1
|
Rioux AV, Nsimba-Batomene TR, Slimani S, Bergeron NAD, Gravel MAM, Schreiber SV, Fiola MJ, Haydock L, Garneau AP, Isenring P. Navigating the multifaceted intricacies of the Na +-Cl - cotransporter, a highly regulated key effector in the control of hydromineral homeostasis. Physiol Rev 2024; 104:1147-1204. [PMID: 38329422 PMCID: PMC11381001 DOI: 10.1152/physrev.00027.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 01/01/2024] [Accepted: 02/03/2024] [Indexed: 02/09/2024] Open
Abstract
The Na+-Cl- cotransporter (NCC; SLC12A3) is a highly regulated integral membrane protein that is known to exist as three splice variants in primates. Its primary role in the kidney is to mediate the cosymport of Na+ and Cl- across the apical membrane of the distal convoluted tubule. Through this role and the involvement of other ion transport systems, NCC allows the systemic circulation to reclaim a fraction of the ultrafiltered Na+, K+, Cl-, and Mg+ loads in exchange for Ca2+ and [Formula: see text]. The physiological relevance of the Na+-Cl- cotransport mechanism in humans is illustrated by several abnormalities that result from NCC inactivation through the administration of thiazides or in the setting of hereditary disorders. The purpose of the present review is to discuss the molecular mechanisms and overall roles of Na+-Cl- cotransport as the main topics of interest. On reading the narrative proposed, one will realize that the knowledge gained in regard to these themes will continue to progress unrelentingly no matter how refined it has now become.
Collapse
Affiliation(s)
- A V Rioux
- Department of Medicine, Nephrology Research Group, Laval University, Quebec City, Quebec, Canada
| | - T R Nsimba-Batomene
- Department of Medicine, Nephrology Research Group, Laval University, Quebec City, Quebec, Canada
| | - S Slimani
- Department of Medicine, Nephrology Research Group, Laval University, Quebec City, Quebec, Canada
| | - N A D Bergeron
- Department of Medicine, Nephrology Research Group, Laval University, Quebec City, Quebec, Canada
| | - M A M Gravel
- Department of Medicine, Nephrology Research Group, Laval University, Quebec City, Quebec, Canada
| | - S V Schreiber
- Department of Medicine, Nephrology Research Group, Laval University, Quebec City, Quebec, Canada
| | - M J Fiola
- Department of Medicine, Nephrology Research Group, Laval University, Quebec City, Quebec, Canada
| | - L Haydock
- Department of Medicine, Nephrology Research Group, Laval University, Quebec City, Quebec, Canada
- Service de Néphrologie-Transplantation Rénale Adultes, Hôpital Necker-Enfants Malades, AP-HP, INSERM U1151, Université Paris Cité, Paris, France
| | - A P Garneau
- Department of Medicine, Nephrology Research Group, Laval University, Quebec City, Quebec, Canada
- Service de Néphrologie-Transplantation Rénale Adultes, Hôpital Necker-Enfants Malades, AP-HP, INSERM U1151, Université Paris Cité, Paris, France
| | - P Isenring
- Department of Medicine, Nephrology Research Group, Laval University, Quebec City, Quebec, Canada
| |
Collapse
|
2
|
Johnston JG, Welch AK, Cain BD, Sayeski PP, Gumz ML, Wingo CS. Aldosterone: Renal Action and Physiological Effects. Compr Physiol 2023; 13:4409-4491. [PMID: 36994769 PMCID: PMC11472823 DOI: 10.1002/cphy.c190043] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Aldosterone exerts profound effects on renal and cardiovascular physiology. In the kidney, aldosterone acts to preserve electrolyte and acid-base balance in response to changes in dietary sodium (Na+ ) or potassium (K+ ) intake. These physiological actions, principally through activation of mineralocorticoid receptors (MRs), have important effects particularly in patients with renal and cardiovascular disease as demonstrated by multiple clinical trials. Multiple factors, be they genetic, humoral, dietary, or otherwise, can play a role in influencing the rate of aldosterone synthesis and secretion from the adrenal cortex. Normally, aldosterone secretion and action respond to dietary Na+ intake. In the kidney, the distal nephron and collecting duct are the main targets of aldosterone and MR action, which stimulates Na+ absorption in part via the epithelial Na+ channel (ENaC), the principal channel responsible for the fine-tuning of Na+ balance. Our understanding of the regulatory factors that allow aldosterone, via multiple signaling pathways, to function properly clearly implicates this hormone as central to many pathophysiological effects that become dysfunctional in disease states. Numerous pathologies that affect blood pressure (BP), electrolyte balance, and overall cardiovascular health are due to abnormal secretion of aldosterone, mutations in MR, ENaC, or effectors and modulators of their action. Study of the mechanisms of these pathologies has allowed researchers and clinicians to create novel dietary and pharmacological targets to improve human health. This article covers the regulation of aldosterone synthesis and secretion, receptors, effector molecules, and signaling pathways that modulate its action in the kidney. We also consider the role of aldosterone in disease and the benefit of mineralocorticoid antagonists. © 2023 American Physiological Society. Compr Physiol 13:4409-4491, 2023.
Collapse
Affiliation(s)
- Jermaine G Johnston
- Division of Nephrology, Hypertension and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida, USA
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida, USA
- Nephrology Section, Veteran Administration Medical Center, North Florida/South Georgia Malcom Randall Department of Veterans Affairs Medical Center, Gainesville, Florida, USA
| | - Amanda K Welch
- Division of Nephrology, Hypertension and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida, USA
- Nephrology Section, Veteran Administration Medical Center, North Florida/South Georgia Malcom Randall Department of Veterans Affairs Medical Center, Gainesville, Florida, USA
| | - Brian D Cain
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida, USA
| | - Peter P Sayeski
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida, USA
| | - Michelle L Gumz
- Division of Nephrology, Hypertension and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida, USA
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida, USA
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida, USA
- Nephrology Section, Veteran Administration Medical Center, North Florida/South Georgia Malcom Randall Department of Veterans Affairs Medical Center, Gainesville, Florida, USA
| | - Charles S Wingo
- Division of Nephrology, Hypertension and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida, USA
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida, USA
- Nephrology Section, Veteran Administration Medical Center, North Florida/South Georgia Malcom Randall Department of Veterans Affairs Medical Center, Gainesville, Florida, USA
| |
Collapse
|
3
|
Molecular Mechanisms of Na-Cl Cotransporter in Relation to Hypertension in Chronic Kidney Disease. Int J Mol Sci 2022; 24:ijms24010286. [PMID: 36613730 PMCID: PMC9820686 DOI: 10.3390/ijms24010286] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 12/12/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
Chronic kidney disease (CKD) is a common clinical disease with an increasing incidence, affecting 10 to 15% of the world's population. Hypertension is the most common and modifiable risk factor for preventing adverse cardiovascular outcomes in patients with CKD. A survey from developed countries shows that 47% of hypertensive patients over the age of 20 have uncontrolled blood pressure (BP), and the control rate is even lower in developing countries. CKD is both a common cause of uncontrolled hypertension and a risk factor for altered sequelae. In particular, studies have demonstrated that abnormal blood-pressure patterns in CKD patients, such as non-dipping-blood-pressure patterns, are associated with a significantly increased risk of cardiovascular (CV) disease. The distal convoluted tubule (DCT) is a region of the kidney, and although only 5-10% of the sodium (Na+) filtered by the glomerulus is reabsorbed by DCT, most studies agree that Na-Cl cotransporter (NCC) in human, rabbit, mouse, and rat kidneys is the most important route of sodium reabsorption across the DCT for maintaining the homeostasis of sodium. The regulation of NCC involves a large and complex network structure, including certain physiological factors, kinases, scaffold proteins, transporter phosphorylation, and other aspects. This regulation network includes various levels. Naturally, cross-talk between the components of this system must occur in order to relay the important signals to the transporter to play its role. Knowledge of the mechanisms regulating NCC activation is critical for understanding and treating hypertension and CKD. Previous studies from our laboratory have investigated the mechanisms through which NCC is activated in several different models. In the following sections, we review the literature on the mechanisms of NCC in relation to hypertension in CKD.
Collapse
|
4
|
Zhou H, Zhu J, Wan H, Shao C, Chen T, Yang J, He Y, Wan H. The combination of danhong injection plus tissue plasminogen activator ameliorates mouse tail thrombosis-induced by κ-carrageenan. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 104:154320. [PMID: 35830758 DOI: 10.1016/j.phymed.2022.154320] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 06/22/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND After thrombosis, t-PA thrombolysis is the first choice, but the use of t-PA can easily lead to hemorrhagic injury and neurotoxicity. The combination of Danhong injection (DHI) and tissue plasminogen activator (t-PA) therapy may be a new strategy to find high-efficiency anti-thrombosis and low bleeding risk. However, nothing is about the effect of DHI plus t-PA on platelet activation. PURPOSE The present research was to explore the optimal dose of DHI and t-PA in vivo and mechanisms involved with the treatment of combining DHI and t-PA for thrombotic disease and determined whether DHI plus t-PA affects thrombotic processes related to platelet activation. METHODS Mice were induced by administering κ-carrageenan intraperitoneally, the ratio of different doses of DHI and t-PA in vivo, and the optimal dose effects on platelet aggregation, platelet adhesion, thrombosis formation, and platelet activation were determined. The effects of the αIIbβ3 signaling pathway were analyzed in mice. RESULTS In vitro, DHI (62% v/v), t-PA (1 mg/ml), and DHI + t-PA (62% v/v + 1 mg/ml) decreased rat platelet aggregation and adhesion, with a stronger effect from the combination as compared to t-PA monotherapy. In vivo, injections of κ-carrageenan were used to induce BALB/c mice. The optimal dose of DHI, t-PA, and DHI + t-PA is 12 ml/kg, 10 mg/kg, and 12 ml/kg + 7.5 mg/kg. The administration of DHI (12 ml/kg), t-PA (10 mg/kg), and DHI + t-PA (12 ml/kg + 7.5 mg/kg) decreased thrombi in mouse tissue vessels. Furthermore, the reduction of thrombosis formation by DHI, t-PA, and DHI + t-PA was related to lower collagen deposition, and lowered expressions of collagen I, matrix metalloproteinase 2 (MMP-2), and metalloproteinase 9 (MMP-9) in mouse tails, with increased efficacy in combination as compared to t-PA alone. The anti-thrombosis actions of DHI, t-PA, and their combination regulated the expression of CD41, purinergic receptor (P2Y12), guanine nucleotide-binding protein G (q) subunit alpha (GNAQ), phosphatidylinositol phospholipase c beta (PLCβ), Ras-related protein 1 (Rap1), RIAM, talin1, fibrinogen alpha chain (FG), kindlin-3, and RAS guany1-releasing protein 1 (RasGRP1). CONCLUSIONS Based on expression, the mechanism responsible for thrombosis may be attributed to platelet activation via the αIIbβ3 signaling pathway. Combination therapy with DHI and t-PA exerted potent thrombolytic effects. Thus, our data can be used as a foundation for further clinical studies examining the efficacy of traditional Chinese medicines for the treatment of thrombosis.
Collapse
Affiliation(s)
- Huifen Zhou
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, PR China
| | - Jiaqi Zhu
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, PR China
| | - Haofang Wan
- Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, PR China
| | - Chongyu Shao
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, PR China
| | - Tianhang Chen
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, PR China
| | - Jiehong Yang
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, PR China.
| | - Yu He
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, PR China.
| | - Haitong Wan
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, PR China; Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, PR China.
| |
Collapse
|
5
|
Kanai Y. Amino acid transporter LAT1 (SLC7A5) as a molecular target for cancer diagnosis and therapeutics. Pharmacol Ther 2021; 230:107964. [PMID: 34390745 DOI: 10.1016/j.pharmthera.2021.107964] [Citation(s) in RCA: 121] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 07/30/2021] [Indexed: 01/13/2023]
Abstract
Cancer cells require a massive supply of nutrients, including sugars and amino acids-the upregulation of transporters for each nutrient contributes to meet the demand. Distinct from glucose transporters, amino acid transporters include ones whose expression is specific to cancer cells. For example, LAT1 (SLC7A5) displays protein expression mostly limited to the plasma membrane of cancer cells. The exceptions are the placental barrier and the blood-brain barrier, where immunohistochemical and mass spectrometric studies have shown LAT1 expression, although their levels are supposed to be lower than those in cancers. The expression of LAT1 has been reported in cancers from various tissue origins, where high LAT1 expression is related to the poor prognosis of patients. LAT1 is essential for cancer cell growth because the pharmacologic inhibition and knockdown/knockout of LAT1 suppress the proliferation of cancer cells and the growth of xenograft tumors. The inhibition of LAT1 suppresses protein synthesis by downregulating the mTORC1 signaling pathway and mobilizing the general amino acid control (GAAC) pathway in cancer cells. LAT1 is, thus, a candidate molecular target for the diagnosis and therapeutics of cancers. 18F-labeled 3-fluoro-l-α-methyl-tyrosine (FAMT) is used as a LAT1-specific PET probe for cancer detection due to the LAT1 specificity of α-methyl aromatic amino acids. FAMT accumulation is cancer-specific and avoids non-cancer lesions, including inflammation, confirming the cancer-specific expression of LAT1 in humans. Due to the cancer-specific nature, LAT1 can also be used for cancer-specific delivery of anti-tumor agents such as l-para-boronophenylalanine used for boron neutron capture therapy and α-emitting nuclide-labeled LAT1 substrates developed for nuclear medicine treatment. Based on the importance of LAT1 in cancer progression, high-affinity LAT1-specific inhibitors have been developed for anti-tumor drugs. JPH203 (KYT0353) is such a compound designed based on the structure-activity relationship of LAT1 ligands. It is one of the highest-affinity inhibitors with less affecting other transporters. It suppresses tumor growth in vivo without significant toxicity in preclinical studies at doses enough to suppress tumor growth. In the phase-I clinical trial, JPH203 appeared to provide promising activity. Because the mechanisms of action of LAT1 inhibitors are novel, with or without combination with other anti-tumor drugs, they could contribute to the treatment of cancers that do not respond to current therapy. The LAT1-specific PET probe could also be used as companion diagnostics of the LAT1-targeting therapies to select patients to whom therapeutic benefits could be expected. Recently, the cryo-EM structure of LAT1 has been solved, which would facilitate the understanding of the mechanisms of the dynamic interaction of ligands and the binding site, and further designing new compounds with higher activity.
Collapse
Affiliation(s)
- Yoshikatsu Kanai
- Department of Bio-system Pharmacology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
6
|
Pushpakumar S, Ahmad A, Ketchem CJ, Jose PA, Weinman EJ, Sen U, Lederer ED, Khundmiri SJ. Sodium-hydrogen exchanger regulatory factor-1 (NHERF1) confers salt sensitivity in both male and female models of hypertension in aging. Life Sci 2020; 243:117226. [PMID: 31904366 PMCID: PMC7015806 DOI: 10.1016/j.lfs.2019.117226] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 12/16/2019] [Accepted: 12/23/2019] [Indexed: 01/11/2023]
Abstract
Hypertension is a risk factor for premature death and roughly 50% of hypertensive patients are salt-sensitive. The incidence of salt-sensitive hypertension increases with age. However, the mechanisms of salt-sensitive hypertension are not well understood. We had demonstrated decreased renal sodium‑hydrogen exchanger regulatory factor 1 (NHERF1) expression in old salt-resistant F344 rats. Based on those studies we hypothesized that NHERF1 expression is required for the development of some forms of salt-sensitive hypertension. To address this hypothesis, we measured blood pressure in NHERF1 expressing salt-sensitive 4-mo and 24-mo-old male and female Fischer Brown Norway (FBN) rats male and female 18-mo-old NHERF1 knock-out (NHERF1-/-) mice and wild-type (WT) littermates on C57BL/6J background after feeding high salt (8% NaCl) diet for 7 days. Our data demonstrate that 8% salt diet increased blood pressure in both male and female 24-mo-old FBN rats but not in 4-mo-old FBN rats and in 18-mo-old male and female WT mice but not in NHERF1-/- mice. Renal dopamine 1 receptor (D1R) expression was decreased in 24-mo-old rats, compared with 4-mo-old FBN rats. However, sodium chloride cotransporter (NCC) expression increased in 24-mo-old FBN rats. In FBN rats, age had no effect on NaK ATPase α1 and NKCC2 expression. By contrast, high salt diet increased the renal expressions of NKCC2, and NCC in 24-mo-old FBN rats. High salt diet also increased NKCC2 and NCC expression in WT mice but not NHERF1-/- mice. Our data suggest that renal NHERF1 expression confers salt sensitivity with aging, associated with increased expression of sodium transporters.
Collapse
Affiliation(s)
- Sathnur Pushpakumar
- Department of Physiology, University of Louisville, Louisville, KY, United States of America
| | - Asrar Ahmad
- Department of Physiology and Biophysics, Howard University College of Medicine, Washington, DC, United States of America
| | - Corey J Ketchem
- Department of Medicine, Nephrology and Hypertension, University of Louisville, Louisville, KY, United States of America
| | - Pedro A Jose
- Department of Medicine, Division of Renal Diseases and Hypertension, The George Washington University, Washington, DC, United States of America
| | - Edward J Weinman
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States of America
| | - Utpal Sen
- Department of Physiology, University of Louisville, Louisville, KY, United States of America
| | - Eleanor D Lederer
- Department of Physiology, University of Louisville, Louisville, KY, United States of America; Department of Medicine, Nephrology and Hypertension, University of Louisville, Louisville, KY, United States of America; Robley Rex VA Medical Center, Louisville, KY, United States of America
| | - Syed J Khundmiri
- Department of Physiology and Biophysics, Howard University College of Medicine, Washington, DC, United States of America.
| |
Collapse
|
7
|
The interplay of renal potassium and sodium handling in blood pressure regulation: critical role of the WNK-SPAK-NCC pathway. J Hum Hypertens 2019; 33:508-523. [DOI: 10.1038/s41371-019-0170-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 12/18/2018] [Accepted: 01/03/2019] [Indexed: 12/19/2022]
|
8
|
Hunter RW, Ivy JR, Flatman PW, Kenyon CJ, Craigie E, Mullins LJ, Bailey MA, Mullins JJ. Hypertrophy in the Distal Convoluted Tubule of an 11β-Hydroxysteroid Dehydrogenase Type 2 Knockout Model. J Am Soc Nephrol 2015; 26:1537-48. [PMID: 25349206 PMCID: PMC4483573 DOI: 10.1681/asn.2013060634] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Accepted: 08/12/2014] [Indexed: 11/03/2022] Open
Abstract
Na(+) transport in the renal distal convoluted tubule (DCT) by the thiazide-sensitive NaCl cotransporter (NCC) is a major determinant of total body Na(+) and BP. NCC-mediated transport is stimulated by aldosterone, the dominant regulator of chronic Na(+) homeostasis, but the mechanism is controversial. Transport may also be affected by epithelial remodeling, which occurs in the DCT in response to chronic perturbations in electrolyte homeostasis. Hsd11b2(-/-) mice, which lack the enzyme 11β-hydroxysteroid dehydrogenase type 2 (11βHSD2) and thus exhibit the syndrome of apparent mineralocorticoid excess, provided an ideal model in which to investigate the potential for DCT hypertrophy to contribute to Na(+) retention in a hypertensive condition. The DCTs of Hsd11b2(-/-) mice exhibited hypertrophy and hyperplasia and the kidneys expressed higher levels of total and phosphorylated NCC compared with those of wild-type mice. However, the striking structural and molecular phenotypes were not associated with an increase in the natriuretic effect of thiazide. In wild-type mice, Hsd11b2 mRNA was detected in some tubule segments expressing Slc12a3, but 11βHSD2 and NCC did not colocalize at the protein level. Thus, the phosphorylation status of NCC may not necessarily equate to its activity in vivo, and the structural remodeling of the DCT in the knockout mouse may not be a direct consequence of aberrant corticosteroid signaling in DCT cells. These observations suggest that the conventional concept of mineralocorticoid signaling in the DCT should be revised to recognize the complexity of NCC regulation by corticosteroids.
Collapse
Affiliation(s)
- Robert W Hunter
- British Heart Foundation Centre for Cardiovascular Science and
| | - Jessica R Ivy
- British Heart Foundation Centre for Cardiovascular Science and
| | - Peter W Flatman
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, United Kingdom
| | | | - Eilidh Craigie
- British Heart Foundation Centre for Cardiovascular Science and
| | - Linda J Mullins
- British Heart Foundation Centre for Cardiovascular Science and
| | | | - John J Mullins
- British Heart Foundation Centre for Cardiovascular Science and
| |
Collapse
|
9
|
Takayanagi K, Shimizu T, Tayama Y, Ikari A, Anzai N, Iwashita T, Asakura J, Hayashi K, Mitarai T, Hasegawa H. Downregulation of transient receptor potential M6 channels as a cause of hypermagnesiuric hypomagnesemia in obese type 2 diabetic rats. Am J Physiol Renal Physiol 2015; 308:F1386-97. [DOI: 10.1152/ajprenal.00593.2013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Accepted: 12/11/2014] [Indexed: 12/15/2022] Open
Abstract
We assessed the expression profile of Mg2+-transporting molecules in obese diabetic rats as a cause of hypermagnesiuric hypomagnesemia, which is involved in the development of insulin resistance, hypertension, and coronary diseases. Kidneys were obtained from male Otsuka Long-Evans Tokushima fatty (OLETF) and Long-Evans Tokushima Otsuka (LETO) obese diabetic rats at the ages of 16, 24, and 34 wk. Expression profiles were studied by real-time PCR and immunohistochemistry together with measurements of urine Mg2+excretion. Urine Mg2+excretion was increased in 24-wk-old OLETF rats and hypomagnesemia was apparent in 34-wk-old OLETF rats but not in LETO rats (urine Mg2+excretion: 0.16 ± 0.01 μg·min−1·g body wt−1in 24-wk-old LETO rats and 0.28 ± 0.01 μg·min−1·g body wt−1in 24-wk-old OLETF rats). Gene expression of transient receptor potential (TRP)M6 was downregulated (85.5 ± 5.6% in 34-wk-old LETO rats and 63.0 ± 3.5% in 34-wk-old OLETF rats) concomitant with Na+-Cl−cotransporter downregulation, whereas the expression of claudin-16 in tight junctions of the thick ascending limb of Henle was not different. The results of the semiquantitative analysis of immunohistochemistry were consistent with these findings (TRPM6: 0.49 ± 0.04% in 16-wk-old LETO rats, 0.10 ± 0.01% in 16-wk-old OLETF rats, 0.52 ± 0.03% in 24-wk-old LETO rats, 0.10 ± 0.01% in 24-wk-old OLETF rats, 0.48 ± 0.02% in 34-wk-old LETO rats, and 0.12 ± 0.02% in 34-wk-old OLETF rats). Gene expression of fibrosis-related proinflammatory cytokines as well as histological changes showed that the hypermagnesiuria-related molecular changes and tubulointerstitial nephropathy developed independently. TRPM6, located principally in distal convoluted tubules, appears to be a susceptible molecule that causes hypermagnesiuric hypomagnesemia as a tubulointerstitial nephropathy-independent altered tubular function in diabetic nephropathy.
Collapse
Affiliation(s)
- Kaori Takayanagi
- Ishikawa Kinenkai Kawagoe Ekimae Clinic, Kawagoe, Saitama, Japan
- Department of Nephrology and Hypertension, Saitama Medical Center, Saitama Medical University, Kawagoe, Saitama, Japan
| | - Taisuke Shimizu
- Department of Nephrology and Hypertension, Saitama Medical Center, Saitama Medical University, Kawagoe, Saitama, Japan
| | - Yosuke Tayama
- Department of Nephrology and Hypertension, Saitama Medical Center, Saitama Medical University, Kawagoe, Saitama, Japan
| | - Akira Ikari
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu, Japan; and
| | - Naohiko Anzai
- Department of Pharmacology and Toxicology, Dokkyo Medical University School of Medicine, Tochigi, Japan
| | - Takatsugu Iwashita
- Department of Nephrology and Hypertension, Saitama Medical Center, Saitama Medical University, Kawagoe, Saitama, Japan
| | - Juko Asakura
- Department of Nephrology and Hypertension, Saitama Medical Center, Saitama Medical University, Kawagoe, Saitama, Japan
| | - Keitaro Hayashi
- Department of Pharmacology and Toxicology, Dokkyo Medical University School of Medicine, Tochigi, Japan
| | - Tetsuya Mitarai
- Department of Nephrology and Hypertension, Saitama Medical Center, Saitama Medical University, Kawagoe, Saitama, Japan
| | - Hajime Hasegawa
- Department of Nephrology and Hypertension, Saitama Medical Center, Saitama Medical University, Kawagoe, Saitama, Japan
| |
Collapse
|
10
|
Ronzaud C, Staub O. Ubiquitylation and control of renal Na+ balance and blood pressure. Physiology (Bethesda) 2014; 29:16-26. [PMID: 24382868 DOI: 10.1152/physiol.00021.2013] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Ubiquitylation is crucial for regulating numerous cellular functions. In the kidney, ubiquitylation regulates the epithelial Na(+) channel ENaC. The importance of this process is highlighted in Liddle's syndrome, where mutations interfere with ENaC ubiquitylation, resulting in constitutive Na(+) reabsorption and hypertension. There is emerging evidence that NCC, involved in hypertensive diseases, is also regulated by ubiquitylation. Here, we discuss the current knowledge and recent findings in this field.
Collapse
Affiliation(s)
- Caroline Ronzaud
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland
| | | |
Collapse
|
11
|
Richards J, Ko B, All S, Cheng KY, Hoover RS, Gumz ML. A role for the circadian clock protein Per1 in the regulation of the NaCl co-transporter (NCC) and the with-no-lysine kinase (WNK) cascade in mouse distal convoluted tubule cells. J Biol Chem 2014; 289:11791-11806. [PMID: 24610784 DOI: 10.1074/jbc.m113.531095] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
It has been well established that blood pressure and renal function undergo circadian fluctuations. We have demonstrated that the circadian protein Per1 regulates multiple genes involved in sodium transport in the collecting duct of the kidney. However, the role of Per1 in other parts of the nephron has not been investigated. The distal convoluted tubule (DCT) plays a critical role in renal sodium reabsorption. Sodium is reabsorbed in this segment through the actions of the NaCl co-transporter (NCC), which is regulated by the with-no-lysine kinases (WNKs). The goal of this study was to test if Per1 regulates sodium transport in the DCT through modulation of NCC and the WNK kinases, WNK1 and WNK4. Pharmacological blockade of nuclear Per1 entry resulted in decreased mRNA expression of NCC and WNK1 but increased expression of WNK4 in the renal cortex of mice. These findings were confirmed by using Per1 siRNA and pharmacological blockade of Per1 nuclear entry in mDCT15 cells, a model of the mouse distal convoluted tubule. Transcriptional regulation was demonstrated by changes in short lived heterogeneous nuclear RNA. Chromatin immunoprecipitation experiments demonstrated interaction of Per1 and CLOCK with the promoters of NCC, WNK1, and WNK4. This interaction was modulated by blockade of Per1 nuclear entry. Importantly, NCC protein expression and NCC activity, as measured by thiazide-sensitive, chloride-dependent (22)Na uptake, were decreased upon pharmacological inhibition of Per1 nuclear entry. Taken together, these data demonstrate a role for Per1 in the transcriptional regulation of NCC, WNK1, and WNK4.
Collapse
Affiliation(s)
- Jacob Richards
- Departments of Medicine, University of Florida, Gainesville, Florida 32610; Departments of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida 32610
| | - Benjamin Ko
- Department of Medicine, University of Chicago, Chicago, Illinois 60637
| | - Sean All
- Departments of Medicine, University of Florida, Gainesville, Florida 32610
| | - Kit-Yan Cheng
- Departments of Medicine, University of Florida, Gainesville, Florida 32610
| | - Robert S Hoover
- Division of Nephrology, Department of Medicine, Emory University, Atlanta, Georgia 30322; Research Service, Atlanta Veterans Affairs Medical Center, Atlanta, Georgia 30033
| | - Michelle L Gumz
- Departments of Medicine, University of Florida, Gainesville, Florida 32610; Departments of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida 32610.
| |
Collapse
|
12
|
Zahedi K, Barone S, Xu J, Soleimani M. Potentiation of the effect of thiazide derivatives by carbonic anhydrase inhibitors: molecular mechanisms and potential clinical implications. PLoS One 2013; 8:e79327. [PMID: 24260196 PMCID: PMC3832474 DOI: 10.1371/journal.pone.0079327] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 09/29/2013] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Carbonic anhydrase inhibitors (CAI) are mild diuretics, hence not widely used in fluid overloaded states. They are however the treatment of choice for certain non-kidney conditions. Thiazides, specific inhibitors of Na-Cl cotransport (NCC), are mild agents and the most widely used diuretics in the world for control of mild hypertension. HYPOTHESIS In addition to inhibiting the salt reabsorption in the proximal tubule, CAIs down-regulate pendrin, therefore leaving NCC as the major salt absorbing transporter in the distal nephron, and hence allowing for massive diuresis by the inhibitors of NCC in the setting of increased delivery of salt from the proximal tubule. EXPERIMENTAL PROTOCOLS AND RESULTS Daily treatment of rats with acetazolamide (ACTZ), a known CAI, for 10 days caused mild diuresis whereas daily treatment with hydrochlorothiazide (HCTZ) for 4 days caused hardly any diuresis. However, treatment of rats that were pretreated with ACTZ for 6 days with a combination of ACTZ plus HCTZ for 4 additional days increased the urine output by greater than 2 fold (p<0.001, n = 5) compared to ACTZ-treated animals. Sodium excretion increased by 80% in the ACTZ plus HCTZ group and animals developed significant volume depletion, metabolic alkalosis and pre-renal failure. Molecular studies demonstrated ∼75% reduction in pendrin expression by ACTZ. The increased urine output in ACTZ/HCTZ treated rats was associated with a significant reduction in urine osmolality and reduced membrane localization of AQP-2 (aquaporin2). CONCLUSIONS These results indicate that ACTZ down-regulates pendrin expression and leaves NCC as the major salt absorbing transporter in the distal nephron in the setting of increased delivery of salt from the proximal tubule. Despite being considered mild agents individually, we propose that the combination of ACTZ and HCTZ is a powerful diuretic regimen.
Collapse
Affiliation(s)
- Kamyar Zahedi
- Center on Genetics of Transport and the Department of Medicine, University of Cincinnati, Research Services, Veterans Affairs Medical Center, Cincinnati, Ohio
| | - Sharon Barone
- Center on Genetics of Transport and the Department of Medicine, University of Cincinnati, Research Services, Veterans Affairs Medical Center, Cincinnati, Ohio
| | - Jie Xu
- Center on Genetics of Transport and the Department of Medicine, University of Cincinnati, Research Services, Veterans Affairs Medical Center, Cincinnati, Ohio
| | - Manoocher Soleimani
- Center on Genetics of Transport and the Department of Medicine, University of Cincinnati, Research Services, Veterans Affairs Medical Center, Cincinnati, Ohio
- * E-mail:
| |
Collapse
|
13
|
Pluznick JL. Beyond translation: the renal phosphate census. Focus on "Large-scale phosphoproteomic analysis of membrane proteins in renal proximal and distal tubule". Am J Physiol Cell Physiol 2011; 300:C752-4. [PMID: 21248080 DOI: 10.1152/ajpcell.00009.2011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
14
|
Rodan AR, Huang CL. An emerging role for SPAK in NCC, NKCC, and blood pressure regulation. J Am Soc Nephrol 2010; 21:1812-4. [PMID: 20930065 DOI: 10.1681/asn.2010090926] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
|
15
|
van der Lubbe N, Lim CH, Fenton RA, Meima ME, Jan Danser AH, Zietse R, Hoorn EJ. Angiotensin II induces phosphorylation of the thiazide-sensitive sodium chloride cotransporter independent of aldosterone. Kidney Int 2010; 79:66-76. [PMID: 20720527 DOI: 10.1038/ki.2010.290] [Citation(s) in RCA: 146] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
We studied here the independent roles of angiotensin II and aldosterone in regulating the sodium chloride cotransporter (NCC) of the distal convoluted tubule. We adrenalectomized three experimental and one control group of rats. Following surgery, the experimental groups were treated with either a high physiological dose of aldosterone, a non-pressor, or a pressor dose of angiotensin II for 8 days. Aldosterone and both doses of angiotensin II lowered sodium excretion and significantly increased the abundance of NCC in the plasma membrane compared with the control. Only the pressor dose of angiotensin II caused hypertension. Thiazides inhibited the sodium retention induced by the angiotensin II non-pressor dose. Both aldosterone and the non-pressor dose of angiotensin II significantly increased phosphorylation of NCC at threonine-53 and also increased the intracellular abundance of STE20/SPS1-related, proline alanine-rich kinase (SPAK). No differences were found in other modulators of NCC activity such as oxidative stress responsive protein type 1 or with-no-lysine kinase 4. Thus, our in vivo study shows that aldosterone and angiotensin II independently increase the abundance and phosphorylation of NCC in the setting of adrenalectomy; effects are likely mediated by SPAK. These results may explain, in part, the hormonal control of renal sodium excretion and the pathophysiology of several forms of hypertension.
Collapse
Affiliation(s)
- Nils van der Lubbe
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
16
|
|
17
|
Rafiqi FH, Zuber AM, Glover M, Richardson C, Fleming S, Jovanović S, Jovanović A, O'Shaughnessy KM, Alessi DR. Role of the WNK-activated SPAK kinase in regulating blood pressure. EMBO Mol Med 2010; 2:63-75. [PMID: 20091762 PMCID: PMC3377268 DOI: 10.1002/emmm.200900058] [Citation(s) in RCA: 221] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Mutations within the with-no-K(Lys) (WNK) kinases cause Gordon's syndrome characterized by hypertension and hyperkalaemia. WNK kinases phosphorylate and activate the STE20/SPS1-related proline/alanine-rich kinase (SPAK) protein kinase, which phosphorylates and stimulates the key Na+:Cl− cotransporter (NCC) and Na+:K+:2Cl− cotransporters (NKCC2) cotransporters that control salt reabsorption in the kidney. To define the importance of this pathway in regulating blood pressure, we generated knock-in mice in which SPAK cannot be activated by WNKs. The SPAK knock-in animals are viable, but display significantly reduced blood pressure that was salt-dependent. These animals also have markedly reduced phosphorylation of NCC and NKCC2 cotransporters at the residues phosphorylated by SPAK. This was also accompanied by a reduction in the expression of NCC and NKCC2 protein without changes in messenger RNA (mRNA) levels. On a normal Na+-diet, the SPAK knock-in mice were normokalaemic, but developed mild hypokalaemia when the renin–angiotensin system was activated by a low Na+-diet. These observations establish that SPAK plays an important role in controlling blood pressure in mammals. Our results imply that SPAK inhibitors would be effective at reducing blood pressure by lowering phosphorylation as well as expression of NCC and NKCC2. See accompanying Closeup by Maria Castañeda-Bueno and Gerald Gamba (DOI 10.1002/emmm.200900059).
Collapse
|