1
|
Ranjbar J, Gibbins JM, Roe J, Roach P, Yang Y, Harper AG. A humanised thrombus-on-a-chip model utilising tissue-engineered arterial constructs: A method to reduce and replace mice used in thrombosis and haemostasis research. F1000Res 2025; 14:110. [PMID: 40191150 PMCID: PMC11971621 DOI: 10.12688/f1000research.158910.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/30/2024] [Indexed: 04/09/2025] Open
Abstract
The study of in vivo thrombus formation has principally been performed using intravital microscopy in mice and other species. These have allowed us to visualise the molecular and cellular processes that regulate thrombus formation inside the body. However current in vivo arterial thrombosis models are difficult to standardise between labs and frequently produce results that do not reliably translate successfully in human clinical trials. Here we provide a step-by-step description with accompanying video tutorials to demonstrate how to produce a 3D humanised thrombus-on-a-chip model, which uses perfusion of fluorescently-labelled human blood over a mechanically-injured human tissue engineered arterial construct (TEAC) within a 3D printed microfluidic flow chamber to replicate thrombus formation within a healthy artery. We also provide a written methodology on how to use 3D printing to produce a mechanical injury press that can reproducibly damage the TEAC as a stimulus for thrombus formation as part of a mechanical injury model. Perfusion of the uninjured TEAC with whole human blood containing DiOC6-labelled platelets without initiating notable thrombus formation. The mechanical injury press was shown to induce a reproducible puncture wound in the TEAC. Fluorescence microscopy was used to demonstrate that thrombus formation could be observed reproducibly around sites of injury. This humanised thrombosis-on-a-chip model can replace the use of animals in in vivo thrombosis models for preclinical assessment of anti-thrombotic therapies. This method also offers multiple scientific advantages: allowing new drugs to be directly tested on human blood from a diverse array of donors, facilitating use of a realistic and reproducible injury modality as well as removing the potential confounding effects of general anaesthetics in animal studies. The use of human thrombus-on-a-chip models combining TEACs offers a new methodology to reduce animal use whilst improving the predictive capabilities of preclinical trials of anti-thrombotic therapies.
Collapse
Affiliation(s)
- Jacob Ranjbar
- School of Medicine, Keele University, Keele, England, ST5 5BG, UK
| | - Jonathan M. Gibbins
- Institute for Cardiovascular & Metabolic Research, University of Reading School of Biological Sciences, Reading, England, RG6 6EX, UK
| | - Jordan Roe
- Department of Chemistry, School of Science, Loughborough University, Loughborough, England, LE11 3TU, UK
| | - Paul Roach
- Department of Chemistry, School of Science, Loughborough University, Loughborough, England, LE11 3TU, UK
| | - Ying Yang
- School of Life Sciences, Keele University, Keele, England, ST5 5BG, UK
| | - Alan G.S. Harper
- School of Medicine, Keele University, Keele, England, ST5 5BG, UK
| |
Collapse
|
2
|
Hashemi Z, Hui T, Wu A, Matouba D, Zukowski S, Nejati S, Lim C, Bruzzese J, Lin C, Seabold K, Mills C, Wrath K, Wang H, Wang H, Verzi MP, Perekatt A. Epithelial-specific loss of Smad4 alleviates the fibrotic response in an acute colitis mouse model. Life Sci Alliance 2024; 7:e202402935. [PMID: 39366762 PMCID: PMC11452480 DOI: 10.26508/lsa.202402935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/27/2024] [Accepted: 09/27/2024] [Indexed: 10/06/2024] Open
Abstract
Mucosal healing is associated with better clinical outcomes in patients with inflammatory bowel disease. But the epithelial-specific contribution to mucosal healing in vivo is poorly understood. We evaluated mucosal healing in an acute dextran sulfate sodium mouse model that shows an alleviated colitis response after epithelial-specific loss of Smad4. We find that enhanced epithelial wound healing alleviates the fibrotic response. Dextran sulfate sodium caused increased mesenchymal collagen deposition-indicative of fibrosis-within a week in the WT but not in the Smad4 KO colon. The fibrotic response correlated with decreased epithelial proliferation in the WT, whereas uninterrupted proliferation and an expanded zone of proliferation were observed in the Smad4 KO colon epithelium. Furthermore, the Smad4 KO colon showed epithelial extracellular matrix alterations that promote epithelial regeneration. Our data suggest that epithelium is a key determinant of the mucosal healing response in vivo, implicating mucosal healing as a strategy against fibrosis in inflammatory bowel disease patients.
Collapse
Affiliation(s)
- Zahra Hashemi
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, NJ, USA
| | - Thompson Hui
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, NJ, USA
| | - Alex Wu
- Department of Genetics, Rutgers University, Piscataway, NJ, USA
| | - Dahlia Matouba
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, NJ, USA
| | - Steven Zukowski
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, NJ, USA
| | - Shima Nejati
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, NJ, USA
| | - Crystal Lim
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, NJ, USA
| | - Julianna Bruzzese
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, NJ, USA
| | - Cindy Lin
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, NJ, USA
| | - Kyle Seabold
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, NJ, USA
| | - Connor Mills
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, NJ, USA
| | - Kylee Wrath
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, NJ, USA
| | - Haoyu Wang
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, NJ, USA
| | - Hongjun Wang
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, NJ, USA
| | - Michael P Verzi
- Department of Genetics, Rutgers University, Piscataway, NJ, USA
| | - Ansu Perekatt
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, NJ, USA
| |
Collapse
|
3
|
Hashemi Z, Hui T, Wu A, Matouba D, Zukowski S, Nejati S, Lim C, Bruzzese J, Seabold K, Mills C, Lin C, Wrath K, Wang H, Wang H, Verzi MP, Perekatt A. Smad4 Loss in the Mouse Intestinal Epithelium Alleviates the Pathological Fibrotic Response to Injury in the Colon. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.08.578000. [PMID: 38559102 PMCID: PMC10979917 DOI: 10.1101/2024.03.08.578000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Mucosal healing is associated with better clinical outcomes in patients with inflammatory bowel diseases (IBDs). Unresolved injury and inflammation, on the other hand, increases pathological fibrosis and the predisposition to cancer. Loss of Smad4, a tumor suppressor, is known to increase colitis-associated cancer in mouse models of chronic IBD. Since common biological processes are involved in both injury repair and tumor growth, we sought to investigate the effect of Smad4 loss on the response to epithelial injury. To this end, Smad4 was knocked out specifically in the intestinal epithelium and transcriptomic and morphological changes compared between wild type mice and Smad4 knock out mice after DSS-induced injury. We find that Smad4 loss alleviates pathological fibrosis and enhances mucosal repair. The transcriptomic changes specific to epithelium indicate molecular changes that affect epithelial extracellular matrix (ECM) and promote enhanced mucosal repair. These findings suggest that the biological processes that promote wound healing alleviate the pathological fibrotic response to DSS. Therefore, these mucosal repair processes could be exploited to develop therapies that promote normal wound healing and prevent fibrosis. NEW AND NOTEWORTHY We show that transcriptomic changes due to Smad4 loss in the colonic epithelium alleviates the pathological fibrotic response to DSS in an IBD mouse model of acute inflammation. Most notably, we find that collagen deposition in the epithelial ECM, as opposed to that in the lamina propria, correlates with epithelial changes that enhance wound healing. This is the first report on a mouse model providing alleviated fibrotic response in a DSS-IBD mouse model in vivo .
Collapse
|
4
|
Manole CG, Soare C, Ceafalan LC, Voiculescu VM. Platelet-Rich Plasma in Dermatology: New Insights on the Cellular Mechanism of Skin Repair and Regeneration. Life (Basel) 2023; 14:40. [PMID: 38255655 PMCID: PMC10817627 DOI: 10.3390/life14010040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/30/2023] [Accepted: 12/19/2023] [Indexed: 01/24/2024] Open
Abstract
The skin's recognised functions may undergo physiological alterations due to ageing, manifesting as varying degrees of facial wrinkles, diminished tautness, density, and volume. Additionally, these functions can be disrupted (patho)physiologically through various physical and chemical injuries, including surgical trauma, accidents, or chronic conditions like ulcers associated with diabetes mellitus, venous insufficiency, or obesity. Advancements in therapeutic interventions that boost the skin's innate regenerative abilities could significantly enhance patient care protocols. The application of Platelet-Rich Plasma (PRP) is widely recognized for its aesthetic and functional benefits to the skin. Yet, the endorsement of PRP's advantages often borders on the dogmatic, with its efficacy commonly ascribed solely to the activation of fibroblasts by the factors contained within platelet granules. PRP therapy is a cornerstone of regenerative medicine which involves the autologous delivery of conditioned plasma enriched by platelets. This is achieved by centrifugation, removing erythrocytes while retaining platelets and their granules. Despite its widespread use, the precise sequences of cellular activation, the specific cellular players, and the molecular machinery that drive PRP-facilitated healing are still enigmatic. There is still a paucity of definitive and robust studies elucidating these mechanisms. In recent years, telocytes (TCs)-a unique dermal cell population-have shown promising potential for tissue regeneration in various organs, including the dermis. TCs' participation in neo-angiogenesis, akin to that attributed to PRP, and their role in tissue remodelling and repair processes within the interstitia of several organs (including the dermis), offer intriguing insights. Their potential to contribute to, or possibly orchestrate, the skin regeneration process following PRP treatment has elicited considerable interest. Therefore, pursuing a comprehensive understanding of the cellular and molecular mechanisms at work, particularly those involving TCs, their temporal involvement in structural recovery following injury, and the interconnected biological events in skin wound healing and regeneration represents a compelling field of study.
Collapse
Affiliation(s)
- Catalin G. Manole
- Department of Cellular and Molecular Biology and Histology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Ultrastructural Pathology Laboratory, “Victor Babeș” National Institute of Pathology, 050096 Bucharest, Romania
| | - Cristina Soare
- Department of Oncological Dermatology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Laura Cristina Ceafalan
- Department of Cellular and Molecular Biology and Histology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Cell Biology, Neurosciences and Experimental Myology Laboratory, “Victor Babeș” National Institute of Pathology, 050096 Bucharest, Romania
| | - Vlad M. Voiculescu
- Department of Oncological Dermatology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
| |
Collapse
|
5
|
Aslan JE. Fibrin reaches out to GPVI to influence how platelets shape clots. J Thromb Haemost 2023; 21:465-466. [PMID: 36858794 DOI: 10.1016/j.jtha.2022.11.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/08/2022] [Accepted: 11/09/2022] [Indexed: 03/02/2023]
Affiliation(s)
- Joseph E Aslan
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon, USA; Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, Oregon, USA; Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland, Oregon, USA.
| |
Collapse
|
6
|
Gauer JS, Duval C, Xu RG, Macrae FL, McPherson HR, Tiede C, Tomlinson D, Watson SP, Ariëns RAS. Fibrin-glycoprotein VI interaction increases platelet procoagulant activity and impacts clot structure. J Thromb Haemost 2023; 21:667-681. [PMID: 36696196 DOI: 10.1016/j.jtha.2022.09.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 09/14/2022] [Accepted: 09/28/2022] [Indexed: 01/26/2023]
Abstract
BACKGROUND The glycoprotein VI (GPVI) signaling pathway was previously reported to direct procoagulant platelet activity through collagen binding. However, the impact of GPVI-fibrin interaction on procoagulant platelet development and how it modulates the clot structure are unknown. OBJECTIVES To determine the effect of GPVI-fibrin interaction on the platelet phenotype and its impact on the clot structure. METHODS Procoagulant platelets in platelet-rich plasma clots were determined by scanning electron microscopy (wild-type and GPVI-deficient murine samples) and confocal microscopy. Procoagulant platelet number, clot density, clot porosity, and clot retraction were determined in platelet-rich plasma or whole blood clots of healthy volunteers in the presence of tyrosine kinase inhibitors (PRT-060318, ibrutinib, and dasatinib) and eptifibatide. RESULTS GPVI-deficient clots showed a higher nonprocoagulant vs procoagulant platelet ratio than wild-type clots. The fiber density and the procoagulant platelet number decreased in the presence of Affimer proteins, inhibiting GPVI-fibrin(ogen) interaction and the tyrosine kinase inhibitors. The effect of GPVI signaling inhibitors on the procoagulant platelet number was exacerbated by eptifibatide. The tyrosine kinase inhibitors led to an increase in clot porosity; however, no differences were observed in the final clot weight, following clot retraction with the tyrosine kinase inhibitors, except for ibrutinib. In the presence of eptifibatide, clot retraction was impaired. CONCLUSION Our findings showed that GPVI-fibrin interaction significantly contributes to the development of procoagulant platelets and that inhibition of GPVI signaling increases clot porosity. Clot contractibility was impaired by the integrin αIIbβ3 and Btk pathway inhibition. Thus, inhibition of GPVI-fibrin interactions can alleviate structural characteristics that contribute to a prothrombotic clot phenotype, having potential important implications for novel antithrombotic interventions.
Collapse
Affiliation(s)
- Julia S Gauer
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Cédric Duval
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Rui-Gang Xu
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Fraser L Macrae
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Helen R McPherson
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Christian Tiede
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Darren Tomlinson
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Steve P Watson
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Robert A S Ariëns
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom.
| |
Collapse
|
7
|
Garraud O, Hamzeh-Cognasse H, Chalayer E, Duchez AC, Tardy B, Oriol P, Haddad A, Guyotat D, Cognasse F. Platelet transfusion in adults: An update. Transfus Clin Biol 2023; 30:147-165. [PMID: 36031180 DOI: 10.1016/j.tracli.2022.08.147] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Many patients worldwide receive platelet components (PCs) through the transfusion of diverse types of blood components. PC transfusions are essential for the treatment of central thrombocytopenia of diverse causes, and such treatment is beneficial in patients at risk of severe bleeding. PC transfusions account for almost 10% of all the blood components supplied by blood services, but they are associated with about 3.25 times as many severe reactions (attributable to transfusion) than red blood cell transfusions after stringent in-process leukoreduction to less than 106 residual cells per blood component. PCs are not homogeneous, due to the considerable differences between donors. Furthermore, the modes of PC collection and preparation, the safety precautions taken to limit either the most common (allergic-type reactions and febrile non-hemolytic reactions) or the most severe (bacterial contamination, pulmonary lesions) adverse reactions, and storage and conservation methods can all result in so-called PC "storage lesions". Some storage lesions affect PC quality, with implications for patient outcome. Good transfusion practices should result in higher levels of platelet recovery and efficacy, and lower complication rates. These practices include a matching of tissue ABH antigens whenever possible, and of platelet HLA (and, to a lesser extent, HPA) antigens in immunization situations. This review provides an overview of all the available information relating to platelet transfusion, from donor and donation to bedside transfusion, and considers the impact of the measures applied to increase transfusion efficacy while improving safety and preventing transfusion inefficacy and refractoriness. It also considers alternatives to platelet component (PC) transfusion.
Collapse
Affiliation(s)
- O Garraud
- SAINBIOSE, INSERM, U1059, University of Lyon, Saint-Étienne, France.
| | | | - E Chalayer
- SAINBIOSE, INSERM, U1059, University of Lyon, Saint-Étienne, France; Saint-Etienne University Hospital, Department of Hematology and Cellular Therapy, Saint-Étienne, France
| | - A C Duchez
- SAINBIOSE, INSERM, U1059, University of Lyon, Saint-Étienne, France; Établissement Français du Sang Auvergne-Rhône-Alpes, Saint-Étienne, France
| | - B Tardy
- SAINBIOSE, INSERM, U1059, University of Lyon, Saint-Étienne, France; CHU de Saint-Etienne, INSERM and CIC EC 1408, Clinical Epidemiology, Saint-Étienne, France
| | - P Oriol
- CHU de Saint-Etienne, INSERM and CIC EC 1408, Clinical Epidemiology, Saint-Étienne, France
| | - A Haddad
- SAINBIOSE, INSERM, U1059, University of Lyon, Saint-Étienne, France; Sacré-Cœur Hospital, Beirut, Lebanon; Lebanese American University, Beirut, Lebanon
| | - D Guyotat
- Saint-Etienne University Hospital, Department of Hematology and Cellular Therapy, Saint-Étienne, France
| | - F Cognasse
- SAINBIOSE, INSERM, U1059, University of Lyon, Saint-Étienne, France; Établissement Français du Sang Auvergne-Rhône-Alpes, Saint-Étienne, France
| |
Collapse
|
8
|
Pokrovskaya ID, Rhee SW, Ball KK, Kamykowski JA, Zhao OS, Cruz DRD, Cohen J, Aronova MA, Leapman RD, Storrie B. Tethered platelet capture provides a mechanism for restricting circulating platelet activation to the wound site. Res Pract Thromb Haemost 2023; 7:100058. [PMID: 36865905 PMCID: PMC9971284 DOI: 10.1016/j.rpth.2023.100058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/20/2022] [Accepted: 12/30/2022] [Indexed: 01/24/2023] Open
Abstract
Background Puncture wounding is a longstanding challenge to human health for which understanding is limited, in part, by a lack of detailed morphological data on how the circulating platelet capture to the vessel matrix leads to sustained, self-limiting platelet accumulation. Objectives The objective of this study was to produce a paradigm for self-limiting thrombus growth in a mouse jugular vein model. Methods Data mining of advanced electron microscopy images was performed from authors' laboratories. Results Wide-area transmission electron mcrographs revealed initial platelet capture to the exposed adventitia resulted in localized patches of degranulated, procoagulant-like platelets. Platelet activation to a procoagulant state was sensitive to dabigatran, a direct-acting PAR receptor inhibitor, but not to cangrelor, a P2Y12 receptor inhibitor. Subsequent thrombus growth was sensitive to both cangrelor and dabigatran and sustained by the capture of discoid platelet strings first to collagen-anchored platelets and later to loosely adherent peripheral platelets. Spatial examination indicated that staged platelet activation resulted in a discoid platelet tethering zone that was pushed progressively outward as platelets converted from one activation state to another. As thrombus growth slowed, discoid platelet recruitment became rare and loosely adherent intravascular platelets failed to convert to tightly adherent platelets. Conclusions In summary, the data support a model that we term Capture and Activate, in which the initial high platelet activation is directly linked to the exposed adventitia, all subsequent tethering of discoid platelets is to loosely adherent platelets that convert to tightly adherent platelets, and self-limiting, intravascular platelet activation over time is the result of decreased signaling intensity.
Collapse
Affiliation(s)
- Irina D Pokrovskaya
- Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Sung W Rhee
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Kelly K Ball
- Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA.,Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Jeffrey A Kamykowski
- Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Oliver S Zhao
- Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland, USA
| | - Denzel R D Cruz
- Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland, USA
| | - Joshua Cohen
- Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland, USA
| | - Maria A Aronova
- Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland, USA
| | - Richard D Leapman
- Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland, USA
| | - Brian Storrie
- Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| |
Collapse
|
9
|
Li Y, Yang X, Zhou H, Hui X, Li H, Zheng J. A high neutrophil-to-platelet ratio is associated with hematoma expansion in patients with spontaneous intracerebral hemorrhage: a retrospective study. BMC Neurol 2023; 23:27. [PMID: 36653741 PMCID: PMC9847168 DOI: 10.1186/s12883-023-03055-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 01/06/2023] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Early hematoma expansion (HE) occurs in 20 to 40% of spontaneous intracerebral hemorrhage (ICH) patients and is a primary determinant of early deterioration and poor prognosis. Previous studies have shown that inflammation is a major pathological feature of ICH, and the neutrophil-to-platelet ratio (NPR) is a marker of systemic inflammation. Therefore, we aimed to assess the association between the NPR and HE in ICH patients. METHODS We retrospectively collected and analyzed data from ICH patients who received treatment at our institution from January 2018 to November 2019. The NPR was calculated from the admission blood test. Brain computed tomography (CT) scans were performed at admission and repeated within 24 h. Hematoma growth was defined as relative growth > 33% or absolute growth > 6 ml. RESULTS A total of 317 patients were enrolled in our study. Multivariate logistic regression analysis indicated that the NPR was an independent predictor of HE [odds ratio (OR) = 1.742; 95% CI: 1.508-2.012, p < 0.001]. Receiver operating characteristic (ROC) curve analysis revealed that the NPR could predict HE, with an area under the curve of 0.838 (95% CI, 0.788-0.888, p < 0.001). The best predictive cut-off of the NPR for HE was 5.47 (sensitivity, 75.3%; specificity, 77.6%). CONCLUSIONS A high NPR was associated with an increased risk of HE in patients with ICH.
Collapse
Affiliation(s)
- Yujian Li
- grid.412901.f0000 0004 1770 1022Department of Neurosurgery, West China Hospital, Sichuan University, 37 Guo Xue Xiang, Wu Hou District, 610041 Chengdu, P.R. China
| | - Xiang Yang
- grid.412901.f0000 0004 1770 1022Department of Neurosurgery, West China Hospital, Sichuan University, 37 Guo Xue Xiang, Wu Hou District, 610041 Chengdu, P.R. China
| | - Huiqing Zhou
- grid.460079.cDepartment of Intensive Care Unit, Fourth People’s Hospital of Sichuan Province, Chengdu, P.R. China
| | - Xuhui Hui
- grid.412901.f0000 0004 1770 1022Department of Neurosurgery, West China Hospital, Sichuan University, 37 Guo Xue Xiang, Wu Hou District, 610041 Chengdu, P.R. China
| | - Hao Li
- grid.412901.f0000 0004 1770 1022Department of Neurosurgery, West China Hospital, Sichuan University, 37 Guo Xue Xiang, Wu Hou District, 610041 Chengdu, P.R. China
| | - Jun Zheng
- grid.412901.f0000 0004 1770 1022Department of Neurosurgery, West China Hospital, Sichuan University, 37 Guo Xue Xiang, Wu Hou District, 610041 Chengdu, P.R. China
| |
Collapse
|
10
|
Napolitano F, Montuori N. Role of Plasminogen Activation System in Platelet Pathophysiology: Emerging Concepts for Translational Applications. Int J Mol Sci 2022; 23:ijms23116065. [PMID: 35682744 PMCID: PMC9181697 DOI: 10.3390/ijms23116065] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 12/13/2022] Open
Abstract
Traditionally, platelets have been exclusively considered for their procoagulant and antifibrinolytic effects during normal activation of hemostasis. Effectively, activated platelets secrete coagulation factors, expose phosphatidylserine, and promote thrombin and fibrin production. In addition to procoagulant activities, platelets confer resistance of thrombi to fibrinolysis by inducing clot retraction of the fibrin network and release of huge amounts of plasminogen activator inhibitor-1, which is the major physiologic inhibitor of the fibrinolytic cascade. However, the discovery of multiple relations with the fibrinolytic system, also termed Plasminogen Activation System (PAS), has introduced new perspectives on the platelet role in fibrinolysis. Indeed, the activated membrane surface of platelets provides binding sites on which fibrinolytic enzymes can be activated. This review discusses the evidence of the profibrinolytic properties of platelets through the description of PAS components and related proteins that are contained in or bind to platelets. Our analyses of literature data lead to the conclusion that in the initial phase of the hemostatic process, antifibrinolytic effects prevail over profibrinolytic activity, but at later stages, platelets might enhance fibrinolysis through the engagement of PAS components. A better understanding of spatial and temporal characteristics of platelet-mediated fibrinolysis during normal hemostasis could improve therapeutic options for bleeding and thrombotic disorders.
Collapse
|
11
|
Afosah DK, Ofori E, Mottamal M, Al-Horani RA. Factor IX(a) inhibitors: an updated patent review (2003-present). Expert Opin Ther Pat 2022; 32:381-400. [PMID: 34991418 DOI: 10.1080/13543776.2022.2026926] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Anticoagulation with no bleeding complications is the current objective of drug discovery programs in the area of treating and/or preventing thromboembolism. Despite the promises of therapeutics targeting factors XI(a) and XII(a), none has been approved thus far. Clinically used thrombin- and/or factor Xa-based anticoagulants continue to be associated with a significant bleeding risk which limits their safe use in a broad range of thrombotic patients. Research findings in animals and humans indicate that it is possible to target factor IX(a) (FIX(a)) to achieve anticoagulation with a limited risk of bleeding. AREAS COVERED A review of patents literature has retrieved >35 patents on the development of molecules targeting FIX(a) since 2003. Small molecules, antibodies, and aptamers have been developed to target FIX(a) to potentially promote effective and safer anticoagulation. Most of these agents are in the pre-clinical development phase and few have been tested in clinical trials. EXPERT OPINION FIX(a) system is being considered to develop new anticoagulants with fewer bleeding complications. Our survey indicates that the number of FIX(a)-targeting agents is mediocre. The agents under development are diverse. Although additional development is essential, moving one or more of these agents to the clinic will facilitate achieving better clinical outcomes.
Collapse
Affiliation(s)
- Daniel K Afosah
- Department of Chemistry and Biochemistry, Washington and Lee University, Lexington, VA, USA
| | - Edward Ofori
- Department of Pharmaceutical Sciences, College of Pharmacy, Chicago State University, Chicago, IL, USA
| | - Madhusoodanan Mottamal
- Department of Chemistry, College of Arts and Sciences, Xavier University of Louisiana, New Orleans, LA, USA
| | - Rami A Al-Horani
- Division of Basic Pharmaceutical Sciences, College of Pharmacy, Xavier University of Louisiana, New Orleans, Louisiana, USA
| |
Collapse
|
12
|
Berry J, Peaudecerf FJ, Masters NA, Neeves KB, Goldstein RE, Harper MT. An "occlusive thrombosis-on-a-chip" microfluidic device for investigating the effect of anti-thrombotic drugs. LAB ON A CHIP 2021; 21:4104-4117. [PMID: 34523623 PMCID: PMC8547327 DOI: 10.1039/d1lc00347j] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 08/05/2021] [Indexed: 05/03/2023]
Abstract
Cardiovascular disease remains one of the world's leading causes of death. Myocardial infarction (heart attack) is triggered by occlusion of coronary arteries by platelet-rich thrombi (clots). The development of new anti-platelet drugs to prevent myocardial infarction continues to be an active area of research and is dependent on accurately modelling the process of clot formation. Occlusive thrombi can be generated in vivo in a range of species, but these models are limited by variability and lack of relevance to human disease. Although in vitro models using human blood can overcome species-specific differences and improve translatability, many models do not generate occlusive thrombi. In those models that do achieve occlusion, time to occlusion is difficult to measure in an unbiased and objective manner. In this study we developed a simple and robust approach to determine occlusion time of a novel in vitro microfluidic assay. This highlighted the potential for occlusion to occur in thrombosis microfluidic devices through off-site coagulation, obscuring the effect of anti-platelet drugs. We therefore designed a novel occlusive thrombosis-on-a-chip microfluidic device that reliably generates occlusive thrombi at arterial shear rates by quenching downstream coagulation. We further validated our device and methods by using the approved anti-platelet drug, eptifibatide, recording a significant difference in the "time to occlude" in treated devices compared to control conditions. These results demonstrate that this device can be used to monitor the effect of antithrombotic drugs on time to occlude, and, for the first time, delivers this essential data in an unbiased and objective manner.
Collapse
Affiliation(s)
- Jess Berry
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1PD, UK.
| | - François J Peaudecerf
- Department of Civil, Environmental, and Geomatic Engineering, ETH Zürich, 8093 Zürich, Switzerland
| | - Nicole A Masters
- Department of Bioengineering, Department of Pediatrics, Section of Hematology, Oncology, and Bone Marrow Transplant, Hemophilia and Thrombosis Center, University of Colorado Denver|Anschutz Medical Campus, Aurora, CO, USA
| | - Keith B Neeves
- Department of Bioengineering, Department of Pediatrics, Section of Hematology, Oncology, and Bone Marrow Transplant, Hemophilia and Thrombosis Center, University of Colorado Denver|Anschutz Medical Campus, Aurora, CO, USA
| | - Raymond E Goldstein
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, UK
| | - Matthew T Harper
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1PD, UK.
| |
Collapse
|
13
|
Diamond SL, Rossi JM. Point of care whole blood microfluidics for detecting and managing thrombotic and bleeding risks. LAB ON A CHIP 2021; 21:3667-3674. [PMID: 34476426 PMCID: PMC8478847 DOI: 10.1039/d1lc00465d] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Point-of-care diagnostics of platelet and coagulation function present demanding challenges. Current clinical diagnostics often use centrifuged plasmas or platelets and frozen plasma standards, recombinant protein standards, or even venoms. Almost all commercialized tests of blood do not recreate the in vivo hemodynamics where platelets accumulate to high densities and thrombin is generated from a procoagulant surface. Despite numerous drugs that target platelets, insufficient coagulation, or excess coagulation, POC blood testing is essentially limited to viscoelastic methods that provide a clotting time, clot strength, and clot lysis, while used mostly in trauma centers with specialized capabilities. Microfluidics now allows small volumes of whole blood (<1 mL) to be tested under venous or arterial shear rates with multi-color readouts to follow platelet function, thrombin generation, fibrin production, and clot stability. Injection molded chips containing pre-patterned fibrillar collagen and lipidated tissue factor can be stored dry for 6 months at 4C, thus allowing rapid blood testing on single-use disposable chips. Using only a small imaging microscope and micropump, these microfluidic devices can detect platelet inhibitors, direct oral anticoagulants (DOACs) and their reversal agents. POC microfluidics are ideal for neonatal surgical applications that involve small blood samples, rapid DOAC testing in stroke or bleeding or emergency surgery situations with patients presenting high risk cofactors for either bleeding or thrombosis.
Collapse
Affiliation(s)
- Scott L Diamond
- Institute for Medicine and Engineering, Department of Chemical and Biomolecular Engineering, University of Pennsylvania, 1024 Vagelos Research Laboratory, Philadelphia, PA 19104, USA.
| | - Jason M Rossi
- Institute for Medicine and Engineering, Department of Chemical and Biomolecular Engineering, University of Pennsylvania, 1024 Vagelos Research Laboratory, Philadelphia, PA 19104, USA.
| |
Collapse
|
14
|
Jank M, von Niessen N, Olivier CB, Schmitt H, Anto-Michel N, Hilgendorf I, Bode C, Moser M, Esser JS, Zhou Q. Platelet Bone Morphogenetic Protein-4 Mediates Vascular Inflammation and Neointima Formation after Arterial Injury. Cells 2021; 10:2027. [PMID: 34440796 PMCID: PMC8394465 DOI: 10.3390/cells10082027] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/04/2021] [Accepted: 08/05/2021] [Indexed: 12/26/2022] Open
Abstract
The purpose of this study is to investigate the role of platelet bone morphogenetic proteins (BMP)-4 during vascular inflammation and remodeling in a mouse model of carotid wire injury. Transgenic mice with a platelet-specific deletion of BMP-4 (BMP4Plt-/-) were generated. Intravital microscopy was performed to evaluate leukocyte adhesion to the vessel wall. Expression of adhesion molecules and chemokines were analyzed. Platelet-leukocyte aggregates (PLAs) were evaluated using flow cytometry. For carotid wire injury, BMP4Plt-/- mice were further crossed with LDLr-/- mice (BMP4Plt-/-/LDLr-/-) and fed with a high cholesterol diet for 2-weeks. Carotid wire injury was performed, and re-endothelialization and neointimal formation were evaluated. In comparison to the control mice, stimulation with TNFα resulted in fewer rolling and adherent leukocytes to the vessel wall in the BMP4Plt-/- mice. mRNA and protein expression of P-selectin and adhesion molecules were reduced in the aorta of the BMP4Plt-/- mice. In platelets from the BMP4Plt-/- mice, the expression of P-selectin was reduced, and fewer PLA formations were measured than in the control mice. Loss of platelet BMP-4 further prevented neointima formation after carotid wire injury. Endothelial regeneration after injury was decelerated in the BMP4Plt-/- mice, and confirmed in-vitro, where the deletion of platelet BMP-4 inhibited endothelial cell proliferation and migration. We demonstrate for the first time that platelet BMP-4 is involved during vascular inflammation and remodeling. This is partially mediated by the inhibition of platelet activation, reduced expression of adhesion molecules and inflammatory responses. Our findings identify platelet BMP-4 as a mediator of vascular inflammation in early atherosclerosis and restenosis.
Collapse
Affiliation(s)
- Marietta Jank
- University Heart Center Freiburg—Bad Krozingen, Department of Cardiology and Angiology I, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (M.J.); (N.v.N.); (C.B.O.); (H.S.); (N.A.-M.); (I.H.); (C.B.); (M.M.); (J.S.E.)
| | - Nikolaus von Niessen
- University Heart Center Freiburg—Bad Krozingen, Department of Cardiology and Angiology I, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (M.J.); (N.v.N.); (C.B.O.); (H.S.); (N.A.-M.); (I.H.); (C.B.); (M.M.); (J.S.E.)
| | - Christoph B. Olivier
- University Heart Center Freiburg—Bad Krozingen, Department of Cardiology and Angiology I, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (M.J.); (N.v.N.); (C.B.O.); (H.S.); (N.A.-M.); (I.H.); (C.B.); (M.M.); (J.S.E.)
| | - Hannah Schmitt
- University Heart Center Freiburg—Bad Krozingen, Department of Cardiology and Angiology I, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (M.J.); (N.v.N.); (C.B.O.); (H.S.); (N.A.-M.); (I.H.); (C.B.); (M.M.); (J.S.E.)
| | - Nathaly Anto-Michel
- University Heart Center Freiburg—Bad Krozingen, Department of Cardiology and Angiology I, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (M.J.); (N.v.N.); (C.B.O.); (H.S.); (N.A.-M.); (I.H.); (C.B.); (M.M.); (J.S.E.)
| | - Ingo Hilgendorf
- University Heart Center Freiburg—Bad Krozingen, Department of Cardiology and Angiology I, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (M.J.); (N.v.N.); (C.B.O.); (H.S.); (N.A.-M.); (I.H.); (C.B.); (M.M.); (J.S.E.)
- University Heart Center Freiburg—Bad Krozingen, Institute for Experimental Cardiovascular Medicine, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Christoph Bode
- University Heart Center Freiburg—Bad Krozingen, Department of Cardiology and Angiology I, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (M.J.); (N.v.N.); (C.B.O.); (H.S.); (N.A.-M.); (I.H.); (C.B.); (M.M.); (J.S.E.)
| | - Martin Moser
- University Heart Center Freiburg—Bad Krozingen, Department of Cardiology and Angiology I, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (M.J.); (N.v.N.); (C.B.O.); (H.S.); (N.A.-M.); (I.H.); (C.B.); (M.M.); (J.S.E.)
| | - Jennifer S. Esser
- University Heart Center Freiburg—Bad Krozingen, Department of Cardiology and Angiology I, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (M.J.); (N.v.N.); (C.B.O.); (H.S.); (N.A.-M.); (I.H.); (C.B.); (M.M.); (J.S.E.)
| | - Qian Zhou
- University Heart Center Freiburg—Bad Krozingen, Department of Cardiology and Angiology I, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (M.J.); (N.v.N.); (C.B.O.); (H.S.); (N.A.-M.); (I.H.); (C.B.); (M.M.); (J.S.E.)
- Department of Medicine, Division of Cardiology, University Hospital Basel, 4031 Basel, Switzerland
| |
Collapse
|
15
|
Wang Y, Pisapati AV, Zhang XF, Cheng X. Recent Developments in Nanomaterial-Based Shear-Sensitive Drug Delivery Systems. Adv Healthc Mater 2021; 10:e2002196. [PMID: 34076369 PMCID: PMC8273148 DOI: 10.1002/adhm.202002196] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 04/21/2021] [Indexed: 01/30/2023]
Abstract
Nanomaterial-based drug delivery systems (DDSs) increase the efficacy of various therapeutics, and shear stress has been shown to be a robust modulator of payload release. In the past few decades, a deeper understanding has been gained of the effects of flow in the body and its alteration in pathological microenvironments. More recently, shear-responsive nanomaterial DDSs have been developed. Studies on this subject mainly from the last decade are reviewed here, focusing on innovations of the material design and mechanisms of the shear response. The two most popular shear-controlled drug carriers distinguished by different release mechanisms, that is, shear-deformable nanoparticles (NPs) and shear-dissociated NP aggregates (NPAs), are surveyed. The influence of material structures on their properties such as drug loading, circulation time, and shear sensitivity are discussed. The drug development stages, therapeutic effects, limitations, and potential of these DDSs are further inspected. The reviewed research emphasizes the advantages and significance of nanomaterial-based shear-sensitive DDSs in the field of targeted drug delivery. It is also believed that efforts to rationally design nanomaterial DDSs responsive to shear may prompt a new class of diagnostics and therapeutics for signaling and rectifying pathological flows in the body.
Collapse
Affiliation(s)
- Yi Wang
- Department of Materials Science and Engineering, Lehigh University, Bethlehem, PA, 18015, United States
| | - Avani V. Pisapati
- Department of Bioengineering, Lehigh University, Bethlehem, PA, 18015, United States
| | - X. Frank Zhang
- Department of Bioengineering, Lehigh University, Bethlehem, PA, 18015, United States
| | - Xuanhong Cheng
- Department of Materials Science and Engineering, Lehigh University, Bethlehem, PA, 18015, United States
- Department of Bioengineering, Lehigh University, Bethlehem, PA, 18015, United States
| |
Collapse
|
16
|
Williams D, Leuthardt EC, Genin GM, Zayed M. Tailoring of arteriovenous graft-to-vein anastomosis angle to attenuate pathological flow fields. Sci Rep 2021; 11:12153. [PMID: 34108499 PMCID: PMC8190231 DOI: 10.1038/s41598-021-90813-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 05/04/2021] [Indexed: 02/05/2023] Open
Abstract
Arteriovenous grafts are routinely placed to facilitate hemodialysis in patients with end stage renal disease. These grafts are conduits between higher pressure arteries and lower pressure veins. The connection on the vein end of the graft, known as the graft-to-vein anastomosis, fails frequently and chronically due to high rates of stenosis and thrombosis. These failures are widely believed to be associated with pathologically high and low flow shear strain rates at the graft-to-vein anastomosis. We hypothesized that consistent with pipe flow dynamics and prior work exploring vein-to-artery anastomosis angles in arteriovenous fistulas, altering the graft-to-vein anastomosis angle can reduce the incidence of pathological shear rate fields. We tested this via computational fluid dynamic simulations of idealized arteriovenous grafts, using the Bird-Carreau constitutive law for blood. We observed that low graft-to-vein anastomosis angles ([Formula: see text]) led to increased incidence of pathologically low shear rates, and that high graft-to-vein anastomosis angles ([Formula: see text]) led to increased incidence of pathologically high shear rates. Optimizations predicted that an intermediate ([Formula: see text]) graft-to-anastomosis angle was optimal. Our study demonstrates that graft-to-vein anastomosis angles can significantly impact pathological flow fields, and can be optimized to substantially improve arteriovenous graft patency rates.
Collapse
Affiliation(s)
- Dillon Williams
- Vascular Surgery Biomedical Research Laboratory, Washington University School of Medicine, Saint Louis, MO, 60613, USA
- Center for Innovation in Neuroscience and Technology, Department of Neurological Surgery, Washington University School of Medicine, Saint Louis, MO, 60613, USA
| | - Eric C Leuthardt
- Center for Innovation in Neuroscience and Technology, Department of Neurological Surgery, Washington University School of Medicine, Saint Louis, MO, 60613, USA
- Department of Biomedical Engineering, Washington University, Saint Louis, MO, 63130, USA
| | - Guy M Genin
- Center for Innovation in Neuroscience and Technology, Department of Neurological Surgery, Washington University School of Medicine, Saint Louis, MO, 60613, USA.
- Department of Biomedical Engineering, Washington University, Saint Louis, MO, 63130, USA.
- NSF Science and Technology Center for Engineering MechanoBiology, Washington University in St. Louis, Saint Louis, USA.
| | - Mohamed Zayed
- Vascular Surgery Biomedical Research Laboratory, Washington University School of Medicine, Saint Louis, MO, 60613, USA.
- Center for Innovation in Neuroscience and Technology, Department of Neurological Surgery, Washington University School of Medicine, Saint Louis, MO, 60613, USA.
- Department of Biomedical Engineering, Washington University, Saint Louis, MO, 63130, USA.
| |
Collapse
|
17
|
GRK6 regulates the hemostatic response to injury through its rate-limiting effects on GPCR signaling in platelets. Blood Adv 2021; 4:76-86. [PMID: 31899801 DOI: 10.1182/bloodadvances.2019000467] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 11/25/2019] [Indexed: 12/18/2022] Open
Abstract
G protein-coupled receptors (GPCRs) mediate the majority of platelet activation in response to agonists. However, questions remain regarding the mechanisms that provide negative feedback toward activated GPCRs to limit platelet activation and thrombus formation. Here we provide the first evidence that GPCR kinase 6 (GRK6) serves this role in platelets, using GRK6-/- mice generated by CRISPR-Cas9 genome editing to examine the consequences of GRK6 knockout on GPCR-dependent signaling. Hemostatic thrombi formed in GRK6-/- mice are larger than in wild-type (WT) controls during the early stages of thrombus formation, with a rapid increase in platelet accumulation at the site of injury. GRK6-/- platelets have increased platelet activation, but in an agonist-selective manner. Responses to PAR4 agonist or adenosine 5'-diphosphate stimulation in GRK6-/- platelets are increased compared with WT littermates, whereas the response to thromboxane A2 (TxA2) is normal. Underlying these changes in GRK6-/- platelets is an increase in Ca2+ mobilization, Akt activation, and granule secretion. Furthermore, deletion of GRK6 in human MEG-01 cells causes an increase in Ca2+ response and PAR1 surface expression in response to thrombin. Finally, we show that human platelet activation in response to thrombin causes an increase in binding of GRK6 to PAR1, as well as an increase in the phosphorylation of PAR1. Deletion of GRK6 in MEG-01 cells causes a decrease in PAR1 phosphorylation. Taken together, these data show that GRK6 regulates the hemostatic response to injury through PAR- and P2Y12-mediated effects, helping to limit the rate of platelet activation during thrombus growth and prevent inappropriate platelet activation.
Collapse
|
18
|
Chen X, Zhao X, Cooper M, Ma P. The Roles of GRKs in Hemostasis and Thrombosis. Int J Mol Sci 2020; 21:ijms21155345. [PMID: 32731360 PMCID: PMC7432802 DOI: 10.3390/ijms21155345] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 07/20/2020] [Accepted: 07/27/2020] [Indexed: 12/20/2022] Open
Abstract
Along with cancer, cardiovascular and cerebrovascular diseases remain by far the most common causes of death. Heart attacks and strokes are diseases in which platelets play a role, through activation on ruptured plaques and subsequent thrombus formation. Most platelet agonists activate platelets via G protein-coupled receptors (GPCRs), which make these receptors ideal targets for many antiplatelet drugs. However, little is known about the mechanisms that provide feedback regulation on GPCRs to limit platelet activation. Emerging evidence from our group and others strongly suggests that GPCR kinases (GRKs) are critical negative regulators during platelet activation and thrombus formation. In this review, we will summarize recent findings on the role of GRKs in platelet biology and how one specific GRK, GRK6, regulates the hemostatic response to vascular injury. Furthermore, we will discuss the potential role of GRKs in thrombotic disorders, such as thrombotic events in COVID-19 patients. Studies on the function of GRKs during platelet activation and thrombus formation have just recently begun, and a better understanding of the role of GRKs in hemostasis and thrombosis will provide a fruitful avenue for understanding the hemostatic response to injury. It may also lead to new therapeutic options for the treatment of thrombotic and cardiovascular disorders.
Collapse
Affiliation(s)
- Xi Chen
- Cardeza Foundation for Hematologic Research, Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA; (X.C.); (X.Z.); (M.C.)
| | - Xuefei Zhao
- Cardeza Foundation for Hematologic Research, Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA; (X.C.); (X.Z.); (M.C.)
- Cyrus Tang Hematology Center, Soochow University, Suzhou 215123, China
| | - Matthew Cooper
- Cardeza Foundation for Hematologic Research, Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA; (X.C.); (X.Z.); (M.C.)
| | - Peisong Ma
- Cardeza Foundation for Hematologic Research, Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA; (X.C.); (X.Z.); (M.C.)
- Correspondence: ; Tel.: +1-215-955-3966
| |
Collapse
|
19
|
Garner AL, Torres AS, Klopman S, Neculaes B. Electrical stimulation of whole blood for growth factor release and potential clinical implications. Med Hypotheses 2020; 143:110105. [PMID: 32721802 DOI: 10.1016/j.mehy.2020.110105] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/09/2020] [Accepted: 07/11/2020] [Indexed: 12/16/2022]
Abstract
Clinicians have increasingly applied platelet-rich plasma (PRP) for wound healing treatments. Topical treatments commonly require biochemical agents such as bovine thrombin to activate PRP ex vivo for clotting and growth factor release to facilitate healing upon application to the wound of interest. Recent studies have explored electrical stimulation as an alternative to bovine thrombin for PRP activation due to the former's cost, workflow complexity and potentially significant side effects; however, both approaches require separating the PRP from whole blood (WB) prior to activation. Eliminating the separation (typically centrifugation) step would reduce the cost and duration of the clinical procedure, which may be critical in trauma and surgical applications. We hypothesize that electric pulses (EPs) can release growth factors from WB, as they do from PRP, without requiring centrifugation of WB into PRP. A pilot study for two donors demonstrates the potential for EP stimulated growth factor release from WB. This motivates future experiments assessing EP parameter optimization for WB activation and in vivo studies to determine the clinical benefits for topical treatments and, especially, for injections in orthopedic applications that already utilize non-treated/non-activated WB.
Collapse
Affiliation(s)
- Allen L Garner
- School of Nuclear Engineering, Purdue University, West Lafayette, IN, USA; School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, USA; Department of Agricultural and Biological Engineering, West Lafayette, IN, USA.
| | - Andrew S Torres
- GE Research, Niskayuna, NY, USA; Molecular Templates, Austin, TX, USA
| | | | | |
Collapse
|
20
|
Xin G, Ming Y, Ji C, Wei Z, Li S, Morris-Natschke SL, Zhang X, Yu K, Li Y, Zhang B, Zhang J, Xing Z, He Y, Chen Z, Yang X, Niu H, Lee KH, Huang W. Novel potent antiplatelet thrombotic agent derived from biguanide for ischemic stroke. Eur J Med Chem 2020; 200:112462. [PMID: 32464472 DOI: 10.1016/j.ejmech.2020.112462] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 05/11/2020] [Accepted: 05/11/2020] [Indexed: 02/08/2023]
Abstract
Platelet thrombosis is the main pathogeny resulting in the low curability of ischemic stroke, a leading cause of mortality and disability worldwide. Metformin, a biguanide derivative that is the first-line oral medicine for type 2 diabetes, alleviates the severity of ischemic stroke in diabetic patients and suppresses platelet activation in experimental animal model. However, the clinical implementation of commercial biguanide analogs for stroke related to platelet thrombosis remains challenging due to its weak potency, poor pharmacokinetic characteristics and possible hypoglycemia. Here, twenty-three biguanide derivatives were designed and synthesized based on the principles of bioisosteres. These derivatives were evaluated for the activity of antiplatelet thrombosis in vivo. We found that N-trifluoromethanesulfonyl biguanide derivative, compound b10, uniquely prevented cerebral infarction as well as neuronal function injury, and significantly decrease the mortality rate of ischemic stroke in the middle cerebral artery occlusion mice without significant side effects. We verified that b10 directly inhibited platelets thrombus formation and decreased the compactness of stroke thrombi. Particularly, b10 exhibited good potency to inhibit human platelet activation including platelet aggregation, adhesion, pseudopodia formation, integrin GPIIb/IIIa activation, CD62P expression and clot retraction. Meanwhile, the pharmacokinetics assessment showed that b10 had satisfying pharmacological characteristics including a longer duration and a higher oral absorption ratio than its parent compound. In addition, b10 remarkably ameliorated not only stroke related to platelet thrombosis but also carotid artery thrombus formation. It is concluded that the novel potent antiplatelet thrombotic agent derived from biguanide is a promising candidate for stroke treatment.
Collapse
Affiliation(s)
- Guang Xin
- Laboratory of Ethnopharmacology, West China School of Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yue Ming
- Laboratory of Ethnopharmacology, West China School of Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Chengjie Ji
- Clinical Laboratory, Hospital of University of Electronic Science and Technology of China, Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Zeliang Wei
- Laboratory of Ethnopharmacology, West China School of Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Shiyi Li
- Laboratory of Ethnopharmacology, West China School of Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Susan L Morris-Natschke
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Xiaoyu Zhang
- Laboratory of Ethnopharmacology, West China School of Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Kui Yu
- Laboratory of Ethnopharmacology, West China School of Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Youping Li
- Laboratory of Ethnopharmacology, West China School of Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Boli Zhang
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Junhua Zhang
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhihua Xing
- Laboratory of Ethnopharmacology, West China School of Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yarong He
- Laboratory of Ethnopharmacology, West China School of Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhen Chen
- Laboratory of Ethnopharmacology, West China School of Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xijing Yang
- Animal Experiment Center, West China School of Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hai Niu
- Laboratory of Ethnopharmacology, West China School of Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China; College of Mathematics, Sichuan University, Chengdu, Sichuan, China.
| | - Kuo-Hsiung Lee
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.
| | - Wen Huang
- Laboratory of Ethnopharmacology, West China School of Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
21
|
Therapeutic strategies for thrombosis: new targets and approaches. Nat Rev Drug Discov 2020; 19:333-352. [PMID: 32132678 DOI: 10.1038/s41573-020-0061-0] [Citation(s) in RCA: 215] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/16/2020] [Indexed: 12/19/2022]
Abstract
Antiplatelet agents and anticoagulants are a mainstay for the prevention and treatment of thrombosis. However, despite advances in antithrombotic therapy, a fundamental challenge is the side effect of bleeding. Improved understanding of the mechanisms of haemostasis and thrombosis has revealed new targets for attenuating thrombosis with the potential for less bleeding, including glycoprotein VI on platelets and factor XIa of the coagulation system. The efficacy and safety of new agents are currently being evaluated in phase III trials. This Review provides an overview of haemostasis and thrombosis, details the current landscape of antithrombotic agents, addresses challenges with preventing thromboembolic events in patients at high risk and describes the emerging therapeutic strategies that may break the inexorable link between antithrombotic therapy and bleeding risk.
Collapse
|
22
|
He W, Ruan Y, Yuan C, Cheng Q, Cheng H, Zeng Y, Chen Y, Huang G, Chen H, He J. High Neutrophil-to-Platelet Ratio Is Associated With Hemorrhagic Transformation in Patients With Acute Ischemic Stroke. Front Neurol 2019; 10:1310. [PMID: 31920933 PMCID: PMC6914868 DOI: 10.3389/fneur.2019.01310] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 11/26/2019] [Indexed: 12/25/2022] Open
Abstract
Background: Hemorrhagic transformation (HT) is a complication that may cause neurological deterioration in patients with acute ischemic stroke. Both neutrophil and platelet have been associated with the stroke progression. The aim of this study was to explore the relationship between neutrophil-to-platelet ratio (NPR) and HT after acute ischemic stroke. Methods: A total of 279 stroke patients with HT were consecutively recruited. HT was diagnosed using magnetic resonance imaging (MRI) or computed tomography (CT) and classified into hemorrhagic infarction (HI) and parenchymal hematoma (PH). Blood samples for neutrophil and platelet counts were obtained at admission. Meanwhile, 270 age- and gender-matched controls without HT were included for comparison. Results: Among the patients with HT, 131 patients had PH and 148 patients had HI. NPR was higher in patients with PH than those with HI or non-HT [36.8 (23.7–49.2) vs. 26.6 (17.9–38.3) vs. 19.1 (14.8–24.8), P < 0.001]. After adjustment for potential confounders, high NPR remained independently associated with the increased risk of HT (OR = 2.000, 95% CI: 1.041–3.843, P = 0.037). NPR (>39.9) was independently associated with PH (OR = 2.641, 95% CI: 1.308–5.342, P = 0.007). Conclusions: High NPR was associated with the increased risk of HT especially PH in patients with acute ischemic stroke.
Collapse
Affiliation(s)
- Weilei He
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yiting Ruan
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Chengxiang Yuan
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qianqian Cheng
- Department of Mental Health, Mental Health School, Wenzhou Medical University, Wenzhou, China
| | - Haoran Cheng
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yaying Zeng
- Department of Mental Health, Mental Health School, Wenzhou Medical University, Wenzhou, China
| | - Yunbin Chen
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Guiqian Huang
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Huijun Chen
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jincai He
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
23
|
Agbani EO, Hers I, Poole AW. Letter by Agbani et al Regarding Article, "Clot Contraction Drives the Translocation of Procoagulant Platelets to Thrombus Surface". Arterioscler Thromb Vasc Biol 2019; 39:e287-e289. [PMID: 31770030 DOI: 10.1161/atvbaha.119.313468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Ejaife O Agbani
- From the Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Alberta, Canada (E.O.A.)
| | - Ingeborg Hers
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, England, United Kingdom (I.H., A.W.P.)
| | - Alastair W Poole
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, England, United Kingdom (I.H., A.W.P.)
| |
Collapse
|
24
|
Platelets in Host Defense: Experimental and Clinical Insights. Trends Immunol 2019; 40:922-938. [PMID: 31601520 DOI: 10.1016/j.it.2019.08.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 08/13/2019] [Accepted: 08/13/2019] [Indexed: 12/13/2022]
Abstract
Platelets are central players in thrombosis and hemostasis but are increasingly recognized as key components of the immune system. They shape ensuing immune responses by recruiting leukocytes, and support the development of adaptive immunity. Recent data shed new light on the complex role of platelets in immunity. Here, we summarize experimental and clinical data on the role of platelets in host defense against bacteria. Platelets bind, contain, and kill bacteria directly; however, platelet proinflammatory effector functions and cross-talk with the coagulation system, can also result in damage to the host (e.g., acute lung injury and sepsis). Novel clinical insights support this dichotomy: platelet inhibition/thrombocytopenia can be either harmful or protective, depending on pathophysiological context. Clinical studies are currently addressing this aspect in greater depth.
Collapse
|
25
|
Bennett JA, Ture SK, Schmidt RA, Mastrangelo MA, Cameron SJ, Terry LE, Yule DI, Morrell CN, Lowenstein CJ. Acetylcholine Inhibits Platelet Activation. J Pharmacol Exp Ther 2019; 369:182-187. [PMID: 30765424 PMCID: PMC6439456 DOI: 10.1124/jpet.118.253583] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 02/12/2019] [Indexed: 12/18/2022] Open
Abstract
Platelets are key mediators of thrombosis. Many agonists of platelet activation are known, but fewer endogenous inhibitors of platelets, such as prostacyclin and nitric oxide (NO), have been identified. Acetylcholinesterase inhibitors, such as donepezil, can cause bleeding in patients, but the underlying mechanisms are not well understood. We hypothesized that acetylcholine is an endogenous inhibitor of platelets. We measured the effect of acetylcholine or analogs of acetylcholine on human platelet activation ex vivo. Acetylcholine and analogs of acetylcholine inhibited platelet activation, as measured by P-selectin translocation and glycoprotein IIb IIIa conformational changes. Conversely, we found that antagonists of the acetylcholine receptor, such as pancuronium, enhance platelet activation. Furthermore, drugs inhibiting acetylcholinesterase, such as donepezil, also inhibit platelet activation, suggesting that platelets release acetylcholine. We found that NO mediates acetylcholine inhibition of platelets. Our data suggest that acetylcholine is an endogenous inhibitor of platelet activation. The cholinergic system may be a novel target for antithrombotic therapies.
Collapse
Affiliation(s)
- John A Bennett
- Aab Cardiovascular Research Institute, Department of Medicine (J.A.B., S.K.T., R.A.S., M.A.M., S.J.C., C.N.M., C.J.L.) and Department of Pharmacology and Physiology (L.E.T., D.I.Y.), University of Rochester Medical Center, Rochester, New York
| | - Sara K Ture
- Aab Cardiovascular Research Institute, Department of Medicine (J.A.B., S.K.T., R.A.S., M.A.M., S.J.C., C.N.M., C.J.L.) and Department of Pharmacology and Physiology (L.E.T., D.I.Y.), University of Rochester Medical Center, Rochester, New York
| | - Rachel A Schmidt
- Aab Cardiovascular Research Institute, Department of Medicine (J.A.B., S.K.T., R.A.S., M.A.M., S.J.C., C.N.M., C.J.L.) and Department of Pharmacology and Physiology (L.E.T., D.I.Y.), University of Rochester Medical Center, Rochester, New York
| | - Michael A Mastrangelo
- Aab Cardiovascular Research Institute, Department of Medicine (J.A.B., S.K.T., R.A.S., M.A.M., S.J.C., C.N.M., C.J.L.) and Department of Pharmacology and Physiology (L.E.T., D.I.Y.), University of Rochester Medical Center, Rochester, New York
| | - Scott J Cameron
- Aab Cardiovascular Research Institute, Department of Medicine (J.A.B., S.K.T., R.A.S., M.A.M., S.J.C., C.N.M., C.J.L.) and Department of Pharmacology and Physiology (L.E.T., D.I.Y.), University of Rochester Medical Center, Rochester, New York
| | - Lara E Terry
- Aab Cardiovascular Research Institute, Department of Medicine (J.A.B., S.K.T., R.A.S., M.A.M., S.J.C., C.N.M., C.J.L.) and Department of Pharmacology and Physiology (L.E.T., D.I.Y.), University of Rochester Medical Center, Rochester, New York
| | - David I Yule
- Aab Cardiovascular Research Institute, Department of Medicine (J.A.B., S.K.T., R.A.S., M.A.M., S.J.C., C.N.M., C.J.L.) and Department of Pharmacology and Physiology (L.E.T., D.I.Y.), University of Rochester Medical Center, Rochester, New York
| | - Craig N Morrell
- Aab Cardiovascular Research Institute, Department of Medicine (J.A.B., S.K.T., R.A.S., M.A.M., S.J.C., C.N.M., C.J.L.) and Department of Pharmacology and Physiology (L.E.T., D.I.Y.), University of Rochester Medical Center, Rochester, New York
| | - Charles J Lowenstein
- Aab Cardiovascular Research Institute, Department of Medicine (J.A.B., S.K.T., R.A.S., M.A.M., S.J.C., C.N.M., C.J.L.) and Department of Pharmacology and Physiology (L.E.T., D.I.Y.), University of Rochester Medical Center, Rochester, New York
| |
Collapse
|
26
|
Wu X, Liu Y, Wei W, Liu ML. Extracellular vesicles in autoimmune vasculitis - Little dirts light the fire in blood vessels. Autoimmun Rev 2019; 18:593-606. [PMID: 30959208 DOI: 10.1016/j.autrev.2018.12.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 12/16/2018] [Indexed: 12/15/2022]
Abstract
Systemic vasculitis is diverse group of autoimmune disorders which are characterized by inflammation of blood vessel walls with deep aching and burning pain. Their underlying etiology and pathophysiology still remain poorly understood. Extracellular vesicles (EVs), including exosomes, microvesicles (MVs), and apoptotic bodies, are membrane vesicular structures that are released either during cell activation, or when cells undergo programmed cell death, including apoptosis, necroptosis, and pyroptosis. Although EVs were thought as cell dusts, but now they have been found to be potently active since they harbor bioactive molecules, such as proteins, lipids, nucleic acids, or multi-molecular complexes. EVs can serve as novel mediators for cell-to-cell communications by delivery bioactive molecules from their parental cells to the recipient cells. Earlier studies mainly focused on MVs budding from membrane surface. Recent studies demonstrated that EVs may also carry molecules from cytoplasm or even from nucleus of their parental cells, and these EVs may carry autoantigens and are important in vasculitis. EVs may play important roles in vasculitis through their potential pathogenic involvements in inflammation, autoimmune responses, procoagulation, endothelial dysfunction/damage, angiogenesis, and intimal hyperplasia. EVs have also been used as specific biomarkers for diagnostic use or disease severity monitoring. In this review, we have focused on the aspects of EV biology most relevant to the pathogenesis of vasculitis, discussed their perspective insights, and summarized the exist literature on EV relevant studies in vasculitis, therefore provides an integration of current knowledge regarding the novel role of EVs in systemic vasculitis.
Collapse
Affiliation(s)
- Xiuhua Wu
- Department of Rheumatology and Immunology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Yu Liu
- School of Medicine, Saint Louis University, St. Louis, MO 63104, USA
| | - Wei Wei
- Department of Rheumatology and Immunology, Tianjin Medical University General Hospital, Tianjin 300052, China.
| | - Ming-Lin Liu
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Corporal Michael J. Crescenz VA Medical Center (Philadelphia), Philadelphia, PA 19104, USA.
| |
Collapse
|
27
|
Using extracellular calcium concentration and electric pulse conditions to tune platelet-rich plasma growth factor release and clotting. Med Hypotheses 2019; 125:100-105. [PMID: 30902134 DOI: 10.1016/j.mehy.2019.02.036] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 02/15/2019] [Indexed: 12/16/2022]
Abstract
Platelet-rich plasma (PRP) is an emerging autologous biologic method for wound healing. Clinicians apply PRP either topically (where it is activated ex-vivo before treatment by adding an external agent to trigger clotting and the release of growth factors that facilitate wound healing) or through injection (where it is activated in vivo at the injury site with no prior activation before injection). Because topical PRP activation typically utilizes bovine thrombin, which has significant potential side effects and high costs, recent studies have assessed the efficacy of combining extracellular calcium (EC) and electric pulses (EPs) to activate PRP. The potential to apply this novel technique to PRP both topically and internally via injection raises the question about the ability to tune the clotting time and growth factor release for a given application. While previous studies have assessed the impact of applying EPs of various durations either directly (conductive coupling) or indirectly (capacitive coupling) to PRP containing EC, no studies have assessed the tunability of this activation based on modifying EP parameters, EP delivery method (conductive or capacitive coupling), and the EC concentration. We hypothesize that tuning these parameters will modify intracellular calcium uptake to permit the control of growth factor release and clotting time, which are critical for optimizing PRP for either topical or internal clinical applications. A pilot study for a single donor demonstrates the potential for tunability as a function of the intensity of membrane manipulation and calcium concentration, which facilitate the increase of cytosolic calcium. This motivates future studies assessing EC and EP optimization and in vivo studies to determine the overall efficacy of this tunability for wound healing.
Collapse
|
28
|
Weisel JW, Litvinov RI. Keeping it clean: clot biofilm to wall out bacterial invasion. J Thromb Haemost 2018; 16:2359-2361. [PMID: 30378750 DOI: 10.1111/jth.14309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Indexed: 11/28/2022]
Affiliation(s)
- J W Weisel
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - R I Litvinov
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
29
|
A shear-dependent NO-cGMP-cGKI cascade in platelets acts as an auto-regulatory brake of thrombosis. Nat Commun 2018; 9:4301. [PMID: 30327468 PMCID: PMC6191445 DOI: 10.1038/s41467-018-06638-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 09/18/2018] [Indexed: 12/31/2022] Open
Abstract
Mechanisms that limit thrombosis are poorly defined. One of the few known endogenous platelet inhibitors is nitric oxide (NO). NO activates NO sensitive guanylyl cyclase (NO-GC) in platelets, resulting in an increase of cyclic guanosine monophosphate (cGMP). Here we show, using cGMP sensor mice to study spatiotemporal dynamics of platelet cGMP, that NO-induced cGMP production in pre-activated platelets is strongly shear-dependent. We delineate a new mode of platelet-inhibitory mechanotransduction via shear-activated NO-GC followed by cGMP synthesis, activation of cGMP-dependent protein kinase I (cGKI), and suppression of Ca2+ signaling. Correlative profiling of cGMP dynamics and thrombus formation in vivo indicates that high cGMP concentrations in shear-exposed platelets at the thrombus periphery limit thrombosis, primarily through facilitation of thrombus dissolution. We propose that an increase in shear stress during thrombus growth activates the NO-cGMP-cGKI pathway, which acts as an auto-regulatory brake to prevent vessel occlusion, while preserving wound closure under low shear. Nitric oxide (NO) inhibits thrombosis in part by stimulating cyclic guanosine monophosphate (cGMP) production and cGMP-dependent protein kinase I (cGKI) activity in platelets. Here, Wen et al. develop a cGMP sensor mouse to follow cGMP dynamics in platelets, and find that shear stress activates NO-cGMP-cGKI signaling during platelet aggregation to limit thrombosis.
Collapse
|
30
|
Functional redundancy between RAP1 isoforms in murine platelet production and function. Blood 2018; 132:1951-1962. [PMID: 30131434 DOI: 10.1182/blood-2018-03-838714] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 08/11/2018] [Indexed: 01/14/2023] Open
Abstract
RAP GTPases, important regulators of cellular adhesion, are abundant signaling molecules in the platelet/megakaryocytic lineage. However, mice lacking the predominant isoform, RAP1B, display a partial platelet integrin activation defect and have a normal platelet count, suggesting the existence of a RAP1-independent pathway to integrin activation in platelets and a negligible role for RAP GTPases in megakaryocyte biology. To determine the importance of individual RAP isoforms on platelet production and on platelet activation at sites of mechanical injury or vascular leakage, we generated mice with megakaryocyte-specific deletion (mKO) of Rap1a and/or Rap1b Interestingly, Rap1a/b-mKO mice displayed a marked macrothrombocytopenia due to impaired proplatelet formation by megakaryocytes. In platelets, RAP isoforms had redundant and isoform-specific functions. Deletion of RAP1B, but not RAP1A, significantly reduced α-granule secretion and activation of the cytoskeleton regulator RAC1. Both isoforms significantly contributed to thromboxane A2 generation and the inside-out activation of platelet integrins. Combined deficiency of RAP1A and RAP1B markedly impaired platelet aggregation, spreading, and clot retraction. Consistently, thrombus formation in physiological flow conditions was abolished in Rap1a/b-mKO, but not Rap1a-mKO or Rap1b-mKO, platelets. Rap1a/b-mKO mice were strongly protected from experimental thrombosis and exhibited a severe defect in hemostasis after mechanical injury. Surprisingly, Rap1a/b-mKO platelets were indistinguishable from controls in their ability to prevent blood-lymphatic mixing during development and hemorrhage at sites of inflammation. In summary, our studies demonstrate an essential role for RAP1 signaling in platelet integrin activation and a critical role in platelet production. Although important for hemostatic/thrombotic plug formation, platelet RAP1 signaling is dispensable for vascular integrity during development and inflammation.
Collapse
|
31
|
Swieringa F, Spronk HM, Heemskerk JW, van der Meijden PE. Integrating platelet and coagulation activation in fibrin clot formation. Res Pract Thromb Haemost 2018; 2:450-460. [PMID: 30046749 PMCID: PMC6046596 DOI: 10.1002/rth2.12107] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 03/31/2018] [Indexed: 12/21/2022] Open
Abstract
Platelets interact with the coagulation system in a multitude of ways, not only during the phases of thrombus formation, but also in specific areas within a formed thrombus. This review discusses current concepts of platelet control of thrombin generation, fibrin formation and structure, and anticoagulation. Indicated are how combined signalling via the platelet receptors for collagen (glycoprotein VI) and thrombin induces the secretion of (anti)coagulation factors, as well as surface exposure of phosphatidylserine, thereby catalysing thrombin generation. This procoagulant platelet response is also facilitated by the adhesive complexes glycoprotein Ib-V-IX and integrin αIIbβ3. In the buildup of a platelet-fibrin thrombus, the extrinsic, tissue factor-driven coagulation pathway is predominant in early stages, while the intrinsic, factor XII pathway seems to promote at later time points. Already early generation of thrombin enforces platelet responses and stimulates intra-thrombus heterogeneity with patches of loosely aggregated, contracted, and phosphatidylserine-exposing platelets. Fibrin actively formed on the surface of activated platelets supports thrombus growth, but also captures thrombin. The fibrin distribution in a thrombus appears to rely on the local procoagulant trigger and the blood flow rate. Clinical studies support the importance of the platelet-coagulation interplay, by showing beneficial effects of combination therapy in the secondary prevention of cardiovascular disease.
Collapse
Affiliation(s)
- Frauke Swieringa
- Department of BiochemistryCardiovascular Research Institute Maastricht (CARIM)Maastricht UniversityMaastrichtThe Netherlands
- Leibniz Institute for Analytical SciencesISASDortmundGermany
| | - Henri M.H. Spronk
- Department of BiochemistryCardiovascular Research Institute Maastricht (CARIM)Maastricht UniversityMaastrichtThe Netherlands
| | - Johan W.M. Heemskerk
- Department of BiochemistryCardiovascular Research Institute Maastricht (CARIM)Maastricht UniversityMaastrichtThe Netherlands
| | - Paola E.J. van der Meijden
- Department of BiochemistryCardiovascular Research Institute Maastricht (CARIM)Maastricht UniversityMaastrichtThe Netherlands
| |
Collapse
|
32
|
Plow EF, Wang Y, Simon DI. The search for new antithrombotic mechanisms and therapies that may spare hemostasis. Blood 2018; 131:1899-1902. [PMID: 29467183 PMCID: PMC5921961 DOI: 10.1182/blood-2017-10-784074] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 02/13/2018] [Indexed: 12/20/2022] Open
Abstract
Current antithrombotic drugs, including widely used antiplatelet agents and anticoagulants, are associated with significant bleeding risk. Emerging experimental evidence suggests that the molecular and cellular mechanisms of hemostasis and thrombosis can be separated, thereby increasing the possibility of new antithrombotic therapeutic targets with reduced bleeding risk. We review new coagulation and platelet targets and highlight the interaction between integrin αMβ2 (Mac-1, CD11b/CD18) on leukocytes and GPIbα on platelets that seems to distinguish thrombosis from hemostasis.
Collapse
Affiliation(s)
| | - Yunmei Wang
- Harrington Heart & Vascular Institute, University Hospitals Cleveland Medical Center, Case Cardiovascular Research Institute, Case Western Reserve University School of Medicine, Cleveland, OH
| | - Daniel I Simon
- Harrington Heart & Vascular Institute, University Hospitals Cleveland Medical Center, Case Cardiovascular Research Institute, Case Western Reserve University School of Medicine, Cleveland, OH
| |
Collapse
|
33
|
Abstract
Platelets play a vital role in normal hemostasis to stem blood loss at sites of vascular injury by tethering and adhering to sites of injury, recruiting other platelets and blood cells to the developing clot, releasing vasoactive small molecules and proteins, and assembling and activating plasma coagulation proteins in a tightly regulated temporal and spatial manner. In synchrony with specific end products of coagulation, primarily cross-linked fibrin, a stable thrombus quickly forms. Far beyond physiological hemostasis and pathological thrombosis, emerging evidence supports platelets playing a pivotal role in vascular homeostasis, inflammation, cellular repair, regeneration, and wide range of autocrine and paracrine functions. In essence, platelets play both structural and functional roles as reporters, messengers, and active transporters surveying the vasculature for cues of environmental or developmental stimuli and participating as first responders.1 In this review, we will provide a contemporary perspective of platelet physiology, including fundamental, translational, and clinical constructs that apply directly to human health and disease.
Collapse
Affiliation(s)
- Richard C Becker
- From the Heart, Lung and Vascular Institute, University of Cincinnati College of Medicine, OH (R.C.B.); and Gill Heart and Vascular Institute (T.S., S.S.S.) and Lexington VA Medical Center (T.S., S.S.S.), University of Kentucky School of Medicine.
| | - Travis Sexton
- From the Heart, Lung and Vascular Institute, University of Cincinnati College of Medicine, OH (R.C.B.); and Gill Heart and Vascular Institute (T.S., S.S.S.) and Lexington VA Medical Center (T.S., S.S.S.), University of Kentucky School of Medicine
| | - Susan S Smyth
- From the Heart, Lung and Vascular Institute, University of Cincinnati College of Medicine, OH (R.C.B.); and Gill Heart and Vascular Institute (T.S., S.S.S.) and Lexington VA Medical Center (T.S., S.S.S.), University of Kentucky School of Medicine
| |
Collapse
|
34
|
|
35
|
|
36
|
Bergmeier W, Stefanini L. Platelets at the Vascular Interface. Res Pract Thromb Haemost 2018; 2:27-33. [PMID: 29457148 PMCID: PMC5810953 DOI: 10.1002/rth2.12061] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Accepted: 10/19/2017] [Indexed: 02/01/2023] Open
Abstract
In this brief review paper, we will summarize the State-of-the-Art on how platelet reactivity is regulated in circulation and at sites of vascular injury. Our review discusses recent and ongoing work, presented at this year's International Society on Thrombosis and Haemostasis (ISTH) meeting, on the role of platelets in (1) classical hemostasis at sites of mechanical injury, and (2) the maintenance of vascular integrity at sites of inflammation.
Collapse
Affiliation(s)
- Wolfgang Bergmeier
- Department of Biochemistry and BiophysicsUniversity of North Carolina at Chapel HillChapel HillNCUSA
- McAllister Heart InstituteUniversity of North Carolina at Chapel HillChapel HillNCUSA
| | - Lucia Stefanini
- Department of Internal Medicine and Medical SpecialtiesSapienza University of RomeRomeItaly
| |
Collapse
|
37
|
A dual role for the class III PI3K, Vps34, in platelet production and thrombus growth. Blood 2017; 130:2032-2042. [PMID: 28903944 DOI: 10.1182/blood-2017-04-781641] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 09/01/2017] [Indexed: 12/16/2022] Open
Abstract
To uncover the role of Vps34, the sole class III phosphoinositide 3-kinase (PI3K), in megakaryocytes (MKs) and platelets, we created a mouse model with Vps34 deletion in the MK/platelet lineage (Pf4-Cre/Vps34lox/lox). Deletion of Vps34 in MKs led to the loss of its regulator protein, Vps15, and was associated with microthrombocytopenia and platelet granule abnormalities. Although Vps34 deficiency did not affect MK polyploidisation or proplatelet formation, it dampened MK granule biogenesis and directional migration toward an SDF1α gradient, leading to ectopic platelet release within the bone marrow. In MKs, the level of phosphatidylinositol 3-monophosphate (PI3P) was significantly reduced by Vps34 deletion, resulting in endocytic/trafficking defects. In platelets, the basal level of PI3P was only slightly affected by Vps34 loss, whereas the stimulation-dependent pool of PI3P was significantly decreased. Accordingly, a significant increase in the specific activity of Vps34 lipid kinase was observed after acute platelet stimulation. Similar to Vps34-deficient platelets, ex vivo treatment of wild-type mouse or human platelets with the Vps34-specific inhibitors, SAR405 and VPS34-IN1, induced abnormal secretion and affected thrombus growth at arterial shear rate, indicating a role for Vps34 kinase activity in platelet activation, independent from its role in MKs. In vivo, Vps34 deficiency had no impact on tail bleeding time, but significantly reduced platelet prothrombotic capacity after carotid injury. This study uncovers a dual role for Vps34 as a regulator of platelet production by MKs and as an unexpected regulator of platelet activation and arterial thrombus formation dynamics.
Collapse
|
38
|
Platelet populations and priming in hematological diseases. Blood Rev 2017; 31:389-399. [PMID: 28756877 DOI: 10.1016/j.blre.2017.07.004] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 06/26/2017] [Accepted: 07/18/2017] [Indexed: 01/01/2023]
Abstract
In healthy subjects and patients with hematological diseases, platelet populations can be distinguished with different response spectra in hemostatic and vascular processes. These populations partly overlap, and are less distinct than those of leukocytes. The platelet heterogeneity is linked to structural properties, and is enforced by inequalities in the environment. Contributing factors are variability between megakaryocytes, platelet ageing, and positive or negative priming of platelets during their time in circulation. Within a hemostatic plug or thrombus, platelet heterogeneity is enhanced by unequal exposure to agonists, with populations of contracted platelets in the thrombus core, discoid platelets at the thrombus surface, patches of ballooned and procoagulant platelets forming thrombin, and coated platelets binding fibrin. Several pathophysiological hematological conditions can positively or negatively prime the responsiveness of platelet populations. As a consequence, in vivo and in vitro markers of platelet activation can differ in thrombotic and hematological disorders.
Collapse
|
39
|
Agbani EO, Hers I, Poole AW. Temporal contribution of the platelet body and balloon to thrombin generation. Haematologica 2017; 102:e379-e381. [PMID: 28705901 DOI: 10.3324/haematol.2017.166819] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Affiliation(s)
- Ejaife O Agbani
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Biomedical Sciences Building, UK
| | - Ingeborg Hers
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Biomedical Sciences Building, UK
| | - Alastair W Poole
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Biomedical Sciences Building, UK
| |
Collapse
|
40
|
Hiratsuka T, Sano T, Kato H, Komatsu N, Imajo M, Kamioka Y, Sumiyama K, Banno F, Miyata T, Matsuda M. Live imaging of extracellular signal-regulated kinase and protein kinase A activities during thrombus formation in mice expressing biosensors based on Förster resonance energy transfer. J Thromb Haemost 2017; 15:1487-1499. [PMID: 28453888 DOI: 10.1111/jth.13723] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Indexed: 01/22/2023]
Abstract
Essentials Spatiotemporal regulation of protein kinases during thrombus formation remains elusive in vivo. Activities of protein kinases were live imaged in mouse platelets at laser-ablated arterioles. Protein kinase A was activated in the dislodging platelets at the downstream side of the thrombus. Extracellular signal-regulated kinase was activated at the core of contracting platelet aggregates. SUMMARY Background The dynamic features of thrombus formation have been visualized by conventional video widefield microscopy or confocal microscopy in live mice. However, owing to technical limitations, the precise spatiotemporal regulation of intracellular signaling molecule activities, which have been extensively studied in vitro, remains elusive in vivo. Objectives To visualize, by the use of two-photon excitation microscopy of transgenic mice expressing Förster resonance energy transfer (FRET) biosensors for extracellular signal-regulated kinase (ERK) and protein kinase A (PKA), ERK and PKA activities during thrombus formation in laser-injured subcutaneous arterioles. Results When a core of densely packed platelets had developed, ERK activity was increased from the basal region close to the injured arterioles. PKA was activated at the downstream side of an unstable shell overlaying the core of platelets. Intravenous administration of a MEK inhibitor, PD0325901, suppressed platelet tethering and dislodged platelet aggregates, indicating that ERK activity is indispensable for both initiation and maintenance of the thrombus. A cAMP analog, dbcAMP, inhibited platelet tethering but failed to dislodge the preformed platelet aggregates, suggesting that PKA can antagonize thrombus formation only in the early phase. Conclusion In vivo imaging of transgenic mice expressing FRET biosensors will open a new opportunity to visualize the spatiotemporal changes in signaling molecule activities not only during thrombus formation but also in other hematologic disorders.
Collapse
Affiliation(s)
- T Hiratsuka
- Department of Pathology and Biology of Diseases, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - T Sano
- Department of Pathology and Biology of Diseases, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - H Kato
- Department of Hematology-Oncology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - N Komatsu
- Laboratory of Bioimaging and Cell Signaling, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - M Imajo
- Laboratory of Bioimaging and Cell Signaling, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Y Kamioka
- Department of Pathology and Biology of Diseases, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - K Sumiyama
- Laboratory for Mouse Genetic Engineering, Quantitative Biology Center, RIKEN, Suita, Osaka, Japan
| | - F Banno
- Research Institute, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - T Miyata
- Research Institute, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - M Matsuda
- Department of Pathology and Biology of Diseases, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Laboratory of Bioimaging and Cell Signaling, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
41
|
Pradhan S, Khatlani T, Nairn AC, Vijayan KV. The heterotrimeric G protein Gβ 1 interacts with the catalytic subunit of protein phosphatase 1 and modulates G protein-coupled receptor signaling in platelets. J Biol Chem 2017; 292:13133-13142. [PMID: 28615442 DOI: 10.1074/jbc.m117.796656] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 06/13/2017] [Indexed: 11/06/2022] Open
Abstract
Thrombosis is caused by the activation of platelets at the site of ruptured atherosclerotic plaques. This activation involves engagement of G protein-coupled receptors (GPCR) on platelets that promote their aggregation. Although it is known that protein kinases and phosphatases modulate GPCR signaling, how serine/threonine phosphatases integrate with G protein signaling pathways is less understood. Because the subcellular localization and substrate specificity of the catalytic subunit of protein phosphatase 1 (PP1c) is dictated by PP1c-interacting proteins, here we sought to identify new PP1c interactors. GPCRs signal via the canonical heterotrimeric Gα and Gβγ subunits. Using a yeast two-hybrid screen, we discovered an interaction between PP1cα and the heterotrimeric G protein Gβ1 subunit. Co-immunoprecipitation studies with epitope-tagged PP1c and Gβ1 revealed that Gβ1 interacts with the PP1c α, β, and γ1 isoforms. Purified PP1c bound to recombinant Gβ1-GST protein, and PP1c co-immunoprecipitated with Gβ1 in unstimulated platelets. Thrombin stimulation of platelets induced the dissociation of the PP1c-Gβ1 complex, which correlated with an association of PP1c with phospholipase C β3 (PLCβ3), along with a concomitant dephosphorylation of the inhibitory Ser1105 residue in PLCβ3. siRNA-mediated depletion of GNB1 (encoding Gβ1) in murine megakaryocytes reduced protease-activated receptor 4, activating peptide-induced soluble fibrinogen binding. Thrombin-induced aggregation was decreased in PP1cα-/- murine platelets and in human platelets treated with a small-molecule inhibitor of Gβγ. Finally, disruption of PP1c-Gβ1 complexes with myristoylated Gβ1 peptides containing the PP1c binding site moderately decreased thrombin-induced human platelet aggregation. These findings suggest that Gβ1 protein enlists PP1c to modulate GPCR signaling in platelets.
Collapse
Affiliation(s)
- Subhashree Pradhan
- From the Departments of Medicine.,Center for Translational Research on Inflammatory Diseases (CTRID), Michael E. DeBakey Veterans Affairs Medical Center (MEDVAMC), Houston, Texas 77030 and
| | - Tanvir Khatlani
- From the Departments of Medicine.,Center for Translational Research on Inflammatory Diseases (CTRID), Michael E. DeBakey Veterans Affairs Medical Center (MEDVAMC), Houston, Texas 77030 and
| | - Angus C Nairn
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut 06508
| | - K Vinod Vijayan
- From the Departments of Medicine, .,Center for Translational Research on Inflammatory Diseases (CTRID), Michael E. DeBakey Veterans Affairs Medical Center (MEDVAMC), Houston, Texas 77030 and.,Pediatrics.,Molecular Physiology and Biophysics, Baylor College of Medicine and
| |
Collapse
|
42
|
Membrane Ballooning in Aggregated Platelets is Synchronised and Mediates a Surge in Microvesiculation. Sci Rep 2017; 7:2770. [PMID: 28584295 PMCID: PMC5459805 DOI: 10.1038/s41598-017-02933-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 04/20/2017] [Indexed: 12/23/2022] Open
Abstract
Human platelet transformation into balloons is part of the haemostatic response and thrombus architecture. Here we reveal that in aggregates of platelets in plasma, ballooning in multiple platelets occurs in a synchronised manner. This suggests a mechanism of coordination between cells, previously unrecognised. We aimed to understand this mechanism, and how it may contribute to thrombus development. Using spinning-disc confocal microscopy we visualised membrane ballooning in human platelet aggregates adherent to collagen-coated surfaces. Within an aggregate, multiple platelets undergo ballooning in a synchronised fashion, dependent upon extracellular calcium, in a manner that followed peak cytosolic calcium levels in the aggregate. Synchrony was observed in platelets within but not between aggregates, suggesting a level of intra-thrombus communication. Blocking phosphatidylserine, inhibiting thrombin or blocking PAR1 receptor, largely prevented synchrony without blocking ballooning itself. In contrast, inhibition of connexins, P2Y12, P2Y1 or thromboxane formation had no effect on synchrony or ballooning. Importantly, synchronised ballooning was closely followed by a surge in microvesicle formation, which was absent when synchrony was blocked. Our data demonstrate that the mechanism underlying synchronised membrane ballooning requires thrombin generation acting effectively in a positive feedback loop, mediating a subsequent surge in procoagulant activity and microvesicle release.
Collapse
|
43
|
Platelet CD36 promotes thrombosis by activating redox sensor ERK5 in hyperlipidemic conditions. Blood 2017; 129:2917-2927. [PMID: 28336528 DOI: 10.1182/blood-2016-11-750133] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 03/13/2017] [Indexed: 12/19/2022] Open
Abstract
Atherothrombosis is a process mediated by dysregulated platelet activation that can cause life-threatening complications and is the leading cause of death by cardiovascular disease. Platelet reactivity in hyperlipidemic conditions is enhanced when platelet scavenger receptor CD36 recognizes oxidized lipids in oxidized low-density lipoprotein (oxLDL) particles, a process that induces an overt prothrombotic phenotype. The mechanisms by which CD36 promotes platelet activation and thrombosis remain incompletely defined. In this study, we identify a mechanism for CD36 to promote thrombosis by increasing activation of MAPK extracellular signal-regulated kinase 5 (ERK5), a protein kinase known to be exquisitely sensitive to redox stress, through a signaling pathway requiring Src kinases, NADPH oxidase, superoxide radical anion, and hydrogen peroxide. Pharmacologic inhibitors of ERK5 blunted platelet activation and aggregation in response to oxLDL and targeted genetic deletion of ERK5 in murine platelets prevented oxLDL-induced platelet deposition on immobilized collagen in response to arterial shear. Importantly, in vivo thrombosis experiments after bone marrow transplantation from platelet-specific ERK5 null mice into hyperlipidemic apolipoprotein E null mice showed decreased platelet accumulation and increased thrombosis times compared with mice transplanted with ERK5 expressing control bone marrows. These findings suggest that atherogenic conditions critically regulate platelet CD36 signaling by increasing superoxide radical anion and hydrogen peroxide through a mechanism that promotes activation of MAPK ERK5.
Collapse
|
44
|
Khatlani T, Pradhan S, Da Q, Shaw T, Buchman VL, Cruz MA, Vijayan KV. A Novel Interaction of the Catalytic Subunit of Protein Phosphatase 2A with the Adaptor Protein CIN85 Suppresses Phosphatase Activity and Facilitates Platelet Outside-in αIIbβ3 Integrin Signaling. J Biol Chem 2016; 291:17360-8. [PMID: 27334924 DOI: 10.1074/jbc.m115.704296] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Indexed: 11/06/2022] Open
Abstract
The transduction of signals generated by protein kinases and phosphatases are critical for the ability of integrin αIIbβ3 to support stable platelet adhesion and thrombus formation. Unlike kinases, it remains unclear how serine/threonine phosphatases engage the signaling networks that are initiated following integrin ligation. Because protein-protein interactions form the backbone of signal transduction, we searched for proteins that interact with the catalytic subunit of protein phosphatase 2A (PP2Ac). In a yeast two-hybrid study, we identified a novel interaction between PP2Ac and an adaptor protein CIN85 (Cbl-interacting protein of 85 kDa). Truncation and alanine mutagenesis studies revealed that PP2Ac binds to the P3 block ((396)PAIPPKKPRP(405)) of the proline-rich region in CIN85. The interaction of purified PP2Ac with CIN85 suppressed phosphatase activity. Human embryonal kidney 293 αIIbβ3 cells overexpressing a CIN85 P3 mutant, which cannot support PP2Ac binding, displayed decreased adhesion to immobilized fibrinogen. Platelets contain the ∼85 kDa CIN85 protein along with the PP2Ac-CIN85 complex. A myristylated cell-permeable peptide derived from residues 395-407 of CIN85 protein (P3 peptide) disrupted the platelet PP2Ac-CIN85 complex and decreased αIIbβ3 signaling dependent functions such as platelet spreading on fibrinogen and thrombin-mediated fibrin clot retraction. In a phospho-profiling study P3 peptide treated platelets also displayed decreased phosphorylation of several signaling proteins including Src and GSK3β. Taken together, these data support a role for the novel PP2Ac-CIN85 complex in supporting integrin-dependent platelet function by dampening the phosphatase activity.
Collapse
Affiliation(s)
| | | | - Qi Da
- From the Departments of Medicine
| | | | - Vladimir L Buchman
- the School of Biosciences, Cardiff University, Wales CF10 3AX, United Kingdom
| | - Miguel A Cruz
- From the Departments of Medicine, Pediatrics, and Molecular Physiology and Biophysics, Baylor College of Medicine and Center for Translational Research on Inflammatory Diseases (CTRID), Michael E. DeBakey Veterans Affairs Medical Center (MEDVAMC), Houston, Texas 77030 and
| | - K Vinod Vijayan
- From the Departments of Medicine, Pediatrics, and Molecular Physiology and Biophysics, Baylor College of Medicine and Center for Translational Research on Inflammatory Diseases (CTRID), Michael E. DeBakey Veterans Affairs Medical Center (MEDVAMC), Houston, Texas 77030 and
| |
Collapse
|
45
|
Abstract
The cardioprotection afforded by low-dose aspirin reflects the biological importance of the platelet lipid thromboxane A2. In this issue of Cell Metabolism, Slatter et al. (2016) illuminate the breadth, complexity, and variability of the human platelet lipidome under conditions of thrombin activation and aspirin suppression, potentially facilitating the pursuit of precision medicine.
Collapse
Affiliation(s)
- Garret A FitzGerald
- Institute for Translational Medicine and Therapeutics, 10-123 Smilow Center for Translational Research, Building 421, 3400 Civic Center Boulevard, Philadelphia, PA 19104-5158, USA.
| |
Collapse
|
46
|
Litvinov RI, Weisel JW. What Is the Biological and Clinical Relevance of Fibrin? Semin Thromb Hemost 2016; 42:333-43. [PMID: 27056152 DOI: 10.1055/s-0036-1571342] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
As our knowledge of the structure and functions of fibrinogen and fibrin has increased tremendously, several key findings have given some people a superficial impression that the biological and clinical significance of these clotting proteins may be less than earlier thought. Most strikingly, studies of fibrinogen knockout mice demonstrated that many of these mice survive to weaning and beyond, suggesting that fibrin(ogen) may not be entirely necessary. Humans with afibrinogenemia also survive. Furthermore, in recent years, the major emphasis in the treatment of arterial thrombosis has been on inhibition of platelets, rather than fibrin. In contrast to the initially apparent conclusions from these results, it has become increasingly clear that fibrin is essential for hemostasis; is a key factor in thrombosis; and plays an important biological role in infection, inflammation, immunology, and wound healing. In addition, fibrinogen replacement therapy has become a preferred, major treatment for severe bleeding in trauma and surgery. Finally, fibrin is a unique biomaterial and is used as a sealant or glue, a matrix for cells, a scaffold for tissue engineering, and a carrier and/or a vector for targeted drug delivery.
Collapse
Affiliation(s)
- Rustem I Litvinov
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - John W Weisel
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
47
|
|
48
|
Modulating platelet reactivity through control of RGS18 availability. Blood 2015; 126:2611-20. [PMID: 26407691 DOI: 10.1182/blood-2015-04-640037] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 09/22/2015] [Indexed: 01/13/2023] Open
Abstract
Most platelet agonists activate platelets by binding to G-protein-coupled receptors. We have shown previously that a critical node in the G-protein signaling network in platelets is formed by a scaffold protein, spinophilin (SPL), the tyrosine phosphatase, Src homology region 2 domain-containing phosphatase-1 (SHP-1), and the regulator of G-protein signaling family member, RGS18. Here, we asked whether SPL and other RGS18 binding proteins such as 14-3-3γ regulate platelet reactivity by sequestering RGS18 and, if so, how this is accomplished. The results show that, in resting platelets, free RGS18 levels are relatively low, increasing when platelets are activated by thrombin. Free RGS18 levels also rise when platelets are rendered resistant to activation by exposure to prostaglandin I2 (PGI2) or forskolin, both of which increase platelet cyclic adenosine monophosphate (cAMP) levels. However, the mechanism for raising free RGS18 is different in these 2 settings. Whereas thrombin activates SHP-1 and causes dephosphorylation of SPL tyrosine residues, PGI2 and forskolin cause phosphorylation of SPL Ser94 without reducing tyrosine phosphorylation. Substituting alanine for Ser94 blocks cAMP-induced dissociation of the SPL/RGS/SHP-1 complex. Replacing Ser94 with aspartate prevents formation of the complex and produces a loss-of-function phenotype when expressed in mouse platelets. Together with the defect in platelet function we previously observed in SPL(-/-) mice, these data show that (1) regulated sequestration and release of RGS18 by intracellular binding proteins provides a mechanism for coordinating activating and inhibitory signaling networks in platelets, and (2) differential phosphorylation of SPL tyrosine and serine residues provides a key to understanding both.
Collapse
|
49
|
Abstract
In this issue of Blood, Meng et al and Sharda et al use the Hermansky-Pudlak syndrome (HPS) as a model to show that adenosine 5′-diphosphate (ADP) released by dense granules serves as an autocrine signal to potentiate platelet release of α-granule and lysosome cargo and protein disulfide isomerase (PDI), all of which serve to stabilize thrombus formation.
Collapse
|