; Department of Orthodontics, University of Florida, Gainesville, Florida, USA; Center on Genetics of Transport and Epithelial Biology, University of Cincinnati, Cincinnati, Ohio, USA.
| |
Collapse
|
13
|
Ahmad A, Khundmiri SJ, Pribble F, Merchant ML, Ameen M, Klein JB, Levi M, Lederer ED. Role of vacuolar ATPase in the trafficking of renal type IIa sodium-phosphate cotransporter. Cell Physiol Biochem 2011; 27:703-14. [PMID: 21691088 DOI: 10.1159/000330079] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/07/2011] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS Total body phosphate homeostasis is regulated by expression of type IIa sodium phosphate cotransporter (NpT2a) in the apical membrane (BBM) of renal proximal tubule cells. NpT2a expression is regulated by dietary phosphate and PTH but the mechanisms for trafficking of the protein are unknown. Based on 2D gel electrophoresis and mass spectroscopy data that changes in dietary phosphate stimulated changes in BBM expression of vacuolar H(+)-ATPase, we hypothesized that vacuolar H(+)-ATPase plays a significant role in regulation of NpT2a in opossum kidney (OK) cells, a model for renal proximal tubule transport. METHODS Role of vacuolar H(+)-ATPase was studied in opossum kidney (OK) cells by examining the effect of inhibition of vacuolar H(+)-ATPase on Pi uptake and NpT2a expression. RESULTS Pretreatment of OK cells with bafilomycin A(1) and concanamycin A, inhibitors of vacuolar H(+)-ATPases, blocked high phosphate- and PTH-induced degradation of NpT2a, but had no effect on high phosphate or PTH induced inhibition of sodium-dependent phosphate transport. Exposure of the cells to bafilomycin A(1) significantly decreased phosphate transport and apical membrane expression of NpT2a. Treatment with brefeldin A, an inhibitor of Golgi transport, decreased phosphate transport and apical membrane expression of NpT2a while treatment of cells with both brefeldin A and bafilomycin A(1) had no additive effect. CONCLUSION We conclude that vacuolar H(+)-ATPase plays a significant role in exocytosis of NpT2a into the apical membrane and in degradation of NpT2a but has no role in endocytosis.
Collapse
Affiliation(s)
- Aamir Ahmad
- Department of Medicine, University of Louisville, Louisville, KY 40202, USA
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Weiner ID, Verlander JW. Role of NH3 and NH4+ transporters in renal acid-base transport. Am J Physiol Renal Physiol 2011; 300:F11-23. [PMID: 21048022 PMCID: PMC3023229 DOI: 10.1152/ajprenal.00554.2010] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Accepted: 11/01/2010] [Indexed: 11/22/2022] Open
Abstract
Renal ammonia excretion is the predominant component of renal net acid excretion. The majority of ammonia excretion is produced in the kidney and then undergoes regulated transport in a number of renal epithelial segments. Recent findings have substantially altered our understanding of renal ammonia transport. In particular, the classic model of passive, diffusive NH3 movement coupled with NH4+ "trapping" is being replaced by a model in which specific proteins mediate regulated transport of NH3 and NH4+ across plasma membranes. In the proximal tubule, the apical Na+/H+ exchanger, NHE-3, is a major mechanism of preferential NH4+ secretion. In the thick ascending limb of Henle's loop, the apical Na+-K+-2Cl- cotransporter, NKCC2, is a major contributor to ammonia reabsorption and the basolateral Na+/H+ exchanger, NHE-4, appears to be important for basolateral NH4+ exit. The collecting duct is a major site for renal ammonia secretion, involving parallel H+ secretion and NH3 secretion. The Rhesus glycoproteins, Rh B Glycoprotein (Rhbg) and Rh C Glycoprotein (Rhcg), are recently recognized ammonia transporters in the distal tubule and collecting duct. Rhcg is present in both the apical and basolateral plasma membrane, is expressed in parallel with renal ammonia excretion, and mediates a critical role in renal ammonia excretion and collecting duct ammonia transport. Rhbg is expressed specifically in the basolateral plasma membrane, and its role in renal acid-base homeostasis is controversial. In the inner medullary collecting duct (IMCD), basolateral Na+-K+-ATPase enables active basolateral NH4+ uptake. In addition to these proteins, several other proteins also contribute to renal NH3/NH4+ transport. The role and mechanisms of these proteins are discussed in depth in this review.
Collapse
Affiliation(s)
- I David Weiner
- Division of Nephrology, Hypertension and Transplantation, University of Florida College of Medicine, Gainesville, FL 32610, USA.
| | | |
Collapse
|
15
|
Merkulova M, Bakulina A, Thaker YR, Grüber G, Marshansky V. Specific motifs of the V-ATPase a2-subunit isoform interact with catalytic and regulatory domains of ARNO. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1797:1398-409. [PMID: 20153292 DOI: 10.1016/j.bbabio.2010.02.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2009] [Revised: 01/11/2010] [Accepted: 02/08/2010] [Indexed: 11/19/2022]
Abstract
We have previously shown that the V-ATPase a2-subunit isoform interacts specifically, and in an intra-endosomal acidification-dependent manner, with the Arf-GEF ARNO. In the present study, we examined the molecular mechanism of this interaction using synthetic peptides and purified recombinant proteins in protein-association assays. In these experiments, we revealed the involvement of multiple sites on the N-terminus of the V-ATPase a2-subunit (a2N) in the association with ARNO. While six a2N-derived peptides interact with wild-type ARNO, only two of them (named a2N-01 and a2N-03) bind to its catalytic Sec7-domain. However, of these, only the a2N-01 peptide (MGSLFRSESMCLAQLFL) showed specificity towards the Sec7-domain compared to other domains of the ARNO protein. Surface plasmon resonance kinetic analysis revealed a very strong binding affinity between this a2N-01 peptide and the Sec7-domain of ARNO, with dissociation constant KD=3.44x10(-7) M, similar to the KD=3.13x10(-7) M binding affinity between wild-type a2N and the full-length ARNO protein. In further pull-down experiments, we also revealed the involvement of multiple sites on ARNO itself in the association with a2N. However, while its catalytic Sec7-domain has the strongest interaction, the PH-, and PB-domains show much weaker binding to a2N. Interestingly, an interaction of the a2N to a peptide corresponding to ARNO's PB-domain was abolished by phosphorylation of ARNO residue Ser392. The 3D-structures of the non-phosphorylated and phosphorylated peptides were resolved by NMR spectroscopy, and we have identified rearrangements resulting from Ser392 phosphorylation. Homology modeling suggests that these alterations may modulate the access of the a2N to its interaction pocket on ARNO that is formed by the Sec7 and PB-domains. Overall, our data indicate that the interaction between the a2-subunit of V-ATPase and ARNO is a complex process involving various binding sites on both proteins. Importantly, the binding affinity between the a2-subunit and ARNO is in the same range as those previously reported for the intramolecular association of subunits within V-ATPase complex itself, indicating an important cell biological role for the interaction between the V-ATPase and small GTPase regulatory proteins.
Collapse
Affiliation(s)
- Maria Merkulova
- Center for Systems Biology, Program in Membrane Biology and Division of Nephrology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | | | | | | | | |
Collapse
|