1
|
Wang Z, Liu J, Lu D, Sui G, Wang Y, Tong L, Liu X, Zhang Y, Fu J, Xu W, Dai D. Evaluation of a motion correction algorithm in lung cancer PET/CT: Phantom validation and patient studies. Med Phys 2025. [PMID: 40280889 DOI: 10.1002/mp.17846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 03/18/2025] [Accepted: 04/01/2025] [Indexed: 04/29/2025] Open
Abstract
BACKGROUND Data-driven gating (DDG) is an emerging technology that can reduce the respiratory motion artifacts in positron emission tomography (PET) images. PURPOSE The aim of this study is to use phantom and patient data to validate the performance of DDG with a motion correction algorithm based on the reconstruct, register, and average (RRA) method. METHODS A customized motion platform drove the phantom (five spheres with diameters of 10-28 mm) using a periodic motion that had a duration of 3-5 s and amplitudes of 2-4 cm. Normalized ratio of ungated and RRA PET relative to the ground-truth static PET was calculated for RSUVmax, RSUVmean, RSUVpeak, RVolume, and relative contrast-to-noise ratio (RCNR). Additionally, 30 lung cancer patients with 76 lung lesions less than 3 cm in diameter were prospectively studied. The overall image quality of patient examination was scored using a 5-point scale by two radiologists. SUVmax, SUVmean, SUVpeak, volume, and CNR of lesions measured in ungated and RRA PET were compared, and subgroup analysis was conducted. RESULTS In RRA PET images, motion artifacts of the spheres in the phantom were effectively mitigated, regardless of changes in movement amplitudes or duration. For all spheres with different ranges of motion and cycles, RSUVmax, RSUVmean, RSUVpeak, and RCNR increased significantly (p ≤ 0.001) and RVolume decreased significantly (p < 0.001) in RRA PET images. The average radiologist scores of image quality were 3.90 ± 0.86 with RRA PET, and 3.03 ± 1.19 with ungated PET. In RRA PET images, the SUVmax (p < 0.001), SUVmean (p < 0.001), SUVpeak (p < 0.001), and CNR (p < 0.001) of the lesions increased, while the volume (p < 0.001) of the lesions decreased. Δ%SUVmax, Δ%SUVmean, Δ%SUVpeak, and Δ%CNR of the lesions increased by 3.9%, 6.5%, 5.6%, and 4.3%, respectively, while Δ%Volume of the lesions decreased by 18.4%. Subgroup analysis showed that in lesions in the upper and middle lobes, only SUVpeak (p < 0.001) significantly increased by 5.6% in RRA PET, while their volume (p < 0.001) notably decreased by 12.4% (p < 0.001). CONCLUSION DDG integrated with RRA motion correction algorithm can effectively mitigate motion artifacts, thus enhancing the quantification accuracy and visual quality of images in lung cancer PET/CT.
Collapse
Affiliation(s)
- Ziyang Wang
- Department of Nuclear Medicine, National Clinical Research Center for Cancer, Tianjin Cancer Hospital Airport Hospital, Tianjin, China
| | - Jianjing Liu
- Department of Molecular Imaging and Nuclear Medicine, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for China, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Di Lu
- Department of Nuclear Medicine, National Clinical Research Center for Cancer, Tianjin Cancer Hospital Airport Hospital, Tianjin, China
| | - Guoqing Sui
- Department of Nuclear Medicine, National Clinical Research Center for Cancer, Tianjin Cancer Hospital Airport Hospital, Tianjin, China
| | - Yaya Wang
- Department of Nuclear Medicine, National Clinical Research Center for Cancer, Tianjin Cancer Hospital Airport Hospital, Tianjin, China
| | - Lina Tong
- Department of Nuclear Medicine, National Clinical Research Center for Cancer, Tianjin Cancer Hospital Airport Hospital, Tianjin, China
| | - Xueyao Liu
- Department of Nuclear Medicine, National Clinical Research Center for Cancer, Tianjin Cancer Hospital Airport Hospital, Tianjin, China
| | - Yan Zhang
- Department of Nuclear Medicine, National Clinical Research Center for Cancer, Tianjin Cancer Hospital Airport Hospital, Tianjin, China
| | - Jie Fu
- Department of Nuclear Medicine, National Clinical Research Center for Cancer, Tianjin Cancer Hospital Airport Hospital, Tianjin, China
- Department of Molecular Imaging and Nuclear Medicine, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for China, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Wengui Xu
- Department of Molecular Imaging and Nuclear Medicine, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for China, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Dong Dai
- Department of Nuclear Medicine, National Clinical Research Center for Cancer, Tianjin Cancer Hospital Airport Hospital, Tianjin, China
- Department of Molecular Imaging and Nuclear Medicine, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for China, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| |
Collapse
|
2
|
Huang S, Cao C, Guo L, Li C, Zhang F, Li Y, Liang Y, Mu W. Comparison of the variability and diagnostic efficacy of respiratory-gated PET/CT based radiomics features with ungated PET/CT in lung lesions. Lung Cancer 2024; 194:107889. [PMID: 39029358 DOI: 10.1016/j.lungcan.2024.107889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 06/12/2024] [Accepted: 07/09/2024] [Indexed: 07/21/2024]
Abstract
OBJECTIVES To investigate the variability and diagnostic efficacy of respiratory-gated (RG) PET/CT based radiomics features compared to ungated (UG) PET/CT in the differentiation of non-small cell lung cancer (NSCLC) and benign lesions. METHODS 117 patients with suspected lung lesions from March 2020 to May 2021 and consent to undergo UG PET/CT and chest RG PET/CT (including phase-based quiescent period gating, pQPG and phase-matched 4D PET/CT, 4DRG) were prospectively included. 377 radiomics features were extracted from PET images of each scan. Paired t test was used to compare UG and RG features for inter-scan variability analysis. We developed three radiomics models with UG and RG features (i.e. UGModel, pQPGModel and 4DRGModel). ROC curves were used to compare diagnostic efficiencies, and the model-level comparison of diagnostic value was performed by five-fold cross-validation. A P value < 0.05 was considered as statistically significant. RESULTS A total of 111 patients (average age ± standard deviation was 59.1 ± 11.6 y, range, 29 - 88 y, and 63 were males) with 209 lung lesions were analyzed for features variability and the subgroup of 126 non-metastasis lesions in 91 patients without treatment before PET/CT were included for diagnosis analysis. 101/377 (26.8 %) 4DRG features and 82/377 (21.8 %) pQPG features showed significant difference compared to UG features (both P<0.05). 61/377 (16.2 %) and 59/377 (15.6 %) of them showed significantly better discriminant ability (ΔAUC% (i.e. (AUCRG - AUCUG) / AUCUG×100 %) > 0 and P<0.05) in malignant recognition, respectively. For the model-level comparison, 4DRGModel achieved the highest diagnostic efficacy (sen 73.2 %, spe 87.3 %) compared with UGModel (sen 57.7 %, spe 76.4 %) and pQPGModel (sen 63.4 %, spe 81.8 %). CONCLUSION RG PET/CT performs better in the quantitative assessment of metabolic heterogeneity for lung lesions and the subsequent diagnosis in patients with NSCLC compared with UG PET/CT.
Collapse
Affiliation(s)
- Shengyun Huang
- Department of Nuclear Medicine, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Caifang Cao
- School of Engineering Medicine, Beihang University, Beijing, China; Key Laboratory of Big Data-Based Precision Medicine, Ministry of Industry and Information Technology of the People's Republic of China, Beijing, China
| | - Linna Guo
- Department of Nuclear Medicine, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Chengze Li
- Department of Nuclear Medicine, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Feng Zhang
- Department of Nuclear Medicine, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Yiluo Li
- Department of Nuclear Medicine, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Ying Liang
- Department of Nuclear Medicine, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China; National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Wei Mu
- School of Engineering Medicine, Beihang University, Beijing, China; Key Laboratory of Big Data-Based Precision Medicine, Ministry of Industry and Information Technology of the People's Republic of China, Beijing, China.
| |
Collapse
|
3
|
van de Weijer T, van der Meer WL, Moonen RPM, van Nijnatten TJA, Gietema HA, Mitea C, van der Pol JAJ, Wildberger JE, Mottaghy FM. Limited Additional Value of a Chest CT in Whole-Body Staging with PET-MRI: A Retrospective Cohort Study. Cancers (Basel) 2024; 16:2265. [PMID: 38927970 PMCID: PMC11201796 DOI: 10.3390/cancers16122265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/04/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Hybrid PET-MRI systems are being used more frequently. One of the drawbacks of PET-MRI imaging is its inferiority in detecting lung nodules, so it is often combined with a computed tomography (CT) of the chest. However, chest CT often detects additional, indeterminate lung nodules. The objective of this study was to assess the sensitivity of detecting metastatic versus indeterminate nodules with PET-MRI compared to chest CT. A total of 328 patients were included. All patients had a PET/MRI whole-body scan for (re)staging of cancer combined with an unenhanced chest CT performed at our center between 2014 and 2020. Patients had at least a two-year follow-up. Six percent of the patients had lung metastases at initial staging. The sensitivity and specificity of PET-MRI for detecting lung metastases were 85% and 100%, respectively. The incidence of indeterminate lung nodules on chest CT was 30%. The sensitivity of PET-MRI to detect indeterminate lung nodules was poor (23.0%). The average size of the indeterminate lung nodules detected on PET-MRI was 7 ± 4 mm, and the missed indeterminate nodules on PET-MRI were 4 ± 1 mm (p < 0.001). The detection of metastatic lung nodules is fairly good with PET-MRI, whereas the sensitivity of PET-MRI for detecting indeterminate lung nodules is size-dependent. This may be an advantage, limiting unnecessary follow-up of small, indeterminate lung nodules while adequately detecting metastases.
Collapse
Affiliation(s)
- Tineke van de Weijer
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, P. Debeylaan 25, P.O. Box 5800, 6202 AZ Maastricht, The Netherlands; (T.v.d.W.); (W.L.v.d.M.); (R.P.M.M.); (T.J.A.v.N.); (H.A.G.); (J.A.J.v.d.P.); (J.E.W.)
- School of Nutrition and Translational Research in Metabolism (NUTRIM), 6200 MD Maastricht, The Netherlands
| | - Wilhelmina L. van der Meer
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, P. Debeylaan 25, P.O. Box 5800, 6202 AZ Maastricht, The Netherlands; (T.v.d.W.); (W.L.v.d.M.); (R.P.M.M.); (T.J.A.v.N.); (H.A.G.); (J.A.J.v.d.P.); (J.E.W.)
| | - Rik P. M. Moonen
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, P. Debeylaan 25, P.O. Box 5800, 6202 AZ Maastricht, The Netherlands; (T.v.d.W.); (W.L.v.d.M.); (R.P.M.M.); (T.J.A.v.N.); (H.A.G.); (J.A.J.v.d.P.); (J.E.W.)
| | - Thiemo J. A. van Nijnatten
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, P. Debeylaan 25, P.O. Box 5800, 6202 AZ Maastricht, The Netherlands; (T.v.d.W.); (W.L.v.d.M.); (R.P.M.M.); (T.J.A.v.N.); (H.A.G.); (J.A.J.v.d.P.); (J.E.W.)
- School for Oncology and Reproduction (GROW), 6200 MD Maastricht, The Netherlands
| | - Hester A. Gietema
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, P. Debeylaan 25, P.O. Box 5800, 6202 AZ Maastricht, The Netherlands; (T.v.d.W.); (W.L.v.d.M.); (R.P.M.M.); (T.J.A.v.N.); (H.A.G.); (J.A.J.v.d.P.); (J.E.W.)
- School for Oncology and Reproduction (GROW), 6200 MD Maastricht, The Netherlands
| | - Cristina Mitea
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, P. Debeylaan 25, P.O. Box 5800, 6202 AZ Maastricht, The Netherlands; (T.v.d.W.); (W.L.v.d.M.); (R.P.M.M.); (T.J.A.v.N.); (H.A.G.); (J.A.J.v.d.P.); (J.E.W.)
- School for Oncology and Reproduction (GROW), 6200 MD Maastricht, The Netherlands
| | - Jochem A. J. van der Pol
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, P. Debeylaan 25, P.O. Box 5800, 6202 AZ Maastricht, The Netherlands; (T.v.d.W.); (W.L.v.d.M.); (R.P.M.M.); (T.J.A.v.N.); (H.A.G.); (J.A.J.v.d.P.); (J.E.W.)
- School for Cardiovascular Diseases (CARIM), 6202 AZ Maastricht, The Netherlands
| | - Joachim E. Wildberger
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, P. Debeylaan 25, P.O. Box 5800, 6202 AZ Maastricht, The Netherlands; (T.v.d.W.); (W.L.v.d.M.); (R.P.M.M.); (T.J.A.v.N.); (H.A.G.); (J.A.J.v.d.P.); (J.E.W.)
- School for Oncology and Reproduction (GROW), 6200 MD Maastricht, The Netherlands
| | - Felix M. Mottaghy
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, P. Debeylaan 25, P.O. Box 5800, 6202 AZ Maastricht, The Netherlands; (T.v.d.W.); (W.L.v.d.M.); (R.P.M.M.); (T.J.A.v.N.); (H.A.G.); (J.A.J.v.d.P.); (J.E.W.)
- Department of Nuclear Medicine, University Hospital, RWTH Aachen University, 52074 Aachen, Germany
| |
Collapse
|
4
|
Cook EL, Su KH, Higgins GS, Johnsen R, Bouhnik JP, McGowan DR. Data-driven gating (DDG)-based motion match for improved CTAC registration. EJNMMI Phys 2024; 11:42. [PMID: 38691232 PMCID: PMC11554991 DOI: 10.1186/s40658-024-00644-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 04/24/2024] [Indexed: 05/03/2024] Open
Abstract
BACKGROUND Respiratory motion artefacts are a pitfall in thoracic PET/CT imaging. A source of these motion artefacts within PET images is the CT used for attenuation correction of the images. The arbitrary respiratory phase in which the helical CT ( CT helical ) is acquired often causes misregistration between PET and CT images, leading to inaccurate attenuation correction of the PET image. As a result, errors in tumour delineation or lesion uptake values can occur. To minimise the effect of motion in PET/CT imaging, a data-driven gating (DDG)-based motion match (MM) algorithm has been developed that estimates the phase of the CT helical , and subsequently warps this CT to a given phase of the respiratory cycle, allowing it to be phase-matched to the PET. A set of data was used which had four-dimensional CT (4DCT) acquired alongside PET/CT. The 4DCT allowed ground truth CT phases to be generated and compared to the algorithm-generated motion match CT (MMCT). Measurements of liver and lesion margin positions were taken across CT images to determine any differences and establish how well the algorithm performed concerning warping the CT helical to a given phase (end-of-expiration, EE). RESULTS Whilst there was a minor significance in the liver measurement between the 4DCT and MMCT ( p = 0.045 ), no significant differences were found between the 4DCT or MMCT for lesion measurements ( p = 1.0 ). In all instances, the CT helical was found to be significantly different from the 4DCT ( p < 0.001 ). Consequently, the 4DCT and MMCT can be considered equivalent with respect to warped CT generation, showing the DDG-based MM algorithm to be successful. CONCLUSION The MM algorithm successfully enables the phase-matching of a CT helical to the EE of a ground truth 4DCT. This would reduce the motion artefacts caused by PET/CT registration without requiring additional patient dose (required for a 4DCT).
Collapse
Affiliation(s)
- Ella L Cook
- Department of Oncology, University of Oxford, Oxford, UK
| | | | | | | | | | - Daniel R McGowan
- Department of Oncology, University of Oxford, Oxford, UK.
- Department of Medical Physics and Clinical Engineering, Oxford University Hospitals Foundation Trust, Oxford, UK.
| |
Collapse
|
5
|
Chen Y, Kan K, Liu S, Lin H, Lue K. Impact of respiratory motion on 18 F-FDG PET radiomics stability: Clinical evaluation with a digital PET scanner. J Appl Clin Med Phys 2023; 24:e14200. [PMID: 37937706 PMCID: PMC10691638 DOI: 10.1002/acm2.14200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/13/2023] [Accepted: 10/30/2023] [Indexed: 11/09/2023] Open
Abstract
PURPOSE 18 F-FDG PET quantitative features are susceptible to respiratory motion. However, studies using clinical patient data to explore the impact of respiratory motion on 18 F-FDG PET radiomic features are limited. In this study, we investigated the impact of respiratory motion on radiomics stability with clinical 18 F-FDG PET images using a data-driven gating (DDG) algorithm on the digital PET scanner. MATERIALS AND METHODS A total of 101 patients who underwent oncological 18 F-FDG PET scans were retrospectively included. A DDG algorithm combined with a motion compensation technique was used to extract the PET images with respiratory motion correction. 18 F-FDG-avid lesions from the thorax to the upper abdomen were analyzed on the non-DDG and DDG PET images. The lesions were segmented with a 40% threshold of the maximum standardized uptake. A total of 725 radiomic features were computed from the segmented lesions, including first-order, shape, texture, and wavelet features. The intraclass correlation coefficient (ICC) and coefficient of variation (COV) were calculated to evaluate feature stability. An ICC above 0.9 and a COV below 5% were considered high stability. RESULTS In total, 168 lesions with and without respiratory motion correction were analyzed. Our results indicated that most 18 F-FDG PET radiomic features are sensitive to respiratory motion. Overall, only 27 out of 725 (3.72%) radiomic features were identified as highly stable, including one from the first-order features (entropy), one from the shape features (sphericity), four from the gray-level co-occurrence matrix features (normalized and unnormalized inverse difference moment, joint entropy, and sum entropy), one from the gray-level run-length matrix features (run entropy), and 20 from the wavelet filter-based features. CONCLUSION Respiratory motion has a significant impact on 18 F-FDG PET radiomics stability. The highly stable features identified in our study may serve as potential candidates for further applications, such as machine learning modeling.
Collapse
Affiliation(s)
- Yu‐Hung Chen
- Department of Nuclear MedicineHualien Tzu Chi HospitalBuddhist Tzu Chi Medical FoundationHualienTaiwan
- School of MedicineCollege of MedicineTzu Chi UniversityHualienTaiwan
- Department of Medical Imaging and Radiological SciencesTzu Chi University of Science and TechnologyHualienTaiwan
| | - Kuo‐Yi Kan
- Department of Nuclear MedicineFu Jen Catholic University HospitalNew Taipei CityTaiwan
| | - Shu‐Hsin Liu
- Department of Nuclear MedicineHualien Tzu Chi HospitalBuddhist Tzu Chi Medical FoundationHualienTaiwan
- Department of Medical Imaging and Radiological SciencesTzu Chi University of Science and TechnologyHualienTaiwan
| | - Hsin‐Hon Lin
- Department of Medical Imaging and Radiological SciencesCollege of MedicineChang Gung UniversityTaoyuanTaiwan
- Department of Nuclear MedicineChang Gung Memorial HospitalLinkouTaiwan
| | - Kun‐Han Lue
- Department of Medical Imaging and Radiological SciencesTzu Chi University of Science and TechnologyHualienTaiwan
| |
Collapse
|
6
|
Miyaji N, Miwa K, Yamashita K, Motegi K, Wagatsuma K, Kamitaka Y, Yamao T, Ishiyama M, Terauchi T. Impact of irregular waveforms on data-driven respiratory gated PET/CT images processed using MotionFree algorithm. Ann Nucl Med 2023; 37:665-674. [PMID: 37796394 DOI: 10.1007/s12149-023-01870-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 09/18/2023] [Indexed: 10/06/2023]
Abstract
OBJECTIVES MotionFree® (AMF) is a data-driven respiratory gating (DDG) algorithm for image processing that has recently been introduced into clinical practice. The present study aimed to verify the accuracy of respiratory waveform and the effects of normal and irregular respiratory motions using AMF with the DDG algorithm. METHODS We used a NEMA IEC body phantom comprising six spheres (37-, 28-, 22-, 17-, 13-, and 10 mm diameter) containing 18F. The sphere-to-background ratio was 4:1 (21.2 and 5.3 kBq/mL). We acquired PET/CT images from a stationary or moving phantom placed on a custom-designed motion platform. Respiratory motions were reproduced based on normal (sinusoidal or expiratory-paused waveforms) and irregular (changed amplitude or shifted baseline waveforms) movements. The "width" parameters in AMF were set at 10-60% and extracted data during the expiratory phases of each waveform. We verified the accuracy of the derived waveforms by comparing those input from the motion platform and output determined using AMF. Quantitative accuracy was evaluated as recovery coefficients (RCs), improvement rate, and %change that were calculated based on sphere diameter or width. We evaluated statistical differences in activity concentrations of each sphere between normal and irregular waveforms. RESULTS Respiratory waveforms derived from AMF were almost identical to the input waveforms on the motion platform. Although the RCs in each sphere for expiratory-paused and ideal stationary waveforms were almost identical, RCs except the expiratory-paused waveform were lower than those for the stationary waveform. The improvement rate decreased more for the irregular, than the normal waveforms with AMF in smaller spheres. The %change was improved by decreasing the width of waveforms with a shifted baseline. Activity concentrations significantly differed between normal waveforms and those with a shifted baseline in spheres < 28 mm. CONCLUSIONS The PET images using AMF with the DDG algorithm provided the precise waveform of respiratory motions and the improvement of quantitative accuracy in the four types of respiratory waveforms. The improvement rate was the most obvious in expiratory-paused waveforms, and the most subtle in those with a shifted baseline. Optimizing the width parameter in irregular waveform will benefit patients who breathe like the waveform with the shifted baseline.
Collapse
Affiliation(s)
- Noriaki Miyaji
- Department of Radiological Sciences, School of Health Sciences, Fukushima Medical University, 10-6 Sakaemachi, Fukushima-Shi, Fukushima, 960-8516, Japan.
| | - Kenta Miwa
- Department of Radiological Sciences, School of Health Sciences, Fukushima Medical University, 10-6 Sakaemachi, Fukushima-Shi, Fukushima, 960-8516, Japan
| | - Kosuke Yamashita
- Department of Nuclear Medicine, Cancer Institute Hospital of Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-Ku, Tokyo, 135-8550, Japan
| | - Kazuki Motegi
- Department of Nuclear Medicine, Cancer Institute Hospital of Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-Ku, Tokyo, 135-8550, Japan
| | - Kei Wagatsuma
- School of Allied Health Sciences, Kitasato University, 1-15-1 Kitazato, Minami-Ku Sagamihara, Kanagawa, 252-0373, Japan
| | - Yuto Kamitaka
- Research Team for Neuroimaging, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-Cho, Itabashi-Ku, Tokyo, 173-0015, Japan
| | - Tensho Yamao
- Department of Radiological Sciences, School of Health Sciences, Fukushima Medical University, 10-6 Sakaemachi, Fukushima-Shi, Fukushima, 960-8516, Japan
| | - Mitsutomi Ishiyama
- Department of Radiology, Virginia Mason Medical Center, 1100 9Th Ave, Seattle, Washington, 98101, USA
| | - Takashi Terauchi
- Department of Nuclear Medicine, Cancer Institute Hospital of Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-Ku, Tokyo, 135-8550, Japan
| |
Collapse
|
7
|
Lee CW, Son HJ, Woo JY, Lee SH. Is Prone Position [ 18F]FDG PET/CT Useful in Reducing Respiratory Motion Artifacts in Evaluating Hepatic Lesions? Diagnostics (Basel) 2023; 13:2539. [PMID: 37568906 PMCID: PMC10417611 DOI: 10.3390/diagnostics13152539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
Prone position is useful in reducing respiratory motion artifacts in lung nodules on 2-Deoxy-2-[18F] fluoro-D-glucose ([18F]FDG) positron emission tomography/computed tomography (PET/CT). However, whether prone position PET/CT is useful in evaluating hepatic lesions is unknown. Thirty-five hepatic lesions from 20 consecutive patients were evaluated. The maximum standardized uptake value (SUVmax) and metabolic tumor volume (MTV) of both standard supine position PET/CT and additional prone position PET/CT were evaluated. No significant difference in SUVmax (4.41 ± 2.0 vs. 4.23 ± 1.83; p = 0.240) and MTV (5.83 ± 6.69 vs. 5.95 ± 6.24; p = 0.672) was observed between supine position PET/CT and prone position PET/CT. However, SUVmax changes in prone position PET/CT varied compared with those in supine position PET/CT (median, -4%; range: -30-71%). Prone position PET/CT was helpful when [18F]FDG uptake of the hepatic lesions was located outside the liver on supine position PET/CT (n = 4, SUVmax change: median 15%; range: 7-71%) and there was more severe blurring on supine position PET/CT (n = 6, SUVmax change: median 11%; range: -3-32%). Unlike in lung nodules, prone position PET/CT is not always useful in evaluating hepatic lesions, but it may be helpful in individual cases such as hepatic dome lesions.
Collapse
Affiliation(s)
- Chung Won Lee
- Department of Radiology, Hallym University Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul 07441, Republic of Korea;
| | - Hye Joo Son
- Department of Nuclear Medicine, Dankook University Medical Center, Cheonan 31116, Republic of Korea;
| | - Ji Young Woo
- Department of Radiology, Hallym University Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul 07441, Republic of Korea;
| | - Suk Hyun Lee
- Department of Radiology, Hallym University Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul 07441, Republic of Korea;
| |
Collapse
|
8
|
Man F, Tang J, Swedrowska M, Forbes B, T M de Rosales R. Imaging drug delivery to the lungs: Methods and applications in oncology. Adv Drug Deliv Rev 2023; 192:114641. [PMID: 36509173 PMCID: PMC10227194 DOI: 10.1016/j.addr.2022.114641] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/25/2022] [Accepted: 11/26/2022] [Indexed: 12/14/2022]
Abstract
Direct delivery to the lung via inhalation is arguably one of the most logical approaches to treat lung cancer using drugs. However, despite significant efforts and investment in this area, this strategy has not progressed in clinical trials. Imaging drug delivery is a powerful tool to understand and develop novel drug delivery strategies. In this review we focus on imaging studies of drug delivery by the inhalation route, to provide a broad overview of the field to date and attempt to better understand the complexities of this route of administration and the significant barriers that it faces, as well as its advantages. We start with a discussion of the specific challenges for drug delivery to the lung via inhalation. We focus on the barriers that have prevented progress of this approach in oncology, as well as the most recent developments in this area. This is followed by a comprehensive overview of the different imaging modalities that are relevant to lung drug delivery, including nuclear imaging, X-ray imaging, magnetic resonance imaging, optical imaging and mass spectrometry imaging. For each of these modalities, examples from the literature where these techniques have been explored are provided. Finally the different applications of these technologies in oncology are discussed, focusing separately on small molecules and nanomedicines. We hope that this comprehensive review will be informative to the field and will guide the future preclinical and clinical development of this promising drug delivery strategy to maximise its therapeutic potential.
Collapse
Affiliation(s)
- Francis Man
- School of Cancer & Pharmaceutical Sciences, King's College London, London, SE1 9NH, United Kingdom
| | - Jie Tang
- School of Biomedical Engineering & Imaging Sciences, King's College London, London SE1 7EH, United Kingdom
| | - Magda Swedrowska
- School of Cancer & Pharmaceutical Sciences, King's College London, London, SE1 9NH, United Kingdom
| | - Ben Forbes
- School of Cancer & Pharmaceutical Sciences, King's College London, London, SE1 9NH, United Kingdom
| | - Rafael T M de Rosales
- School of Biomedical Engineering & Imaging Sciences, King's College London, London SE1 7EH, United Kingdom.
| |
Collapse
|
9
|
Fukai S, Daisaki H, Shimada N, Ishiyama M, Umeda T, Yamashita K, Miyaji N, Takiguchi T, Kawakami H, Terauchi T. Evaluation of data-driven respiratory gating for subcentimeter lesions using digital PET/CT system and three-axis motion phantom. Biomed Phys Eng Express 2022; 9. [PMID: 36541506 DOI: 10.1088/2057-1976/aca90d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 12/06/2022] [Indexed: 12/12/2022]
Abstract
Introduction.The application of data-driven respiratory gating (DDG) for subcentimeter lesions with respiratory movement remains poorly understood. Hence, this study aimed to clarify DDG application for subcentimeter lesions and the ability of digital Positron emission tomography/computed tomography (PET/CT) system combined with DDG to detect these lesions under three-axis respiration.Methods.Discovery MI PET/CT system and National Electrical Manufacturers Association (NEMA) body phantom with Micro Hollow Sphere (4, 5, 6, 8, 10, and 13 mm) were used. The NEMA phantom was filled with18F-FDG solutions of 42.4 and 5.3 kBq/ml for each hot sphere and background region. The 3.6 s cycles of three-axis respiratory motion were reproduced using the motion platform UniTraQ. The PET data acquisition was performed in stationary and respiratory-moving states. The data were reconstructed in three PET groups: stationary (NM-PET), no gating with respiratory movement (NG-PET), and DDG gating with respiratory movement (DDG-PET) groups. For image quality, percent contrast (QH); maximum, peak, and mean standardized uptake value (SUV); background region; and detectability index (DI) were evaluated in each PET group. Visual assessment was also conducted.Results.The groups with respiratory movement had deteriorated QHand SUVs compared with NM-PET. Compared with NG-PET, DDG-PET has significantly improved QHand SUVs in spheres above 6 mm. The background region showed no significant difference between groups. The SUVmax, SUVpeak, and QHvalues of 8 mm sphere were highest in NM-PET, followed by DDG-PET and NG-PET. In visual assessment, the spheres above 6 mm were detected in all PET groups. DDG application did not detect new lesions, but it increased DI and visual score.Conclusions. The application of principal component analysis (PCA)-based DDG algorithm improves both image quality and quantitative SUVs in subcentimeter lesions measuring above 6 mm. Although DDG application cannot detect new subcentimeter lesions, it increases the visual indices.
Collapse
Affiliation(s)
- Shohei Fukai
- Department of Nuclear Medicine, The Cancer Institute Hospital of Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo 135-8550, Japan.,Graduate School of Radiological Technology, Gunma Prefectural College of Health Sciences, 323-1 Kamioki-machi, Maebashi, Gunma 371-0052, Japan
| | - Hiromitsu Daisaki
- Graduate School of Radiological Technology, Gunma Prefectural College of Health Sciences, 323-1 Kamioki-machi, Maebashi, Gunma 371-0052, Japan.,Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Naoki Shimada
- Department of Nuclear Medicine, The Cancer Institute Hospital of Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo 135-8550, Japan
| | - Mitsutomi Ishiyama
- Department of Nuclear Medicine, The Cancer Institute Hospital of Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo 135-8550, Japan
| | - Takuro Umeda
- Department of Nuclear Medicine, The Cancer Institute Hospital of Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo 135-8550, Japan
| | - Kosuke Yamashita
- Department of Nuclear Medicine, The Cancer Institute Hospital of Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo 135-8550, Japan
| | - Noriaki Miyaji
- Department of Nuclear Medicine, The Cancer Institute Hospital of Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo 135-8550, Japan
| | - Tomohiro Takiguchi
- Department of Nuclear Medicine, The Cancer Institute Hospital of Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo 135-8550, Japan
| | - Hideyuki Kawakami
- APEX Medical, Inc., Kuramae Myouken-ya Building 5F, 3-17-4 Kuramae, Taito-ku, Tokyo 111-0051, Japan
| | - Takashi Terauchi
- Department of Nuclear Medicine, The Cancer Institute Hospital of Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo 135-8550, Japan
| |
Collapse
|
10
|
Hayashi N, Ogasawara D, Tokorodani R, Kirizume R, Kenda S, Yabe F, Itoh K. What factors influence the R value in data-driven respiratory gating technique? A phantom study. Nucl Med Commun 2022; 43:1067-1076. [PMID: 36081398 DOI: 10.1097/mnm.0000000000001609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE The R value is adopted as a metric for the effectiveness of the respiratory waveform in the Advanced Motion Free implemented in the PET scanner as the data-driven respiratory gating (DDG) algorithm. The effects of changes in various factors on R values were evaluated by phantom analysis. METHODS We used a programmable respiratory motion phantom QUASAR with a sphere filled with an 18F solution. Respiratory motion simulation was performed by changing the sphere diameter, radioactivity concentration, amplitude, respiratory cycle, and respiratory waveform shape. Three evaluations were performed. (1) The power spectra calculated from the input waveforms were evaluated. (2) The effects of changes in the factors on the R value were evaluated. (3) DDG waveforms and inspiratory peak intervals were compared with the input waveform data set. RESULTS The R values were increased and converged to a certain value as sphere diameter, radioactivity concentration, and amplitude gradually increased. The respiratory cycle showed the highest R value at 7.5 s, and the graph showed an upward convex pattern. The R value of the sinusoid waveform was higher than that of the typical waveform. There was a relationship between the power spectrum of the input waveform and R value. The visual score was also lower in the condition with a lower R value. In cases of no sphere, radioactivity, or motion, and a fast respiratory cycle, peak intervals were not accurately acquired. CONCLUSIONS Factors affecting the R value were sphere diameter, radioactivity concentration, amplitude, respiratory cycle, and respiratory waveform shape.
Collapse
Affiliation(s)
- Naoya Hayashi
- Division of Radiology, Department of Medical Technology, Kochi Medical School Hospital, Nankoku, Kochi, Japan
| | | | | | | | | | | | | |
Collapse
|
11
|
D'Antuono R, Bowen JW. Towards super-resolved terahertz microscopy for cellular imaging. J Microsc 2022; 288:207-217. [PMID: 35792534 PMCID: PMC10084438 DOI: 10.1111/jmi.13132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/19/2022] [Accepted: 06/28/2022] [Indexed: 12/28/2022]
Abstract
Biomedical imaging includes the use of a variety of techniques to study organs and tissues. Some of the possible imaging modalities are more spread at clinical level (CT, MRI, PET), while others, such as light and electron microscopy are preferred in life sciences research. The choice of the imaging modalities can be based on the capability to study functional aspects of an organism, the delivered radiation dose to the patient, and the achievable resolution. In the last few decades, spectroscopists and imaging scientists have been interested in the use of terahertz (THz) frequencies (30 μm to 3 mm wavelength) due to the low photon energy associated (E∼1 meV, not causing breaking of the molecular bonds but still interacting with some vibrational modes) and the high penetration depth that is achievable. THz has been already adopted in security, quality control and material sciences. However, the adoption of THz frequencies for biological and clinical imaging means to face, as a major limitation, the very scarce resolution associated with the use of such long wavelengths. To address this aspect and reconcile the benefit of minimal harmfulness for bioimaging with the achievable resolving power, many attempts have been made. This review summarises the state-of-the-art of THz imaging applications aimed at achieving super-resolution, describing how practical aspects of optics and quasi-optics may be treated to efficaciously implement the use of THz as a new low-dose and versatile modality in biomedical imaging and clinical research.
Collapse
Affiliation(s)
- Rocco D'Antuono
- Crick Advanced Light Microscopy STP, The Francis Crick Institute, 1 Midland Road, NW1 1AT, London, UK.,Department of Biomedical Engineering, School of Biological Sciences, University of Reading, Reading, UK
| | - John W Bowen
- Department of Biomedical Engineering, School of Biological Sciences, University of Reading, Reading, UK
| |
Collapse
|
12
|
Bailly P, Bouzerar R, Galan R, Meyer ME. Phantom study of an in-house amplitude-gating respiratory method with silicon photomultiplier technology positron emission tomography/computed tomography. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2022; 221:106907. [PMID: 35660941 DOI: 10.1016/j.cmpb.2022.106907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 05/23/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
PURPOSE The objective of this phantom study was to determine whether breathing-synchronized, silicon photomultiplier (SiPM)-based PET/CT has a suitable acquisition time for routine clinical use. METHODS Acquisitions were performed in list mode on a 4-ring SiPM-based PET/CT system. The experimental setup consisted of an external respiratory tracking device placed on a commercial dynamic thorax phantom containing a sphere filled with [F-18]-fluorodeoxyglucose. Three-dimensional sinusoidal motion was imposed on the sphere. Data were processed using frequency binning and amplitude binning (the "DMI" and "OFFLINE" methods, respectively). PET sinograms were reconstructed with a Bayesian penalized likelihood algorithm. RESULTS Respiratory gating from a 150‑sec acquisition was successful. The DMI and OFFLINE methods gave similar activity profiles but both were slightly shifted in space; the latter profile was closest to the reference acquisition. CONCLUSION With SiPM PET/CT systems, the amplitude-based processing of breathing-synchronized data is likely to be feasible in routine clinical practice.
Collapse
Affiliation(s)
- Pascal Bailly
- Nuclear Medicine Department, Amiens University Medical Center, Amiens, France; Department of Nuclear Medicine, Amiens University Hospital, Amiens, France.
| | - Roger Bouzerar
- Nuclear Medicine Department, Amiens University Medical Center, Amiens, France; Department of Nuclear Medicine, Amiens University Hospital, Amiens, France
| | - Romain Galan
- Nuclear Medicine Department, Amiens University Medical Center, Amiens, France; Jules Verne University of Picardie, Amiens, France; Department of Nuclear Medicine, Amiens University Hospital, Amiens, France
| | - Marc-Etienne Meyer
- Nuclear Medicine Department, Amiens University Medical Center, Amiens, France; Jules Verne University of Picardie, Amiens, France; Department of Nuclear Medicine, Amiens University Hospital, Amiens, France
| |
Collapse
|
13
|
Thomas MA, Meier JG, Mawlawi OR, Sun P, Pan T. Impact of acquisition time and misregistration with CT on data-driven gated PET. Phys Med Biol 2022; 67:10.1088/1361-6560/ac5f73. [PMID: 35313286 PMCID: PMC9128538 DOI: 10.1088/1361-6560/ac5f73] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 03/21/2022] [Indexed: 11/11/2022]
Abstract
Objective. Data-driven gating (DDG) can address patient motion issues and enhance PET quantification but suffers from increased image noise from utilization of <100% of PET data. Misregistration between DDG-PET and CT may also occur, altering the potential benefits of gating. Here, the effects of PET acquisition time and CT misregistration were assessed with a combined DDG-PET/DDG-CT technique.Approach. In the primary PET bed with lesions of interest and likely respiratory motion effects, PET acquisition time was extended to 12 min and a low-dose cine CT was acquired to enable DDG-CT. Retrospective reconstructions were created for both non-gated (NG) and DDG-PET using 30 s to 12 min of PET data. Both the standard helical CT and DDG-CT were used for attenuation correction of DDG-PET data. SUVmax, SUVpeak, and CNR were compared for 45 lesions in the liver and lung from 27 cases.Main results. For both NG-PET (p= 0.0041) and DDG-PET (p= 0.0028), only the 30 s acquisition time showed clear SUVmaxbias relative to the 3 min clinical standard. SUVpeakshowed no bias at any change in acquisition time. DDG-PET alone increased SUVmaxby 15 ± 20% (p< 0.0001), then was increased further by an additional 15 ± 29% (p= 0.0007) with DDG-PET/CT. Both 3 min and 6 min DDG-PET had lesion CNR statistically equivalent to 3 min NG-PET, but then increased at 12 min by 28 ± 48% (p= 0.0022). DDG-PET/CT at 6 min had comparable counts to 3 min NG-PET, but significantly increased CNR by 39 ± 46% (p< 0.0001).Significance. 50% counts DDG-PET did not lead to inaccurate or biased SUV-increased SUV resulted from gating. Improved registration from DDG-CT was equally as important as motion correction with DDG-PET for increasing SUV in DDG-PET/CT. Lesion detectability could be significantly improved when DDG-PET used equivalent counts to NG-PET, but only when combined with DDG-CT in DDG-PET/CT.
Collapse
Affiliation(s)
- M. Allan Thomas
- Department of Imaging Physics, UT MD Anderson Cancer Center, Houston, TX 77030
| | - Joseph G. Meier
- Department of Medical Physics, University of Wisconsin, Madison, WI 53726
| | - Osama R. Mawlawi
- Department of Imaging Physics, UT MD Anderson Cancer Center, Houston, TX 77030
| | - Peng Sun
- Department of Imaging Physics, UT MD Anderson Cancer Center, Houston, TX 77030
| | - Tinsu Pan
- Department of Imaging Physics, UT MD Anderson Cancer Center, Houston, TX 77030
| |
Collapse
|
14
|
Chandrashekar A, Handa A, Ward J, Grau V, Lee R. A deep learning pipeline to simulate fluorodeoxyglucose (FDG) uptake in head and neck cancers using non-contrast CT images without the administration of radioactive tracer. Insights Imaging 2022; 13:45. [PMID: 35286501 PMCID: PMC8921434 DOI: 10.1186/s13244-022-01161-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 01/15/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Objectives
Positron emission tomography (PET) imaging is a costly tracer-based imaging modality used to visualise abnormal metabolic activity for the management of malignancies. The objective of this study is to demonstrate that non-contrast CTs alone can be used to differentiate regions with different Fluorodeoxyglucose (FDG) uptake and simulate PET images to guide clinical management.
Methods
Paired FDG-PET and CT images (n = 298 patients) with diagnosed head and neck squamous cell carcinoma (HNSCC) were obtained from The cancer imaging archive. Random forest (RF) classification of CT-derived radiomic features was used to differentiate metabolically active (tumour) and inactive tissues (ex. thyroid tissue). Subsequently, a deep learning generative adversarial network (GAN) was trained for this CT to PET transformation task without tracer injection. The simulated PET images were evaluated for technical accuracy (PERCIST v.1 criteria) and their ability to predict clinical outcome [(1) locoregional recurrence, (2) distant metastasis and (3) patient survival].
Results
From 298 patients, 683 hot spots of elevated FDG uptake (elevated SUV, 6.03 ± 1.71) were identified. RF models of intensity-based CT-derived radiomic features were able to differentiate regions of negligible, low and elevated FDG uptake within and surrounding the tumour. Using the GAN-simulated PET image alone, we were able to predict clinical outcome to the same accuracy as that achieved using FDG-PET images.
Conclusion
This pipeline demonstrates a deep learning methodology to simulate PET images from CT images in HNSCC without the use of radioactive tracer. The same pipeline can be applied to other pathologies that require PET imaging.
Collapse
|
15
|
Rogasch JMM, Hofheinz F, van Heek L, Voltin CA, Boellaard R, Kobe C. Influences on PET Quantification and Interpretation. Diagnostics (Basel) 2022; 12:451. [PMID: 35204542 PMCID: PMC8871060 DOI: 10.3390/diagnostics12020451] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/06/2022] [Accepted: 02/08/2022] [Indexed: 01/21/2023] Open
Abstract
Various factors have been identified that influence quantitative accuracy and image interpretation in positron emission tomography (PET). Through the continuous introduction of new PET technology-both imaging hardware and reconstruction software-into clinical care, we now find ourselves in a transition period in which traditional and new technologies coexist. The effects on the clinical value of PET imaging and its interpretation in routine clinical practice require careful reevaluation. In this review, we provide a comprehensive summary of important factors influencing quantification and interpretation with a focus on recent developments in PET technology. Finally, we discuss the relationship between quantitative accuracy and subjective image interpretation.
Collapse
Affiliation(s)
- Julian M. M. Rogasch
- Department of Nuclear Medicine, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13353 Berlin, Germany;
- Berlin Institute of Health at Charité, Universitätsmedizin Berlin, 10178 Berlin, Germany
| | - Frank Hofheinz
- Institute of Radiopharmaceutical Cancer Research, Helmholtz Center Dresden-Rossendorf, 01328 Dresden, Germany;
| | - Lutz van Heek
- Department of Nuclear Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (L.v.H.); (C.-A.V.)
| | - Conrad-Amadeus Voltin
- Department of Nuclear Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (L.v.H.); (C.-A.V.)
| | - Ronald Boellaard
- Department of Radiology and Nuclear Medicine, Cancer Center Amsterdam (CCA), Amsterdam University Medical Center, Free University Amsterdam, 1081 HV Amsterdam, The Netherlands;
| | - Carsten Kobe
- Department of Nuclear Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (L.v.H.); (C.-A.V.)
| |
Collapse
|
16
|
Dynamic whole-body FDG-PET imaging for oncology studies. Clin Transl Imaging 2022. [DOI: 10.1007/s40336-022-00479-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Abstract
Introduction
Recent PET/CT systems have improved sensitivity and spatial resolution by smaller PET detectors and improved reconstruction software. In addition, continuous-bed-motion mode is now available in some PET systems for whole-body PET imaging. In this review, we describe the advantages of dynamic whole-body FDG-PET in oncology studies.
Methods
PET–CT imaging was obtained at 60 min after FDG administration. Dynamic whole-body imaging with continuous bed motion in 3 min each with flow motion was obtained over 400 oncology cases. For routine image analysis, these dynamic phases (usually four phases) were summed as early FDG imaging. The image quality of each serial dynamic imaging was visually evaluated. In addition, changes in FDG uptake were analyzed in consecutive dynamic imaging and also in early delayed (90 min after FDG administration) time point imaging (dual-time-point imaging; DTPI). Image interpretation was performed by consensus of two nuclear medicine physicians.
Result
All consecutive dynamic whole-body PET images of 3 min duration had acceptable image quality. Many of the areas with physiologically high FDG uptake had altered uptake on serial images. On the other hand, most of the benign and malignant lesions did not show visual changes on serial images. In the study of 60 patients with suspected colorectal cancer, unchanged uptake was noted in almost all regions with pathologically proved FDG uptake, indicating high sensitivity with high negative predictive value on both serial dynamic imaging and on DTPI. We proposed another application of serial dynamic imaging for minimizing motion artifacts for patients who may be likely to move during PET studies.
Discussion
Dynamic whole-body imaging has several advantages over the static imaging. Serial assessment of changes in FDG uptake over a short period of time is useful for distinguishing pathological from physiological uptake, especially in the abdominal regions. These dynamic PET studies may minimize the need for DPTI. In addition, continuous dynamic imaging has the potential to reduce motion artifacts in patients who are likely to move during PET imaging. Furthermore, kinetic analysis of the FDG distribution in tumor areas has a potential for precise tissue characterization.
Conclusion
Dynamic whole-body FDG-PET imaging permits assessment of serial FDG uptake change which is particularly useful for differentiation of pathological uptake from physiological uptake with high diagnostic accuracy. This imaging can be applied for minimizing motion artifacts. Wide clinical applications of such serial, dynamic whole-body PET imaging is expected in oncological studies in the near future.
Collapse
|
17
|
Mohammadi I, Castro IF, Rahmim A, Veloso JFCA. Motion in nuclear cardiology imaging: types, artifacts, detection and correction techniques. Phys Med Biol 2021; 67. [PMID: 34826826 DOI: 10.1088/1361-6560/ac3dc7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 11/26/2021] [Indexed: 11/12/2022]
Abstract
In this paper, the authors review the field of motion detection and correction in nuclear cardiology with single photon emission computed tomography (SPECT) and positron emission tomography (PET) imaging systems. We start with a brief overview of nuclear cardiology applications and description of SPECT and PET imaging systems, then explaining the different types of motion and their related artefacts. Moreover, we classify and describe various techniques for motion detection and correction, discussing their potential advantages including reference to metrics and tasks, particularly towards improvements in image quality and diagnostic performance. In addition, we emphasize limitations encountered in different motion detection and correction methods that may challenge routine clinical applications and diagnostic performance.
Collapse
Affiliation(s)
- Iraj Mohammadi
- Department of Physics, University of Aveiro, Aveiro, PORTUGAL
| | - I Filipe Castro
- i3n Physics Department, Universidade de Aveiro, Aveiro, PORTUGAL
| | - Arman Rahmim
- Radiology and Physics, The University of British Columbia, Vancouver, British Columbia, CANADA
| | | |
Collapse
|
18
|
Yamashita K, Miyaji N, Motegi K, Ito S, Terauchi T. [Effects of CT-based Attenuation Correction on PET Images Using Data-driven Respiratory Gating]. Nihon Hoshasen Gijutsu Gakkai Zasshi 2021; 77:1317-1324. [PMID: 34803112 DOI: 10.6009/jjrt.2021_jsrt_77.11.1317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
PURPOSE We applied deviceless, positron emission tomography/computed tomography(PET/CT) data-driven respiratory gating (DDG) to validate the effects of misalignment between PET and CT at various respiratory phases. METHODS A lung lesion was simulated using an NEMA IEC body phantom in which the background comprised hot spheres containing polystyrene foam beads. We acquired PET images as the phantom moved downwards and then stopped. Attenuation on computed tomography images acquired at the inspiratory, stationary, and expiratory phases was corrected after the phantom stopped moving. Normalized mean square error (NMSE), recovery coefficients (RCmax and RCmean) and volume were analyzed on DDG-PET images using CT-based attenuation correction. RESULTS The NMSE was closest to 0 in PET images corrected using the expiratory CT image. The RCmax was<1.0, and the RCmean was closest to 1.0 only in PET images corrected using the expiratory CT image. Volume was either underestimated or overestimated more according to the size of the spheres when the alignment of CT and PET images was greater. CONCLUSION We recommend using the expiratory but not the inspiratory phase when using DDG for PET/CT correction.
Collapse
Affiliation(s)
- Kosuke Yamashita
- Department of Nuclear Medicine, Cancer Institute Hospital of Japanese Foundation for Cancer Research.,Graduate School of Health Sciences, Kumamoto University
| | - Noriaki Miyaji
- Department of Nuclear Medicine, Cancer Institute Hospital of Japanese Foundation for Cancer Research
| | - Kazuki Motegi
- Department of Nuclear Medicine, Cancer Institute Hospital of Japanese Foundation for Cancer Research
| | - Shigeki Ito
- Faculty of Life Sciences, Kumamoto University
| | - Takashi Terauchi
- Department of Nuclear Medicine, Cancer Institute Hospital of Japanese Foundation for Cancer Research
| |
Collapse
|
19
|
Messerli M, Liberini V, Grünig H, Maurer A, Skawran S, Lohaus N, Husmann L, Orita E, Trinckauf J, Kaufmann PA, Huellner MW. Clinical evaluation of data-driven respiratory gating for PET/CT in an oncological cohort of 149 patients: impact on image quality and patient management. Br J Radiol 2021; 94:20201350. [PMID: 34520673 DOI: 10.1259/bjr.20201350] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVES To evaluate the impact of fully automatic motion correction by data-driven respiratory gating (DDG) on positron emission tomography (PET) image quality, lesion detection and patient management. MATERIALS AND METHODS A total of 149 patients undergoing PET/CT for cancer (re-)staging were retrospectively included. Patients underwent a PET/CT on a digital detector scanner and for every patient a PET data set where DDG was enabled (PETDDG) and as well as where DDG was not enabled (PETnonDDG) was reconstructed. All PET data sets were evaluated by two readers which rated the general image quality, motion effects and organ contours. Further, both readers reviewed all scans on a case-by-case basis and evaluated the impact of PETDDG on additional apparent lesion, change of report, and change of management. RESULTS In 85% (n = 126) of the patients, at least one bed position was acquired using DDG, resulting in mean scan time increase of 4:37 min per patient in the whole study cohort (n = 149). General image quality was not rated differently for PETnonDDG and PETDDG images (p = 1.000) while motion effects (i.e. indicating general blurring) was rated significantly lower in PETDDG images and organ contours, including liver and spleen, were rated significantly sharper using PETDDG as compared to PETnonDDG (all p < 0.001). In 27% of patients, PETDDG resulted in a change of the report and in a total of 12 cases (8%), PETDDG resulted in a change of further clinical management. CONCLUSION Deviceless DDG provided reliable fully automatic motion correction in clinical routine and increased lesion detectability and changed management in a considerable number of patients. ADVANCES IN KNOWLEDGE DDG enables PET/CT with respiratory gating to be used routinely in clinical practice without external gating equipment needed.
Collapse
Affiliation(s)
- Michael Messerli
- Department of Nuclear Medicine, University Hospital Zurich, Zurich, Switzerland.,University of Zurich, Zurich, Switzerland
| | - Virginia Liberini
- Department of Nuclear Medicine, University Hospital Zurich, Zurich, Switzerland
| | - Hannes Grünig
- Department of Nuclear Medicine, University Hospital Zurich, Zurich, Switzerland.,University of Zurich, Zurich, Switzerland
| | - Alexander Maurer
- Department of Nuclear Medicine, University Hospital Zurich, Zurich, Switzerland.,University of Zurich, Zurich, Switzerland
| | - Stephan Skawran
- Department of Nuclear Medicine, University Hospital Zurich, Zurich, Switzerland.,University of Zurich, Zurich, Switzerland
| | - Niklas Lohaus
- University of Zurich, Zurich, Switzerland.,Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, Zurich, Switzerland
| | - Lars Husmann
- Department of Nuclear Medicine, University Hospital Zurich, Zurich, Switzerland.,University of Zurich, Zurich, Switzerland
| | - Erika Orita
- Department of Nuclear Medicine, University Hospital Zurich, Zurich, Switzerland
| | - Josephine Trinckauf
- Department of Nuclear Medicine, University Hospital Zurich, Zurich, Switzerland
| | - Philipp A Kaufmann
- Department of Nuclear Medicine, University Hospital Zurich, Zurich, Switzerland.,University of Zurich, Zurich, Switzerland
| | - Martin W Huellner
- Department of Nuclear Medicine, University Hospital Zurich, Zurich, Switzerland.,University of Zurich, Zurich, Switzerland
| |
Collapse
|
20
|
Crivellaro C, Guerra L. Respiratory Gating and the Performance of PET/CT in Pulmonary Lesions. Curr Radiopharm 2021; 13:218-227. [PMID: 32183685 PMCID: PMC8206192 DOI: 10.2174/1874471013666200317144629] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 04/29/2019] [Accepted: 07/17/2019] [Indexed: 12/15/2022]
Abstract
Background Motion artifacts related to the patient’s breathing can be the cause of underestimation of the lesion uptake and can lead to missing of small lung lesions. The respiratory gating (RG) technology has demonstrated a significant increase in image quality. Objective The aim of this paper was to evaluate the advantages of RG technique on PET/CT performance in lung lesions. The impact of 4D-PET/CT on diagnosis (metabolic characterization), staging and re-staging lung cancer was also assessed, including its application for radiotherapy planning. Finally, new technologies for respiratory motion management were also discussed. Methods A comprehensive electronic search of the literature was performed by using Medline database (PubMed) searching “PET/CT”, “gated” and “lung”. Original articles, review articles, and editorials published in the last 10 years were selected, included and critically reviewed in order to select relevant articles. Results Many papers compared Standardized Uptake Value (SUV) in gated and ungated PET studies showing an increase in SUV of gated images, particularly for the small lesions located in medium and lower lung. In addition, other features as Metabolic Tumor Volume (MTV), Total Lesion Glycolysis (TLG) and textural-features presented differences when obtained from gated and ungated PET acquisitions. Besides the increase in quantification, gating techniques can determine an increase in the diagnostic accuracy of PET/CT. Gated PET/CT was evaluated for lung cancer staging, therapy response assessment and for radiation therapy planning. Conclusion New technologies able to track the motion of organs lesion directly from raw PET data, can reduce or definitively solve problems (i.e.: extended acquisition time, radiation exposure) currently limiting the use of gated PET/CT in clinical routine.
Collapse
Affiliation(s)
- Cinzia Crivellaro
- School of Medicine and Surgery - University of Milan - Bicocca, Milan, Italy
| | - Luca Guerra
- School of Medicine and Surgery - University of Milan - Bicocca, Milan, Italy,Nuclear Medicine Department, ASST- Monza, San Gerardo Hospital, Monza, Italy
| |
Collapse
|
21
|
Thomas MA, Pan T. Data-driven gated PET/CT: implications for lesion segmentation and quantitation. EJNMMI Phys 2021; 8:64. [PMID: 34453630 PMCID: PMC8403089 DOI: 10.1186/s40658-021-00411-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 08/16/2021] [Indexed: 12/27/2022] Open
Abstract
Background Data-driven gating (DDG) can improve PET quantitation and alleviate many issues with patient motion. However, misregistration between DDG-PET and CT may occur due to the distinct temporal resolutions of PET and CT and can be mitigated by DDG-CT. Here, the effects of misregistration and respiratory motion on PET quantitation and lesion segmentation were assessed with a new DDG-PET/CT method. Methods A low-dose cine-CT was acquired in misregistered regions to enable both average CT (ACT) and DDG-CT. The following were compared: (1) baseline PET/CT, (2) PET/ACT (attenuation correction, AC = ACT), (3) DDG-PET (AC = helical CT), and (4) DDG-PET/CT (AC = DDG-CT). For DDG-PET, end-expiration (EE) data were derived from 50% of the total PET data at 30% from end-inspiration. For DDG-CT, EE phase CT data were extracted from cine-CT data by lung Hounsfield unit (HU) value and body contour. A total of 91 lesions from 16 consecutive patients were assessed for changes in standard uptake value (SUV), lesion glycolysis (LG), lesion volume, centroid-to-centroid distance (CCD), and DICE coefficients. Results Relative to baseline PET/CT, median changes in SUVmax ± σ for all 91 lesions were 20 ± 43%, 26 ± 23%, and 66 ± 66%, respectively, for PET/ACT, DDG-PET, and DDG-PET/CT. Median changes in lesion volume were 0 ± 58%, − 36 ± 26%, and − 26 ± 40%. LG for individual lesions increased for PET/ACT and decreased for DDG-PET, but was not different for DDG-PET/CT. Changes in mean HU from baseline PET/CT were dramatic for most lesions in both PET/ACT and DDG-PET/CT, especially for lesions with mean HU < 0 at baseline. CCD and DICE were both affected more by motion correction with DDG-PET than improved registration with ACT or DDG-CT. Conclusion As misregistration becomes more prominent, the impact of motion correction with DDG-PET is diminished. The potential benefits of DDG-PET toward accurate lesion segmentation and quantitation could only be fully realized when combined with DDG-CT. These results impress upon the necessity of ensuring both misregistration and motion correction are accounted for together to optimize the clinical utility of PET/CT. Supplementary Information The online version contains supplementary material available at 10.1186/s40658-021-00411-5.
Collapse
Affiliation(s)
- M Allan Thomas
- Department of Imaging Physics, UT MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Tinsu Pan
- Department of Imaging Physics, UT MD Anderson Cancer Center, Houston, TX, 77030, USA.
| |
Collapse
|
22
|
Abstract
Hybrid FDG PET/CT plays a vital role in oncologic imaging and has been widely adopted for the staging and restaging of a variety of malignancies. Its diagnostic value in urogenital malignancies is less well-known, not at least because of the variable FDG avidity of these tumor entities, the sites of these tumors, and technical challenges associated with sequential imaging of CT and PET. PET/CT interpretation thus can be especially challenging and is associated with many pitfalls, which can lead to both false-positive and false-negative diagnoses as well as incorrect assessment of metabolic change following therapy. Currently, FDG PET/CT is not the standard of care for the initial diagnosis or staging of early-stage or low-risk urogenital cancers; however, it can help evaluate distant metastatic disease, response to therapy, and disease recurrence in high-risk patients. Knowledge of imaging features of tumor metabolic avidity and pitfalls is essential for accurate interpretation.
Collapse
Affiliation(s)
- Anil Vasireddi
- Department of Radiology, University of Pittsburgh Medical Center, UPMC Presbyterian Hospital, Pittsburgh, PA
| | - Nghi C Nguyen
- Department of Radiology, University of Pittsburgh Medical Center, UPMC Presbyterian Hospital, Pittsburgh, PA.
| |
Collapse
|
23
|
Driscoll B, Vines D, Shek T, Publicover J, Yeung I, Breen S, Jaffray D. 4D-CT Attenuation Correction in Respiratory-Gated PET for Hypoxia Imaging: Is It Really Beneficial? ACTA ACUST UNITED AC 2021; 6:241-249. [PMID: 32548302 PMCID: PMC7289254 DOI: 10.18383/j.tom.2019.00027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Previous literature has shown that 4D respiratory-gated positron emission tomography (PET) is beneficial for quantitative analysis and defining targets for boosting therapy. However the case for addition of a phase-matched 4D-computed tomography (CT) for attenuation correction (AC) is less clear. We seek to validate the use of 4D-CT for AC and investigate the impact of motion correction for low signal-to-background PET imaging of hypoxia using radiotracers such as FAZA and FMISO. A new insert for the Modus Medicals' QUASAR™ Programmable Respiratory Motion Phantom was developed in which a 3D-printed sphere was placed within the "lung" compartment while an additional compartment is added to simulate muscle/blood compartment required for hypoxia quantification. Experiments are performed at 4:1 or 2:1 signal-to-background ratio consistent with clinical FAZA and FMISO imaging. Motion blur was significant in terms of SUVmax, mean, and peak for motion ≥1 cm and could be significantly reduced (from 20% to 8% at 2-cm motion) for all 4D-PET-gated reconstructions. The effect of attenuation method on precision was significant (σ2 hCT-AC = 5.5%/4.7%/2.7% vs σ2 4D-CT-AC = 0.5%/0.6%/0.7% [max%/peak%/mean% variance]). The simulated hypoxic fraction also significantly decreased under conditions of 2-cm amplitude motion from 55% to 20% and was almost fully recovered (HF = 0.52 for phase-matched 4D-CT) using gated PET. 4D-gated PET is valuable under conditions of low radiotracer uptake found in hypoxia imaging. This work demonstrates the importance of using 4D-CT for AC when performing gated PET based on its significantly improved precision over helical CT.
Collapse
Affiliation(s)
- Brandon Driscoll
- Quantitative Imaging for Personalized Cancer Medicine Program-Techna Institute, University Health Network, Toronto, ON, Canada
| | - Douglass Vines
- Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, ON, Canada; and.,Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada
| | - Tina Shek
- Quantitative Imaging for Personalized Cancer Medicine Program-Techna Institute, University Health Network, Toronto, ON, Canada
| | - Julia Publicover
- Quantitative Imaging for Personalized Cancer Medicine Program-Techna Institute, University Health Network, Toronto, ON, Canada
| | - Ivan Yeung
- Quantitative Imaging for Personalized Cancer Medicine Program-Techna Institute, University Health Network, Toronto, ON, Canada.,Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, ON, Canada; and.,Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada
| | - Stephen Breen
- Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, ON, Canada; and.,Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada
| | - David Jaffray
- Quantitative Imaging for Personalized Cancer Medicine Program-Techna Institute, University Health Network, Toronto, ON, Canada.,Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, ON, Canada; and.,Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
24
|
A Respiratory Motion Estimation Method Based on Inertial Measurement Units for Gated Positron Emission Tomography. SENSORS 2021; 21:s21123983. [PMID: 34207864 PMCID: PMC8228885 DOI: 10.3390/s21123983] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/15/2021] [Accepted: 05/22/2021] [Indexed: 01/12/2023]
Abstract
We present a novel method for estimating respiratory motion using inertial measurement units (IMUs) based on microelectromechanical systems (MEMS) technology. As an application of the method we consider the amplitude gating of positron emission tomography (PET) imaging, and compare the method against a clinically used respiration motion estimation technique. The presented method can be used to detect respiratory cycles and estimate their lengths with state-of-the-art accuracy when compared to other IMU-based methods, and is the first based on commercial MEMS devices, which can estimate quantitatively both the magnitude and the phase of respiratory motion from the abdomen and chest regions. For the considered test group consisting of eight subjects with acute myocardial infarction, our method achieved the absolute breathing rate error per minute of 0.44 ± 0.23 1/min, and the absolute amplitude error of 0.24 ± 0.09 cm, when compared to the clinically used respiratory motion estimation technique. The presented method could be used to simplify the logistics related to respiratory motion estimation in PET imaging studies, and also to enable multi-position motion measurements for advanced organ motion estimation.
Collapse
|
25
|
Kyme AZ, Fulton RR. Motion estimation and correction in SPECT, PET and CT. Phys Med Biol 2021; 66. [PMID: 34102630 DOI: 10.1088/1361-6560/ac093b] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 06/08/2021] [Indexed: 11/11/2022]
Abstract
Patient motion impacts single photon emission computed tomography (SPECT), positron emission tomography (PET) and X-ray computed tomography (CT) by giving rise to projection data inconsistencies that can manifest as reconstruction artifacts, thereby degrading image quality and compromising accurate image interpretation and quantification. Methods to estimate and correct for patient motion in SPECT, PET and CT have attracted considerable research effort over several decades. The aims of this effort have been two-fold: to estimate relevant motion fields characterizing the various forms of voluntary and involuntary motion; and to apply these motion fields within a modified reconstruction framework to obtain motion-corrected images. The aims of this review are to outline the motion problem in medical imaging and to critically review published methods for estimating and correcting for the relevant motion fields in clinical and preclinical SPECT, PET and CT. Despite many similarities in how motion is handled between these modalities, utility and applications vary based on differences in temporal and spatial resolution. Technical feasibility has been demonstrated in each modality for both rigid and non-rigid motion, but clinical feasibility remains an important target. There is considerable scope for further developments in motion estimation and correction, and particularly in data-driven methods that will aid clinical utility. State-of-the-art machine learning methods may have a unique role to play in this context.
Collapse
Affiliation(s)
- Andre Z Kyme
- School of Biomedical Engineering, The University of Sydney, Sydney, New South Wales, AUSTRALIA
| | - Roger R Fulton
- Sydney School of Health Sciences, The University of Sydney, Sydney, New South Wales, AUSTRALIA
| |
Collapse
|
26
|
Xu H, Lv W, Zhang H, Ma J, Zhao P, Lu L. Evaluation and optimization of radiomics features stability to respiratory motion in 18 F-FDG 3D PET imaging. Med Phys 2021; 48:5165-5178. [PMID: 34085282 DOI: 10.1002/mp.15022] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/18/2021] [Accepted: 05/25/2021] [Indexed: 12/31/2022] Open
Abstract
PURPOSE To evaluate the impact of respiratory motion on radiomics features in 18 F-fluoro-2-deoxy-D-glucose three dimensional positron emission tomography (18 F-FDG 3D PET) imaging and optimize feature stability by combining preprocessing configurations and aggregation strategies. METHODS An in-house developed respiratory motion phantom was imaged in 3D PET scanner under nine respiratory patterns including one reference pattern. In total, 487 radiomics features were extracted for each respiratory pattern. Feature stability to respiratory motion was first evaluated by metrics of coefficient of variation (COV) and relative difference (RD) in a fixed preprocessing configuration. Further, one-way ANOVA and trend analysis were performed to evaluate the impact of preprocessing configuration (voxel size, discretization scheme) and aggregation strategy on feature stability. Finally, an optimization framework was proposed by selected feature-specific configurations with minimum COV value, and the diagnostic performance was validated in stable versus unstable features and fixed versus optimal features by a set of 46 patients with lung disease. RESULTS PET radiomics features were sensitive to respiratory motion, only 79/487 (16%) features were identified to be very stable in the fixed configuration. Preprocessing configuration and aggregation strategy had an impact on feature stability. For different voxel size, bin number, bin size and aggregation strategy, 188/487 (39%), 70/487 (15%), 148/487 (30%), and 38/95 (29%) features appeared significant changes in feature stability. The optimized configuration had the potential to improve feature stability compared to fixed configuration, with the COV decreased from 22% ±24% to 16% ±20%. Regarding the diagnostic performance, the stable and optimal configuration features outperformed the unstable and fixed configuration features, respectively (AUC 0.88, 0.87 vs. 0.83, 0.85). CONCLUSIONS Respiratory motion shows considerable impact on feature stability in 3D PET imaging, while optimizing preprocessing configuration may improve feature stability and diagnostic performance.
Collapse
Affiliation(s)
- Hui Xu
- School of Biomedical Engineering and Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, China.,Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou, China
| | - Wenbing Lv
- School of Biomedical Engineering and Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, China.,Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou, China
| | - Hongyan Zhang
- School of Biomedical Engineering and Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, China.,Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou, China
| | - Jianhua Ma
- School of Biomedical Engineering and Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, China.,Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou, China
| | - Peng Zhao
- National Innovation Center for Advanced Medical Devices, Shenzheng, China
| | - Lijun Lu
- School of Biomedical Engineering and Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, China.,Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou, China
| |
Collapse
|
27
|
Tsai YJ, Bousse A, Arridge S, Stearns CW, Hutton BF, Thielemans K. Penalized PET/CT Reconstruction Algorithms With Automatic Realignment for Anatomical Priors. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2021. [DOI: 10.1109/trpms.2020.3025540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
28
|
Kim JS, Park CR, Yoon SH, Lee JA, Kim TY, Yang HJ. Improvement of image quality using amplitude-based respiratory gating in PET-computed tomography scanning. Nucl Med Commun 2021; 42:553-565. [PMID: 33625179 DOI: 10.1097/mnm.0000000000001368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVES This study sought to provide data supporting the expanded clinical use of respiratory gating by assessing the diagnostic accuracy of breathing motion correction using amplitude-based respiratory gating. METHODS A respiratory movement tracking device was attached to a PET-computed tomography scanner, and images were obtained in respiratory gating mode using a motion phantom that was capable of sensing vertical motion. Specifically, after setting amplitude changes and intervals according to the movement cycle using a total of nine combinations of three waveforms and three amplitude ranges, respiratory motion-corrected images were reconstructed using the filtered back projection method. After defining areas of interest in the acquired images in the same image planes, statistical analyses were performed to compare differences in standardized uptake value (SUV), lesion volume, full width at half maximum (FWHM), signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR). RESULTS SUVmax increased by 89.9%, and lesion volume decreased by 27.9%. Full width at half maximum decreased by 53.9%, signal-to-noise ratio increased by 11% and contrast-to-noise ratio increased by 16.3%. Optimal results were obtained when using a rest waveform and 35% duty cycle, in which the change in amplitude in the respiratory phase signal was low, and a constant level of long breaths was maintained. CONCLUSIONS These results demonstrate that respiratory-gated PET-CT imaging can be used to accurately correct for SUV changes and image distortion caused by respiratory motion, thereby providing excellent imaging information and quality.
Collapse
Affiliation(s)
- Jung-Soo Kim
- Department of Radiological Technology, Dongnam Health University, Suwon
- Department of Biomedical Science, The Korea University, Sejong
| | - Chan-Rok Park
- Department of Biomedical Science, The Korea University, Sejong
- Department of Nuclear Medicine, Seoul National University Hospital, Seoul
| | - Seok-Hwan Yoon
- Department of Biomedical Science, The Korea University, Sejong
- Department of Nuclear Medicine, Seoul National University Hospital, Seoul
| | - Joo-Ah Lee
- Department of Biomedical Science, The Korea University, Sejong
- Department of Radiation Oncology, Catholic University Incheon St. Mary's Hospital, Incheon
| | - Tae-Yoon Kim
- Department of Radiation Oncology, Catholic University Incheon St. Mary's Hospital, Incheon
- Department of Radiation Oncology, National Cancer Center, Goyang
| | - Hyung-Jin Yang
- Department of Radiation Oncology, Catholic University Incheon St. Mary's Hospital, Incheon
- Department of Physics, The Korea University, Sejong, Korea
| |
Collapse
|
29
|
Prone position [ 18F]FDG PET/CT to reduce respiratory motion artefacts in the evaluation of lung nodules. Eur Radiol 2021; 31:4606-4614. [PMID: 33852046 DOI: 10.1007/s00330-021-07894-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/09/2021] [Accepted: 03/15/2021] [Indexed: 10/21/2022]
Abstract
OBJECTIVES 2-Deoxy-2-[18F]fluoro-D-glucose ([18F]FDG) positron-emission tomography/computed tomography (PET/CT) is widely used to evaluate lung nodules, although respiratory motion artefacts may occur. We investigated the value of prone position PET/CT (pPET/CT) in lung nodule evaluation compared with standard supine position PET/CT (sPET/CT). METHODS We retrospectively reviewed 28 consecutive patients (20 men; age, 65.6 ± 12.1 years) with a lung nodule (size, 16.8 ± 5.5 mm) located below the sub-carinal level who underwent [18F]FDG PET/CT in a standard supine position and additional prone position. The maximum standardised uptake value (SUVmax), metabolic tumour volume (MTV), difference of diaphragm position between PET and CT (DDP), Dice's similarity coefficient (DSC) and occurrence of mis-registration were analysed. The [18F]FDG uptake of 20 biopsy-confirmed (15 malignant) nodules was evaluated visually. RESULTS pPET/CT yielded a significantly higher SUVmax, lower MTV and shorter DDP than with sPET/CT (p = 0.043, 0.007 and 0.021, respectively). Mis-registration occurred in 53.6% of cases in sPET/CT and in 28.6% of cases in pPET/CT (p = 0.092). Among the 15 patients with mis-registration in sPET/CT, 10 patients (66.7%) did not show mis-registration in pPET/CT. DSC was higher in pPET/CT than in sPET/CT in 18 out of 28 patients (64.3%). In visual analysis, malignant nodules exhibited a higher [18F]FDG uptake positivity than benign nodules in pPET/CT (93.3% vs. 40.0%, p = 0.032) but not in sPET/CT (80.0% vs. 40.0%, p = 0.131). CONCLUSIONS pPET/CT reduces respiratory motion artefact and enables more-precise measurements of PET parameters. KEY POINTS • In prone position PET/CT, the decrease in the blurring effect caused by reduced respiratory motion resulted in a higher SUVmax and lower MTV in lung nodules than that with supine position PET/CT. • Prone position PET/CT was useful to interpret correctly malignant lung nodules as being positive in individual cases that had a negative result in supine position PET/CT.
Collapse
|
30
|
Sigfridsson J, Lindström E, Iyer V, Holstensson M, Velikyan I, Sundin A, Lubberink M. Prospective data-driven respiratory gating of [ 68Ga]Ga-DOTATOC PET/CT. EJNMMI Res 2021; 11:33. [PMID: 33788025 PMCID: PMC8012445 DOI: 10.1186/s13550-021-00775-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 03/19/2021] [Indexed: 12/14/2022] Open
Abstract
Aim The aim of this prospective study was to evaluate a data-driven gating software’s performance, in terms of identifying the respiratory signal, comparing [68Ga]Ga-DOTATOC and [18F]FDG examinations. In addition, for the [68Ga]Ga-DOTATOC examinations, tracer uptake quantitation and liver lesion detectability were assessed. Methods Twenty-four patients with confirmed or suspected neuroendocrine tumours underwent whole-body [68Ga]Ga-DOTATOC PET/CT examinations. Prospective DDG was applied on all bed positions and respiratory motion correction was triggered automatically when the detected respiratory signal exceeded a certain threshold (R value ≥ 15), at which point the scan time for that bed position was doubled. These bed positions were reconstructed with quiescent period gating (QPG), retaining 50% of the total coincidences. A respiratory signal evaluation regarding the software’s efficacy in detecting respiratory motion for [68Ga]Ga-DOTATOC was conducted and compared to [18F]FDG data. Measurements of SUVmax, SUVmean, and tumour volume were performed on [68Ga]Ga-DOTATOC PET and compared between gated and non-gated images. Results The threshold of R ≥ 15 was exceeded and gating triggered on mean 2.1 bed positions per examination for [68Ga]Ga-DOTATOC as compared to 1.4 for [18F]FDG. In total, 34 tumours were evaluated in a quantitative analysis. An increase of 25.3% and 28.1%, respectively, for SUVmax (P < 0.0001) and SUVmean (P < 0.0001), and decrease of 21.1% in tumour volume (P < 0.0001) was found when DDG was applied. Conclusions High respiratory signal was exclusively detected in bed positions where respiratory motion was expected, indicating reliable performance of the DDG software on [68Ga]Ga-DOTATOC PET/CT. DDG yielded significantly higher SUVmax and SUVmean values and smaller tumour volumes, as compared to non-gated images.
Collapse
Affiliation(s)
- Jonathan Sigfridsson
- PET Centre, Uppsala University Hospital, Uppsala, Sweden. .,Nuclear Medicine and PET, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden.
| | - Elin Lindström
- Medical Physics, Uppsala University Hospital, Uppsala, Sweden.,Nuclear Medicine and PET, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Victor Iyer
- PET Centre, Uppsala University Hospital, Uppsala, Sweden.,Nuclear Medicine and PET, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Maria Holstensson
- Medical Radiation Physics and Nuclear Medicine, Karolinska University Hospital, Huddinge, Stockholm, Sweden.,Department of Clinical Science, Intervention and Technology (CLINTEC), Division of Functional Imaging and Technology, Karolinska Institute, Stockholm, Sweden
| | - Irina Velikyan
- PET Centre, Uppsala University Hospital, Uppsala, Sweden.,Nuclear Medicine and PET, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Anders Sundin
- PET Centre, Uppsala University Hospital, Uppsala, Sweden.,Nuclear Medicine and PET, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Mark Lubberink
- Medical Physics, Uppsala University Hospital, Uppsala, Sweden.,Nuclear Medicine and PET, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
31
|
SPECT and SPECT/CT. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00008-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
32
|
Bentourkia M. Quantitative Analysis in PET Imaging. BASIC SCIENCES OF NUCLEAR MEDICINE 2021:551-571. [DOI: 10.1007/978-3-030-65245-6_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
33
|
Rehouma H, Noumeir R, Essouri S, Jouvet P. Advancements in Methods and Camera-Based Sensors for the Quantification of Respiration. SENSORS (BASEL, SWITZERLAND) 2020; 20:E7252. [PMID: 33348827 PMCID: PMC7766256 DOI: 10.3390/s20247252] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 12/09/2020] [Accepted: 12/15/2020] [Indexed: 01/22/2023]
Abstract
Assessment of respiratory function allows early detection of potential disorders in the respiratory system and provides useful information for medical management. There is a wide range of applications for breathing assessment, from measurement systems in a clinical environment to applications involving athletes. Many studies on pulmonary function testing systems and breath monitoring have been conducted over the past few decades, and their results have the potential to broadly impact clinical practice. However, most of these works require physical contact with the patient to produce accurate and reliable measures of the respiratory function. There is still a significant shortcoming of non-contact measuring systems in their ability to fit into the clinical environment. The purpose of this paper is to provide a review of the current advances and systems in respiratory function assessment, particularly camera-based systems. A classification of the applicable research works is presented according to their techniques and recorded/quantified respiration parameters. In addition, the current solutions are discussed with regards to their direct applicability in different settings, such as clinical or home settings, highlighting their specific strengths and limitations in the different environments.
Collapse
Affiliation(s)
- Haythem Rehouma
- École de Technologie Supérieure, Montreal, QC H3T 1C5, Canada;
| | - Rita Noumeir
- École de Technologie Supérieure, Montreal, QC H3T 1C5, Canada;
| | - Sandrine Essouri
- CHU Sainte-Justine, Montreal, QC H3T 1C5, Canada; (S.E.); (P.J.)
| | - Philippe Jouvet
- CHU Sainte-Justine, Montreal, QC H3T 1C5, Canada; (S.E.); (P.J.)
| |
Collapse
|
34
|
Cheng L, Tavakoli M. COVID-19 Pandemic Spurs Medical Telerobotic Systems: A Survey of Applications Requiring Physiological Organ Motion Compensation. Front Robot AI 2020; 7:594673. [PMID: 33501355 PMCID: PMC7805782 DOI: 10.3389/frobt.2020.594673] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 10/14/2020] [Indexed: 12/25/2022] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has resulted in public health interventions such as physical distancing restrictions to limit the spread and transmission of the novel coronavirus, causing significant effects on the delivery of physical healthcare procedures worldwide. The unprecedented pandemic spurs strong demand for intelligent robotic systems in healthcare. In particular, medical telerobotic systems can play a positive role in the provision of telemedicine to both COVID-19 and non-COVID-19 patients. Different from typical studies on medical teleoperation that consider problems such as time delay and information loss in long-distance communication, this survey addresses the consequences of physiological organ motion when using teleoperation systems to create physical distancing between clinicians and patients in the COVID-19 era. We focus on the control-theoretic approaches that have been developed to address inherent robot control issues associated with organ motion. The state-of-the-art telerobotic systems and their applications in COVID-19 healthcare delivery are reviewed, and possible future directions are outlined.
Collapse
Affiliation(s)
- Lingbo Cheng
- College of Control Science and Engineering, Zhejiang University, Hangzhou, China
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB, Canada
| | - Mahdi Tavakoli
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
35
|
Estimation of optimal number of gates in dual gated 18F-FDG cardiac PET. Sci Rep 2020; 10:19362. [PMID: 33168859 PMCID: PMC7653943 DOI: 10.1038/s41598-020-75613-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 10/06/2020] [Indexed: 11/10/2022] Open
Abstract
Gating of positron emission tomography images has been shown to reduce the motion effects, especially when imaging small targets, such as coronary plaques. However, the selection of optimal number of gates for gating remains a challenge. Selecting too high number of gates results in a loss of signal-to-noise ratio, while too low number of gates does remove only part of the motion. Here, we introduce a respiratory-cardiac motion model to determine the optimal number of respiratory and cardiac gates. We evaluate the model using a realistic heart phantom and data from 12 cardiac patients (47–77 years, 64.5 on average). To demonstrate the benefits of our model, we compared it with an existing respiratory model. Based on our study, the optimal number of gates was determined to be five respiratory and four cardiac gates in the phantom and patient studies. In the phantom study, the diameter of the most active hot spot was reduced by 24% in the dual gated images compared to non-gated images. In the patient study, the thickness of myocardium wall was reduced on average by 21%. In conclusion, the motion model can be used for estimating the optimal number of respiratory and cardiac gates for dual gating.
Collapse
|
36
|
|
37
|
Tirindelli M, Victorova M, Esteban J, Kim ST, Navarro-Alarcon D, Zheng YP, Navab N. Force-Ultrasound Fusion: Bringing Spine Robotic-US to the Next “Level”. IEEE Robot Autom Lett 2020. [DOI: 10.1109/lra.2020.3009069] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
38
|
Beyer T, Bidaut L, Dickson J, Kachelriess M, Kiessling F, Leitgeb R, Ma J, Shiyam Sundar LK, Theek B, Mawlawi O. What scans we will read: imaging instrumentation trends in clinical oncology. Cancer Imaging 2020; 20:38. [PMID: 32517801 PMCID: PMC7285725 DOI: 10.1186/s40644-020-00312-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 04/17/2020] [Indexed: 12/16/2022] Open
Abstract
Oncological diseases account for a significant portion of the burden on public healthcare systems with associated costs driven primarily by complex and long-lasting therapies. Through the visualization of patient-specific morphology and functional-molecular pathways, cancerous tissue can be detected and characterized non-invasively, so as to provide referring oncologists with essential information to support therapy management decisions. Following the onset of stand-alone anatomical and functional imaging, we witness a push towards integrating molecular image information through various methods, including anato-metabolic imaging (e.g., PET/CT), advanced MRI, optical or ultrasound imaging.This perspective paper highlights a number of key technological and methodological advances in imaging instrumentation related to anatomical, functional, molecular medicine and hybrid imaging, that is understood as the hardware-based combination of complementary anatomical and molecular imaging. These include novel detector technologies for ionizing radiation used in CT and nuclear medicine imaging, and novel system developments in MRI and optical as well as opto-acoustic imaging. We will also highlight new data processing methods for improved non-invasive tissue characterization. Following a general introduction to the role of imaging in oncology patient management we introduce imaging methods with well-defined clinical applications and potential for clinical translation. For each modality, we report first on the status quo and, then point to perceived technological and methodological advances in a subsequent status go section. Considering the breadth and dynamics of these developments, this perspective ends with a critical reflection on where the authors, with the majority of them being imaging experts with a background in physics and engineering, believe imaging methods will be in a few years from now.Overall, methodological and technological medical imaging advances are geared towards increased image contrast, the derivation of reproducible quantitative parameters, an increase in volume sensitivity and a reduction in overall examination time. To ensure full translation to the clinic, this progress in technologies and instrumentation is complemented by advances in relevant acquisition and image-processing protocols and improved data analysis. To this end, we should accept diagnostic images as "data", and - through the wider adoption of advanced analysis, including machine learning approaches and a "big data" concept - move to the next stage of non-invasive tumour phenotyping. The scans we will be reading in 10 years from now will likely be composed of highly diverse multi-dimensional data from multiple sources, which mandate the use of advanced and interactive visualization and analysis platforms powered by Artificial Intelligence (AI) for real-time data handling by cross-specialty clinical experts with a domain knowledge that will need to go beyond that of plain imaging.
Collapse
Affiliation(s)
- Thomas Beyer
- QIMP Team, Centre for Medical Physics and Biomedical Engineering, Medical University Vienna, Währinger Gürtel 18-20/4L, 1090, Vienna, Austria.
| | - Luc Bidaut
- College of Science, University of Lincoln, Lincoln, UK
| | - John Dickson
- Institute of Nuclear Medicine, University College London Hospital, London, UK
| | - Marc Kachelriess
- Division of X-ray imaging and CT, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, DE, Germany
| | - Fabian Kiessling
- Institute for Experimental Molecular Imaging, University Clinic and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstrasse 20, 52074, Aachen, DE, Germany
- Fraunhofer Institute for Digital Medicine MEVIS, Am Fallturm 1, 28359, Bremen, DE, Germany
| | - Rainer Leitgeb
- Centre for Medical Physics and Biomedical Engineering, Medical University Vienna, Vienna, AT, Austria
| | - Jingfei Ma
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Lalith Kumar Shiyam Sundar
- QIMP Team, Centre for Medical Physics and Biomedical Engineering, Medical University Vienna, Währinger Gürtel 18-20/4L, 1090, Vienna, Austria
| | - Benjamin Theek
- Institute for Experimental Molecular Imaging, University Clinic and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstrasse 20, 52074, Aachen, DE, Germany
- Fraunhofer Institute for Digital Medicine MEVIS, Am Fallturm 1, 28359, Bremen, DE, Germany
| | - Osama Mawlawi
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
39
|
Shahzadi I, Siddiqui MF, Aslam I, Omer H. Respiratory motion compensation using data binning in dynamic contrast enhanced golden-angle radial MRI. Magn Reson Imaging 2020; 70:115-125. [PMID: 32360531 DOI: 10.1016/j.mri.2020.03.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 02/12/2020] [Accepted: 03/31/2020] [Indexed: 11/16/2022]
Abstract
GRASP (Golden-Angle Radial Sparse Parallel MRI) is a data acquisition and reconstruction technique that combines parallel imaging and golden-angle radial sampling. The continuously acquired free breathing Dynamic Contrast Enhanced (DCE) golden-angle radial MRI data of liver and abdomen has artifacts due to respiratory motion, resulting in low vessel-tissue contrast that makes GRASP reconstructed images less suitable for diagnosis. In this paper, DCE golden-angle radial MRI data of abdomen and liver perfusion is sorted into different motion states using the self-gating property of radial acquisition and then reconstructed using GRASP. Three methods of amplitude-based data binning namely uniform binning, adaptive binning and optimal binning are applied on the DCE golden-angle radial data to extract different motion states and a comparison is performed with the conventional GRASP reconstruction. Also, a comparison among the amplitude-based data binning techniques is performed and benefits of each of these binning techniques are discussed from a clinical perspective. The image quality assessment in terms of hepatic vessel clarity, liver edge sharpness, contrast enhancement clarity and streaking artifacts is performed by a certified radiologist. The results show that DCE golden-angle radial trajectories benefit from all the three types of amplitude-based data binning methods providing improved reconstruction results. The choice of binning technique depends upon the clinical application e.g. uniform and adaptive binning are helpful for a detailed analysis of lesion characteristic and contrast enhancement in different motion states while optimal binning can be used when clinical analysis requires a single image per contrast enhancement phase with no motion blurring artifacts.
Collapse
Affiliation(s)
- Iram Shahzadi
- Medical Image Processing Research Group (MIPRG), Department of Electrical and Computer Engineering, COMSATS University Islamabad, Islamabad 45550, Pakistan
| | - Muhammad Faisal Siddiqui
- Medical Image Processing Research Group (MIPRG), Department of Electrical and Computer Engineering, COMSATS University Islamabad, Islamabad 45550, Pakistan.
| | - Ibtisam Aslam
- Department of Radiology & Medical Informatics, Hospital University of Geneva, Geneva, Switzerland
| | - Hammad Omer
- Medical Image Processing Research Group (MIPRG), Department of Electrical and Computer Engineering, COMSATS University Islamabad, Islamabad 45550, Pakistan
| |
Collapse
|
40
|
Walker MD, Morgan AJ, Bradley KM, McGowan DR. Data-Driven Respiratory Gating Outperforms Device-Based Gating for Clinical 18F-FDG PET/CT. J Nucl Med 2020; 61:1678-1683. [PMID: 32245898 DOI: 10.2967/jnumed.120.242248] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 03/16/2020] [Indexed: 11/16/2022] Open
Abstract
A data-driven method for respiratory gating in PET has recently been commercially developed. We sought to compare the performance of the algorithm with an external, device-based system for oncologic 18F-FDG PET/CT imaging. Methods: In total, 144 whole-body 18F-FDG PET/CT examinations were acquired, with a respiratory gating waveform recorded by an external, device-based respiratory gating system. In each examination, 2 of the bed positions covering the liver and lung bases were acquired with a duration of 6 min. Quiescent-period gating retaining approximately 50% of coincidences was then able to produce images with an effective duration of 3 min for these 2 bed positions, matching the other bed positions. For each examination, 4 reconstructions were performed and compared: data-driven gating (DDG) (we use the term DDG-retro to distinguish that we did not use the real-time R-threshold-based application of DDG that is available within the manufacturer's product), external device-based gating (real-time position management (RPM)-gated), no gating but using only the first 3 min of data (ungated-matched), and no gating retaining all coincidences (ungated-full). Lesions in the images were quantified and image quality scored by a radiologist who was masked to the method of data processing. Results: Compared with the other reconstruction options, DDG-retro increased the SUVmax and decreased the threshold-defined lesion volume. Compared with RPM-gated, DDG-retro gave an average increase in SUVmax of 0.66 ± 0.1 g/mL (n = 87, P < 0.0005). Although the results from the masked image evaluation were most commonly equivalent, DDG-retro was preferred over RPM-gated in 13% of examinations, whereas the opposite occurred in just 2% of examinations. This was a significant preference for DDG-retro (P = 0.008, n = 121). Liver lesions were identified in 23 examinations. Considering this subset of data, DDG-retro was ranked superior to ungated-full in 6 of 23 (26%) cases. Gated reconstruction using the external device failed in 16% of examinations, whereas DDG-retro always provided a clinically acceptable image. Conclusion: In this clinical evaluation, DDG-retro provided performance superior to that of the external device-based system. For most examinations the performance was equivalent, but DDG-retro had superior performance in 13% of examinations, leading to a significant preference overall.
Collapse
Affiliation(s)
- Matthew D Walker
- Radiation Physics and Protection, Oxford University Hospitals NHS FT, Oxford, United Kingdom
| | - Andrew J Morgan
- Radiation Physics and Protection, Oxford University Hospitals NHS FT, Oxford, United Kingdom
| | - Kevin M Bradley
- Department of Radiology, Churchill Hospital, Oxford, United Kingdom.,Wales Research and Diagnostic PET Imaging Centre, Cardiff University, Cardiff, United Kingdom; and
| | - Daniel R McGowan
- Radiation Physics and Protection, Oxford University Hospitals NHS FT, Oxford, United Kingdom.,Department of Oncology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
41
|
Zhang D, Pretorius PH, Ghaly M, Zhang Q, King MA, Mok GSP. Evaluation of different respiratory gating schemes for cardiac SPECT. J Nucl Cardiol 2020; 27:634-647. [PMID: 30088195 PMCID: PMC11409049 DOI: 10.1007/s12350-018-1392-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 07/17/2018] [Indexed: 11/26/2022]
Abstract
BACKGROUND Respiratory gating reduces motion blurring in cardiac SPECT. Here we aim to evaluate the performance of three respiratory gating strategies using a population of digital phantoms with known truth and clinical data. METHODS We analytically simulated 60 projections for 10 XCAT phantoms with 99mTc-sestamibi distributions using three gating schemes: equal amplitude gating (AG), equal count gating (CG), and equal time gating (TG). Clinical list-mode data for 10 patients who underwent 99mTc-sestamibi scans were also processed using the 3 gating schemes. Reconstructed images in each gate were registered to a reference gate, averaged and reoriented to generate the polar plots. For simulations, image noise, relative difference (RD) of averaged count for each of the 17 segment, and relative defect size difference (RSD) were analyzed. For clinical data, image intensity profile and FWHM were measured across the left ventricle wall. RESULTS For simulations, AG and CG methods showed significantly lower RD and RSD compared to TG, while noise variation was more non-uniform through different gates for AG. In the clinical study, AG and CG had smaller FWHM than TG. CONCLUSIONS AG and CG methods show better performance for motion reduction and are recommended for clinical respiratory gating SPECT implementation.
Collapse
Affiliation(s)
- Duo Zhang
- Biomedical Imaging Laboratory (BIG), Department of Electrical and Computer Engineering, Faculty of Science and Technology, University of Macau, Taipa, Macau SAR, China
- Department of Radiology, University of Massachusetts Medical School, Worcester, USA
| | - P Hendrik Pretorius
- Department of Radiology, University of Massachusetts Medical School, Worcester, USA
| | - Michael Ghaly
- The Russell H Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD, USA
- Radiopharmaceutical Imaging and Dosimetry (RAPID), LLC, Baltimore, MD, USA
| | - Qi Zhang
- Biomedical Imaging Laboratory (BIG), Department of Electrical and Computer Engineering, Faculty of Science and Technology, University of Macau, Taipa, Macau SAR, China
| | - Michael A King
- Department of Radiology, University of Massachusetts Medical School, Worcester, USA
| | - Greta S P Mok
- Biomedical Imaging Laboratory (BIG), Department of Electrical and Computer Engineering, Faculty of Science and Technology, University of Macau, Taipa, Macau SAR, China.
- Department of Radiology, University of Massachusetts Medical School, Worcester, USA.
- Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China.
| |
Collapse
|
42
|
Filice A, Casali M, Ciammella P, Galaverni M, Fioroni F, Iotti C, Versari A. Radiotherapy Planning and Molecular Imaging in Lung Cancer. Curr Radiopharm 2020; 13:204-217. [PMID: 32186275 PMCID: PMC8206193 DOI: 10.2174/1874471013666200318144154] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 03/11/2019] [Accepted: 11/11/2019] [Indexed: 12/24/2022]
Abstract
INTRODUCTION In patients suitable for radical chemoradiotherapy for lung cancer, 18F-FDGPET/ CT is a proposed management to improve the accuracy of high dose radiotherapy. However, there is a high rate of locoregional failure in patients with locally advanced non-small cell lung cancer (NSCLC), probably due to the fact that standard dosing may not be effective in all patients. The aim of the present review was to address some criticisms associated with the radiotherapy image-guided in NSCLC. MATERIALS AND METHODS A systematic literature search was conducted. Only published articles that met the following criteria were included: articles, only original papers, radiopharmaceutical ([18F]FDG and any tracer other than [18F]FDG), target, only specific for lung cancer radiotherapy planning, and experimental design (eventually "in vitro" studies were excluded). Peer-reviewed indexed journals, regardless of publication status (published, ahead of print, in press, etc.) were included. Reviews, case reports, abstracts, editorials, poster presentations, and publications in languages other than English were excluded. The decision to include or exclude an article was made by consensus and any disagreement was resolved through discussion. RESULTS Hundred eligible full-text articles were assessed. Diverse information is now available in the literature about the role of FDG and new alternative radiopharmaceuticals for the planning of radiotherapy in NSCLC. In particular, the role of alternative technologies for the segmentation of FDG uptake is essential, although indeterminate for RT planning. The pros and cons of the available techniques have been extensively reported. CONCLUSION PET/CT has a central place in the planning of radiotherapy for lung cancer and, in particular, for NSCLC assuming a substantial role in the delineation of tumor volume. The development of new radiopharmaceuticals can help overcome the problems related to the disadvantage of FDG to accumulate also in activated inflammatory cells, thus improving tumor characterization and providing new prognostic biomarkers.
Collapse
Affiliation(s)
- Angelina Filice
- Address correspondence to this author at the Nuclear Medicine Unit, Azienda Unità Sanitaria Locale, Istituto di Ricovero e Cura a Carattere Scientifico, Reggio Emilia, Italy; E-mail:
| | | | | | | | | | | | | |
Collapse
|
43
|
Laudicella R, Baratto L, Minutoli F, Baldari S, Iagaru A. Malignant Cutaneous Melanoma: Updates in PET Imaging. Curr Radiopharm 2020; 13:14-23. [PMID: 31749439 DOI: 10.2174/1874471012666191015095550] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/20/2019] [Accepted: 07/17/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND Cutaneous malignant melanoma is a neoplasm whose incidence and mortality are dramatically increasing. 18F-FDG PET/CT gained clinical acceptance over the past 2 decades in the evaluation of several glucose-avid neoplasms, including malignant melanoma, particularly for the assessment for distant metastases, recurrence and response to therapy. OBJECTIVE To describe the advancements of nuclear medicine for imaging melanoma with particular attention to 18F-FDG-PET and its current state-of-the-art technical innovations. METHODS A comprehensive search strategy was used based on SCOPUS and PubMed databases. From all studies published in English, we selected the articles that evaluated the technological insights of 18FFDG- PET in the assessment of melanoma. RESULTS State-of-the-art silicon photomultipliers based detectors ("digital") PET/CT scanners are nowadays more common, showing technical innovations that may have beneficial implications for patients with melanoma. Steady improvements in detectors design and architecture, as well as the implementation of both software and hardware technology (i.e., TOF, point spread function, etc.), resulted in significant improvements in PET image quality while reducing radiotracer dose and scanning time. CONCLUSION Recently introduced digital PET detector technology in PET/CT and PET/MRI yields higher intrinsic system sensitivity compared with the latest generation analog technology, enabling the detection of very small lesions with potential impact on disease outcome.
Collapse
Affiliation(s)
- Riccardo Laudicella
- Department of Biomedical and Dental Sciences and Morpho-Functional Imaging, Nuclear Medicine Unit, University of Messina, Messina ME, Italy
| | - Lucia Baratto
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Stanford University, United States
| | - Fabio Minutoli
- Department of Biomedical and Dental Sciences and Morpho-Functional Imaging, Nuclear Medicine Unit, University of Messina, Messina ME, Italy
| | - Sergio Baldari
- Department of Biomedical and Dental Sciences and Morpho-Functional Imaging, Nuclear Medicine Unit, University of Messina, Messina ME, Italy
| | - Andrei Iagaru
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Stanford University, United States
| |
Collapse
|
44
|
Das SK, McGurk R, Miften M, Mutic S, Bowsher J, Bayouth J, Erdi Y, Mawlawi O, Boellaard R, Bowen SR, Xing L, Bradley J, Schoder H, Yin FF, Sullivan DC, Kinahan P. Task Group 174 Report: Utilization of [ 18 F]Fluorodeoxyglucose Positron Emission Tomography ([ 18 F]FDG-PET) in Radiation Therapy. Med Phys 2019; 46:e706-e725. [PMID: 31230358 DOI: 10.1002/mp.13676] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 04/30/2019] [Accepted: 06/06/2019] [Indexed: 02/03/2023] Open
Abstract
The use of positron emission tomography (PET) in radiation therapy (RT) is rapidly increasing in the areas of staging, segmentation, treatment planning, and response assessment. The most common radiotracer is 18 F-fluorodeoxyglucose ([18 F]FDG), a glucose analog with demonstrated efficacy in cancer diagnosis and staging. However, diagnosis and RT planning are different endeavors with unique requirements, and very little literature is available for guiding physicists and clinicians in the utilization of [18 F]FDG-PET in RT. The two goals of this report are to educate and provide recommendations. The report provides background and education on current PET imaging systems, PET tracers, intensity quantification, and current utilization in RT (staging, segmentation, image registration, treatment planning, and therapy response assessment). Recommendations are provided on acceptance testing, annual and monthly quality assurance, scanning protocols to ensure consistency between interpatient scans and intrapatient longitudinal scans, reporting of patient and scan parameters in literature, requirements for incorporation of [18 F]FDG-PET in treatment planning systems, and image registration. The recommendations provided here are minimum requirements and are not meant to cover all aspects of the use of [18 F]FDG-PET for RT.
Collapse
Affiliation(s)
- Shiva K Das
- Department of Radiation Oncology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Ross McGurk
- Department of Radiation Oncology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Moyed Miften
- Department of Radiation Oncology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Sasa Mutic
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - James Bowsher
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, USA
| | - John Bayouth
- Human Oncology, University of Wisconsin, Madison, WI, USA
| | - Yusuf Erdi
- Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Osama Mawlawi
- Department of Imaging Physics, University of Texas, M D Anderson Cancer Center, Houston, TX, USA
| | - Ronald Boellaard
- Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands
| | - Stephen R Bowen
- Department of Radiation Oncology, University of Washington, Seattle, WA, USA
| | - Lei Xing
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA
| | - Jeffrey Bradley
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Heiko Schoder
- Molecular Imaging and Therapy Service, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Fang-Fang Yin
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, USA
| | - Daniel C Sullivan
- Department of Radiology, Duke University School of Medicine, Durham, NC, USA
| | - Paul Kinahan
- Department of Radiology, University of Washington, Seattle, WA, USA
| |
Collapse
|
45
|
Niebler S, Schömer E, Tjaden H, Schwanecke U, Schulze R. Projection‐based improvement of 3D reconstructions from motion‐impaired dental cone beam CT data. Med Phys 2019; 46:4470-4480. [DOI: 10.1002/mp.13731] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 07/02/2019] [Accepted: 07/09/2019] [Indexed: 11/07/2022] Open
Affiliation(s)
- Stefan Niebler
- Institute of Computer Science Johannes Gutenberg University 55099Mainz Germany
| | - Elmar Schömer
- Institute of Computer Science Johannes Gutenberg University 55099Mainz Germany
| | - Henning Tjaden
- Computer Vision & Mixed Reality Group RheinMain University of Applied Sciences 65195Wiesbaden Rüsselsheim Germany
| | - Ulrich Schwanecke
- Computer Vision & Mixed Reality Group RheinMain University of Applied Sciences 65195Wiesbaden Rüsselsheim Germany
| | - Ralf Schulze
- Department of Oral and Maxillofacial Surgery University Medical Center of the Johannes Gutenberg University 55131Mainz Germany
| |
Collapse
|
46
|
Chowdhury SR, Dutta J. Higher-order singular value decomposition-based lung parcellation for breathing motion management. J Med Imaging (Bellingham) 2019; 6:024004. [PMID: 31065568 DOI: 10.1117/1.jmi.6.2.024004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 04/04/2019] [Indexed: 11/14/2022] Open
Abstract
Positron emission tomography (PET) imaging of the lungs is confounded by respiratory motion-induced blurring artifacts that degrade quantitative accuracy. Gating and motion-compensated image reconstruction are frequently used to correct these motion artifacts in PET. In the absence of voxel-by-voxel deformation measures, surrogate signals from external markers are used to track internal motion and generate gated PET images. The objective of our work is to develop a group-level parcellation framework for the lungs to guide the placement of markers depending on the location of the internal target region. We present a data-driven framework based on higher-order singular value decomposition (HOSVD) of deformation tensors that enables identification of synchronous areas inside the torso and on the skin surface. Four-dimensional (4-D) magnetic resonance (MR) imaging based on a specialized radial pulse sequence with a one-dimensional slice-projection navigator was used for motion capture under free-breathing conditions. The deformation tensors were computed by nonrigidly registering the gated MR images. Group-level motion signatures obtained via HOSVD were used to cluster the voxels both inside the volume and on the surface. To characterize the parcellation result, we computed correlation measures across the different regions of interest (ROIs). To assess the robustness of the parcellation technique, leave-one-out cross-validation was performed over the subject cohort, and the dependence of the result on varying numbers of gates and singular value thresholds was examined. Overall, the parcellation results were largely consistent across these test cases with Jaccard indices reflecting high degrees of overlap. Finally, a PET simulation study was performed which showed that, depending on the location of the lesion, the selection of a synchronous ROI may lead to noticeable gains in the recovery coefficient. Accurate quantitative interpretation of PET images is important for lung cancer management. Therefore, a guided motion monitoring approach is of utmost importance in the context of pulmonary PET imaging.
Collapse
Affiliation(s)
- Samadrita Roy Chowdhury
- University of Massachusetts Lowell, Department of Electrical and Computer Engineering, Lowell, Massachusetts, United States
| | - Joyita Dutta
- University of Massachusetts Lowell, Department of Electrical and Computer Engineering, Lowell, Massachusetts, United States.,Massachusetts General Hospital and Harvard Medical School, Gordon Center for Medical Imaging, Boston, Massachusetts, United States
| |
Collapse
|
47
|
Demer LL, Tintut Y, Nguyen KL, Hsiai T, Lee JT. Rigor and Reproducibility in Analysis of Vascular Calcification. Circ Res 2019; 120:1240-1242. [PMID: 28408452 DOI: 10.1161/circresaha.116.310326] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Linda L Demer
- From the Department of Medicine (L.L.D., Y.T., K.L.N., T.H.), Department of Physiology (L.L.D., Y.T.), Department of Bioengineering (L.L.D., T.H.), Department of Orthopaedic Surgery (Y.T.), Department of Molecular & Medical Pharmacology (J.T.L.), and Crump Institute for Molecular Imaging (J.T.L.), UCLA and the Greater Los Angeles Veterans Administration.
| | - Yin Tintut
- From the Department of Medicine (L.L.D., Y.T., K.L.N., T.H.), Department of Physiology (L.L.D., Y.T.), Department of Bioengineering (L.L.D., T.H.), Department of Orthopaedic Surgery (Y.T.), Department of Molecular & Medical Pharmacology (J.T.L.), and Crump Institute for Molecular Imaging (J.T.L.), UCLA and the Greater Los Angeles Veterans Administration
| | - Kim-Lien Nguyen
- From the Department of Medicine (L.L.D., Y.T., K.L.N., T.H.), Department of Physiology (L.L.D., Y.T.), Department of Bioengineering (L.L.D., T.H.), Department of Orthopaedic Surgery (Y.T.), Department of Molecular & Medical Pharmacology (J.T.L.), and Crump Institute for Molecular Imaging (J.T.L.), UCLA and the Greater Los Angeles Veterans Administration
| | - Tzung Hsiai
- From the Department of Medicine (L.L.D., Y.T., K.L.N., T.H.), Department of Physiology (L.L.D., Y.T.), Department of Bioengineering (L.L.D., T.H.), Department of Orthopaedic Surgery (Y.T.), Department of Molecular & Medical Pharmacology (J.T.L.), and Crump Institute for Molecular Imaging (J.T.L.), UCLA and the Greater Los Angeles Veterans Administration
| | - Jason T Lee
- From the Department of Medicine (L.L.D., Y.T., K.L.N., T.H.), Department of Physiology (L.L.D., Y.T.), Department of Bioengineering (L.L.D., T.H.), Department of Orthopaedic Surgery (Y.T.), Department of Molecular & Medical Pharmacology (J.T.L.), and Crump Institute for Molecular Imaging (J.T.L.), UCLA and the Greater Los Angeles Veterans Administration
| |
Collapse
|
48
|
Walker MD, Morgan AJ, Bradley KM, McGowan DR. Evaluation of data-driven respiratory gating waveforms for clinical PET imaging. EJNMMI Res 2019; 9:1. [PMID: 30607651 PMCID: PMC6318161 DOI: 10.1186/s13550-018-0470-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 12/18/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND We aimed to evaluate the clinical robustness of a commercially developed data-driven respiratory gating algorithm based on principal component analysis, for use in routine PET imaging. METHODS One hundred fifty-seven adult FDG PET examinations comprising a total of 1149 acquired bed positions were used for the assessment. These data are representative of FDG scans currently performed at our institution. Data were acquired for 4 min/bed position (3 min/bed for legs). The data-driven gating (DDG) algorithm was applied to each bed position, including those where minimal respiratory motion was expected. The algorithm provided a signal-to-noise measure of respiratory-like frequencies within the data, denoted as R. Qualitative evaluation was performed by visual examination of the waveforms, with each waveform scored on a 3-point scale by two readers and then averaged (score S of 0 = no respiratory signal, 1 = some respiratory-like signal but indeterminate, 2 = acceptable signal considered to be respiratory). Images were reconstructed using quiescent period gating and compared with non-gated images reconstructed with a matched number of coincidences. If present, the SUVmax of a well-defined lesion in the thorax or abdomen was measured and compared between the two reconstructions. RESULTS There was a strong (r = 0.86) and significant correlation between R and scores S. Eighty-six percent of waveforms with R ≥ 15 were scored as acceptable for respiratory gating. On average, there were 1.2 bed positions per patient examination with R ≥ 15. Waveforms with high R and S were found to originate from bed positions corresponding to the thorax and abdomen: 90% of waveforms with R ≥ 15 had bed centres in the range 5.6 cm superior to 27 cm inferior from the dome of the liver. For regions where respiratory motion was expected to be minimal, R tended to be < 6 and S tended to be 0. The use of DDG significantly increased the SUVmax of focal lesions, by an average of 11% when considering lesions in bed positions with R ≥ 15. CONCLUSIONS The majority of waveforms with high R corresponded to the part of the patient where respiratory motion was expected. The waveforms were deemed suitable for respiratory gating when assessed visually, and when used were found to increase SUVmax in focal lesions.
Collapse
Affiliation(s)
- Matthew D Walker
- Radiation Physics and Protection, Churchill Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, OX3 7LE, UK.
| | - Andrew J Morgan
- Radiation Physics and Protection, Churchill Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, OX3 7LE, UK
| | - Kevin M Bradley
- Department of Radiology, Churchill Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Daniel R McGowan
- Radiation Physics and Protection, Churchill Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, OX3 7LE, UK.,Department of Oncology, Old Road Campus Research Building, University of Oxford, Oxford, UK
| |
Collapse
|
49
|
Feasibility assessment of yttrium-90 liver radioembolization imaging using amplitude-based gated PET/CT. Nucl Med Commun 2018; 39:222-227. [PMID: 29351124 PMCID: PMC5882249 DOI: 10.1097/mnm.0000000000000794] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Purpose The usage of PET/computed tomography (CT) to monitor hepatocellular carcinoma patients following yttrium-90 (90Y) radioembolization has increased. Respiratory motion causes liver movement, which can be corrected using gating techniques at the expense of added noise. This work examines the use of amplitude-based gating on 90Y-PET/CT and its potential impact on diagnostic integrity. Patients and methods Patients were imaged using PET/CT following 90Y radioembolization. A respiratory band was used to collect respiratory cycle data. Patient data were processed as both standard and motion-corrected images. Regions of interest were drawn and compared using three methods. Activity concentrations were calculated and converted into dose estimates using previously determined and published scaling factors. Diagnostic assessments were performed using a binary scale created from published 90Y-PET/CT image interpretation guidelines. Results Estimates of radiation dose were increased (P<0.05) when using amplitude-gating methods with 90Y PET/CT imaging. Motion-corrected images show increased noise, but the diagnostic determination of success, using the Kao criteria, did not change between static and motion-corrected data. Conclusion Amplitude-gated PET/CT following 90Y radioembolization is feasible and may improve 90Y dose estimates while maintaining diagnostic assessment integrity.
Collapse
|
50
|
Abstract
BACKGROUND Fluorine-18-fluorodeoxyglucose (F-FDG) PET/computed tomography (CT) is a reliable imaging modality for the diagnosis of malignant lung nodules and to assess the latter's prognosis. However, physiological respiratory motion deteriorates PET images and thus decreases the technique's diagnostic and prognostic values. This issue can be overcome by applying respiratory gating to the F-FDG PET/CT acquisitions. PURPOSE The aim of this study was to evaluate the ability of respiratory-gated F-FDG PET/CT to diagnose malignant lung nodules and to predict recurrence and patient survival. PATIENTS AND METHODS A total of 103 prospectively enrolled patients with solid lung nodules underwent both ungated and gated F-FDG PET/CT acquisitions. The maximum standardized uptake value (SUVmax) was used to differentiate benign from malignant nodules. Patients have been followed up for at least 36 months to confirm imaging results and assess survival. RESULTS Gated F-FDG PET/CT was significantly more sensitive than ungated PET/CT for the diagnosis of malignant lung nodules located in the lower lobes (92 vs. 58%; P<0.001) and in patients aged older than 60 years (73 vs. 48%; P<0.001). The same gain was observed for stage I cancers with tumors from 10 to 20 mm. When considering patients aged older than 60 years, those with a low SUVmax on gated PET images had a significantly higher 3-year disease-free survival rate than those with a high SUVmax (76 vs. 47%; P=0.03). CONCLUSION F-FDG PET/CT is advisable for the assessment of lung nodules in patients aged older than 60 years and/or in the lower lobes.
Collapse
|