1
|
Globa E, Christesen HT, Mortensen MB, Houghton JAL, Nielsen AL, Detlefsen S, Flanagan SE. Congenital hyperinsulinism in the Ukraine: a 10-year national study. Front Endocrinol (Lausanne) 2024; 15:1497579. [PMID: 39741883 PMCID: PMC11686448 DOI: 10.3389/fendo.2024.1497579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 11/25/2024] [Indexed: 01/03/2025] Open
Abstract
Introduction Congenital Hyperinsulinism (CHI) has not been previously studied in Ukraine. We therefore aimed to elucidate the genetics, clinical phenotype, histological subtype, treatment and long-term outcomes of Ukrainian patients with CHI. Methods Forty-one patients with CHI were recruited to the Ukrainian national registry between the years 2014-2023. Genetic testing (n=40), 18F-fluorodihydroxyphenylalanin and 68Ga-DOTANOC PET/CT imaging followed by surgical treatment and subsequent histological analysis (n=19) was performed through international collaboration. Results Pathogenic variants were identified in 19/22 (86.3%) individuals with persistent CHI (p-CHI) and 8/18 (44.4%) with early remission CHI (er-CHI). Pathogenic variants in the K-ATP channel genes were the only identified genetic cause of p-CHI (ABCC8 (n=17) and KCNJ11 (n=2)) with greater genetic heterogeneity observed in those with er-CHI (ABCC8 (n=3), KMT2D (Kabuki Syndrome, n=1), Beckwith-Wiedemann syndrome (n=2) and INSR (Donohue syndrome (n=2)). Histological analysis performed on 19 children with persistent CHI confirmed focal disease in 14 (73.7%), diffuse disease in two (10.5%) and atypical histology in three (15.8%). After surgery, complete recovery was observed in all 14 with focal disease, while relapse occurred in three patients with diffuse or atypical histology. Conclusion A genetic diagnosis was achieved for 67.5% (27/40) of the cohort with a higher pick-up rate observed in those with p-CHI. The genetics and imaging studies enabled subtype-targeted treatment with surgical cure achieved in all individuals with focal disease.
Collapse
Affiliation(s)
- Evgenia Globa
- Ukrainian Scientific and Practical Center of Endocrine Surgery, Transplantation of Endocrine Organs and Tissues of MoH of Ukraine, Kyiv, Ukraine
| | | | - Michael Bau Mortensen
- Department of Surgery, Upper GI and HPB Section, Odense University Hospital, Odense, Denmark
| | - Jayne A. L. Houghton
- The Genomics Laboratory, Royal Devon University Healthcare NHS Foundation Trust, Exeter, United Kingdom
| | | | - Sönke Detlefsen
- Department of Pathology, Odense University Hospital, Odense, Denmark
| | - Sarah E. Flanagan
- Department of Clinical and Biomedical Science, University of Exeter Medical School, Exeter, United Kingdom
| |
Collapse
|
2
|
Sagar S, Arora G, Damle N, Sharma R, Jain V, Jana M, Tripathi M, Bal C, Goel P. F-18 DOPA PET/CT in pediatric patients with hyperinsulinemic hypoglycemia: A correlation with genetic analysis. Nucl Med Commun 2022; 43:451-457. [PMID: 35045547 DOI: 10.1097/mnm.0000000000001526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
AIM Persistent hyperinsulinemic hypoglycemia is a rare but life-threatening disease of infancy and childhood. 18F-DOPA PET/CT has been shown to be a useful modality in the localization of focal pancreatic lesions in these patients. We aimed to assess the role of 18F-DOPA PET/CT in such patients at our institution. MATERIALS AND METHODS In this prospective study, 18F-DOPA PET/CT scans and clinical details of 20 children with clinical diagnosis of hyperinsulinemic hypoglycemia were reviewed. Scans were acquired at 5 min postinjection of 2-3 mCi of 18F-DOPA on dedicated PET/CT scanners (Biograph mCT, Siemens Inc and Discovery PET/CT, GE). Abdominal spot images over 1-2 bed positions were acquired. Additionally, genetic mutation status, where available, was correlated to the scan findings. RESULTS Out of 20 children (7 female and 13 male), 13 were infants. The age of the children ranged from 3 months to 8 years. Fifteen children had undergone gene analysis, 12 were positive for mutation in ABCC8, 1 for GLUD-1, 1 for GCK mutations and 1 had not shown any mutation. 18F-DOPA PET/CT scan showed 5 focal pancreatic lesions in 5 children (1 in each), two focal lesions in 1 child and diffuse pancreatic uptake in 14 children. CONCLUSION 18F-DOPA PET/CT is a useful modality for localizing focal pancreatic lesions in children with persistent hyperinsulinemic hypoglycemia. The detection rate is significantly higher in patients with ABCC8 paternal monoallelic recessive gene mutation. 18F-DOPA PET/CT scan consequent to findings on genetic analysis appears to be useful in planning the management of children with hyperinsulinism.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Prabudh Goel
- Department of Pediatric Surgery, AIIMS, New Delhi, India
| |
Collapse
|
3
|
Dastamani A, Yau D, Gilbert C, Morgan K, De Coppi P, Craigie RJ, Bomanji J, Biassoni L, Sajjan R, Flanagan SE, Houghton JAL, Senniappan S, Didi M, Dunne MJ, Banerjee I, Shah P. Variation in Glycaemic Outcomes in Focal Forms of Congenital Hyperinsulinism - The UK Perspective. J Endocr Soc 2022; 6:bvac033. [PMID: 35592516 PMCID: PMC9113085 DOI: 10.1210/jendso/bvac033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Indexed: 11/19/2022] Open
Abstract
Context In focal congenital hyperinsulinism (CHI), localized clonal expansion of pancreatic β-cells causes excess insulin secretion and severe hypoglycemia. Surgery is curative, but not all lesions are amenable to surgery. Objective We describe surgical and nonsurgical outcomes of focal CHI in a national cohort. Methods Patients with focal CHI were retrospectively reviewed at 2 specialist centers, 2003-2018. Results Of 59 patients with focal CHI, 57 had heterozygous mutations in ABCC8/KCNJ11 (51 paternally inherited, 6 de novo). Fluorine-18 L-3,4 dihydroxyphenylalanine positron emission tomography computed tomography scan identified focal lesions in 51 patients. In 5 patients, imaging was inconclusive; the diagnosis was established by frozen section histopathology in 3 patients, a lesion was not identified in 1 patient, and 1 declined surgery. Most patients (n = 56) were unresponsive to diazoxide, of whom 33 were unresponsive or partially responsive to somatostatin receptor analog (SSRA) therapy. Fifty-five patients underwent surgery: 40 had immediate resolution of CHI, 10 had persistent hypoglycemia and a focus was not identified on biopsy in 5. In the 10 patients with persistent hypoglycemia, 7 underwent further surgery with resolution in 4 and ongoing hypoglycemia requiring SSRA in 3. Nine (15% of cohort) patients (1 complex surgical access; 4 biopsy negative; 4 declined surgery) were managed conservatively; medication was discontinued in 8 children at a median (range) age 2.4 (1.5-7.7) years and 1 remains on SSRA at 16 years with improved fasting tolerance and reduction in SSRA dose. Conclusion Despite a unifying genetic basis of disease, we report inherent heterogeneity in focal CHI patients impacting outcomes of both surgical and medical management.
Collapse
Affiliation(s)
- Antonia Dastamani
- Endocrinology Department, Great Ormond Street Hospital for Children, London, UK
| | - Daphne Yau
- Department of Paediatric Endocrinology, Royal Manchester Children’s Hospital, Manchester, UK
| | - Clare Gilbert
- Endocrinology Department, Great Ormond Street Hospital for Children, London, UK
| | - Kate Morgan
- Endocrinology Department, Great Ormond Street Hospital for Children, London, UK
| | - Paolo De Coppi
- Department of Surgery, Great Ormond Street Hospital for Children, London, UK
| | - Ross J Craigie
- Department of Paediatric Surgery, Royal Manchester Children's Hospital, Manchester, UK
| | - Jamshed Bomanji
- Nuclear Medicine Department, UCL Hospitals NHS Foundation Trust, London, UK
| | - Lorenzo Biassoni
- Nuclear Medicine Department, Great Ormond Street Hospital for Children, London, UK
| | - Rakesh Sajjan
- Nuclear Medicine Department, Royal Manchester Children's Hospital, Manchester, UK
| | - Sarah E Flanagan
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | - Jayne A L Houghton
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | - Senthil Senniappan
- Department of Paediatric Endocrinology, Alder Hey Children's Hospital NHS Trust, Liverpool, UK
| | - Mohammed Didi
- Department of Paediatric Endocrinology, Alder Hey Children's Hospital NHS Trust, Liverpool, UK
| | - Mark J Dunne
- School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Indraneel Banerjee
- Department of Paediatric Endocrinology, Royal Manchester Children’s Hospital, Manchester, UK
| | - Pratik Shah
- Endocrinology Department, Great Ormond Street Hospital for Children, London, UK
- Genetics and Genomic Medicine Programme, University College London (UCL) Great Ormond Street Institute of Child Health, London, UK
| |
Collapse
|
4
|
Wakfie-Corieh C, Rodríguez Rey C, Ortega Candil A, Ávila Ramírez L, Pérez Rodríguez O, Carreras Delgado J. Forma focal de hiperinsulinismo congénito en una recién nacida diagnosticada con 18F-DOPA PET/TC, que permite el abordaje quirúrgico laparoscópico. Rev Esp Med Nucl Imagen Mol 2021. [DOI: 10.1016/j.remn.2020.06.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
5
|
Wakfie-Corieh CG, Rodríguez Rey C, Ortega Candil A, Ávila Ramírez LF, Pérez Rodríguez O, Carreras Delgado JL. Focal form of congenital hyperinsulinism in a newborn diagnosed with 18F-DOPA PET/CT allows laparoscopic surgical approach. Rev Esp Med Nucl Imagen Mol 2021; 40:318-319. [PMID: 34305034 DOI: 10.1016/j.remnie.2020.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 06/23/2020] [Indexed: 11/28/2022]
Affiliation(s)
- C G Wakfie-Corieh
- Servicio de Medicina Nuclear, Hospital Clínico San Carlos, Madrid, Spain.
| | - C Rodríguez Rey
- Servicio de Medicina Nuclear, Hospital Clínico San Carlos, Madrid, Spain
| | - A Ortega Candil
- Servicio de Medicina Nuclear, Hospital Clínico San Carlos, Madrid, Spain
| | - L F Ávila Ramírez
- Servicio de Cirugía Pediátrica, Hospital Clínico San Carlos, Madrid, Spain
| | - O Pérez Rodríguez
- Unidad de Endocrinología Infantil, Hospital Clínico San Carlos, Madrid, Spain
| | | |
Collapse
|
6
|
States LJ, Davis JC, Hamel SM, Becker SA, Zhuang H. 18F-6-Fluoro-l-Dopa PET/CT Imaging of Congenital Hyperinsulinism. J Nucl Med 2021; 62:51S-56S. [PMID: 34230074 DOI: 10.2967/jnumed.120.246033] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 12/08/2020] [Indexed: 11/16/2022] Open
Abstract
Congenital hyperinsulinism is characterized by persistent hypoglycemia due to inappropriate excess secretion of insulin resulting in hyperinsulinemic hypoglycemia. The clinical course varies from mild to severe, with a significant risk for brain damage. Imaging plays a valuable role in the care of infants and children with severe hypoglycemia unresponsive to medical therapy. 18F-6-fluoro-l-dopa PET/CT is the method of choice for the detection and localization of a focal lesion of hyperinsulinism. Surgical resection of a focal lesion can lead to a cure with limited pancreatectomy. This article reviews the role of 18F-6-fluoro-l-dopa PET/CT in the management of this vulnerable population.
Collapse
Affiliation(s)
- Lisa J States
- Radiology Department, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania; and
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, and
| | - J Christopher Davis
- Radiology Department, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania; and
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, and
| | - Steven M Hamel
- Radiology Department, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania; and
| | - Susan A Becker
- Radiology Department, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania; and
| | - Hongming Zhuang
- Radiology Department, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania; and
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, and
| |
Collapse
|
7
|
States LJ, Saade-Lemus S, De Leon DD. 18-F-L 3,4-Dihydroxyphenylalanine PET/Computed Tomography in the Management of Congenital Hyperinsulinism. PET Clin 2021; 15:349-359. [PMID: 32498990 DOI: 10.1016/j.cpet.2020.03.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Congenital hyperinsulinism (HI) is the most common cause of persistent hypoglycemia in neonates and infants. Several genetic mutations have been identified and are associated with 2 distinct histopathologic forms of disease: diffuse and focal. Targeted clinical evaluation to distinguish medically treatable disease from disease requiring surgical management can prevent life-threatening complications. Detection and localization of a surgically curable focal lesion using PET imaging with 18-F-L 3,4-dihydroxyphenylalanine ([18F]-FDOPA) has become standard of care. This article provides guidelines for the selection of patients who can benefit from [18F]-FDOPA-PET/computed tomography and protocols and tips used to diagnose a focal lesion of HI.
Collapse
Affiliation(s)
- Lisa J States
- Section of Oncologic Imaging, Radiology Department, The Children's Hospital of Philadelphia, 3401 Civic Center Boulevard, Philadelphia, PA 19104, USA; Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Blvd, Philadelphia, PA 19104, USA.
| | - Sandra Saade-Lemus
- Section of Oncologic Imaging, Radiology Department, The Children's Hospital of Philadelphia, 3401 Civic Center Boulevard, Philadelphia, PA 19104, USA; The Roberts Center for Pediatric Research, Room 8255, 2715 South Street, Philadelphia, PA 19146, USA
| | - Diva D De Leon
- Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Blvd, Philadelphia, PA 19104, USA; Division of Endocrinology and Diabetes, Congenital Hyperinsulinism Center, The Children's Hospital of Philadelphia, 3500 Civic Center Boulevard, Philadelphia, PA 19104, USA
| |
Collapse
|
8
|
Mitrofanova LB, Perminova AA, Ryzhkova DV, Sukhotskaya AA, Bairov VG, Nikitina IL. Differential Morphological Diagnosis of Various Forms of Congenital Hyperinsulinism in Children. Front Endocrinol (Lausanne) 2021; 12:710947. [PMID: 34497584 PMCID: PMC8419459 DOI: 10.3389/fendo.2021.710947] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 08/04/2021] [Indexed: 12/23/2022] Open
Abstract
INTRODUCTION Congenital hyperinsulinism (CHI) has diffuse (CHI-D), focal (CHI-F) and atypical (CHI-A) forms. Surgical management depends on preoperative [18F]-DOPA PET/CT and intraoperative morphological differential diagnosis of CHI forms. Objective: to improve differential diagnosis of CHI forms by comparative analysis [18F]-DOPA PET/CT data, as well as cytological, histological and immunohistochemical analysis (CHIA). MATERIALS AND METHODS The study included 35 CHI patients aged 3.2 ± 2.0 months; 10 patients who died from congenital heart disease at the age of 3.2 ± 2.9 months (control group). We used PET/CT, CHIA of pancreas with antibodies to ChrA, insulin, Isl1, Nkx2.2, SST, NeuroD1, SSTR2, SSTR5, DR1, DR2, DR5; fluorescence microscopy with NeuroD1/ChrA, Isl1/insulin, insulin/SSTR2, DR2/NeuroD1 cocktails. RESULTS Intraoperative examination of pancreatic smears showed the presence of large nuclei, on average, in: 14.5 ± 3.5 cells of CHI-F; 8.4 ± 1.1 of CHI-D; and 4.5 ± 0.7 of control group (from 10 fields of view, x400). The percentage of Isl1+ and NeuroD1+endocrinocytes significantly differed from that in the control for all forms of CHI. The percentage of NeuroD1+exocrinocytes was also significantly higher than in the control. The proportion of ChrA+ and DR2+endocrinocytes was higher in CHI-D than in CHI-F, while the proportion of insulin+cells was higher in CHI-A. The number of SST+cells was significantly higher in CHI-D and CHI-F than in CHI-A. CONCLUSION For intraoperative differential diagnosis of CHI forms, in addition to frozen sections, quantitative cytological analysis can be used. In quantitative immunohistochemistry, CHI forms differ in the expression of ChrA, insulin, SST and DR2. The development of a NeuroD1 inhibitor would be advisable for targeted therapy of CHI.
Collapse
|
9
|
Gϋemes M, Rahman SA, Kapoor RR, Flanagan S, Houghton JAL, Misra S, Oliver N, Dattani MT, Shah P. Hyperinsulinemic hypoglycemia in children and adolescents: Recent advances in understanding of pathophysiology and management. Rev Endocr Metab Disord 2020; 21:577-597. [PMID: 32185602 PMCID: PMC7560934 DOI: 10.1007/s11154-020-09548-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Hyperinsulinemic hypoglycemia (HH) is characterized by unregulated insulin release, leading to persistently low blood glucose concentrations with lack of alternative fuels, which increases the risk of neurological damage in these patients. It is the most common cause of persistent and recurrent hypoglycemia in the neonatal period. HH may be primary, Congenital HH (CHH), when it is associated with variants in a number of genes implicated in pancreatic development and function. Alterations in fifteen genes have been recognized to date, being some of the most recently identified mutations in genes HK1, PGM1, PMM2, CACNA1D, FOXA2 and EIF2S3. Alternatively, HH can be secondary when associated with syndromes, intra-uterine growth restriction, maternal diabetes, birth asphyxia, following gastrointestinal surgery, amongst other causes. CHH can be histologically characterized into three groups: diffuse, focal or atypical. Diffuse and focal forms can be determined by scanning using fluorine-18 dihydroxyphenylalanine-positron emission tomography. Newer and improved isotopes are currently in development to provide increased diagnostic accuracy in identifying lesions and performing successful surgical resection with the ultimate aim of curing the condition. Rapid diagnostics and innovative methods of management, including a wider range of treatment options, have resulted in a reduction in co-morbidities associated with HH with improved quality of life and long-term outcomes. Potential future developments in the management of this condition as well as pathways to transition of the care of these highly vulnerable children into adulthood will also be discussed.
Collapse
Affiliation(s)
- Maria Gϋemes
- Genetics and Genomic Medicine Programme, UCL Great Ormond Street Institute of Child Health, Great Ormond Street, London, WC1N 3JH, UK
- Department of Pediatric Endocrinology, Great Ormond Street Hospital for Children, London, UK
- Endocrinology Service, Hospital Infantil Universitario Niño Jesús, Madrid, Spain
| | - Sofia Asim Rahman
- Genetics and Genomic Medicine Programme, UCL Great Ormond Street Institute of Child Health, Great Ormond Street, London, WC1N 3JH, UK
| | - Ritika R Kapoor
- Pediatric Diabetes and Endocrinology, King's College Hospital NHS Trust, Denmark Hill, London, UK
| | - Sarah Flanagan
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | - Jayne A L Houghton
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
- Royal Devon and Exeter Foundation Trust, Exeter, UK
| | - Shivani Misra
- Department of Diabetes, Endocrinology and Metabolic Medicine, Faculty of Medicine, Imperial College Healthcare NHS Trust, London, UK
| | - Nick Oliver
- Department of Diabetes, Endocrinology and Metabolic Medicine, Faculty of Medicine, Imperial College Healthcare NHS Trust, London, UK
| | - Mehul Tulsidas Dattani
- Genetics and Genomic Medicine Programme, UCL Great Ormond Street Institute of Child Health, Great Ormond Street, London, WC1N 3JH, UK
- Department of Pediatric Endocrinology, Great Ormond Street Hospital for Children, London, UK
| | - Pratik Shah
- Genetics and Genomic Medicine Programme, UCL Great Ormond Street Institute of Child Health, Great Ormond Street, London, WC1N 3JH, UK.
- Department of Pediatric Endocrinology, Great Ormond Street Hospital for Children, London, UK.
| |
Collapse
|
10
|
Congenital hyperinsulinism: management and outcome, a single tertiary centre experience. Eur J Pediatr 2020; 179:947-952. [PMID: 32002613 DOI: 10.1007/s00431-020-03581-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 01/09/2020] [Accepted: 01/15/2020] [Indexed: 10/25/2022]
Abstract
Hyperinsulinemic hypoglycaemia (HH) is the most frequent cause of persistent hypoglycaemia in neonates and infants. The most severe forms of HH are inherited and referred to as congenital hyperinsulinism (CHI). Diazoxide is the mainstay of treatment, with surgery being an option in appropriate cases. To describe the management and outcome of patients with CHI within our service. Children referred to or attending HH clinic between 2009 and 2017 were identified. Clinical course, genetics and interventions were documented. A total of 39 children were identified, and seven patients with secondary and syndromic HH were excluded. Most were born with an appropriate weight for gestational age (62.5%). Diazoxide was started in all patients; however, 7 did not respond and required octreotide/continuous feeding, with 6/7 requiring surgery. Genetic mutations were detected in 12/32 (37.5%). Hyperinsulinism resolved in conservatively treated patients within 12 months in 11/32 (34.3%) compared to 14/32 (43.7%) requiring more than 12 months of medication. A total of 7 patients underwent pancreatectomy.Conclusion: Although LGA and SGA are risk factors, most babies in our cohort are born AGA. A genetic mutation does not exclude medical remission; long-term conservative treatment of CHI is feasible as surgery does not guarantee complete remission.What is Known:•Congenital hyperinsulinism (CHI) is a clinically and genetically heterogeneous disorder that is the most common cause of permanent hypoglycaemia in infants and children.•Identification of genetic mutations and the use of 18F-DOPA PET scan when feasible lead to better outcomes.What is New:•The study describes clinical criteria, management and outcome of large number of patients with CHI in single tertiary centre.•Conservative treatment is feasible without the need for surgery, with HH resolving in over 30% within 12 months, irrespective of genetic mutation.
Collapse
|
11
|
Arora S, Damle NA, Passah A, Sharma R, Goyal H, Arunraj ST, Gupta P, Jana M. Tracer Accumulation in Relation to Venous Thrombus on 18F-DOPA PET/CT in a Case of Persistent Hyperinsulinemic Hypoglycemia of Infancy. Nucl Med Mol Imaging 2019; 53:148-151. [PMID: 31057687 PMCID: PMC6473011 DOI: 10.1007/s13139-018-00568-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 12/10/2018] [Accepted: 12/26/2018] [Indexed: 10/27/2022] Open
Abstract
18F-DOPA PET/CT is commonly done in patients with persistent hyperinsulinemic hypoglycemia of infancy (PHHI) to look for any focal lesion in the pancreas. We present the findings in a 20-day-old neonate with PHHI who underwent 18F-DOPA PET/CT. The scan showed diffuse uptake in the pancreas with no focal lesion, physiologic excretion into the genito-urinary system, and interestingly tracer accumulation was seen in the inferior vena cava and ilio-femoral veins which is a non-physiological site for tracer accumulation. The uptake corresponded to a large venous thrombus which was confirmed by a venous Doppler.
Collapse
Affiliation(s)
- Saurabh Arora
- Department of Nuclear Medicine, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029 India
| | - Nishikant Avinash Damle
- Department of Nuclear Medicine, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029 India
| | - Averilicia Passah
- Department of Nuclear Medicine, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029 India
| | - Rajni Sharma
- Department of Paediatric Endocrinology, All India Institute of Medical Sciences, New Delhi, 110029 India
| | - Harish Goyal
- Department of Nuclear Medicine, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029 India
| | | | - Priyanka Gupta
- Department of Paediatric Endocrinology, All India Institute of Medical Sciences, New Delhi, 110029 India
| | - Manisha Jana
- Department of Radiodiagnosis, All India Institute of Medical Sciences, New Delhi, 110029 India
| |
Collapse
|
12
|
Ni J, Ge J, Zhang M, Hussain K, Guan Y, Cheng R, Xi L, Zheng Z, Ren S, Luo F. Genotype and phenotype analysis of a cohort of patients with congenital hyperinsulinism based on DOPA-PET CT scanning. Eur J Pediatr 2019; 178:1161-1169. [PMID: 31218401 PMCID: PMC6647509 DOI: 10.1007/s00431-019-03408-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 06/04/2019] [Accepted: 06/05/2019] [Indexed: 11/24/2022]
Abstract
Congenital hyperinsulinism (CHI) is a clinically, genetically, and morphologically heterogeneous disorder. 18F DOPA-PET CT scanning greatly improves its clinical outcome. Here, we presented the first Chinese 18F DOPA-PET CT scanning-based CHI cohort highlighting the variable ethic clinical phenotypes and genotypes. Fifty CHI patients were recruited. Median age at presentation was 2 days. Median fasting time was 2 h. Mean insulin level was 25.6 μIU/ml. Fifty-two percent of patients were diazoxide-unresponsive with significantly shorter fasting tolerance time and higher serum insulin level compared with the responsive patients. Seventy-four percent of patients experienced at least one adverse drug reaction. Tremendously increased focal lesions (32%) were detected and 75% of them were cured through surgery. Thirty-one nucleotide sequence changes were identified in 48% patients. Four novel variants (Q608X, Q1347X, Q289X, F1489S) in ABCC8 gene and 2 novel variants (G132A, V138E) in KCNJ11 gene were detected. Of the variants, 87.1% harbored in ABCC and KCNJ11 genes. T1042Qfs*75 in ABCC8 gene was the most common mutation.Conclusion: Highly increased portion of focal lesion was presented in Chinese CHI patients compared with that of the previous reports. Intolerance to diazoxide was much more evident in Chinese or East Asian than other populations. Certain hotspot mutations harbored in Chinese CHI patients. What is Known: • 18F DOPA-PET CT scanning can provide informative guidance for surgical procedure when medical therapy is not well responded in CHI patients. What is New: • Intolerance to diazoxide is much more evident in Chinese and East Asian CHI patients compared with the other ethnic populations. • Novel mutations were detected in ABCC8 and KCNJ11 gene. Hotspot mutations such as T1042Qfs*75, I1511K, E501K, G111R in ABCC8 gene, and R34H in KCNJ11 gene are predominantly responsible for Chinese CHI patients.
Collapse
Affiliation(s)
- Jinwen Ni
- Department of Endocrinology and Inborn Metabolic Diseases, Children’s Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102 China
| | - Jingjie Ge
- PET CT Center, Division of Nuclear Medicine, Huashan Hospital, Fudan University, 518 East Wuzhong Road, Shanghai, 200235 China
| | - Miaoying Zhang
- Department of Endocrinology and Inborn Metabolic Diseases, Children’s Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102 China
| | - Khalid Hussain
- Department of Pediatrics, Division of Endocrinology, Sidra Medicine OPC, C6-340 PO Box 26999, Al Luqta Street Education City North Campus, Doha, Qatar
| | - Yihui Guan
- PET CT Center, Division of Nuclear Medicine, Huashan Hospital, Fudan University, 518 East Wuzhong Road, Shanghai, 200235 China
| | - Ruoqian Cheng
- Department of Endocrinology and Inborn Metabolic Diseases, Children’s Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102 China
| | - Li Xi
- Department of Endocrinology and Inborn Metabolic Diseases, Children’s Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102 China
| | - Zhangqian Zheng
- Department of Endocrinology and Inborn Metabolic Diseases, Children’s Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102 China
| | - Shuhua Ren
- PET CT Center, Division of Nuclear Medicine, Huashan Hospital, Fudan University, 518 East Wuzhong Road, Shanghai, 200235 China
| | - Feihong Luo
- Department of Endocrinology and Inborn Metabolic Diseases, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102, China.
| |
Collapse
|
13
|
Alavi A, Werner TJ. Futility of attempts to detect and quantify beta cells by PET imaging in the pancreas: why it is time to abandon the approach. Diabetologia 2018; 61:2512-2515. [PMID: 29955934 DOI: 10.1007/s00125-018-4676-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 06/08/2018] [Indexed: 12/15/2022]
Abstract
In this commentary, we describe the limitations of positron emission tomography (PET) in visualising and characterising beta cell mass in the native pancreas in healthy individuals and those diagnosed with diabetes. Imaging with PET requires a large mass of targeted cells or other structures in the range of approximately 8-10 cm3. Since islets occupy only 1% of the pancreatic volume and are dispersed throughout the organ, it is our view that uptake of PET tracers, including [18F]fluoropropyl-(+)-dihydrotetrabenazine, in islets cannot be successfully detected by current imaging modalities. Therefore, we dispute the feasibility of PET imaging for the detection of loss of beta cells in the native pancreas in individuals with diabetes. However, we believe this novel approach can be successfully employed to visualise beta cell mass in individuals with hyperinsulinism and transplanted islets.
Collapse
Affiliation(s)
- Abass Alavi
- Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA, 19104, USA.
| | - Thomas J Werner
- Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA, 19104, USA.
| |
Collapse
|
14
|
Xu ZD, Zhang W, Liu M, Wang HM, Hui PP, Liang XJ, Yan J, Wu YJ, Sang YM, Zhu C, Ni GC. Analysis on the pathogenic genes of 60 Chinese children with congenital hyperinsulinemia. Endocr Connect 2018; 7:1251-1261. [PMID: 30352420 PMCID: PMC6240136 DOI: 10.1530/ec-18-0240] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 10/05/2018] [Indexed: 02/01/2023]
Abstract
This study aims to summarize and analyze the clinical manifestations, genetic characteristics, treatment modalities and long-term prognosis of congenital hyperinsulinemia (CHI) in Chinese children. Sixty children with CHI, who were treated at Beijing Children's Hospital from January 2014 to August 2017, and their families, were selected as subjects. The CHI-related causative genes in children were sequenced and analyzed using second-generation sequencing technology. Furthermore, the genetic pathogenesis and clinical characteristics of Chinese children with CHI were explored. Among the 60 CHI children, 27 children (27/60, 45%) carried known CHI-related gene mutations: 16 children (26.7%) carried ABCC8 gene mutations, seven children (11.7%) carried GLUD1 gene mutations, one child carried GCK gene mutations, two children carried HNF4α gene mutations and one child carried HADH gene mutations. In these 60 patients, 8 patients underwent 18F-L-DOPA PET scan for the pancreas, and five children were found to be focal type. The treatment of diazoxide was ineffective in these five patients, and hypoglycemia could be controlled after receiving partial pancreatectomy. Conclusions: ABCC8 gene mutation is the most common cause of CHI in Chinese children. The early genetic analysis of children's families has an important guiding significance for treatment planning and prognosis assessment.
Collapse
Affiliation(s)
- Zi-Di Xu
- Department of Pediatric Endocrinology, Genetic and Metabolism, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Wei Zhang
- Department of Children Health Care, Xiamen Maternal and Child Health Hospital, Xiamen, China
| | - Min Liu
- Department of Pediatric Endocrinology, Genetic and Metabolism, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Huan-Min Wang
- Department of Surgical Oncology, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Pei-Pei Hui
- Department of Pediatric Endocrinology, Genetic and Metabolism, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Xue-Jun Liang
- Department of Pediatric Endocrinology, Genetic and Metabolism, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Jie Yan
- Department of Pediatric Endocrinology, Genetic and Metabolism, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Yu-Jun Wu
- Department of Pediatric Endocrinology, Genetic and Metabolism, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Yan-Mei Sang
- Department of Pediatric Endocrinology, Genetic and Metabolism, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
- Correspondence should be addressed to Y-M Sang:
| | - Cheng Zhu
- Department of Pediatric Endocrinology, Genetic and Metabolism, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Gui-Chen Ni
- Department of Pediatric Endocrinology, Genetic and Metabolism, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| |
Collapse
|
15
|
Abstract
Hyperinsulinaemic hypoglycaemia (HH) is a heterogeneous condition with dysregulated insulin secretion which persists in the presence of low blood glucose levels. It is the most common cause of severe and persistent hypoglycaemia in neonates and children. Recent advances in genetics have linked congenital HH to mutations in 14 different genes that play a key role in regulating insulin secretion (ABCC8, KCNJ11, GLUD1, GCK, HADH, SLC16A1, UCP2, HNF4A, HNF1A, HK1, PGM1, PPM2, CACNA1D, FOXA2). Histologically, congenital HH can be divided into 3 types: diffuse, focal and atypical. Due to the biochemical basis of this condition, it is essential to diagnose and treat HH promptly in order to avoid the irreversible hypoglycaemic brain damage. Recent advances in the field of HH include new rapid molecular genetic testing, novel imaging methods (18F-DOPA PET/CT), novel medical therapy (long-acting octreotide formulations, mTOR inhibitors, GLP-1 receptor antagonists) and surgical approach (laparoscopic surgery). The review article summarizes the current diagnostic methods and management strategies for HH in children.
Collapse
Affiliation(s)
- Sonya Galcheva
- Dept. of Paediatrics, Varna Medical University/University Hospital "St. Marina", Varna, Bulgaria
| | - Sara Al-Khawaga
- Dept. of Paediatric Medicine, Division of Endocrinology, Sidra Medical & Research Center, Doha, Qatar
| | - Khalid Hussain
- Dept. of Paediatric Medicine, Division of Endocrinology, Sidra Medical & Research Center, Doha, Qatar.
| |
Collapse
|
16
|
Abstract
Pancreatic β-cells are finely tuned to secrete insulin so that plasma glucose levels are maintained within a narrow physiological range (3.5-5.5 mmol/L). Hyperinsulinaemic hypoglycaemia (HH) is the inappropriate secretion of insulin in the presence of low plasma glucose levels and leads to severe and persistent hypoglycaemia in neonates and children. Mutations in 12 different key genes (ABCC8, KCNJ11, GLUD1, GCK, HADH, SLC16A1, UCP2, HNF4A, HNF1A, HK1, PGM1 and PMM2) that are involved in the regulation of insulin secretion from pancreatic β-cells have been described to be responsible for the underlying molecular mechanisms leading to congenital HH. In HH due to the inhibitory effect of insulin on lipolysis and ketogenesis there is suppressed ketone body formation in the presence of hypoglycaemia thus leading to increased risk of hypoglycaemic brain injury. Therefore, a prompt diagnosis and immediate management of HH is essential to avoid hypoglycaemic brain injury and long-term neurological complications in children. Advances in molecular genetics, imaging techniques (18F-DOPA positron emission tomography/computed tomography scanning), medical therapy and surgical advances (laparoscopic and open pancreatectomy) have changed the management and improved the outcome of patients with HH. This review article provides an overview to the background, clinical presentation, diagnosis, molecular genetics and therapy in children with different forms of HH.
Collapse
Affiliation(s)
- Hüseyin Demirbilek
- Hacettepe University Faculty of Medicine, Department of Paediatric Endocrinology, Ankara, Turkey
| | - Khalid Hussain
- Sidra Medical and Research Center, Clinic of Paediatric Medicine, Doha, Qatar
,* Address for Correspondence: Sidra Medical and Research Center, Clinic of Paediatric Medicine, Doha, Qatar Phone: +974-30322007 E-mail:
| |
Collapse
|
17
|
Garg PK, Lokitz SJ, Truong L, Putegnat B, Reynolds C, Rodriguez L, Nazih R, Nedrelow J, de la Guardia M, Uffman JK, Garg S, Thornton PS. Pancreatic uptake and radiation dosimetry of 6-[18F]fluoro-L-DOPA from PET imaging studies in infants with congenital hyperinsulinism. PLoS One 2017; 12:e0186340. [PMID: 29117181 PMCID: PMC5695579 DOI: 10.1371/journal.pone.0186340] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 10/01/2017] [Indexed: 01/19/2023] Open
Abstract
METHODS After injecting 25.6 ± 8.8 MBq (0.7 ± 0.2 mCi) of 18F-Fluoro-L-DOPA intravenously, three static PET scans were acquired at 20, 30, and 40 min post injection in 3-D mode on 10 patients (6 male, 4 female) with congenital hyperinsulinism. Regions of interest (ROIs) were drawn over several organs visible in the reconstructed PET/CT images and time activity curves (TACs) were generated. Residence times were calculated using the TAC data. The radiation absorbed dose for the whole body was calculated by entering the residence times in the OLINDA/EXM 1.0 software. RESULTS The mean residence times for the 18F-Fluoro-L-DOPA in the liver, lungs, kidneys, muscles, and pancreas were 11.54 ± 2.84, 1.25 ± 0.38, 4.65 ± 0.97, 17.13 ± 2.62, and 0.89 ± 0.34 min, respectively. The mean effective dose equivalent for 18F-Fluoro-L-DOPA was 0.40 ± 0.04 mSv/MBq. The CT scan used for attenuation correction delivered an additional radiation dose of 5.7 mSv. The organs receiving the highest radiation absorbed dose from 18F-Fluoro-L-DOPA were the urinary bladder wall (2.76 ± 0.95 mGy/MBq), pancreas (0.87 ± 0.30 mGy/MBq), liver (0.34 ± 0.07 mGy/MBq), and kidneys (0.61 ± 0.11 mGy/MBq). The renal system was the primary route for the radioactivity clearance and excretion. CONCLUSIONS The estimated radiation dose burden from 18F-Fluoro-L-DOPA is relatively modest to newborns.
Collapse
Affiliation(s)
- Pradeep K. Garg
- Center for Molecular Imaging and Therapy, Biomedical Research Foundation, Shreveport, Louisiana, United States of America
| | - Stephen J. Lokitz
- Center for Molecular Imaging and Therapy, Biomedical Research Foundation, Shreveport, Louisiana, United States of America
| | - Lisa Truong
- Cook Children’s Medical Center, Fort Worth, Texas, United States of America
| | - Burton Putegnat
- Cook Children’s Medical Center, Fort Worth, Texas, United States of America
| | - Courtney Reynolds
- Cook Children’s Medical Center, Fort Worth, Texas, United States of America
| | - Larry Rodriguez
- Cook Children’s Medical Center, Fort Worth, Texas, United States of America
| | - Rachid Nazih
- Center for Molecular Imaging and Therapy, Biomedical Research Foundation, Shreveport, Louisiana, United States of America
| | - Jonathan Nedrelow
- Cook Children’s Medical Center, Fort Worth, Texas, United States of America
| | | | - John K. Uffman
- Cook Children’s Medical Center, Fort Worth, Texas, United States of America
| | - Sudha Garg
- Center for Molecular Imaging and Therapy, Biomedical Research Foundation, Shreveport, Louisiana, United States of America
| | - Paul S. Thornton
- Cook Children’s Medical Center, Fort Worth, Texas, United States of America
| |
Collapse
|
18
|
Christiansen CD, Petersen H, Nielsen AL, Detlefsen S, Brusgaard K, Rasmussen L, Melikyan M, Ekström K, Globa E, Rasmussen AH, Hovendal C, Christesen HT. 18F-DOPA PET/CT and 68Ga-DOTANOC PET/CT scans as diagnostic tools in focal congenital hyperinsulinism: a blinded evaluation. Eur J Nucl Med Mol Imaging 2017; 45:250-261. [PMID: 29116340 PMCID: PMC5745571 DOI: 10.1007/s00259-017-3867-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 10/20/2017] [Indexed: 12/12/2022]
Abstract
Purpose Focal congenital hyperinsulinism (CHI) is curable by surgery, which is why identification of the focal lesion is crucial. We aimed to determine the use of 18F–fluoro-dihydroxyphenylalanine (18F-DOPA) PET/CT vs. 68Ga-1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic-acid-1-Nal3-octreotide (68Ga-DOTANOC) PET/CT as diagnostic tools in focal CHI. Methods PET/CT scans of children with CHI admitted to Odense University Hospital between August 2005 and June 2016 were retrospectively evaluated visually and by their maximal standardized uptake values (SUVmax) by two independent examiners, blinded for clinical, surgical and pathological data. Pancreatic histology was used as the gold standard. For patients without surgery, the genetic profile served as the gold standard. Results Fifty-five CHI patients were examined by PET/CT (18F-DOPA n = 53, 68Ga-DOTANOC n = 18). Surgery was performed in 34 patients, no surgery in 21 patients. Fifty-one patients had a classifiable outcome, either by histology (n = 33, 22 focal lesions, 11 non-focal) or by genetics (n = 18, all non-focal). The predictive performance of 18F-DOPA PET/CT to identify focal CHI was identical by visual- and cut-off-based evaluation: sensitivity (95% CI) of 1 (0.85–1); specificity of 0.96 (0.82–0.99). The optimal 18F-DOPA PET SUVmax ratio cut-off was 1.44 and the optimal 68Ga-DOTANOC PET SUVmax cut-off was 6.77 g/ml. The area under the receiver operating curve was 0.98 (0.93–1) for 18F-DOPA PET vs. 0.71 (0.43–0.95) for 68Ga-DOTANOC PET (p < 0.03). In patients subjected to surgery, localization of the focal lesion was correct in 91%, and 100%, by 18F-DOPA PET/CT and 68Ga-DOTANOC PET/CT, respectively. Conclusion 18F-DOPA PET/CT was excellent in predicting focal CHI and superior compared to 68Ga-DOTANOC PET/CT. Further use of 68GA-DOTANOC PET/CT in predicting focal CHI is discouraged. Electronic supplementary material The online version of this article (10.1007/s00259-017-3867-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Charlotte Dahl Christiansen
- Hans Christian Andersen Children's Hospital, Odense University Hospital, Odense, Denmark.,Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Henrik Petersen
- Department of Nuclear Medicine, Odense University Hospital, Odense, Denmark
| | | | - Sönke Detlefsen
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark.,Department of Pathology, Odense University Hospital, Odense, Denmark
| | - Klaus Brusgaard
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
| | - Lars Rasmussen
- Department of Abdominal Surgery, Odense University Hospital, Odense, Denmark
| | | | - Klas Ekström
- Astrid Lindgren Children's Hospital, Karolinska Hospital, Stockholm, Sweden
| | - Evgenia Globa
- Ukrainian Center of Endocrine Surgery, Endocrine Organs and Tissue Transplantation, MOH of Ukraine, Kyiv, Ukraine
| | - Annett Helleskov Rasmussen
- Hans Christian Andersen Children's Hospital, Odense University Hospital, Odense, Denmark.,Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Claus Hovendal
- Department of Abdominal Surgery, Odense University Hospital, Odense, Denmark
| | - Henrik Thybo Christesen
- Hans Christian Andersen Children's Hospital, Odense University Hospital, Odense, Denmark. .,Department of Clinical Research, University of Southern Denmark, Odense, Denmark. .,Odense Pancreas Center (OPAC), Odense University Hospital, Odense, Denmark. .,Department of Paediatrics, Odense University Hospital, Sdr. Blvd. 29, DK-5000, Odense C, Denmark.
| |
Collapse
|
19
|
Demirbilek H, Rahman SA, Buyukyilmaz GG, Hussain K. Diagnosis and treatment of hyperinsulinaemic hypoglycaemia and its implications for paediatric endocrinology. INTERNATIONAL JOURNAL OF PEDIATRIC ENDOCRINOLOGY 2017; 2017:9. [PMID: 28855921 PMCID: PMC5575922 DOI: 10.1186/s13633-017-0048-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 08/15/2017] [Indexed: 12/14/2022]
Abstract
Glucose homeostasis requires appropriate and synchronous coordination of metabolic events and hormonal activities to keep plasma glucose concentrations in a narrow range of 3.5–5.5 mmol/L. Insulin, the only glucose lowering hormone secreted from pancreatic β-cells, plays the key role in glucose homeostasis. Insulin release from pancreatic β-cells is mainly regulated by intracellular ATP-generating metabolic pathways. Hyperinsulinaemic hypoglycaemia (HH), the most common cause of severe and persistent hypoglycaemia in neonates and children, is the inappropriate secretion of insulin which occurs despite low plasma glucose levels leading to severe and persistent hypoketotic hypoglycaemia. Mutations in 12 different key genes (ABCC8, KCNJ11, GLUD1, GCK, HADH, SLC16A1, UCP2, HNF4A, HNF1A, HK1, PGM1 and PMM2) constitute the underlying molecular mechanisms of congenital HH. Since insulin supressess ketogenesis, the alternative energy source to the brain, a prompt diagnosis and immediate management of HH is essential to avoid irreversible hypoglycaemic brain damage in children. Advances in molecular genetics, imaging methods (18F–DOPA PET-CT), medical therapy and surgical approach (laparoscopic and open pancreatectomy) have changed the management and improved the outcome of patients with HH. This up to date review article provides a background to the diagnosis, molecular genetics, recent advances and therapeutic options in the field of HH in children.
Collapse
Affiliation(s)
- Huseyin Demirbilek
- Department of Paediatric Endocrinology, Hacettepe University, Faculty of Medicine, Ankara, Turkey
| | - Sofia A Rahman
- Great Ormond Street Institute of Child Health, Genetics and Genomic Medicine, University College London, 30 Guilford Street, London, WC1N 1EH UK
| | - Gonul Gulal Buyukyilmaz
- Department of Paediatric Endocrinology, Hacettepe University, Faculty of Medicine, Ankara, Turkey
| | - Khalid Hussain
- Department of Paediatric Medicine Sidra Medical & Research Center, OPC, C6-337, PO Box 26999, Doha, Qatar
| |
Collapse
|
20
|
Pattison DA, Hicks RJ. Molecular imaging in the investigation of hypoglycaemic syndromes and their management. Endocr Relat Cancer 2017; 24:R203-R221. [PMID: 28400403 DOI: 10.1530/erc-17-0005] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 04/07/2017] [Indexed: 12/21/2022]
Abstract
There has been recent progress in molecular imaging using a variety of cellular targets for the investigation of adult non-diabetic hypoglycaemic syndromes and its integration into patient management. These targets include peptide receptors (somatostatin receptors (SSTRs) and glucagon-like peptide-1 receptor (GLP-1R)) the amine precursor uptake and decarboxylation system utilising the diphydroxyphenylaline (DOPA) analogue 6-[18F]-l-fluoro-l-3,4-dihydroxyphenylalanine (18F-FDOPA), and glycolytic metabolism with 2-[18F]fluoro-2-deoxy-d-glucose (FDG). Accurate preoperative localisation and staging is critical to enable directed surgical excision or enucleation with minimal morbidity and preservation of residual pancreatic function. Benign insulinoma has near ubiquitous dense GLP-1R expression enabling accurate localisation with radiolabelled-exendin-4 compounds (e.g. 68Ga-NOTA-exendin-4 PET/CT), whilst the rarer and more difficult to manage metastatic insulinoma typically express SSTR and is preferably imaged with radiolabelled-SSTR analogues such as 68Ga-DOTA-octreotate (DOTATATE) PET/CT for staging and assessment of suitability for peptide receptor radionuclide therapy (PRRT). Similar to other metastatic neuroendocrine tumours, FDG PET/CT is used in the setting of higher-grade metastatic insulinoma to provide important prognostic information that can guide treatment and determine suitability for PRRT. Interestingly, these three tracers appear to represent a spectrum of differentiation, which we conceptually describe as the 'triple-flop' phenomenon, with GLP-1R > SSTR > FDG in benign insulinoma and the opposite in higher-grade disease. This paper will review the clinical syndromes of adult hypoglycaemia (including a practical overview of the differential diagnoses to be considered), comparison of techniques for insulinoma localisation with emphasis on molecular imaging before discussing its implications for management of metastatic insulinoma.
Collapse
Affiliation(s)
- David A Pattison
- Centre for Cancer ImagingPeter MacCallum Cancer Centre, Melbourne, Australia
- Endocrinology ServicePeter MacCallum Cancer Centre, Melbourne, Australia
- Department of Nuclear Medicine & Specialised PET ServicesRoyal Brisbane & Women's Hospital, Brisbane, Australia
| | - Rodney J Hicks
- Centre for Cancer ImagingPeter MacCallum Cancer Centre, Melbourne, Australia
- Neuroendocrine ServicePeter MacCallum Cancer Centre, Melbourne, Australia
- The Sir Peter MacCallum Department of OncologyUniversity of Melbourne, Melbourne, Australia
| |
Collapse
|
21
|
Hashimoto Y, Sakakibara A, Kawakita R, Hosokawa Y, Fujimaru R, Nakamura T, Fukushima H, Igarashi A, Masue M, Nishibori H, Tamagawa N, Murakami A, Hatake K, Yorifuji T. Focal form of congenital hyperinsulinism clearly detectable by contrast-enhanced computed tomography imaging. INTERNATIONAL JOURNAL OF PEDIATRIC ENDOCRINOLOGY 2015; 2015:20. [PMID: 26379717 PMCID: PMC4570655 DOI: 10.1186/s13633-015-0016-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 08/14/2015] [Indexed: 11/10/2022]
Abstract
The focal form of congenital hyperinsulinism (CHI) is characterized by a cluster of abnormal insulin-oversecreting β cells within a restricted area of the pancreas. Although identification of the focal lesion is very important in the management of CHI, it has been reported that imaging studies, including computed tomography (CT), magnetic resonance imaging (MRI) scans, or angiography, are not helpful in identifying the focal lesion. Currently, fluorine-18-L-dihydroxyphenylalanine positron emission tomography ((18)F-DOPA PET) is believed to be the only imaging modality that can identify the focal lesions. In this report, however, we present a case of a 7-month-old girl with the focal form of CHI, caused by a loss-of-function mutation in the ABCC8 gene, whose lesion was clearly visible as a hyperenhancing nodule on contrast-enhanced CT and dynamic MRI imaging.
Collapse
Affiliation(s)
- Yukiko Hashimoto
- Department of Pediatric Endocrinology and Metabolism, Children's Medical Center, Osaka City General Hospital, 2-13-22 Miyakojima-hondori, Miyakojima, Osaka 534-0021 Japan
| | - Azumi Sakakibara
- Department of Pediatric Endocrinology and Metabolism, Children's Medical Center, Osaka City General Hospital, 2-13-22 Miyakojima-hondori, Miyakojima, Osaka 534-0021 Japan
| | - Rie Kawakita
- Department of Pediatric Endocrinology and Metabolism, Children's Medical Center, Osaka City General Hospital, 2-13-22 Miyakojima-hondori, Miyakojima, Osaka 534-0021 Japan
| | - Yuki Hosokawa
- Department of Pediatric Endocrinology and Metabolism, Children's Medical Center, Osaka City General Hospital, 2-13-22 Miyakojima-hondori, Miyakojima, Osaka 534-0021 Japan
| | - Rika Fujimaru
- Department of Pediatric Endocrinology and Metabolism, Children's Medical Center, Osaka City General Hospital, 2-13-22 Miyakojima-hondori, Miyakojima, Osaka 534-0021 Japan
| | - Tetsuro Nakamura
- Department of Pediatric Surgery, Osaka City General Hospital, Osaka, Japan
| | - Hiroko Fukushima
- Department of Pathology, Osaka City General Hospital, Osaka, Japan
| | - Aiko Igarashi
- Department of Pediatrics, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Michiya Masue
- Department of Pediatrics, Kizawa Memorial Hospital, Chubu Medical Center for Prolonged Traumatic Brain Dysfunction, Minokamo, Japan
| | - Hironori Nishibori
- Department of Pediatrics, Kizawa Memorial Hospital, Chubu Medical Center for Prolonged Traumatic Brain Dysfunction, Minokamo, Japan
| | | | - Akiko Murakami
- Clinical Research Center, Osaka City General Hospital, Osaka, Japan
| | - Kazue Hatake
- Clinical Research Center, Osaka City General Hospital, Osaka, Japan
| | - Tohru Yorifuji
- Department of Pediatric Endocrinology and Metabolism, Children's Medical Center, Osaka City General Hospital, 2-13-22 Miyakojima-hondori, Miyakojima, Osaka 534-0021 Japan ; Clinical Research Center, Osaka City General Hospital, Osaka, Japan
| |
Collapse
|
22
|
Arya VB, Guemes M, Nessa A, Alam S, Shah P, Gilbert C, Senniappan S, Flanagan SE, Ellard S, Hussain K. Clinical and histological heterogeneity of congenital hyperinsulinism due to paternally inherited heterozygous ABCC8/KCNJ11 mutations. Eur J Endocrinol 2014; 171:685-95. [PMID: 25201519 DOI: 10.1530/eje-14-0353] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
CONTEXT Congenital hyperinsulinism (CHI) has two main histological types: diffuse and focal. Heterozygous paternally inherited ABCC8/KCNJ11 mutations (depending upon whether recessive or dominant acting and occurrence of somatic maternal allele loss) can give rise to either phenotype. However, the relative proportion of these two phenotypes in a large cohort of CHI patients due to paternally inherited heterozygous ABCC8/KCNJ11 mutations has not been reported. OBJECTIVE The purpose of this study is to highlight the variable clinical phenotype and to characterise the distribution of diffuse and focal disease in a large cohort of CHI patients due to paternally inherited heterozygous ABCC8/KCNJ11 mutations. DESIGN A retrospective chart review of the CHI patients due to heterozygous paternally inherited ABCC8/KCNJ11 mutations from 2000 to 2013 was conducted. RESULTS Paternally inherited heterozygous ABCC8/KCNJ11 mutations were identified in 53 CHI patients. Of these, 18 (34%) either responded to diazoxide or resolved spontaneously. Fluorine-18 l-3, 4-dihydroxyphenylalanine positron emission tomography computerised tomography 18F DOPA-PET CT) scanning in 3/18 children showed diffuse disease. The remaining 35 (66%) diazoxide-unresponsive children either had pancreatic venous sampling (n=8) or 18F DOPA-PET CT (n=27). Diffuse, indeterminate and focal disease was identified in 13, 1 and 21 patients respectively. Two patients with suspected diffuse disease were identified to have focal disease on histology. CONCLUSIONS Paternally inherited heterozygous ABCC8/KCNJ11 mutations can manifest as a wide spectrum of CHI with variable 18F DOPA-PET CT/histological findings and clinical outcomes. Focal disease was histologically confirmed in 24/53 (45%) of CHI patients with paternally inherited heterozygous ABCC8/KCNJ11 mutations.
Collapse
Affiliation(s)
- Ved Bhushan Arya
- Developmental Endocrinology Research GroupClinical and Molecular Genetics Unit, Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UKLondon Centre for Paediatric EndocrinologyGreat Ormond Street Hospital for Children, London WC1N 3JH, UKInstitute of Biomedical and Clinical ScienceUniversity of Exeter Medical School, Exeter EX2 5DW, UK Developmental Endocrinology Research GroupClinical and Molecular Genetics Unit, Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UKLondon Centre for Paediatric EndocrinologyGreat Ormond Street Hospital for Children, London WC1N 3JH, UKInstitute of Biomedical and Clinical ScienceUniversity of Exeter Medical School, Exeter EX2 5DW, UK
| | - Maria Guemes
- Developmental Endocrinology Research GroupClinical and Molecular Genetics Unit, Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UKLondon Centre for Paediatric EndocrinologyGreat Ormond Street Hospital for Children, London WC1N 3JH, UKInstitute of Biomedical and Clinical ScienceUniversity of Exeter Medical School, Exeter EX2 5DW, UK Developmental Endocrinology Research GroupClinical and Molecular Genetics Unit, Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UKLondon Centre for Paediatric EndocrinologyGreat Ormond Street Hospital for Children, London WC1N 3JH, UKInstitute of Biomedical and Clinical ScienceUniversity of Exeter Medical School, Exeter EX2 5DW, UK
| | - Azizun Nessa
- Developmental Endocrinology Research GroupClinical and Molecular Genetics Unit, Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UKLondon Centre for Paediatric EndocrinologyGreat Ormond Street Hospital for Children, London WC1N 3JH, UKInstitute of Biomedical and Clinical ScienceUniversity of Exeter Medical School, Exeter EX2 5DW, UK
| | - Syeda Alam
- Developmental Endocrinology Research GroupClinical and Molecular Genetics Unit, Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UKLondon Centre for Paediatric EndocrinologyGreat Ormond Street Hospital for Children, London WC1N 3JH, UKInstitute of Biomedical and Clinical ScienceUniversity of Exeter Medical School, Exeter EX2 5DW, UK
| | - Pratik Shah
- Developmental Endocrinology Research GroupClinical and Molecular Genetics Unit, Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UKLondon Centre for Paediatric EndocrinologyGreat Ormond Street Hospital for Children, London WC1N 3JH, UKInstitute of Biomedical and Clinical ScienceUniversity of Exeter Medical School, Exeter EX2 5DW, UK Developmental Endocrinology Research GroupClinical and Molecular Genetics Unit, Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UKLondon Centre for Paediatric EndocrinologyGreat Ormond Street Hospital for Children, London WC1N 3JH, UKInstitute of Biomedical and Clinical ScienceUniversity of Exeter Medical School, Exeter EX2 5DW, UK
| | - Clare Gilbert
- Developmental Endocrinology Research GroupClinical and Molecular Genetics Unit, Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UKLondon Centre for Paediatric EndocrinologyGreat Ormond Street Hospital for Children, London WC1N 3JH, UKInstitute of Biomedical and Clinical ScienceUniversity of Exeter Medical School, Exeter EX2 5DW, UK
| | - Senthil Senniappan
- Developmental Endocrinology Research GroupClinical and Molecular Genetics Unit, Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UKLondon Centre for Paediatric EndocrinologyGreat Ormond Street Hospital for Children, London WC1N 3JH, UKInstitute of Biomedical and Clinical ScienceUniversity of Exeter Medical School, Exeter EX2 5DW, UK Developmental Endocrinology Research GroupClinical and Molecular Genetics Unit, Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UKLondon Centre for Paediatric EndocrinologyGreat Ormond Street Hospital for Children, London WC1N 3JH, UKInstitute of Biomedical and Clinical ScienceUniversity of Exeter Medical School, Exeter EX2 5DW, UK
| | - Sarah E Flanagan
- Developmental Endocrinology Research GroupClinical and Molecular Genetics Unit, Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UKLondon Centre for Paediatric EndocrinologyGreat Ormond Street Hospital for Children, London WC1N 3JH, UKInstitute of Biomedical and Clinical ScienceUniversity of Exeter Medical School, Exeter EX2 5DW, UK
| | - Sian Ellard
- Developmental Endocrinology Research GroupClinical and Molecular Genetics Unit, Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UKLondon Centre for Paediatric EndocrinologyGreat Ormond Street Hospital for Children, London WC1N 3JH, UKInstitute of Biomedical and Clinical ScienceUniversity of Exeter Medical School, Exeter EX2 5DW, UK
| | - Khalid Hussain
- Developmental Endocrinology Research GroupClinical and Molecular Genetics Unit, Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UKLondon Centre for Paediatric EndocrinologyGreat Ormond Street Hospital for Children, London WC1N 3JH, UKInstitute of Biomedical and Clinical ScienceUniversity of Exeter Medical School, Exeter EX2 5DW, UK Developmental Endocrinology Research GroupClinical and Molecular Genetics Unit, Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UKLondon Centre for Paediatric EndocrinologyGreat Ormond Street Hospital for Children, London WC1N 3JH, UKInstitute of Biomedical and Clinical ScienceUniversity of Exeter Medical School, Exeter EX2 5DW, UK
| |
Collapse
|
23
|
Gopal-Kothandapani JS, Hussain K. Congenital hyperinsulinism: Role of fluorine-18L-3, 4 hydroxyphenylalanine positron emission tomography scanning. World J Radiol 2014; 6:252-260. [PMID: 24976928 PMCID: PMC4072812 DOI: 10.4329/wjr.v6.i6.252] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 03/19/2014] [Accepted: 05/19/2014] [Indexed: 02/06/2023] Open
Abstract
Congenital hyperinsulinism (CHI) is a rare but complex heterogeneous disorder caused by unregulated secretion of insulin from the β-cells of the pancreas leading to severe hypoglycaemia and neuroglycopaenia. Swift diagnosis and institution of appropriate management is crucial to prevent or minimise adverse neurodevelopmental outcome in children with CHI. Histologically there are two major subtypes of CHI, diffuse and focal disease and the management approach will significantly differ depending on the type of the lesion. Patients with medically unresponsive diffuse disease require a near total pancreatectomy, which then leads on to the development of iatrogenic diabetes mellitus and pancreatic exocrine insufficiency. However patients with focal disease only require a limited pancreatectomy to remove only the focal lesion thus providing complete cure to the patient. Hence the preoperative differentiation of the histological subtypes of CHI becomes paramount in the management of CHI. Fluorine-18L-3, 4-hydroxyphenylalanine positron emission tomography (18F-DOPA-PET) is now the gold standard for pre-operative differentiation of focal from diffuse disease and localisation of the focal lesion. The aim of this review article is to give a clinical overview of CHI, then review the role of dopamine in β-cell physiology and finally discuss the role of 18F-DOPA-PET imaging in the management of CHI.
Collapse
|
24
|
Abstract
Persistent hyperinsulinaemic hypoglycaemia in infancy (PHHI) is a heterogeneous condition characterised by unregulated insulin secretion in response to a low blood glucose level. It is the most common cause of severe and persistent hypoglycaemia in neonates. It is extremely important to recognise this condition early and institute appropriate management to prevent significant brain injury leading to complications like epilepsy, cerebral palsy and neurological impairment. Histologically, PHHI is divided mainly into three types-diffuse, focal and atypical disease. Fluorine-18-l-3,4-dihydroxyphenylalanine positron emission tomography (18F-DOPA-PET/CT) scan allows differentiation between diffuse and focal diseases. The diffuse form is inherited in an autosomal recessive (or dominant) manner whereas the focal form is sporadic in inheritance and is localised to a small region of the pancreas. The molecular basis of PHHI involves defects in key genes (ABCC8, KCNJ11, GCK, SLC16A1, HADH, UCP2, HNF4A and GLUD1) that regulate insulin secretion. Focal lesions are cured by lesionectomy whereas diffuse disease (unresponsive to medical therapy) will require a near-total pancreatectomy with a risk of developing diabetes mellitus and pancreatic exocrine insufficiency. Open surgery is the traditional approach to pancreatic resection. However, recent advances in laparoscopic surgery have led to laparoscopic near-total pancreatectomy for diffuse lesions and laparoscopic distal pancreatectomy for focal lesions distal to the head of the pancreas.
Collapse
Affiliation(s)
- Pratik Shah
- Department of Developmental Endocrinology Research Group, Clinical and Molecular Genetics Unit, Institute of Child Health, University College London; Department of Paediatric Endocrinology, Great Ormond Street Hospital for Children, London
| | - Huseyin Demirbilek
- Department of Developmental Endocrinology Research Group, Clinical and Molecular Genetics Unit, Institute of Child Health, University College London; Department of Paediatric Endocrinology, Great Ormond Street Hospital for Children, London
| | - Khalid Hussain
- Department of Developmental Endocrinology Research Group, Clinical and Molecular Genetics Unit, Institute of Child Health, University College London; Department of Paediatric Endocrinology, Great Ormond Street Hospital for Children, London.
| |
Collapse
|
25
|
Abstract
PURPOSE OF REVIEW Neonatal hypoglycemia is one of the most common biochemical abnormalities encountered in the newborn. However, controversy remains surrounding its definition and management especially in asymptomatic patients. RECENT FINDINGS New information has been published that describes the incidence and timing of low glucose concentrations in the groups most at risk for asymptomatic neonatal hypoglycemia. Furthermore, one large prospective study failed to find an association between repetitive low glucose concentrations and poor neurodevelopmental outcomes in preterm infants. But hypoglycemia due to hyperinsulinism, especially genetic causes, continued to be associated with brain injury. New advances were made in the diagnosis and management of hyperinsulinism, including acquired hyperinsulinism in small for gestational age infants and others. Continuous glucose monitoring remains an attractive strategy for future research in this area. SUMMARY The fundamental question of how best to manage asymptomatic newborns with low glucose concentrations remains unanswered. Balancing the risks of overtreating newborns with low glucose concentrations who are undergoing a normal transition following birth against the risks of undertreating those in whom low glucose concentrations are pathological, dangerous, and/or a harbinger of serious metabolic disease remains a challenge.
Collapse
Affiliation(s)
- Paul J Rozance
- Department of Pediatrics, University of Colorado Denver School of Medicine, Aurora, Colorado, USA
| |
Collapse
|