1
|
Zhang W, Zhang Y, Lv W, Kong Z, Wang F, Wang Y. Isoquercitrin improves diabetes nephropathy by inhibiting the sodium-glucose co-transporter-2 pathway. Biochem Biophys Res Commun 2025; 744:151142. [PMID: 39708395 DOI: 10.1016/j.bbrc.2024.151142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/21/2024] [Accepted: 12/04/2024] [Indexed: 12/23/2024]
Abstract
Diabetic nephropathy (DN) is one of the most severe kidney complications and the primary contributor to end-stage renal disease on a global scale. It exacerbates the morbidity, mortality, and financial burden for individuals with diabetes. Isoquercitrin, a natural compound found in various plants, has demonstrated potential as an antidiabetic agent. However, it remains uncertain whether isoquercitrin exerts a protective effect on DN. Therefore, the objective of this study was to explore whether isoquercitrin confers a protective effect on DN and its potential mechanism. In vivo, a mouse model of DN induced by streptozotocin was established in the study. The hypoglycemic effect of isoquercitrin was assessed by measuring fasting blood glucose levels, insulin tolerance tests, and glucose tolerance test in animals. Urinary albumin creatinine ratio, serum lipid levels, and pathological changes in renal tissues were measured to evaluate the protective effect of isoquercitrin against DN. The expression of Sodium glucose co-transporter-2(SGLT2) was analyzed using real-time quantitative PCR and immunohistochemistry. The studies suggest that isoquercitrin significantly reduces fasting blood glucose levels, enhances the body's capacity to regulate blood glucose and insulin resistance, and facilitates renal pathology and renal function. Simultaneously, it can lower blood lipids (total cholesterol and triglyceride) and improve the risk factors of DN. Meanwhile, isoquercitrin suppressed the expression of SGLT2 in renal tissues of DN mouse models. In vitro, real-time quantitative PCR and Western blot were used to detect the expression of SGLT2 in the human renal tubular epithelial (HK-2) cells. The effects of isoquercitrin on the survival rate and glucose uptake capacity of HK-2 cells were determined by Cell-Counting-Kit-8 and glucose uptake methods. The results demonstrate that isoquercitrin suppressed the up-regulation of SGLT2 mRNA and protein in high-glucose-induced HK-2 cells. Additionally, isoquercitrin inhibited glucose uptake in HK-2 cells and mitigated high-sugar-induced damage. Thus, this study has concluded that isoquercitrin exhibits hypoglycemic and renal protective effects by inhibiting the SGLT2 pathway, indicating its potential as a promising anti-DN drug deserving further clinical investigation.
Collapse
Affiliation(s)
- Wenjie Zhang
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, China; Qingdao Key Laboratory of Thyroid Diseases, Medical Research Cente, Qingdao, China.
| | - Yongxiang Zhang
- Department of Rehabilitation Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Wenshan Lv
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Zili Kong
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, China; Qingdao Key Laboratory of Thyroid Diseases, Medical Research Cente, Qingdao, China.
| | - Fang Wang
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Yangang Wang
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, China; Qingdao Key Laboratory of Thyroid Diseases, Medical Research Cente, Qingdao, China.
| |
Collapse
|
2
|
Kanbay M, Copur S, Guldan M, Ozbek L, Hatipoglu A, Covic A, Mallamaci F, Zoccali C. Proximal tubule hypertrophy and hyperfunction: a novel pathophysiological feature in disease states. Clin Kidney J 2024; 17:sfae195. [PMID: 39050867 PMCID: PMC11267238 DOI: 10.1093/ckj/sfae195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Indexed: 07/27/2024] Open
Abstract
The role of proximal tubules (PTs), a major component of the renal tubular structure in the renal cortex, has been examined extensively. Along with its physiological role in the reabsorption of various molecules, including electrolytes, amino acids and monosaccharides, transcellular transport of different hormones and regulation of homeostasis, pathological events affecting PTs may underlie multiple disease states. PT hypertrophy or a hyperfunctioning state, despite being a compensatory mechanism at first in response to various stimuli or alterations at tubular transport proteins, have been shown to be critical pathophysiological events leading to multiple disorders, including diabetes mellitus, obesity, metabolic syndrome and congestive heart failure. Moreover, pharmacotherapeutic agents have primarily targeted PTs, including sodium-glucose cotransporter 2, urate transporters and carbonic anhydrase enzymes. In this narrative review, we focus on the physiological role of PTs in healthy states and the current understanding of the PT pathologies leading to disease states and potential therapeutic targets.
Collapse
Affiliation(s)
- Mehmet Kanbay
- Department of Internal Medicine, Division of Nephrology, Koç University School of Medicine, Istanbul, Turkey
| | - Sidar Copur
- Department of Medicine, Koç University School of Medicine, Istanbul, Turkey
| | - Mustafa Guldan
- Department of Internal Medicine, Division of Internal Medicine, Koç University School of Medicine, Istanbul, Turkey
| | - Lasin Ozbek
- Department of Internal Medicine, Division of Internal Medicine, Koç University School of Medicine, Istanbul, Turkey
| | - Alper Hatipoglu
- Department of Internal Medicine, Division of Internal Medicine, Koç University School of Medicine, Istanbul, Turkey
| | - Adrian Covic
- Nephrology, Dialysis and Transplantation, University Grigore T Popa, Iasi, Romania
| | - Francesca Mallamaci
- Nephrology, Dialysis and Transplantation Unit, Grande Ospedale Metropolitano, Reggio Calabria, Italy
- CNR-IFC, Research Unit of Clinical Epidemiology and Physiopathology of Renal Diseases and Hypertension, Institute of Clinical Physiology, Reggio Calabria, Italy
| | - Carmine Zoccali
- Renal Research Institute, New York, NY, USA
- Institute of Molecular Biology and Genetics, Ariano Irpino, Italy
- Associazione Ipertensione Nefrologia Trapianto Renale, Grande Ospedale Metropolitano, c/o Nefrologia, Reggio Calabria, Italy
| |
Collapse
|
3
|
Khedr LH, Eladawy RM, Nassar NN, Saad MAE. Canagliflozin attenuates chronic unpredictable mild stress induced neuroinflammation via modulating AMPK/mTOR autophagic signaling. Neuropharmacology 2023; 223:109293. [PMID: 36272443 DOI: 10.1016/j.neuropharm.2022.109293] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 09/30/2022] [Accepted: 10/09/2022] [Indexed: 11/05/2022]
Abstract
Although vast progress has been made to understand the pathogenesis of depression, existing antidepressant remedies, with several adverse effects, are not fully adequate. Interestingly, new emerging theories implicating an altered HPA-axis, tryptophan metabolism, neuroinflammation and altered gut integrity were proposed to further identify novel therapeutic targets. Along these lines, canagliflozin (CAN), a novel antidiabetic medication with anti-inflammatory and neuroprotective activity may present an effective treatment for depression; nevertheless, no studies have explored its effect on depressive disorder yet. To this end, this study aimed to investigate the possible antidepressant activity of CAN in CUMS and the mechanisms underlying its action on the gut-brain inflammation axis as well as the alteration in the TRY/KYN pathway in addition to its role in modulating the autophagic signaling cascade. Interestingly, CAN successfully attenuated the CUMS-induced elevations in despair and anhedonic behaviors as well as the elevated serum CORT. Furthermore, it enhanced gut integrity via hampering the CUMS-induced colonic inflammation and amending colonic tight junction proteins. The enhanced gut integrity was further corroborated by a notable anti-inflammatory and neuroprotective activity manifested via the observed mitigation of immune cell activation in addition to IDO hippocampal protein content and promotion of the autophagy cascade. Our findings postulate the possible anti-inflammatory and neuroprotective effects of CAN and the implication of TRY/KYN and AMPK/mTOR signaling pathways in the CUMS-induced MDD. Hence, this study shed light to the promising role of CAN in the augmentation of the current antidepressant treatments.
Collapse
Affiliation(s)
- Lobna H Khedr
- Pharmacology & Toxicology Department, Faculty of Pharmacy, Misr International University, Cairo, Egypt
| | - Reem M Eladawy
- Pharmacology & Toxicology Department, Faculty of Pharmacy, Sinai University, EL-Arish, Egypt
| | - Noha N Nassar
- Pharmacology & Toxicology Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| | - Muhammad A E Saad
- Pharmacology & Toxicology Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt; Pharmaceutical Sciences Department, College of Pharmacy, Gulf Medical University, Ajman, 4184, United Arab Emirates
| |
Collapse
|
4
|
Abstract
On 4 September, 2020, the US National Institutes of Health launched a new clinical trial, "A Multicenter, Adaptive, Randomized Controlled Platform Trial of the Safety and Efficacy of Antithrombotic and Additional Strategies in Hospitalized Adults with COVID-19." This open-label, placebo-controlled, multicenter, adaptive platform study was designed to evaluate therapeutic options for patients hospitalized with mild, moderate, or severe COVID-19. A variety of drugs and drug classes were selected, including heparin, the monoclonal antibody crizanlizumab, sodium-glucose cotransporter-2 inhibitors, and purinergic signaling receptor Y12 inhibitors. These medications have been widely used in the treatment of other conditions, from sick cell disease to type 2 diabetes mellitus and some forms of cardiovascular disease, but their inclusion in a study of COVID-19 was somewhat unexpected. This article examines the rationale behind the use of these disparate agents in the treatment and prevention of adverse outcomes in patients with COVID-19 and explores how these strategies may be utilized in the future to address the severe acute respiratory syndrome coronavirus 2 pandemic.
Collapse
Affiliation(s)
- Matthew W McCarthy
- Department of Medicine, Weill Cornell Medicine, 525 East 68th Street, Box 130, New York, NY, 10065, USA.
| |
Collapse
|
5
|
Madiwalar VS, Dwivedi PSR, Patil A, Gaonkar SMN, Kumbhar VJ, Khanal P, Patil BM. Ficus benghalensis promotes the glucose uptake- Evidence with in silico and in vitro. J Diabetes Metab Disord 2022; 21:429-438. [PMID: 35673455 PMCID: PMC9167400 DOI: 10.1007/s40200-022-00989-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 01/23/2022] [Indexed: 11/27/2022]
Abstract
Background Ficus benghalensis L. is traditionally used to manage diabetes; also used in various herbal formulations, and is indicated as an insulin sensitizer. Hence, present work attempted in identifying the probable lead hits to promote glucose uptake via computational approach followed by experimental evaluation of hydroalcoholic extract of Ficus benghalensis L. bark in yeast cells. Methods The in vitro assay for glucose uptake was performed in the baker yeast whereas in-silico study involved retrieving the phytoconstituents from open sources, and predicting for probable targets of diabetes followed by drug-likeness score, probable side effects, and ADMET profile. Homology modeling was performed to construct the target protein glucose transporter-2. In addition, the binding affinity of each ligand with glucose transporter was predicted using AutoDock 4.2. Results A total of 17 phytoconstituents from F. benghalensis were identified to possess the anti-diabetic effects. Among them, 4-methoxybenzoic acid scored the highest drug-likeness score and lupeol acetate had the maximum binding affinity of -8.02 kcal/mol with 9 pi-interactions via Tyr324, Phe323, Ile319, Ile200, Ile28, Phe24, and Ala451. Similarly, the extract showed the highest glucose uptake efficacy in yeast cells at 500 µg/mL. Conclusion Herein the present study reflected the probable activity of the phytoconstituents from F. benghalensis in promoting the glucose uptake via the in silico and in vitro approaches.
Collapse
Affiliation(s)
- Vaishnavi Shankar Madiwalar
- Department of Pharmacology and Toxicology, KLE College of Pharmacy Belagavai, KLE Academy of Higher Education and Research (KAHER), Belagavi, 590010 India
| | - Prarambh S. R. Dwivedi
- Department of Pharmacology and Toxicology, KLE College of Pharmacy Belagavai, KLE Academy of Higher Education and Research (KAHER), Belagavi, 590010 India
| | - Ashwini Patil
- Department of Pharmacology and Toxicology, KLE College of Pharmacy Belagavai, KLE Academy of Higher Education and Research (KAHER), Belagavi, 590010 India
| | - Soham M. N. Gaonkar
- Department of Pharmacology and Toxicology, KLE College of Pharmacy Belagavai, KLE Academy of Higher Education and Research (KAHER), Belagavi, 590010 India
| | - Vrunda J. Kumbhar
- Department of Pharmacology and Toxicology, KLE College of Pharmacy Belagavai, KLE Academy of Higher Education and Research (KAHER), Belagavi, 590010 India
| | - Pukar Khanal
- Department of Pharmacology and Toxicology, KLE College of Pharmacy Belagavai, KLE Academy of Higher Education and Research (KAHER), Belagavi, 590010 India
| | - B. M. Patil
- Department of Pharmacology and Toxicology, KLE College of Pharmacy Belagavai, KLE Academy of Higher Education and Research (KAHER), Belagavi, 590010 India
| |
Collapse
|
6
|
Benedict SL, Mahony OM, McKee TS, Bergman PJ. Evaluation of bexagliflozin in cats with poorly regulated diabetes mellitus. CANADIAN JOURNAL OF VETERINARY RESEARCH = REVUE CANADIENNE DE RECHERCHE VETERINAIRE 2022; 86:52-58. [PMID: 34975223 PMCID: PMC8697324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 06/07/2021] [Indexed: 04/07/2023]
Abstract
The aim of this study was to investigate the effect of bexagliflozin on glycemic control in poorly regulated diabetic cats and to evaluate for adverse events associated with this medication. Sodium-glucose cotransporter 2 inhibitors are a newer class of drugs used in the management of humans with type 2 diabetes mellitus. The objective of this study was to evaluate the effect of the orally administered drug, bexagliflozin in a group of poorly regulated diabetic cats over a 4-week study period. Five client-owned cats with poorly controlled diabetes mellitus receiving insulin therapy were enrolled. Bexagliflozin was administered once daily. Serum fructosamine, serum biochemistry profile, and 10-hour blood glucose curves were assessed at baseline (Day 0), Day 14, and Day 28. All cats had a significant reduction in insulin dose requirement (P = 0.015) and insulin was discontinued in 2 cats. There was a significant decrease in blood glucose concentration obtained from blood glucose concentration curves during the study period (P = 0.022). Serum fructosamine decreased in 4 of the 5 cats with a median decrease of 152 μmol/L (range: 103 to 241 μmol/L), which was not statistically significant (P = 0.117). No cats had any documented episodes of hypoglycemia. Adverse effects were mild. The addition of bexagliflozin significantly improved diabetic management in this group of cats.
Collapse
Affiliation(s)
- Suzanne L Benedict
- Cummings School of Veterinary Medicine (Benedict), Foster Hospital for Small Animals (Mahony), Tufts University, 200 Westboro Road, North Grafton, Massachusetts 01536, USA; VCA Clinical Studies, 12401 West Olympic Blvd, Los Angeles, California 90064, USA (McKee, Bergman)
| | - Orla M Mahony
- Cummings School of Veterinary Medicine (Benedict), Foster Hospital for Small Animals (Mahony), Tufts University, 200 Westboro Road, North Grafton, Massachusetts 01536, USA; VCA Clinical Studies, 12401 West Olympic Blvd, Los Angeles, California 90064, USA (McKee, Bergman)
| | - Talon S McKee
- Cummings School of Veterinary Medicine (Benedict), Foster Hospital for Small Animals (Mahony), Tufts University, 200 Westboro Road, North Grafton, Massachusetts 01536, USA; VCA Clinical Studies, 12401 West Olympic Blvd, Los Angeles, California 90064, USA (McKee, Bergman)
| | - Philip J Bergman
- Cummings School of Veterinary Medicine (Benedict), Foster Hospital for Small Animals (Mahony), Tufts University, 200 Westboro Road, North Grafton, Massachusetts 01536, USA; VCA Clinical Studies, 12401 West Olympic Blvd, Los Angeles, California 90064, USA (McKee, Bergman)
| |
Collapse
|
7
|
Al-Shamasi AA, Elkaffash R, Mohamed M, Rayan M, Al-Khater D, Gadeau AP, Ahmed R, Hasan A, Eldassouki H, Yalcin HC, Abdul-Ghani M, Mraiche F. Crosstalk between Sodium-Glucose Cotransporter Inhibitors and Sodium-Hydrogen Exchanger 1 and 3 in Cardiometabolic Diseases. Int J Mol Sci 2021; 22:12677. [PMID: 34884494 PMCID: PMC8657861 DOI: 10.3390/ijms222312677] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/08/2021] [Accepted: 11/12/2021] [Indexed: 12/14/2022] Open
Abstract
Abnormality in glucose homeostasis due to hyperglycemia or insulin resistance is the hallmark of type 2 diabetes mellitus (T2DM). These metabolic abnormalities in T2DM lead to cellular dysfunction and the development of diabetic cardiomyopathy leading to heart failure. New antihyperglycemic agents including glucagon-like peptide-1 receptor agonists and the sodium-glucose cotransporter-2 inhibitors (SGLT2i) have been shown to attenuate endothelial dysfunction at the cellular level. In addition, they improved cardiovascular safety by exhibiting cardioprotective effects. The mechanism by which these drugs exert their cardioprotective effects is unknown, although recent studies have shown that cardiovascular homeostasis occurs through the interplay of the sodium-hydrogen exchangers (NHE), specifically NHE1 and NHE3, with SGLT2i. Another theoretical explanation for the cardioprotective effects of SGLT2i is through natriuresis by the kidney. This theory highlights the possible involvement of renal NHE transporters in the management of heart failure. This review outlines the possible mechanisms responsible for causing diabetic cardiomyopathy and discusses the interaction between NHE and SGLT2i in cardiovascular diseases.
Collapse
Affiliation(s)
- Al-Anood Al-Shamasi
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (A.-A.A.-S.); (R.E.); (M.M.); (M.R.); (D.A.-K.)
- Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha P.O. Box 2713, Qatar
| | - Rozina Elkaffash
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (A.-A.A.-S.); (R.E.); (M.M.); (M.R.); (D.A.-K.)
- Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha P.O. Box 2713, Qatar
| | - Meram Mohamed
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (A.-A.A.-S.); (R.E.); (M.M.); (M.R.); (D.A.-K.)
- Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha P.O. Box 2713, Qatar
| | - Menatallah Rayan
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (A.-A.A.-S.); (R.E.); (M.M.); (M.R.); (D.A.-K.)
- Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha P.O. Box 2713, Qatar
| | - Dhabya Al-Khater
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (A.-A.A.-S.); (R.E.); (M.M.); (M.R.); (D.A.-K.)
- Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha P.O. Box 2713, Qatar
| | - Alain-Pierre Gadeau
- INSERM, Biology of Cardiovascular Disease, University of Bordeaux, U1034 Pessac, France;
| | - Rashid Ahmed
- Department of Mechanical and Chemical Engineering, College of Engineering, Qatar University, Doha P.O. Box 2713, Qatar; (R.A.); (A.H.)
- Biomedical Research Centre (BRC), Qatar University, Doha P.O. Box 2713, Qatar;
| | - Anwarul Hasan
- Department of Mechanical and Chemical Engineering, College of Engineering, Qatar University, Doha P.O. Box 2713, Qatar; (R.A.); (A.H.)
- Biomedical Research Centre (BRC), Qatar University, Doha P.O. Box 2713, Qatar;
| | - Hussein Eldassouki
- College of Kinesiology, University of Saskatchewan, Saskatoon, SK S7N 5B5, Canada;
| | | | - Muhammad Abdul-Ghani
- Division of Diabetes, University of Texas Health Science Center at San Antonio, Floyd Curl Drive, San Antonio, TX 7703, USA;
| | - Fatima Mraiche
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (A.-A.A.-S.); (R.E.); (M.M.); (M.R.); (D.A.-K.)
- Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha P.O. Box 2713, Qatar
| |
Collapse
|
8
|
Liu H, Sridhar VS, Montemayor D, Lovblom LE, Lytvyn Y, Ye H, Kim J, Ali MT, Scarr D, Lawler PR, Perkins BA, Sharma K, Cherney DZI. Changes in plasma and urine metabolites associated with empagliflozin in patients with type 1 diabetes. Diabetes Obes Metab 2021; 23:2466-2475. [PMID: 34251085 DOI: 10.1111/dom.14489] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 07/01/2021] [Accepted: 07/01/2021] [Indexed: 02/06/2023]
Abstract
AIM To examine the impact of the sodium-glucose co-transporter-2 inhibitor, empagliflozin, on plasma and urine metabolites in participants with type 1 diabetes. MATERIAL AND METHODS Participants (n = 40, 50% male, mean age 24.3 years) with type 1 diabetes and without overt evidence of diabetic kidney disease had baseline assessments performed under clamped euglycaemia and hyperglycaemia, on two consecutive days. Participants then proceeded to an 8-week, open-label treatment period with empagliflozin 25 mg/day, followed by repeat assessments under clamped euglycaemia and hyperglycaemia. Plasma and urine metabolites were first grouped into metabolic pathways using MetaboAnalyst software. Principal component analysis was performed to create a representative value for each sufficiently represented metabolic group (false discovery rate ≤ 0.1) for further analysis. RESULTS Of the plasma metabolite groups, tricarboxylic acid (TCA) cycle (P < .0001), biosynthesis of unsaturated fatty acids (P = .0045), butanoate (P < .0001), propanoate (P = .0053), and alanine, aspartate and glutamate (P < .0050) metabolites were increased after empagliflozin treatment under clamped euglycaemia. Of the urine metabolite groups, only butanoate metabolites (P = .0005) were significantly increased. Empagliflozin treatment also attenuated the increase in a number of urine metabolites observed with acute hyperglycaemia. CONCLUSIONS Empagliflozin was associated with increased lipid and TCA cycle metabolites in participants with type 1 diabetes, suggesting a shift in metabolic substrate use and improved mitochondrial function. These effects result in more efficient energy production and may contribute to end-organ protection by alleviating local hypoxia and oxidative stress.
Collapse
Affiliation(s)
- Hongyan Liu
- Toronto General Hospital Research Institute, UHN, Toronto, Ontario, Canada
- Department of Medicine, Division of Nephrology, UHN, Toronto, Ontario, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Vikas S Sridhar
- Toronto General Hospital Research Institute, UHN, Toronto, Ontario, Canada
- Department of Medicine, Division of Nephrology, UHN, Toronto, Ontario, Canada
- Department of Medicine, Division of Nephrology, University of Toronto, Toronto, Ontario, Canada
- Banting and Best Diabetes Centre, Toronto, Ontario, Canada
| | - Daniel Montemayor
- Center for Renal Precision Medicine, Division of Nephrology, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Leif Erik Lovblom
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
| | - Yuliya Lytvyn
- Toronto General Hospital Research Institute, UHN, Toronto, Ontario, Canada
- Department of Medicine, Division of Nephrology, University of Toronto, Toronto, Ontario, Canada
- Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Hongping Ye
- Center for Renal Precision Medicine, Division of Nephrology, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Jiwan Kim
- Center for Renal Precision Medicine, Division of Nephrology, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Mir Tariq Ali
- Center for Renal Precision Medicine, Division of Nephrology, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Daniel Scarr
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
| | - Patrick R Lawler
- Peter Munk Cardiac Centre, University Health Network, Toronto, Ontario, Canada
- Ted Rogers Centre for Heart Research, University of Toronto, Toronto, Ontario, Canada
- Division of Cardiology and Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Bruce A Perkins
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Kumar Sharma
- Center for Renal Precision Medicine, Division of Nephrology, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - David Z I Cherney
- Toronto General Hospital Research Institute, UHN, Toronto, Ontario, Canada
- Department of Medicine, Division of Nephrology, UHN, Toronto, Ontario, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
- Department of Medicine, Division of Nephrology, University of Toronto, Toronto, Ontario, Canada
- Banting and Best Diabetes Centre, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
9
|
Faria J, Gerritsen KGF, Nguyen TQ, Mihaila SM, Masereeuw R. Diabetic proximal tubulopathy: Can we mimic the disease for in vitro screening of SGLT inhibitors? Eur J Pharmacol 2021; 908:174378. [PMID: 34303664 DOI: 10.1016/j.ejphar.2021.174378] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 07/15/2021] [Accepted: 07/21/2021] [Indexed: 11/27/2022]
Abstract
Diabetic kidney disease (DKD) is the foremost cause of renal failure. While the glomeruli are severely affected in the course of the disease, the main determinant for disease progression is the tubulointerstitial compartment. DKD does not develop in the absence of hyperglycemia. Since the proximal tubule is the major player in glucose reabsorption, it has been widely studied as a therapeutic target for the development of new therapies. Currently, there are several proximal tubule cell lines available, being the human kidney-2 (HK-2) and human kidney clone-8 (HKC-8) cell lines the ones widely used for studying mechanisms of DKD. Studies in these models have pushed forward the understanding on how DKD unravels, however, these cell culture models possess limitations that hamper research, including lack of transporters and dedifferentiation. The sodium-glucose cotransporters (SGLT) are identified as key players in glucose reabsorption and pharmacological inhibitors have shown to be beneficial for the long-term clinical outcome in DKD. However, their mechanism of action has, as of yet, not been fully elucidated. To comprehend the protective effects of SGLT inhibitors, it is essential to understand the complete functional, structural, and molecular features of the disease, which until now have been difficult to recapitulate. This review addresses the molecular events of diabetic proximal tubulopathy. In addition, we evaluate the protective role of SGLT inhibitors in cardiovascular and renal outcomes, and provide an overview of various in vitro models mimicking diabetic proximal tubulopathy used so far. Finally, new insights on advanced in vitro systems to surpass past limitations are postulated.
Collapse
Affiliation(s)
- João Faria
- Div. Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, the Netherlands
| | - Karin G F Gerritsen
- Dept. Nephrology and Hypertension, University Medical Center Utrecht, the Netherlands
| | - Tri Q Nguyen
- Dept. Pathology, University Medical Center Utrecht, the Netherlands
| | - Silvia M Mihaila
- Div. Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, the Netherlands; Dept. Nephrology and Hypertension, University Medical Center Utrecht, the Netherlands
| | - Rosalinde Masereeuw
- Div. Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, the Netherlands.
| |
Collapse
|
10
|
Alkabbani W, Gamble JM. Profile of Ipragliflozin, an Oral SGLT-2 Inhibitor for the Treatment of Type 2 Diabetes: The Evidence to Date. DRUG DESIGN DEVELOPMENT AND THERAPY 2021; 15:3057-3069. [PMID: 34285473 PMCID: PMC8286902 DOI: 10.2147/dddt.s281602] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/25/2021] [Indexed: 01/10/2023]
Abstract
Background Sodium-glucose cotransporter-2 (SGLT-2) inhibitors are a novel class of pharmacotherapeutics for type 2 diabetes management that work by reducing renal reabsorption of glucose. Ipragliflozin is a potent, selective SGLT-2 inhibitor used for the management of type 2 diabetes. Objective The primary aim of this review is to summarize the available evidence on the efficacy and safety of ipragliflozin for the management of type 2 diabetes. We also review the discovery, pharmacokinetic, and pharmacodynamic profile of ipragliflozin. Methods To inform our review, we searched MEDLINE, International Pharmaceutical Abstracts, and Embase to identify relevant papers to ipragliflozin use in type 2 diabetes. Clinical trial registries were also searched. Results Findings from randomized clinical trials demonstrate that compared to placebo, ipragliflozin significantly reduces glucose as measured via Hemoglobin A1c and fasting plasma glucose levels. Ipragliflozin is also associated with weight reduction and an improvement in some, but not all, cardiovascular risk markers. Ipragliflozin has a favourable safety profile with a low risk of hypoglycemia and the rates of common adverse events are not significantly different than placebo. Limited data are available to assess rare and long-term adverse effects. Conclusion Current evidence shows that ipragliflozin is an effective therapeutic option for the management of glucose control in type 2 diabetes. However, no cardiovascular outcome trials have been conducted to date. Real-world observational studies are still needed to accurately capture any possible rare or long-term adverse events.
Collapse
Affiliation(s)
- Wajd Alkabbani
- School of Pharmacy, Faculty of Science, University of Waterloo, Kitchener, ON, Canada
| | - John-Michael Gamble
- School of Pharmacy, Faculty of Science, University of Waterloo, Kitchener, ON, Canada
| |
Collapse
|
11
|
Mbatha B, Khathi A, Sibiya N, Booysen I, Mangundu P, Ngubane P. Anti-hyperglycaemic effects of dioxidovanadium complex cis-[VO 2(obz)py] avert kidney dysfunction in streptozotocin-induced diabetic male Sprague-Dawley rats. Can J Physiol Pharmacol 2021; 99:402-410. [PMID: 33759555 DOI: 10.1139/cjpp-2020-0278] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Despite the success of antidiabetic drugs in alleviation of hyperglycaemia, diabetic complications, including renal dysfunction, continue to be a burden. This raises the need to seek alternative therapies that will alleviate these complications. Accordingly, the aim of this study was to investigate the effects of dioxidovanadium(V) complex cis-[VO2(obz)py] on renal function in diabetic rats. Streptozotocin-induced diabetic rats were treated with cis-[VO2(obz)py] (40 mg·kg-1) twice every third day for five weeks. Diabetic untreated and insulin-treated rats served as the diabetic control and positive control, respectively. Blood glucose concentrations, water intake, urinary output, and mean arterial pressure (MAP) were monitored weekly for five weeks. Rats were then euthanized, and blood and kidney tissues were collected for biochemical analysis. Significant decreases in blood glucose concentrations, MAP, glomerular filtration rate (GFR), and SGLT2 expression, as well as plasma angiotensin and aldosterone concentrations, were observed in the treated groups compared with the diabetic control. The complex also increased urinary glucose concentrations, antioxidant enzymes GPx and SOD concentrations, and decreased MDA concentrations and kidney injury molecule (KIM-1) concentrations. These findings suggest that the anti-hyperglycaemic effects of this vanadium complex may ameliorate kidney dysfunction in diabetes.
Collapse
Affiliation(s)
- Bonisiwe Mbatha
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Andile Khathi
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Ntethelelo Sibiya
- Pharmacology Division, Faculty of Pharmacy, Rhodes University, Grahamstown, South Africa
| | - Irvin Booysen
- School of Chemistry and Physics, College of Agriculture, Engineering and Sciences, University of KwaZulu-Natal, Pietermaritzburg, South Africa
| | - Patrick Mangundu
- School of Chemistry and Physics, College of Agriculture, Engineering and Sciences, University of KwaZulu-Natal, Pietermaritzburg, South Africa
| | - Phikelelani Ngubane
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
12
|
Nandula SR, Kundu N, Awal HB, Brichacek B, Fakhri M, Aimalla N, Elzarki A, Amdur RL, Sen S. Role of Canagliflozin on function of CD34+ve endothelial progenitor cells (EPC) in patients with type 2 diabetes. Cardiovasc Diabetol 2021; 20:44. [PMID: 33581737 PMCID: PMC7881606 DOI: 10.1186/s12933-021-01235-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 02/01/2021] [Indexed: 02/12/2023] Open
Abstract
BACKGROUND Endothelial progenitor cells (EPCs) has been shown to be dysfunctional in both type 2 diabetes mellitus (T2DM) and chronic kidney disease (CKD) leading to poor regeneration of endothelium and renal perfusion. EPCs have been shown to be a robust cardiovascular disease (CVD) risk indicator. Effect of sodium glucose channel inhibitors (SGLT2i) such as Canagliflozin (CG) on a cellular biomarker such as CD34+ve progenitor cells, which may help predict CVD risk, in patients with T2DM with established CKD has not been explored. METHODS This is a pilot study where 29 subjects taking metformin and/or Insulin were enrolled in a 16 week, double blind, randomized placebo matched trial, with a low dose 100 mg CG as the intervention group compared to matched placebo. Type 2 diabetes subjects (30-70 years old), with hemoglobin A1c (HbA1c) of 7-10%, were enrolled. CD34+ve cell number, migratory function, gene expression along with vascular parameters such as arterial stiffness, serum biochemistry pertaining to cardio-metabolic health, resting energy expenditure and body composition were measured. Data were collected at week 0, 8 and 16. A mixed model regression analysis was done and p value less than 0.05 was considered statistically significant. RESULTS A significant expression of CXCR4 receptor with a concomittant increase in migratory function of CD34+ve cells was observed in CG treated group as compared to placebo group. Gene expression analysis of CD34+ve cells showed an increase in expression of antioxidants (superoxide dismutase 2 or SOD2, Catalase and Glutathione Peroxidase or GPX) and notable endothelial markers (PECAM1, VEGF-A, and NOS3). A significant reduction in glucose and HbA1c levels were observed along with improved systolic and diastolic blood pressure in the CG group. A significant increase in adiponectin (p = 0.006) was also noted in treatment group. Urinary exosomal protein leak in urine, examining podocyte health (podocalyxin, Wilm's tumor and nephrin) showed reduction with CG CONCLUSION: Low dose Canagliflozin has a beneficial effect on CD34+ cell function, serum biochemistry and urinary podocyte specific exosomes in type 2 diabetes.
Collapse
Affiliation(s)
- Seshagiri Rao Nandula
- Department of Medicine, The George Washington University, 2300 Eye Street, SMHS, Room 462,, Washington, DC, 20037, USA.,Department of Medicine and Endocrinology, Veterans Affairs Medical Center, Washington, DC, USA
| | - Nabanita Kundu
- Department of Medicine, The George Washington University, 2300 Eye Street, SMHS, Room 462,, Washington, DC, 20037, USA
| | - Hassan B Awal
- The GW Medical Faculty Associates, Washington, DC, USA
| | - Beda Brichacek
- Department of Medicine, The George Washington University, 2300 Eye Street, SMHS, Room 462,, Washington, DC, 20037, USA
| | - Mona Fakhri
- Department of Medicine, The George Washington University, 2300 Eye Street, SMHS, Room 462,, Washington, DC, 20037, USA
| | - Nikhila Aimalla
- Department of Medicine, The George Washington University, 2300 Eye Street, SMHS, Room 462,, Washington, DC, 20037, USA
| | - Adrian Elzarki
- The GW Medical Faculty Associates, Washington, DC, USA.,Department of Medicine, The George Washington University, 2300 Eye Street, SMHS, Room 462,, Washington, DC, 20037, USA
| | | | - Sabyasachi Sen
- The GW Medical Faculty Associates, Washington, DC, USA. .,Department of Medicine, The George Washington University, 2300 Eye Street, SMHS, Room 462,, Washington, DC, 20037, USA. .,Department of Medicine and Endocrinology, Veterans Affairs Medical Center, Washington, DC, USA.
| |
Collapse
|
13
|
Al Hamed FA, Elewa H. Potential Therapeutic Effects of Sodium Glucose-linked Cotransporter 2 Inhibitors in Stroke. Clin Ther 2020; 42:e242-e249. [DOI: 10.1016/j.clinthera.2020.09.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/17/2020] [Accepted: 09/14/2020] [Indexed: 11/16/2022]
|
14
|
Sano R, Shinozaki Y, Ohta T. Sodium-glucose cotransporters: Functional properties and pharmaceutical potential. J Diabetes Investig 2020; 11:770-782. [PMID: 32196987 PMCID: PMC7378437 DOI: 10.1111/jdi.13255] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 03/06/2020] [Accepted: 03/13/2020] [Indexed: 02/06/2023] Open
Abstract
Glucose is the most abundant monosaccharide, and an essential source of energy for most living cells. Glucose transport across the cell membrane is mediated by two types of transporters: facilitative glucose transporters (gene name: solute carrier 2A) and sodium-glucose cotransporters (SGLTs; gene name: solute carrier 5A). Each transporter has its own substrate specificity, distribution, and regulatory mechanisms. Recently, SGLT1 and SGLT2 have attracted much attention as therapeutic targets for various diseases. This review addresses the basal and functional properties of glucose transporters and SGLTs, and describes the pharmaceutical potential of SGLT1 and SGLT2.
Collapse
Affiliation(s)
- Ryuhei Sano
- Biological/Pharmacological Research LaboratoriesCentral Pharmaceutical Research InstituteJapan Tobacco IncTakatsukiJapan
| | - Yuichi Shinozaki
- Biological/Pharmacological Research LaboratoriesCentral Pharmaceutical Research InstituteJapan Tobacco IncTakatsukiJapan
| | - Takeshi Ohta
- Laboratory of Animal Physiology and Functional AnatomyGraduate School of AgricultureKyoto UniversityKyotoJapan
| |
Collapse
|
15
|
Sanidas EA, Papadopoulos DP, Hatziagelaki E, Grassos C, Velliou M, Barbetseas J. Sodium Glucose Cotransporter 2 (SGLT2) Inhibitors Across the Spectrum of Hypertension. Am J Hypertens 2020; 33:207-213. [PMID: 31541572 DOI: 10.1093/ajh/hpz157] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 09/12/2019] [Accepted: 09/14/2019] [Indexed: 12/12/2022] Open
Abstract
Sodium glucose cotransporter 2 (SGLT2) inhibitors represent a novel class of oral antihyperglycemic drugs that have been approved over the last decade for the management of type 2 diabetes mellitus. Except the glucose-lowering effects, robust evidence also suggests that SGLT2 inhibitors confer benefits in cardiovascular system. The purpose of this review was to investigate the effects of SGLT2 inhibitors across the spectrum of arterial hypertension.
Collapse
Affiliation(s)
- Elias A Sanidas
- Hypertension Excellence Centre—ESH, Department of Cardiology, LAIKO General Hospital, Athens, Greece
| | - Dimitrios P Papadopoulos
- Hypertension Excellence Centre—ESH, Department of Cardiology, LAIKO General Hospital, Athens, Greece
| | - Erifili Hatziagelaki
- 2nd Department of Internal Medicine, Attikon General Hospital, Athens Medical School, Athens, Greece
| | - Charalampos Grassos
- Hypertension Excellence Centre—ESH, Department of Cardiology, KAT General Hospital, Athens, Greece
| | - Maria Velliou
- Hypertension Excellence Centre—ESH, Department of Cardiology, LAIKO General Hospital, Athens, Greece
| | - John Barbetseas
- Hypertension Excellence Centre—ESH, Department of Cardiology, LAIKO General Hospital, Athens, Greece
| |
Collapse
|
16
|
van der Wijst J, Belge H, Bindels RJM, Devuyst O. Learning Physiology From Inherited Kidney Disorders. Physiol Rev 2019; 99:1575-1653. [PMID: 31215303 DOI: 10.1152/physrev.00008.2018] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The identification of genes causing inherited kidney diseases yielded crucial insights in the molecular basis of disease and improved our understanding of physiological processes that operate in the kidney. Monogenic kidney disorders are caused by mutations in genes coding for a large variety of proteins including receptors, channels and transporters, enzymes, transcription factors, and structural components, operating in specialized cell types that perform highly regulated homeostatic functions. Common variants in some of these genes are also associated with complex traits, as evidenced by genome-wide association studies in the general population. In this review, we discuss how the molecular genetics of inherited disorders affecting different tubular segments of the nephron improved our understanding of various transport processes and of their involvement in homeostasis, while providing novel therapeutic targets. These include inherited disorders causing a dysfunction of the proximal tubule (renal Fanconi syndrome), with emphasis on epithelial differentiation and receptor-mediated endocytosis, or affecting the reabsorption of glucose, the handling of uric acid, and the reabsorption of sodium, calcium, and magnesium along the kidney tubule.
Collapse
Affiliation(s)
- Jenny van der Wijst
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen , The Netherlands ; Institute of Physiology, University of Zurich , Zurich , Switzerland ; and Division of Nephrology, Institute of Experimental and Clinical Research (IREC), Medical School, Université catholique de Louvain, Brussels, Belgium
| | - Hendrica Belge
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen , The Netherlands ; Institute of Physiology, University of Zurich , Zurich , Switzerland ; and Division of Nephrology, Institute of Experimental and Clinical Research (IREC), Medical School, Université catholique de Louvain, Brussels, Belgium
| | - René J M Bindels
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen , The Netherlands ; Institute of Physiology, University of Zurich , Zurich , Switzerland ; and Division of Nephrology, Institute of Experimental and Clinical Research (IREC), Medical School, Université catholique de Louvain, Brussels, Belgium
| | - Olivier Devuyst
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen , The Netherlands ; Institute of Physiology, University of Zurich , Zurich , Switzerland ; and Division of Nephrology, Institute of Experimental and Clinical Research (IREC), Medical School, Université catholique de Louvain, Brussels, Belgium
| |
Collapse
|
17
|
Yoshimoto T, Furuki T, Kobori H, Miyakawa M, Imachi H, Murao K, Nishiyama A. Effects of sodium-glucose cotransporter 2 inhibitors on urinary excretion of intact and total angiotensinogen in patients with type 2 diabetes. J Investig Med 2017; 65:1057-1061. [PMID: 28596160 PMCID: PMC5812257 DOI: 10.1136/jim-2017-000445] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/25/2017] [Indexed: 12/26/2022]
Abstract
We conducted a descriptive case study to examine the effects of sodium-glucose cotransporter 2 (SGLT2) inhibitors on urinary angiotensinogen excretion, which represents the function of the intrarenal renin–angiotensin system, in patients with type 2 diabetes. An SGLT2 inhibitor (canagliflozin 100 mg/day, ipragliflozin 25 mg/day, dapagliflozin 5 mg/day, luseogliflozin 2.5 mg/day or tofogliflozin 20 mg/day) was administered for 1 month (n=9). ELISA kits were used to measure both urinary intact and total angiotensinogen levels. Treatment with SGLT2 inhibitors significantly decreased hemoglobin A1c, body weight, systolic blood pressure and diastolic blood pressure (8.5±1.3 to 7.5%±1.0%, 82.5±20.2 to 80.6±20.9 kg, 143±8 to 128±14 mm Hg, 78±10 to 67±9 mm Hg, p<0.05, respectively), while urinary albumin/creatinine ratio was not significantly changed (58.6±58.9 to 29.2±60.7 mg/g, p=0.16). Both total urinary angiotensinogen/creatinine ratio and intact urinary angiotensinogen/creatinine ratio tended to decrease after administration of SGLT2 inhibitors. However, these changes were not significant (p=0.19 and p=0.08, respectively). These data suggest that treatment with SGLT2 inhibitors does not activate the intrarenal renin–angiotensin system in patients with type 2 diabetes.
Collapse
Affiliation(s)
- Takuo Yoshimoto
- Department of Endocrinology and Metabolism, Faculty of Medicine, Kagawa University, Miki - cho, Kagawa, Japan
| | - Takayuki Furuki
- Department of Medicine, Hadanoeki - Minamiguchi Clinic, Hadano, Kanagawa, Japan
| | - Hiroyuki Kobori
- Department of Pharmacology, Faculty of Medicine, Kagawa University, Miki - cho, Kagawa, Japan
| | - Masaaki Miyakawa
- Department of Medicine, Miyakawa Clinic, Yokohama, Kanagawa, Japan
| | - Hitomi Imachi
- Department of Endocrinology and Metabolism, Faculty of Medicine, Kagawa University, Miki - cho, Kagawa, Japan
| | - Koji Murao
- Department of Endocrinology and Metabolism, Faculty of Medicine, Kagawa University, Miki - cho, Kagawa, Japan
| | - Akira Nishiyama
- Department of Pharmacology, Faculty of Medicine, Kagawa University, Miki - cho, Kagawa, Japan
| |
Collapse
|
18
|
Song P, Onishi A, Koepsell H, Vallon V. Sodium glucose cotransporter SGLT1 as a therapeutic target in diabetes mellitus. Expert Opin Ther Targets 2016; 20:1109-25. [PMID: 26998950 DOI: 10.1517/14728222.2016.1168808] [Citation(s) in RCA: 136] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
INTRODUCTION Glycemic control is important in diabetes mellitus to minimize the progression of the disease and the risk of potentially devastating complications. Inhibition of the sodium-glucose cotransporter SGLT2 induces glucosuria and has been established as a new anti-hyperglycemic strategy. SGLT1 plays a distinct and complementing role to SGLT2 in glucose homeostasis and, therefore, SGLT1 inhibition may also have therapeutic potential. AREAS COVERED This review focuses on the physiology of SGLT1 in the small intestine and kidney and its pathophysiological role in diabetes. The therapeutic potential of SGLT1 inhibition, alone as well as in combination with SGLT2 inhibition, for anti-hyperglycemic therapy are discussed. Additionally, this review considers the effects on other SGLT1-expressing organs like the heart. EXPERT OPINION SGLT1 inhibition improves glucose homeostasis by reducing dietary glucose absorption in the intestine and by increasing the release of gastrointestinal incretins like glucagon-like peptide-1. SGLT1 inhibition has a small glucosuric effect in the normal kidney and this effect is increased in diabetes and during inhibition of SGLT2, which deliver more glucose to SGLT1 in late proximal tubule. In short-term studies, inhibition of SGLT1 and combined SGLT1/SGLT2 inhibition appeared to be safe. More data is needed on long-term safety and cardiovascular consequences of SGLT1 inhibition.
Collapse
Affiliation(s)
- Panai Song
- a Division of Nephrology & Hypertension, Department of Medicine , University of California San Diego , La Jolla , CA , USA.,b VA San Diego Healthcare System , San Diego , CA , USA.,c Department of Nephrology, Second Xiangya Hospital , Central South University , Changsha , China
| | - Akira Onishi
- a Division of Nephrology & Hypertension, Department of Medicine , University of California San Diego , La Jolla , CA , USA.,b VA San Diego Healthcare System , San Diego , CA , USA.,d Division of Nephrology, Department of Medicine , Jichi Medical University , Shimotsuke , Japan
| | - Hermann Koepsell
- e Department of Molecular Plant Physiology and Biophysics, Julius-von-Sachs-Institute , University of Würzburg , Würzburg , Germany
| | - Volker Vallon
- a Division of Nephrology & Hypertension, Department of Medicine , University of California San Diego , La Jolla , CA , USA.,b VA San Diego Healthcare System , San Diego , CA , USA.,f Department of Pharmacology , University of California San Diego , La Jolla , CA , USA
| |
Collapse
|
19
|
Michel MC, Mayoux E, Vallon V. A comprehensive review of the pharmacodynamics of the SGLT2 inhibitor empagliflozin in animals and humans. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2015; 388:801-16. [PMID: 26108304 PMCID: PMC5896322 DOI: 10.1007/s00210-015-1134-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 05/18/2015] [Indexed: 12/16/2022]
Abstract
Empagliflozin (formerly known as BI 10773) is a potent, competitive, and selective inhibitor of the sodium glucose transporter SGLT2, which mediates glucose reabsorption in the early proximal tubule and most of the glucose reabsorption by the kidney, overall. Accordingly, empagliflozin treatment increased urinary glucose excretion. This has been observed across multiple species including humans and was reported under euglycemic conditions, in obesity and, most importantly, in type 2 diabetic patients and multiple animal models of type 2 diabetes and of type 1 diabetes. This led to a reduction in blood glucose, smaller blood glucose excursions during oral glucose tolerance tests, and, upon chronic treatment, a reduction in HbA1c in animal models and patients. In rodents, such effects were observed in early and late phases of experimental diabetes and were associated with preservation of pancreatic β-cell function. Combination studies in animals demonstrated that beneficial metabolic effects of empagliflozin may also manifest when added to other types of anti-hyperglycemic treatments including linagliptin and pioglitazone. While some anti-hyperglycemic drugs lead to weight gain, empagliflozin treatment was associated with reduced body weight in normoglycemic obese and non-obese animals despite an increased food intake, largely due to a loss of adipose tissue; on the other hand, empagliflozin preserved body weight in models of type 1 diabetes. Empagliflozin improved endothelial dysfunction in diabetic rats and arterial stiffness, reduced blood pressure in diabetic patients, and attenuated early signs of nephropathy in diabetic animal models. Taken together, the SGLT2 inhibitor empagliflozin improves glucose metabolism by enhancing urinary glucose excretion; upon chronic administration, at least in animal models, the reductions in blood glucose levels are associated with beneficial effects on cardiovascular and renal complications of diabetes.
Collapse
Affiliation(s)
- Martin C Michel
- Department of Pharmacology, Johannes Gutenberg University, Mainz, Germany
| | | | | |
Collapse
|
20
|
Gangadharan Komala M, Gross S, Mudaliar H, Huang C, Pegg K, Mather A, Shen S, Pollock CA, Panchapakesan U. Inhibition of kidney proximal tubular glucose reabsorption does not prevent against diabetic nephropathy in type 1 diabetic eNOS knockout mice. PLoS One 2014; 9:e108994. [PMID: 25369239 PMCID: PMC4219667 DOI: 10.1371/journal.pone.0108994] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 08/18/2014] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND AND OBJECTIVE Sodium glucose cotransporter 2 (SGLT2) is the main luminal glucose transporter in the kidney. SGLT2 inhibition results in glycosuria and improved glycaemic control. Drugs inhibiting this transporter have recently been approved for clinical use and have been suggested to have potential renoprotective benefits by limiting glycotoxicity in the proximal tubule. We aimed to determine the renoprotective benefits of empagliflozin, an SGLT2 inhibitor, independent of its glucose lowering effect. RESEARCH DESIGN AND METHODS We induced diabetes using a low dose streptozotocin protocol in 7-8 week old endothelial nitric oxide (eNOS) synthase knockout mice. We measured fasting blood glucose on a monthly basis, terminal urinary albumin/creatinine ratio. Renal histology was assessed for inflammatory and fibrotic changes. Renal cortical mRNA transcription of inflammatory and profibrotic cytokines, glucose transporters and protein expression of SGLT2 and GLUT1 were determined. Outcomes were compared to diabetic animals receiving the angiotensin receptor blocker telmisartan (current best practice). RESULTS Diabetic mice had high matched blood glucose levels. Empagliflozin did not attenuate diabetes-induced albuminuria, unlike telmisartan. Empagliflozin did not improve glomerulosclerosis, tubular atrophy, tubulointerstitial inflammation or fibrosis, while telmisartan attenuated these. Empagliflozin did not modify tubular toll-like receptor-2 expression in diabetic mice. Empagliflozin did not reduce the upregulation of macrophage chemoattractant protein-1 (MCP-1), transforming growth factor β1 and fibronectin mRNA observed in the diabetic animals, while telmisartan decreased transcription of MCP-1 and fibronectin. Empagliflozin increased GLUT1 mRNA expression and telmisartan increased SGLT2 mRNA expression in comparison to untreated diabetic mice. However no significant difference was found in protein expression of GLUT1 or SGLT2 among the different groups. CONCLUSION Hence SGLT2 inhibition does not have renoprotective benefits independent of glucose lowering.
Collapse
Affiliation(s)
- Muralikrishna Gangadharan Komala
- Renal Research Lab, Kolling Institute of Medical Research, Sydney University, Royal North Shore Hospital, St Leonards, Australia
| | - Simon Gross
- Renal Research Lab, Kolling Institute of Medical Research, Sydney University, Royal North Shore Hospital, St Leonards, Australia
| | - Harshini Mudaliar
- Renal Research Lab, Kolling Institute of Medical Research, Sydney University, Royal North Shore Hospital, St Leonards, Australia
| | - Chunling Huang
- Renal Research Lab, Kolling Institute of Medical Research, Sydney University, Royal North Shore Hospital, St Leonards, Australia
| | - Katherine Pegg
- Renal Research Lab, Kolling Institute of Medical Research, Sydney University, Royal North Shore Hospital, St Leonards, Australia
| | - Amanda Mather
- Renal Research Lab, Kolling Institute of Medical Research, Sydney University, Royal North Shore Hospital, St Leonards, Australia
| | - Sylvie Shen
- Renal Research Lab, Kolling Institute of Medical Research, Sydney University, Royal North Shore Hospital, St Leonards, Australia
| | - Carol A. Pollock
- Renal Research Lab, Kolling Institute of Medical Research, Sydney University, Royal North Shore Hospital, St Leonards, Australia
| | - Usha Panchapakesan
- Renal Research Lab, Kolling Institute of Medical Research, Sydney University, Royal North Shore Hospital, St Leonards, Australia
| |
Collapse
|
21
|
Abstract
PURPOSE OF REVIEW Despite improvements in glycemic and blood pressure control in patients with type 1 diabetes, diabetic nephropathy remains the most common cause of chronic kidney disease worldwide. A major challenge in preventing diabetic nephropathy is the inability to identify high-risk patients at an early stage, emphasizing the importance of discovering new therapeutic targets and implementation of clinical trials to reduce diabetic nephropathy risk. RECENT FINDINGS Limitations of managing patients with diabetic nephropathy with renin-angiotensin-aldosterone system blockade have been identified in recent clinical trials, including the failure of primary prevention studies in T1D and the demonstration of harm with dual renin-angiotensin-aldosterone system blockade. Fortunately, several new targets, including serum uric acid, insulin sensitivity, vasopressin, and sodium-glucose cotransporter-2 inhibition, are promising in the prevention and treatment of diabetic nephropathy. SUMMARY Diabetic nephropathy is characterized by a long clinically silent period without signs or symptoms of disease. There is an urgent need for improved methods of detecting early mediators of renal injury, to ultimately prevent the initiation and progression of diabetic nephropathy. In this review, we will focus on early diabetic nephropathy and summarize potential new therapeutic targets.
Collapse
Affiliation(s)
- Petter Bjornstad
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado, United States
| | - David Cherney
- Department of Medicine, Division of Nephrology, Toronto General Hospital, University of Toronto, Ontario, Canada
| | - David M. Maahs
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado, United States
- Barbara Davis Center for Diabetes, University of Colorado Denver, Aurora, Colorado, United States
| |
Collapse
|
22
|
Ghezzi C, Hirayama BA, Gorraitz E, Loo DDF, Liang Y, Wright EM. SGLT2 inhibitors act from the extracellular surface of the cell membrane. Physiol Rep 2014; 2:2/6/e12058. [PMID: 24973332 PMCID: PMC4208661 DOI: 10.14814/phy2.12058] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
SGLT2 inhibitors are a new class of drugs that have been recently developed to treat type II diabetes. They lower glucose levels by inhibiting the renal Na+/glucose cotransporter SGLT2, thereby increasing the amount of glucose excreted in the urine. Pharmacodynamics studies have raised questions about how these inhibitors reach SGLT2 in the brush border membrane of the S1 and S2 segments of the renal proximal tubule: are these drugs filtered by the glomerulus and act extracellularly, or do they enter the cell and act intracellularly? To address this question we expressed hSGLT2 in HEK‐293T cells and determined the affinity of a specific hSGLT2 inhibitor, TA‐3404 (also known as JNJ‐30980924), from the extra‐ and intracellular side of the plasma membrane. Inhibition of SGLT2 activity (Na+/glucose currents) by TA‐3404 was determined using the whole‐cell patch clamp that allows controlling the composition of both the extracellular and intracellular solutions. We compared the results to those obtained using the nonselective SGLT inhibitor phlorizin, and to the effect of TA‐3404 on hSGLT1. Our results showed that TA‐3404 is a potent extracellular inhibitor of glucose inward SGLT2 transport (IC50 2 nmol/L) but it was ineffective from the intracellular compartment at both low (5 mmol/L) and high (150 mmol/L) intracellular NaCl concentrations. We conclude that TA‐3404 only inhibits SGLT2 from the extracellular side of the plasma membrane, suggesting that it is filtered from the blood through the glomerulus and acts from within the tubule lumen. An emerging class of new drugs to treat diabetes is the SGLT2 inhibitors which control blood glucose levels by excreting glucose into the urine. Questions have arisen about how these inhibitors reach SGLT2 in the brush border membrane of the S1 and S2 segments of the renal proximal tubule. Using patch‐clamp technique, we characterized the effect of a canagliflozin derivative (TA‐3404) on glucose‐induced currents and we showed that the inhibitor binds to SGLT2 from the extracellular side of the plasma membrane. This provides indirect evidence that SGLT2‐specific drugs act from the tubular lumen and not from the blood through the tubular epithelium.
Collapse
Affiliation(s)
- Chiara Ghezzi
- Department of Physiology, Geffen School of Medicine at UCLA, Los Angeles, California
| | - Bruce A Hirayama
- Department of Physiology, Geffen School of Medicine at UCLA, Los Angeles, California
| | - Edurne Gorraitz
- Department of Physiology, Geffen School of Medicine at UCLA, Los Angeles, California
| | - Donald D F Loo
- Department of Physiology, Geffen School of Medicine at UCLA, Los Angeles, California
| | - Yin Liang
- Janssen Research and Development, LLC, Spring House, Pennsylvania
| | - Ernest M Wright
- Department of Physiology, Geffen School of Medicine at UCLA, Los Angeles, California
| |
Collapse
|
23
|
Jonnalagadda VG, Ram Raju AVS, Pittala S, Shaik A, Selkar NA. The prelude on novel receptor and ligand targets involved in the treatment of diabetes mellitus. Adv Pharm Bull 2014; 4:209-17. [PMID: 24754003 DOI: 10.5681/apb.2014.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 12/09/2013] [Accepted: 12/30/2013] [Indexed: 12/17/2022] Open
Abstract
Metabolic disorders are a group of disorders, due to the disruption of the normal metabolic process at a cellular level. Diabetes Mellitus and Tyrosinaemia are the majorly reported metabolic disorders. Among them, Diabetes Mellitus is a one of the leading metabolic syndrome, affecting 5 to 7 % of the population worldwide and mainly characterised by elevated levels of glucose and is associated with two types of physiological event disturbances such as impaired insulin secretion and insulin resistance. Up to now, various treatment strategies are like insulin, alphaglucosidase inhibitors, biguanides, incretins were being followed. Concurrently, various novel therapeutic strategies are required to advance the therapy of Diabetes mellitus. For the last few decades, there has been an extensive research in understanding the metabolic pathways involved in Diabetes Mellitus at the cellular level and having the profound knowledge on cell-growth, cell-cycle, and apoptosis at a molecular level provides new targets for the treatment of Diabetes Mellitus. Receptor signalling has been involved in these mechanisms, to translate the information coming from outside. To understand the various receptors involved in these pathways, we must have a sound knowledge on receptors and ligands involved in it. This review mainly summarises the receptors and ligands which are involved the Diabetes Mellitus. Finally, researchers have to develop the alternative chemical moieties that retain their affinity to receptors and efficacy. Diabetes Mellitus being a metabolic disorder due to the glucose surfeit, demands the need for regular exercise along with dietary changes.
Collapse
Affiliation(s)
- Venu Gopal Jonnalagadda
- Shree Dhootapapeshwar Ayurvedic Research Foundation (SDARF), Panvel, Navi Mumbai-410206, Maharastra, India
| | - Allam Venkata Sita Ram Raju
- National Institute of Pharmaceutical Education and Research, Bala Nagar, Hyderabad, Andhra Pradhesh-500037, India
| | - Srinivas Pittala
- CSIR-Institute of Genomics and Integrative Biology, Near Jubilee Hall, Mall Road, Delhi-110 007, India
| | - Afsar Shaik
- Gokula Krishna college of Pharmacy, Sullurpet - 524121, Nellore dist, A.P, India
| | - Nilakash Annaji Selkar
- National Institute for Research in Reproductive Health, Parel, Mumbai-400012, Maharastra, India
| |
Collapse
|
24
|
Blake R, Trounce IA. Mitochondrial dysfunction and complications associated with diabetes. Biochim Biophys Acta Gen Subj 2014; 1840:1404-12. [DOI: 10.1016/j.bbagen.2013.11.007] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 10/18/2013] [Accepted: 11/06/2013] [Indexed: 02/06/2023]
|
25
|
Andrianesis V, Doupis J. The role of kidney in glucose homeostasis – SGLT2 inhibitors, a new approach in diabetes treatment. Expert Rev Clin Pharmacol 2014; 6:519-39. [DOI: 10.1586/17512433.2013.827399] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
26
|
Salvo MC, Brooks AD, Thacker SM. Patient considerations in the management of type 2 diabetes - critical appraisal of dapagliflozin. Patient Prefer Adherence 2014; 8:493-502. [PMID: 24790417 PMCID: PMC4003262 DOI: 10.2147/ppa.s59169] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Type 2 diabetes affects more than 350 million people worldwide, and its prevalence is increasing. Many patients with diabetes do not achieve and/or maintain glycemic targets, despite therapy implementation and escalation. Multiple therapeutic classes of agents are available for the treatment of type 2 diabetes, and the armamentarium has expanded significantly in the past decade. Selective sodium glucose co-transporter 2 inhibitors, including dapagliflozin, represent the latest development in pharmacologic treatment options for type 2 diabetes. This class has a unique mechanism of action, working by increasing glucose excretion in the urine. The insulin-independent mechanism results in decreased serum glucose, without hypoglycemia or weight gain. Dapagliflozin is a once-daily oral therapy. Expanding therapy options for a complex patient population is critical, and dapagliflozin has a distinct niche that can be a viable option for select patients with diabetes.
Collapse
Affiliation(s)
- Marissa C Salvo
- Department of Pharmacy Practice, University of Connecticut School of Pharmacy, Storrs, CT, USA
| | - Amie D Brooks
- Department of Pharmacy Practice, St Louis College of Pharmacy, St Louis, MO, USA
- Correspondence: Amie D Brooks, Department of Pharmacy Practice, St Louis College of Pharmacy, 4588 Parkview Place, St Louis, MO 63110, USA, Tel +1 314 446 8503, Fax +1 314 466 8500, Email
| | - Stacey M Thacker
- Department of Pharmacy Practice, Southern Illinois University Edwardsville, Edwardsville, IL, USA
| |
Collapse
|
27
|
Ji L, Ma J, Li H, Mansfield TA, T'joen CL, Iqbal N, Ptaszynska A, List JF. Dapagliflozin as monotherapy in drug-naive Asian patients with type 2 diabetes mellitus: a randomized, blinded, prospective phase III study. Clin Ther 2014; 36:84-100.e9. [PMID: 24378206 DOI: 10.1016/j.clinthera.2013.11.002] [Citation(s) in RCA: 132] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 10/17/2013] [Accepted: 11/11/2013] [Indexed: 12/24/2022]
Abstract
OBJECTIVE Dapagliflozin is a highly selective, orally active inhibitor of renal sodium-glucose cotransporter 2 that reduces hyperglycemia by increasing urinary glucose excretion. The goal of this study was to evaluate dapagliflozin as monotherapy in drug-naive Asian patients with type 2 diabetes whose disease was inadequately controlled with diet and exercise. METHODS In this Phase III, multicenter, parallel-group, double-blind study, drug-naive patients with glycosylated hemoglobin (HbA1c) levels ≥7.0% to ≤10.5% (≥53-≤91 mmol/mol) were randomized (by using an interactive voice response system) to receive placebo (n = 132), dapagliflozin 5 mg (n = 128), or dapagliflozin 10 mg (n = 133). The primary end point was mean change from baseline in HbA1c level at week 24 (last-observation-carried-forward). Secondary end points included changes in fasting plasma glucose, 2-hour postprandial glucose, body weight, and other glycemic parameters. RESULTS Baseline characteristics were balanced across groups. Most patients (89%) were Chinese, median disease duration was 0.2 year, and mean HbA1c level was 8.26%. Most patients (87%) completed the study. At week 24, mean reductions in HbA1c were -0.29% for placebo versus -1.04% and -1.11% for dapagliflozin 5 and 10 mg, respectively (P < 0.0001 for both doses). Changes in fasting plasma glucose were 2.5, -25.1, and -31.6 mg/dL (0.14, -1.39, and -1.75 mmol/L) for placebo, dapagliflozin 5 mg, and dapagliflozin 10 mg. Changes in 2-hour postprandial glucose were 1.1, -46.8, and -54.9 mg/dL (0.06, -2.60, and -3.05 mmol/L). Reductions in body weight were -0.27, -1.64, and -2.25 kg. Proportions of patients achieving HbA1c levels <7.0% (53 mmol/mol) were 21.3%, 42.6%, and 49.8%. Adverse events (AEs) occurred in 63.6%, 61.7%, and 60.9% of patients, and serious AEs occurred in 1.5%, 3.9%, and 3.0% of patients. No deaths occurred. Hypoglycemia was uncommon (1.5%, 0.8%, and 0.8%); no hypoglycemic event led to discontinuation. Genital infections occurred in 0.8%, 3.1%, and 4.5% of patients and urinary tract infections in 3.0%, 3.9%, and 5.3% of patients. No AEs of renal infection or pyelonephritis were reported. No changes in renal function or AEs of renal failure occurred. CONCLUSIONS Compared with placebo, dapagliflozin 5 and 10 mg demonstrated clinically and statistically significant improvements in HbA1c levels after 24 weeks of treatment. Dose-dependent, statistically significant reductions in fasting plasma glucose, postprandial glucose, and weight were also observed for both doses compared with placebo. AEs and serious AEs were balanced across groups, with low rates of hypoglycemia and no increase in renal events. Genital infections and urinary tract infections were more common with dapagliflozin. Dapagliflozin as monotherapy in these drug-naive Asian patients was well tolerated, significantly improving glycemic control with the additional benefit of weight loss.
Collapse
Affiliation(s)
- Linong Ji
- Peking University People's Hospital, Endocrinology and Metabolism, Beijing, China
| | - Jianhua Ma
- Nanjing First Hospital Affiliated to Nanjing Medical University, Endocrinology, Jiansu, China
| | - Hongmei Li
- Bristol-Myers Squibb, Clinical Research, China R&D, Shanghai, China
| | - Traci A Mansfield
- Bristol-Myers Squibb, Global Clinical Research, Princeton, New Jersey
| | - Caroline L T'joen
- Bristol-Myers Squibb, Global Biometric Sciences, Braine-l'Alleud, Belgium
| | - Nayyar Iqbal
- Bristol-Myers Squibb, Global Clinical Research, Princeton, New Jersey
| | - Agata Ptaszynska
- Bristol-Myers Squibb, Global Clinical Research, Princeton, New Jersey
| | - James F List
- Bristol-Myers Squibb, Global Clinical Research, Princeton, New Jersey.
| |
Collapse
|
28
|
Abstract
Diabetes mellitus contributes greatly to morbidity, mortality, and overall health care costs. In major part, these outcomes derive from the high incidence of progressive kidney dysfunction in patients with diabetes making diabetic nephropathy a leading cause of end-stage renal disease. A better understanding of the molecular mechanism involved and of the early dysfunctions observed in the diabetic kidney may permit the development of new strategies to prevent diabetic nephropathy. Here we review the pathophysiological changes that occur in the kidney in response to hyperglycemia, including the cellular responses to high glucose and the responses in vascular, glomerular, podocyte, and tubular function. The molecular basis, characteristics, and consequences of the unique growth phenotypes observed in the diabetic kidney, including glomerular structures and tubular segments, are outlined. We delineate mechanisms of early diabetic glomerular hyperfiltration including primary vascular events as well as the primary role of tubular growth, hyperreabsorption, and tubuloglomerular communication as part of a "tubulocentric" concept of early diabetic kidney function. The latter also explains the "salt paradox" of the early diabetic kidney, that is, a unique and inverse relationship between glomerular filtration rate and dietary salt intake. The mechanisms and consequences of the intrarenal activation of the renin-angiotensin system and of diabetes-induced tubular glycogen accumulation are discussed. Moreover, we aim to link the changes that occur early in the diabetic kidney including the growth phenotype, oxidative stress, hypoxia, and formation of advanced glycation end products to mechanisms involved in progressive kidney disease.
Collapse
Affiliation(s)
- Volker Vallon
- Department of Medicine, University of California San Diego & VA San Diego Healthcare System, San Diego, California, USA.
| | | |
Collapse
|
29
|
Gilbert RE. Sodium-glucose linked transporter-2 inhibitors: potential for renoprotection beyond blood glucose lowering? Kidney Int 2013; 86:693-700. [PMID: 24257692 DOI: 10.1038/ki.2013.451] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 09/09/2013] [Accepted: 09/12/2013] [Indexed: 01/10/2023]
Abstract
The proximal tubule's sodium-glucose linked transporter-2 (SGLT2) accounts for the vast majority of glucose reabsorption by the kidney. Its selective inhibition, accordingly, leads to substantial glycosuria, lowering blood glucose, and facilitating weight loss in individuals with diabetes. During the past year, two SGLT2 inhibitors, canagliflozin and dapagliflozin, have been approved for the treatment of type 2 diabetes. Beyond their anti-hyperglycemic properties, however, this new class of drugs has several other attributes that provide a theoretical basis for kidney protection. Like agents that block the renin-angiotensin system, SGLT2 inhibitors also reduce single-nephron glomerular filtration rate (SNGFR) in the chronically diseased kidney, though by quite different mechanisms. Additional potentially beneficial effects of SGLT2 inhibition include modest reductions in blood pressure and plasma uric acid. Finally, cell culture studies indicate that glucose uptake from the tubular lumen, as well as from the basolateral compartment, can contribute to proximal tubular production of extracellular matrix proteins. Whether such attributes will translate into reducing the progression of chronic kidney disease will require the undertaking of long-term, dedicated studies.
Collapse
Affiliation(s)
- Richard E Gilbert
- Division of Endocrinology, Department of Medicine, University of Toronto, St Michael's Hospital, Li Ka Shing Knowledge Institute, Toronto, Ontario, Canada
| |
Collapse
|
30
|
Rieg T, Masuda T, Gerasimova M, Mayoux E, Platt K, Powell DR, Thomson SC, Koepsell H, Vallon V. Increase in SGLT1-mediated transport explains renal glucose reabsorption during genetic and pharmacological SGLT2 inhibition in euglycemia. Am J Physiol Renal Physiol 2013; 306:F188-93. [PMID: 24226519 DOI: 10.1152/ajprenal.00518.2013] [Citation(s) in RCA: 224] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
In the kidney, the sodium-glucose cotransporters SGLT2 and SGLT1 are thought to account for >90 and ∼3% of fractional glucose reabsorption (FGR), respectively. However, euglycemic humans treated with an SGLT2 inhibitor maintain an FGR of 40-50%, mimicking values in Sglt2 knockout mice. Here, we show that oral gavage with a selective SGLT2 inhibitor (SGLT2-I) dose dependently increased urinary glucose excretion (UGE) in wild-type (WT) mice. The dose-response curve was shifted leftward and the maximum response doubled in Sglt1 knockout (Sglt1-/-) mice. Treatment in diet with the SGLT2-I for 3 wk maintained 1.5- to 2-fold higher urine glucose/creatinine ratios in Sglt1-/- vs. WT mice, associated with a temporarily greater reduction in blood glucose in Sglt1-/- vs. WT after 24 h (-33 vs. -11%). Subsequent inulin clearance studies under anesthesia revealed free plasma concentrations of the SGLT2-I (corresponding to early proximal concentration) close to the reported IC50 for SGLT2 in mice, which were associated with FGR of 64 ± 2% in WT and 17 ± 2% in Sglt1-/-. Additional intraperitoneal application of the SGLT2-I (maximum effective dose in metabolic cages) increased free plasma concentrations ∼10-fold and reduced FGR to 44 ± 3% in WT and to -1 ± 3% in Sglt1-/-. The absence of renal glucose reabsorption was confirmed in male and female Sglt1/Sglt2 double knockout mice. In conclusion, SGLT2 and SGLT1 account for renal glucose reabsorption in euglycemia, with 97 and 3% being reabsorbed by SGLT2 and SGLT1, respectively. When SGLT2 is fully inhibited by SGLT2-I, the increase in SGLT1-mediated glucose reabsorption explains why only 50-60% of filtered glucose is excreted.
Collapse
Affiliation(s)
- Timo Rieg
- Div. of Nephrology and Hypertension, Depts. of Medicine and Pharmacology, University of California San Diego, and VA San Diego Healthcare System, 3350 La Jolla Village Dr., San Diego, CA 92161.
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Vallon V, Gerasimova M, Rose MA, Masuda T, Satriano J, Mayoux E, Koepsell H, Thomson SC, Rieg T. SGLT2 inhibitor empagliflozin reduces renal growth and albuminuria in proportion to hyperglycemia and prevents glomerular hyperfiltration in diabetic Akita mice. Am J Physiol Renal Physiol 2013; 306:F194-204. [PMID: 24226524 DOI: 10.1152/ajprenal.00520.2013] [Citation(s) in RCA: 377] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Our previous work has shown that gene knockout of the sodium-glucose cotransporter SGLT2 modestly lowered blood glucose in streptozotocin-diabetic mice (BG; from 470 to 300 mg/dl) and prevented glomerular hyperfiltration but did not attenuate albuminuria or renal growth and inflammation. Here we determined effects of the SGLT2 inhibitor empagliflozin (300 mg/kg of diet for 15 wk; corresponding to 60-80 mg·kg(-1)·day(-1)) in type 1 diabetic Akita mice that, opposite to streptozotocin-diabetes, upregulate renal SGLT2 expression. Akita diabetes, empagliflozin, and Akita + empagliflozin similarly increased renal membrane SGLT2 expression (by 38-56%) and reduced the expression of SGLT1 (by 33-37%) vs. vehicle-treated wild-type controls (WT). The diabetes-induced changes in SGLT2/SGLT1 protein expression are expected to enhance the BG-lowering potential of SGLT2 inhibition, and empagliflozin strongly lowered BG in Akita (means of 187-237 vs. 517-535 mg/dl in vehicle group; 100-140 mg/dl in WT). Empagliflozin modestly reduced GFR in WT (250 vs. 306 μl/min) and completely prevented the diabetes-induced increase in glomerular filtration rate (GFR) (255 vs. 397 μl/min). Empagliflozin attenuated increases in kidney weight and urinary albumin/creatinine ratio in Akita in proportion to hyperglycemia. Empagliflozin did not increase urinary glucose/creatinine ratios in Akita, indicating the reduction in filtered glucose balanced the inhibition of glucose reabsorption. Empagliflozin attenuated/prevented the increase in systolic blood pressure, glomerular size, and molecular markers of kidney growth, inflammation, and gluconeogenesis in Akita. We propose that SGLT2 inhibition can lower GFR independent of reducing BG (consistent with the tubular hypothesis of diabetic glomerular hyperfiltration), while attenuation of albuminuria, kidney growth, and inflammation in the early diabetic kidney may mostly be secondary to lower BG.
Collapse
Affiliation(s)
- Volker Vallon
- Div. of Nephrology and Hypertension, Depts. of Medicine and Pharmacology, Univ. of California San Diego and Veterans Affairs San Diego Healthcare System, 3350 La Jolla Village Dr. (9151 San Diego, CA 92161.
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Cangoz S, Chang YY, Chempakaseril SJ, Guduru RC, Huynh LM, John JS, John ST, Joseph ME, Judge R, Kimmey R, Kudratov K, Lee PJ, Madhani IC, Shim PJ, Singh S, Singh S, Ruchalski C, Raffa RB. The kidney as a new target for antidiabetic drugs: SGLT2 inhibitors. J Clin Pharm Ther 2013; 38:350-9. [DOI: 10.1111/jcpt.12077] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Accepted: 05/20/2013] [Indexed: 12/27/2022]
Affiliation(s)
- S. Cangoz
- Temple University School of Pharmacy; Philadelphia PA USA
| | - Y.-Y. Chang
- Temple University School of Pharmacy; Philadelphia PA USA
| | | | - R. C. Guduru
- Temple University School of Pharmacy; Philadelphia PA USA
| | - L. M. Huynh
- Temple University School of Pharmacy; Philadelphia PA USA
| | - J. S. John
- Temple University School of Pharmacy; Philadelphia PA USA
| | - S. T. John
- Temple University School of Pharmacy; Philadelphia PA USA
| | - M. E. Joseph
- Temple University School of Pharmacy; Philadelphia PA USA
| | - R. Judge
- Temple University School of Pharmacy; Philadelphia PA USA
| | - R. Kimmey
- Temple University School of Pharmacy; Philadelphia PA USA
| | - K. Kudratov
- Temple University School of Pharmacy; Philadelphia PA USA
| | - P. J. Lee
- Temple University School of Pharmacy; Philadelphia PA USA
| | - I. C. Madhani
- Temple University School of Pharmacy; Philadelphia PA USA
| | - P. J. Shim
- Temple University School of Pharmacy; Philadelphia PA USA
| | - S. Singh
- Temple University School of Pharmacy; Philadelphia PA USA
| | - S. Singh
- Temple University School of Pharmacy; Philadelphia PA USA
| | - C. Ruchalski
- Temple University School of Pharmacy; Philadelphia PA USA
| | - R. B. Raffa
- Temple University School of Pharmacy; Philadelphia PA USA
| |
Collapse
|
33
|
Targeting of sodium-glucose cotransporters with phlorizin inhibits polycystic kidney disease progression in Han:SPRD rats. Kidney Int 2013; 84:962-8. [PMID: 23715121 DOI: 10.1038/ki.2013.199] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Revised: 03/09/2013] [Accepted: 03/21/2013] [Indexed: 01/06/2023]
Abstract
Renal tubular epithelial cell proliferation and transepithelial cyst fluid secretion are key features in the progression of polycystic kidney disease (PKD). As the role of the apical renal sodium-glucose cotransporters in these processes is not known, we tested whether phlorizin inhibits cyst growth and delays renal disease progression in a rat model of PKD. Glycosuria was induced by subcutaneous injection of phlorizin in male heterozygous (Cy/+) and wild-type Han:SPRD rats. Phlorizin induced immediate and sustained glycosuria and osmotic diuresis in these rats. Cy/+ rats treated with phlorizin for 5 weeks showed a significant increase in creatinine clearance, a lower 2-kidneys/body weight ratio, a lower renal cyst index, and reduced urinary albumin excretion as compared with vehicle-treated Cy/+ rats. Measurement of Ki67 staining found significantly lower cell proliferation in dilated tubules and cysts of Cy/+ rats treated with phlorizin, as well as a marked inhibition of the activated MAP kinase pathway. In contrast, the mTOR pathway remained unaltered. Phlorizin dose dependently inhibited MAP kinase in cultured tubular epithelial cells from Cy/+ rats. Thus, long-term treatment with phlorizin significantly inhibits cystic disease progression in a rat model of PKD. Hence, induction of glycosuria and osmotic diuresis (glycuresis) by renal sodium-glucose cotransporters inhibition could have a therapeutic effect in polycystic kidney disease.
Collapse
|
34
|
Atochina-Vasserman EN, Biktasova A, Abramova E, Cheng DS, Polosukhin VV, Tanjore H, Takahashi S, Sonoda H, Foye L, Venkov C, Ryzhov SV, Novitskiy S, Shlonimskaya N, Ikeda M, Blackwell TS, Lawson WE, Gow AJ, Harris RC, Dikov MM, Tchekneva EE. Aquaporin 11 insufficiency modulates kidney susceptibility to oxidative stress. Am J Physiol Renal Physiol 2013; 304:F1295-307. [PMID: 23486012 DOI: 10.1152/ajprenal.00344.2012] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Aquaporin 11 (AQP11) is a newly described member of the protein family of transport channels. AQP11 associates with the endoplasmic reticulum (ER) and is highly expressed in proximal tubular epithelial cells in the kidney. Previously, we identified and characterized a recessive mutation of the highly conserved Cys227 to Ser227 in mouse AQP11 that caused proximal tubule (PT) injury and kidney failure in mutant mice. The current study revealed induction of ER stress, unfolded protein response, and apoptosis as molecular mechanisms of this PT injury. Cys227Ser mutation interfered with maintenance of AQP11 oligomeric structure. AQP11 is abundantly expressed in the S1 PT segment, a site of major renal glucose flux, and Aqp11 mutant mice developed PT-specific mitochondrial injury. Glucose increased AQP11 protein expression in wild-type kidney and upregulation of AQP11 expression by glucose in vitro was prevented by phlorizin, an inhibitor of sodium-dependent glucose transport across PT. Total AQP11 levels in heterozygotes were higher than in wild-type mice but were not further increased in response to glucose. In Aqp11 insufficient PT cells, glucose potentiated increases in reactive oxygen species (ROS) production. ROS production was also elevated in Aqp11 mutation carriers. Phenotypically normal mice heterozygous for the Aqp11 mutation repeatedly treated with glucose showed increased blood urea nitrogen levels that were prevented by the antioxidant sulforaphane or by phlorizin. Our results indicate an important role for AQP11 to prevent glucose-induced oxidative stress in proximal tubules.
Collapse
Affiliation(s)
- Elena N Atochina-Vasserman
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Panchapakesan U, Pegg K, Gross S, Komala MG, Mudaliar H, Forbes J, Pollock C, Mather A. Effects of SGLT2 inhibition in human kidney proximal tubular cells--renoprotection in diabetic nephropathy? PLoS One 2013; 8:e54442. [PMID: 23390498 PMCID: PMC3563635 DOI: 10.1371/journal.pone.0054442] [Citation(s) in RCA: 217] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Accepted: 12/11/2012] [Indexed: 11/19/2022] Open
Abstract
Sodium/glucose cotransporter 2 (SGLT2) inhibitors are oral hypoglycemic agents used to treat patients with diabetes mellitus. SGLT2 inhibitors block reabsorption of filtered glucose by inhibiting SGLT2, the primary glucose transporter in the proximal tubular cell (PTC), leading to glycosuria and lowering of serum glucose. We examined the renoprotective effects of the SGLT2 inhibitor empagliflozin to determine whether blocking glucose entry into the kidney PTCs reduced the inflammatory and fibrotic responses of the cell to high glucose. We used an in vitro model of human PTCs. HK2 cells (human kidney PTC line) were exposed to control 5 mM, high glucose (HG) 30 mM or the profibrotic cytokine transforming growth factor beta (TGFβ1; 0.5 ng/ml) in the presence and absence of empagliflozin for up to 72 h. SGLT1 and 2 expression and various inflammatory/fibrotic markers were assessed. A chromatin immunoprecipitation assay was used to determine the binding of phosphorylated smad3 to the promoter region of the SGLT2 gene. Our data showed that TGFβ1 but not HG increased SGLT2 expression and this occurred via phosphorylated smad3. HG induced expression of Toll-like receptor-4, increased nuclear deoxyribonucleic acid binding for nuclear factor kappa B (NF-κB) and activator protein 1, induced collagen IV expression as well as interleukin-6 secretion all of which were attenuated with empagliflozin. Empagliflozin did not reduce high mobility group box protein 1 induced NF-κB suggesting that its effect is specifically related to a reduction in glycotoxicity. SGLT1 and GLUT2 expression was not significantly altered with HG or empagliflozin. In conclusion, empagliflozin reduces HG induced inflammatory and fibrotic markers by blocking glucose transport and did not induce a compensatory increase in SGLT1/GLUT2 expression. Although HG itself does not regulate SGLT2 expression in our model, TGFβ increases SGLT2 expression through phosphorylated smad3.
Collapse
Affiliation(s)
- Usha Panchapakesan
- Department of Medicine, The University of Sydney, Renal Research Group, Kolling Institute of Medical Research, Royal North Shore Hospital, St. Leonards, New South Wales, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Vallon V, Rose M, Gerasimova M, Satriano J, Platt KA, Koepsell H, Cunard R, Sharma K, Thomson SC, Rieg T. Knockout of Na-glucose transporter SGLT2 attenuates hyperglycemia and glomerular hyperfiltration but not kidney growth or injury in diabetes mellitus. Am J Physiol Renal Physiol 2012; 304:F156-67. [PMID: 23152292 DOI: 10.1152/ajprenal.00409.2012] [Citation(s) in RCA: 309] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The Na-glucose cotransporter SGLT2 mediates high-capacity glucose uptake in the early proximal tubule and SGLT2 inhibitors are developed as new antidiabetic drugs. We used gene-targeted Sglt2 knockout (Sglt2(-/-)) mice to elucidate the contribution of SGLT2 to blood glucose control, glomerular hyperfiltration, kidney growth, and markers of renal growth and injury at 5 wk and 4.5 mo after induction of low-dose streptozotocin (STZ) diabetes. The absence of SGLT2 did not affect renal mRNA expression of glucose transporters SGLT1, NaGLT1, GLUT1, or GLUT2 in response to STZ. Application of STZ increased blood glucose levels to a lesser extent in Sglt2(-/-) vs. wild-type (WT) mice (∼300 vs. 470 mg/dl) but increased glucosuria and food and fluid intake to similar levels in both genotypes. Lack of SGLT2 prevented STZ-induced glomerular hyperfiltration but not the increase in kidney weight. Knockout of SGLT2 attenuated the STZ-induced renal accumulation of p62/sequestosome, an indicator of impaired autophagy, but did not attenuate the rise in renal expression of markers of kidney growth (p27 and proliferating cell nuclear antigen), oxidative stress (NADPH oxidases 2 and 4 and heme oxygenase-1), inflammation (interleukin-6 and monocyte chemoattractant protein-1), fibrosis (fibronectin and Sirius red-sensitive tubulointerstitial collagen accumulation), or injury (renal/urinary neutrophil gelatinase-associated lipocalin). SGLT2 deficiency did not induce ascending urinary tract infection in nondiabetic or diabetic mice. The results indicate that SGLT2 is a determinant of hyperglycemia and glomerular hyperfiltration in STZ-induced diabetes mellitus but is not critical for the induction of renal growth and markers of renal injury, inflammation, and fibrosis.
Collapse
Affiliation(s)
- Volker Vallon
- Department of Medicine, University of California, San Diego, California 92161, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Brands MW, Manhiani MM. Sodium-retaining effect of insulin in diabetes. Am J Physiol Regul Integr Comp Physiol 2012; 303:R1101-9. [PMID: 23034715 DOI: 10.1152/ajpregu.00390.2012] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Insulin has long been hypothesized to cause sodium retention, potentially of enough magnitude to contribute to hypertension in obesity, metabolic syndrome, and Type II diabetes. There is an abundance of supportive evidence from correlational analyses in humans, acute insulin infusion studies in humans and animals, and chronic insulin infusion studies in rats. However, the absence of hypertension in human insulinoma patients, and negative results for sodium-retaining or blood pressure effects of chronic insulin infusion in a whole series of dog studies, strongly refute the insulin hypothesis. We recently questioned whether the euglycemic, hyperinsulinemia model used for most insulin infusion studies, including the previous chronic dog studies, was the most appropriate model to test the renal actions of insulin in obesity, metabolic syndrome, and Type II diabetes. In those circumstances, hyperinsulinemia coexists with hyperglycemia. Therefore, we tested the sodium-retaining effect of insulin in chronically instrumented, alloxan-treated diabetic dogs. We used 24 h/day intravenous insulin infusion to regulate plasma insulin concentration. Induction of diabetes (∼400 mg/dl) caused sustained natriuresis and diuresis. However, if we clamped insulin at baseline, control levels, i.e., prevented it from decreasing, then the sustained natriuresis and diuresis were completely reversed, despite the same level of hyperglycemia. We also found that 24 h/day intrarenal insulin infusion had the same effect in diabetic dogs but had no sodium-retaining action in normal dogs. This new evidence that insulin has a sodium-retaining effect during hyperglycemia may have implications for maintaining sodium balance in uncontrolled Type II diabetes.
Collapse
Affiliation(s)
- Michael W Brands
- Dept. of Physiology, Medical College of Georgia, Georgia Health Sciences Univ., Augusta, GA 30912, USA.
| | | |
Collapse
|
38
|
Vallon V, Thomson SC. Renal function in diabetic disease models: the tubular system in the pathophysiology of the diabetic kidney. Annu Rev Physiol 2012; 74:351-75. [PMID: 22335797 DOI: 10.1146/annurev-physiol-020911-153333] [Citation(s) in RCA: 274] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Diabetes mellitus affects the kidney in stages. At the onset of diabetes mellitus, in a subset of diabetic patients the kidneys grow large, and glomerular filtration rate (GFR) becomes supranormal, which are risk factors for developing diabetic nephropathy later in life. This review outlines a pathophysiological concept that focuses on the tubular system to explain these changes. The concept includes the tubular hypothesis of glomerular filtration, which states that early tubular growth and sodium-glucose cotransport enhance proximal tubule reabsorption and make the GFR supranormal through the physiology of tubuloglomerular feedback. The diabetic milieu triggers early tubular cell proliferation, but the induction of TGF-β and cyclin-dependent kinase inhibitors causes a cell cycle arrest and a switch to tubular hypertrophy and a senescence-like phenotype. Although this growth phenotype explains unusual responses like the salt paradox of the early diabetic kidney, the activated molecular pathways may set the stage for tubulointerstitial injury and diabetic nephropathy.
Collapse
Affiliation(s)
- Volker Vallon
- Department of Medicine, University of California San Diego, La Jolla, California 92093, USA.
| | | |
Collapse
|
39
|
Gorboulev V, Schürmann A, Vallon V, Kipp H, Jaschke A, Klessen D, Friedrich A, Scherneck S, Rieg T, Cunard R, Veyhl-Wichmann M, Srinivasan A, Balen D, Breljak D, Rexhepaj R, Parker HE, Gribble FM, Reimann F, Lang F, Wiese S, Sabolic I, Sendtner M, Koepsell H. Na(+)-D-glucose cotransporter SGLT1 is pivotal for intestinal glucose absorption and glucose-dependent incretin secretion. Diabetes 2012; 61:187-96. [PMID: 22124465 PMCID: PMC3237647 DOI: 10.2337/db11-1029] [Citation(s) in RCA: 547] [Impact Index Per Article: 42.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Accepted: 10/19/2011] [Indexed: 12/15/2022]
Abstract
To clarify the physiological role of Na(+)-D-glucose cotransporter SGLT1 in small intestine and kidney, Sglt1(-/-) mice were generated and characterized phenotypically. After gavage of d-glucose, small intestinal glucose absorption across the brush-border membrane (BBM) via SGLT1 and GLUT2 were analyzed. Glucose-induced secretion of insulinotropic hormone (GIP) and glucagon-like peptide 1 (GLP-1) in wild-type and Sglt1(-/-) mice were compared. The impact of SGLT1 on renal glucose handling was investigated by micropuncture studies. It was observed that Sglt1(-/-) mice developed a glucose-galactose malabsorption syndrome but thrive normally when fed a glucose-galactose-free diet. In wild-type mice, passage of D-glucose across the intestinal BBM was predominantly mediated by SGLT1, independent the glucose load. High glucose concentrations increased the amounts of SGLT1 and GLUT2 in the BBM, and SGLT1 was required for upregulation of GLUT2. SGLT1 was located in luminal membranes of cells immunopositive for GIP and GLP-1, and Sglt1(-/-) mice exhibited reduced glucose-triggered GIP and GLP-1 levels. In the kidney, SGLT1 reabsorbed ∼3% of the filtered glucose under normoglycemic conditions. The data indicate that SGLT1 is 1) pivotal for intestinal mass absorption of d-glucose, 2) triggers the glucose-induced secretion of GIP and GLP-1, and 3) triggers the upregulation of GLUT2.
Collapse
Affiliation(s)
- Valentin Gorboulev
- Institute of Anatomy and Cell Biology, University of Würzburg, Würzburg, Germany
| | - Annette Schürmann
- Department of Experimental Diabetology, German Institute of Human Nutrition, Potsdam-Rehbruecke, Germany
| | - Volker Vallon
- Departments of Medicine and Pharmacology, University of California, San Diego, La Jolla, and Veterans Affairs San Diego Healthcare System, San Diego, California
| | - Helmut Kipp
- Institute of Anatomy and Cell Biology, University of Würzburg, Würzburg, Germany
| | - Alexander Jaschke
- Department of Experimental Diabetology, German Institute of Human Nutrition, Potsdam-Rehbruecke, Germany
| | - Dirk Klessen
- Institute of Anatomy and Cell Biology, University of Würzburg, Würzburg, Germany
| | - Alexandra Friedrich
- Institute of Anatomy and Cell Biology, University of Würzburg, Würzburg, Germany
| | - Stephan Scherneck
- Department of Experimental Diabetology, German Institute of Human Nutrition, Potsdam-Rehbruecke, Germany
| | - Timo Rieg
- Departments of Medicine and Pharmacology, University of California, San Diego, La Jolla, and Veterans Affairs San Diego Healthcare System, San Diego, California
| | - Robyn Cunard
- Departments of Medicine and Pharmacology, University of California, San Diego, La Jolla, and Veterans Affairs San Diego Healthcare System, San Diego, California
| | - Maike Veyhl-Wichmann
- Institute of Anatomy and Cell Biology, University of Würzburg, Würzburg, Germany
| | - Aruna Srinivasan
- Institute of Anatomy and Cell Biology, University of Würzburg, Würzburg, Germany
| | - Daniela Balen
- Molecular Toxicology, Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Davorka Breljak
- Molecular Toxicology, Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Rexhep Rexhepaj
- Department of Physiology I, University of Tübingen, Tübingen, Germany
| | - Helen E. Parker
- Cambridge Institute for Medical Research, Addenbrooke’s Hospital, Cambridge, U.K
| | - Fiona M. Gribble
- Cambridge Institute for Medical Research, Addenbrooke’s Hospital, Cambridge, U.K
| | - Frank Reimann
- Cambridge Institute for Medical Research, Addenbrooke’s Hospital, Cambridge, U.K
| | - Florian Lang
- Department of Physiology I, University of Tübingen, Tübingen, Germany
| | - Stefan Wiese
- Department of Cell Morphology and Molecular Neurobiology, University of Bochum, Bochum, Germany
| | - Ivan Sabolic
- Molecular Toxicology, Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Michael Sendtner
- Clinical Neurobiology, University of Würzburg, Würzburg, Germany
| | - Hermann Koepsell
- Institute of Anatomy and Cell Biology, University of Würzburg, Würzburg, Germany
| |
Collapse
|
40
|
Mathew A, Cunard R, Sharma K. Antifibrotic treatment and other new strategies for improving renal outcomes. CONTRIBUTIONS TO NEPHROLOGY 2011; 170:217-227. [PMID: 21659774 PMCID: PMC4124634 DOI: 10.1159/000325671] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Diabetic nephropathy (DN) is clinically characterized by proteinuria and hypertension. Investigations suggest that matrix accumulation and inflammatory processes contribute to the pathological features of this progressive disease. This chapter reviews novel targeted approaches to the treatment of DN, with the goal of slowing the progression and improving renal function. Many studies support the use of agents that block the renin-angiotensin-aldosterone system in DN. Novel, oral agents that are promising in early clinical studies are agents such as pirfenidone and bardoxolone as they are associated with early improvement in renal function in patients with advanced diabetic kidney disease. Additionally, strategies that inhibit inflammatory cytokines, chemokines, adhesion molecules and mediators of the innate immune response may provide novel targets for the treatment of DN. Larger clinical studies are eagerly awaited to determine if new agents that specifically block kidney fibrosis and inflammation will delay, arrest and possibly reverse progressive renal failure.
Collapse
Affiliation(s)
- Anna Mathew
- Center for Renal Translational Medicine, Division of Nephrology-Hypertension, Department of Medicine, University of California San Diego, San Diego, Calif., USA
- Veterans Affairs San Diego Healthcare System, Veterans Medical Research Foundation, San Diego, Calif., USA
| | - Robyn Cunard
- Center for Renal Translational Medicine, Division of Nephrology-Hypertension, Department of Medicine, University of California San Diego, San Diego, Calif., USA
- Veterans Affairs San Diego Healthcare System, Veterans Medical Research Foundation, San Diego, Calif., USA
| | - Kumar Sharma
- Center for Renal Translational Medicine, Division of Nephrology-Hypertension, Department of Medicine, University of California San Diego, San Diego, Calif., USA
- Veterans Affairs San Diego Healthcare System, Veterans Medical Research Foundation, San Diego, Calif., USA
| |
Collapse
|
41
|
Vallon V. The proximal tubule in the pathophysiology of the diabetic kidney. Am J Physiol Regul Integr Comp Physiol 2011; 300:R1009-22. [PMID: 21228342 PMCID: PMC3094037 DOI: 10.1152/ajpregu.00809.2010] [Citation(s) in RCA: 278] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Accepted: 01/10/2011] [Indexed: 01/16/2023]
Abstract
Diabetic nephropathy is a leading cause of end-stage renal disease. A better understanding of the molecular mechanism involved in the early changes of the diabetic kidney may permit the development of new strategies to prevent diabetic nephropathy. This review focuses on the proximal tubule in the early diabetic kidney, particularly on its exposure and response to high glucose levels, albuminuria, and other factors in the diabetic glomerular filtrate, the hyperreabsorption of glucose, the unique molecular signature of the tubular growth phenotype, including aspects of senescence, and the resulting cellular and functional consequences. The latter includes the local release of proinflammatory chemokines and changes in proximal tubular salt and fluid reabsorption, which form the basis for the strong tubular control of glomerular filtration in the early diabetic kidney, including glomerular hyperfiltration and odd responses like the salt paradox. Importantly, these early proximal tubular changes can set the stage for oxidative stress, inflammation, hypoxia, and tubulointerstitial fibrosis, and thereby for the progression of diabetic renal disease.
Collapse
Affiliation(s)
- Volker Vallon
- Depts. of Medicine and Pharmacology, University of California San Diego & VA San Diego Healthcare System, 3350 La Jolla Village Drive, San Diego, CA 92161, USA.
| |
Collapse
|
42
|
Stieger N, Worthmann K, Schiffer M. The role of metabolic and haemodynamic factors in podocyte injury in diabetes. Diabetes Metab Res Rev 2011; 27:207-15. [PMID: 21309047 DOI: 10.1002/dmrr.1164] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Podocyte loss is a common feature in human diabetes as well as in experimental diabetes in rodents. Almost all components of the diabetic milieu lead to serious podocyte stress, driving the cells towards cell cycle arrest and hypertrophy, detachment and apoptosis. Common pathway components induced by high glucose and advanced glycation end-products are reactive oxygen species, cyclin-dependent kinases (p27(Kip1)) and transforming growth factor-beta. In addition, mechanical stresses by stretch or shear forces, insulin deficiency or insulin resistance are independent components resulting in podocyte apoptosis and detachment. In this review, we discuss the common pathways leading to podocyte death as well as novel pathways and concepts of podocyte dedifferentiation and detachment that influence the progression of diabetic glomerulopathy.
Collapse
Affiliation(s)
- Nicole Stieger
- Division of Nephrology, Department of Medicine, Hannover Medical School, Carl-Neuberg-Strasse 1, Hannover, Germany
| | | | | |
Collapse
|
43
|
Vallon V. Molecular determinants of renal glucose reabsorption. Focus on "Glucose transport by human renal Na+/D-glucose cotransporters SGLT1 and SGLT2". Am J Physiol Cell Physiol 2011; 300:C6-8. [PMID: 21048164 PMCID: PMC3023181 DOI: 10.1152/ajpcell.00444.2010] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
44
|
Saito A, Kaseda R, Hosojima M, Sato H. Proximal tubule cell hypothesis for cardiorenal syndrome in diabetes. Int J Nephrol 2010; 2011:957164. [PMID: 21197105 PMCID: PMC3005801 DOI: 10.4061/2011/957164] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2010] [Accepted: 11/05/2010] [Indexed: 12/23/2022] Open
Abstract
Incidence of cardiovascular disease (CVD) is remarkably high among patients with chronic kidney disease (CKD), even in the early microalbuminuric stages with normal glomerular filtration rates. Proximal tubule cells (PTCs) mediate metabolism and urinary excretion of vasculotoxic substances via apical and basolateral receptors and transporters. These cells also retrieve vasculoprotective substances from circulation or synthesize them for release into the circulation. PTCs are also involved in the uptake of sodium and phosphate, which are critical for hemodynamic regulation and maintaining the mineral balance, respectively. Dysregulation of PTC functions in CKD is likely to be associated with the development of CVD and is linked to the progression to end-stage renal disease. In particular, PTC dysfunction occurs early in diabetic nephropathy, a leading cause of CKD. It is therefore important to elucidate the mechanisms of PTC dysfunction to develop therapeutic strategies for treating cardiorenal syndrome in diabetes.
Collapse
Affiliation(s)
- Akihiko Saito
- Department of Applied Molecular Medicine and Rheumatology, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata 951-8510, Japan
| | | | | | | |
Collapse
|